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We investigate the preferential concentration of particles which are neutrally buoyant but with a
diameter significantly larger than the dissipation scale of the carrier flow. Such particles are known
not to behave as flow tracers (Qureshi et al., Phys. Re. Lett. 2007) but whether they do cluster
or not remains an open question. For this purpose, we take advantage of a new turbulence gen-
erating apparatus, the Lagrangian Exploration Module which produces homogeneous and isotropic
turbulence in a closed water flow. The flow is seeded with neutrally buoyant particles with diameter
700µm, corresponding to 4.4 to 17 times the turbulent dissipation scale when the rotation frequency
of the impellers driving the flow goes from 2Hz to 12Hz, and spanning a range of Stokes numbers
from 1.6 to 24.2. The spatial structuration of these inclusions is then investigated by a Voronoï
tesselation analysis, as recently proposed by Monchaux et al. (Phys. Fluids 2010), from images of
particle concentration field taken in a laser sheet at the center of the flow. Whatever the rotation
frequency and subsequently the Reynolds and Stokes numbers, the particles are found not to cluster.
The Stokes number by itself is therefore shown to be an insufficient indicator of the clustering trend
in particles laden flows.
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I. INTRODUCTION

Turbulent flows laden with inertial particles are
omnipresent in the industry (chemical reactors, en-
gines, etc.) and the environment, being human-
made or not (pollutant dispersion, volcanic or clas-
sical cloud formation and dispersion, etc.). Their
study is therefore of great interest and holds many
fundamental aspects, issues and limits so far.

One striking feature of these flows is the trend
for the particles to concentrate in preferentially
sampled regions of the carrier flow. This has been
observed and investigated for long both in experi-
ments [1–3] and simulations [4, 5], and it is still
widely studied [6, 7]. The focus is usually put
on small and heavy particles (that is with a high
density ratio compared to the fluid), especially in
numerical studies. Because of their high specific
density, the dynamics of such small and heavy in-
ertial particles deviates from that of the carrier
flow. Clustering phenomena are then one of the
many manifestations of this departure from tracer
behavior. Some other studies were conducted for
light particles as well, exhibiting the same trend
to cluster but with different cluster geometries [5].
Finally tracers (ought to be both neutrally buoy-
ant and much smaller than the dissipative scale
of the carrier flow) are usually used to characterize
the flow dynamics. The case of finite size neutrally
buoyant particles, however, has never been treated
to our knowledge in the context of preferential con-
centration phenomenon. Such finite size particles
(with a diameter significantly larger than the dis-
sipation scale of the carrier flows) are known ex-

perimentally [8] and numerically [6], to differ from
tracers. However, existing studies have focused on
the dynamics of isolated particles, but not on the
spatial structuration of laden flows. Whether they
cluster or not remains an open question. In or-
der to study the preferential concentration of fi-
nite size - neutrally buoyant particles, we perform
a Voronoï tesselation analysis. This technique, re-
cently introduced for the investigation of preferen-
tial concentration in two [7] or three [9] dimensions,
is particularly efficient and robust to diagnose and
quantify clustering phenomenon.

The article is organized as follows. In section II
we describe the experimental setup and the data
processing used to carry this investigation. Section
III describes the results on preferential concentra-
tion of finite size - neutrally buoyant particles. We
finish with a brief discussion and conclusions (sec-
tion IV).

II. EXPERIMENTAL SETUP AND
POSTPROCESSING

A. Turbulent flow generation

In order to study the behavior of neutrally buoy-
ant particles, a straightforward solution is to create
a turbulent water flow, with the particle density
matching that of water (neutrally buoyant par-
ticles can be obtained in air, for instance with
soap bubbles inflated with Helium [8, 10] ; how-
ever while it is easy to produce such bubbles in-
dividually, dense seeding with numerous particles
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is difficult). Many experimental apparatuses cre-
ating turbulent water flow with small mean flow
velocities exist, the best known example being the
von Kármán flow. This von Kármán flow is a high
Reynolds number turbulent flow created between
two counter-rotating disks. Near the center of the
apparatus, the mean velocities are much weaker
than the fluctuations. This is of particular interest
for the investigation of particles in turbulence as
the mean central stagnation point eases the acqui-
sition of long particle trajectories, what has made
the von Kármán flow the natural choice for sev-
eral pioneering experiments on Lagrangian particle
tracking [11, 12]. However, von Kármán flows ex-
hibit statistical inhomogeneity and anisotropy that
may render the interpretation of the results diffi-
cult, in particular when it comes to discriminate
between effects associated to the large anisotropic
structures and the small turbulent scales.

Experiments in this study are conducted in
a new turbulence generating apparatus, the La-
grangian Exploration Module (LEM), developed in
collaboration between the Laboratoire de Physique
of the École Nationale Supérieure de Lyon and
the Max Planck Institute of Dynamics and Self-
Organization in Göttingen. The LEM produces
turbulence in a closed water flow driven by twelve
impellers evenly distributed on twelve of the
twenty faces of an icosahedral vessel (see Figure 1).
The length of the edges of the icosahedron is 40 cm,
giving a volume of 140 L water. The twelve im-
pellers can be independently driven. In the present
work, all impellers are used simultaneously and ro-
tate at the same constant frequency f , which can
be increased up to 12.5 Hz, with the constraint
that impellers in front of each other counter-rotate.
This has been shown to achieve a statistically ho-
mogeneous and isotropic flow with almost zero
mean velocity in a central region of the device of
order 10× 10× 10 cm3 [13].

For the present setup, turbulence has been
characterized with two-dimensional particle im-
age velocimetry (PIV) using LaVision device on
a 15 cm× 10 cm plane in the center of the LEM. It
confirms a nearly homogeneous and isotropic tur-
bulence in a sphere of nearly 8 cm diameter at the
center of the LEM. The evolution of the turbulence
characteristics (defined below) for the explored
range of rotation frequencies is given in Table I.
The fluctuating velocities are averaged over the en-
tire illuminated plane as: u′ ≡ 〈ux,rms〉+〈uy,rms〉

2 .
We estimate the energy dissipation rate ε from
scalings of the velocity structure functions in the

(a)

(b)

Figure 1: (a) CAD rendering of the LEM
(b) LEM and Nd:YAG laser in situ

inertial range (see, e.g. [14]):

ε =
1
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]3/2
, (1)

ε =
1
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3DNN (r)
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]3/2
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where DLL(r) and DNN (r) are the second-order
longitudinal and transverse structure functions.
The constant C2 is set to C2 = 2.1 as obtained
from a compilation of data in various turbulent
flows [15]. Moreover, we have checked that the
isotropic conditions DNN = 4/3DLL holds over
the entire range of resolved scales what confirms
the good isotropy properties of the LEM. The esti-
mations of ε from the transverse and the longitudi-
nal scaling are in excellent agreement. The integral
length scale L is defined by:

L ≡
∫ ∞

0

DLL(r) dr. (3)

Finally the Reynolds numbers based on the Tay-
lor microscale (simply referred to as the Reynolds
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f u′ ε
Rλ

L η τη St
(Hz) (cm/s) (m2/s3) (cm) (µm) (ms)
2 4 0.0016 160 4.0 158 24.9 1.6
4 8 0.0144 210 3.6 91 8.3 4.7
6 12 0.0611 260 2.9 64 4.0 8.6
8 17 0.1086 310 4.5 55 3.0 13.2
10 22 0.2087 360 5.1 47 2.2 18.4
12 26 0.3518 395 5.0 41 1.7 24.2

Table I: Evolution of the turbulence characteristics in the LEM with the rotation frequency f of the
twelve impellers. u′: the fluctuation velocity, averaged over the entire measurement plane. ε: the energy
dissipation rate, measured from the inertial range scaling of the Eulerian velocity structure functions.
Rλ: the Taylor micro-scale Reynolds number, calculated from Eq. (4). L: the integral length scale.
η ≡ (ν3/ε)1/4 and τη ≡ (ν/ε)1/2: the Kolmogorov length and time scales of the flow, respectively.

St: the Stokes number of particles as defined in Eq. (5).

number later on) is defined as:

Rλ ≡
√

15
u′ L

ν
=

√
15
ε1/3L4/3

ν
=

√
15u′4

νε
. (4)

When the rotation velocity is changed from 2 to
12 Hz, the associated Reynolds numbers based on
the Taylor microscale varies from 160 to 395 in the
center of the LEM.

B. Particles characteristics

Regarding the particles used, one of the main
goals of our study is to explore the behavior of
finite size neutrally buoyant particles. More pre-
cisely the particles used must be neutrally buoy-
ant in water, meaning their density ρparticle must
be close to ρwater. Their size is also of importance:
not so small that they would behave as tracers and
follow the carrier flow dynamics, but also small
enough so that the flow dynamics is not much al-
tered.

In concrete terms, we chose polystyrene particles
of diameter d = 700µm – corresponding to 4.5 to
17 times the Kolmogorov length scale η, depending
on the turbulence energy dissipation rate ε. This
large range of ratio between the particles diameter
and the Kolmogorov length scale allows us to study
what can be seen as tracers (d/η ≈ 4.5) on the
one hand, and inertial particles (d/η > 5) on the
other hand [16, 17]. The particles density ρparticle
has been adjusted so that the ratio Γ =

ρparticle
ρwater

is
1 ≤ Γ ≤ 1.015. These particles are obtained from
small expandable polystyrene particles with origi-
nal density of order 1.05. These particles are irre-
versibly expanded by a moderate heating so that
as they expand their density decreases. In the ex-

pansion process particles whose density matches as
close as possible that of water are then selected and
sieved.

Particles interacting with a turbulent flow are
commonly characterized by their Stokes number,
a dimensionless number which quantifies the ratio
between the particle viscous relaxation time and a
typical time scale of the flow. The latter is gener-
ally chosen to be the Kolmogorov time scale:

St ≡ τp
τη

=

(
d

η

)2
1 + 2Γ

36
, (5)

where τp is the particle viscous relaxation time, τη
the dissipation time scale of the carrier flow and η
its dissipation length scale. The Stokes number is
usually used as the key –and often the only– pa-
rameter to characterize particle dynamics in turbu-
lence. This is highly motivated by the simplicity of
Stokesian models for modeling and numerical sim-
ulation purposes, where the dominant force acting
on the particle is simply taken as the drag due to
the difference between the particle velocity v and
the fluid velocity u:

d~v

dt
=

1

τp
(~u− ~v), (6)

the only explicit relevant parameter for the par-
ticles being then the viscous response time. This
minimal Stokesian model, whose validity can only
be warrantied as an approximation of Maxey &
Riley and Gatignol equation [18, 19] for the case
of small inertial particles much heavier than the
fluid, is commonly used in numerical simulations
(both DNS and kinematic simulations) investigat-
ing the turbulent dynamics of inertial particles. An
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important result to be emphasized in the context
of the present study is the observed dependence
of preferential concentration with the Stokes num-
ber. More specifically, Stokesian models suggest
that particles with non-vanishing Stokes number
tend to exhibit preferential concentration. Further
clustering and segregation is maximal for particles
whose Stokes number is of order unity [3, 20]. This
trend is supported by experimental measurements
of the concentration field of small inertial parti-
cles [7].

For the particles investigated in the present
work, the Stokes number as defined in Eq. (5)
spans a wide range from 1.6 to 24 as shown in
Table I. Though our particles are finite size, and
hence Stokesian approximation (Eq. 6) is not ex-
pected to hold by itself, the question of the influ-
ence of the Stokes number on the spatial distribu-
tion of such finite size particles is still of relevant
interest. In the present study, the particle con-
centration field has been investigated as a function
of their Stokes number. It has to be noted that
as the particle diameter and density are kept con-
stant, the Stokes number is varied by tuning the
flow dissipation time scale in Eq. (5). Therefore,
it cannot be varied independently of the Reynolds
number of the carrier flow.

C. Acquisitions and postprocessing

1. Particles detection

Acquisitions are performed using 12 bits digital
imaging at a resolution of 2400×1800 pixels corre-
sponding to a 15 cm× 10 cm visualization window
in the center of the LEM. Images are recorded with
a Phantom V10 camera (Vision Research Inc.) op-
erated at a low repetition rate of 2.5 Hz (note that
we only address here the question of particle spatial
distribution and we do not aim at tracking particle
dynamics, what would have required a much higher
repetition rate). The visualization window is illu-
minated by a 100 W pulsed Nd:YAG laser (Condor
Serial, Quantronix) synchronized with the camera,
creating a light sheet with millimetric thickness.
The camera is mounted with a 90 mm macro lens
(Tamron) through a Scheimpflug mount to com-
pensate for the depth of field effects resulting from
the angle between the camera and the laser sheet.
Each experiment consists in 2000 uncorrelated im-
ages acquired in nearly 15 min for a fixed rotation
frequency for each motor and a constant concen-
tration of polystyrene in the LEM. We identify the
particles on the images as local maxima with light
intensity higher than a threshold, assuming in a
first approximation that all the particles illumi-
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Figure 2: (a) Typical raw acquired image.
(b) Particles located in this image and the

associated Voronoï diagram.

nated in the laser sheet belong to one plane. The
center of the particles is determined as the center
of mass of all the pixels surrounding one local max-
ima. We have checked that changing slightly the
threshold value does not significantly impact the
number of detected particles ; essentially because
the contrast between the light diffused by the par-
ticles and the background is very strong due to the
large size of the particles. At the working seeding
density, the average number of detected particles is
of order 100. No diminution of the number of de-
tected particles is observed from the beginning to
the end of an experiment. This indicates a good
stationarity of seeding concentration as expected
for non-settling neutrally buoyant particles.

2. Voronoï tesselation study

In order to study the particle concentration field,
we use Voronoï diagrams. A raw acquired im-
age, and the detected particles and the associated
Voronoï diagram, are provided in Figures 2(a) and
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2(b) respectively. Such a Voronoï analysis has been
recently introduced for the investigation of prefer-
ential concentration of small water droplets in a
turbulent flow of air [7] , and was shown to be
particularly efficient and robust to diagnose and
quantify clustering phenomenon. These Voronoï
diagrams give a tesselation of a two-dimensional
space where each cell of the tesselation is linked to
one seed (one detected particle in the present case)
in such a way that all the points of the cell are
closer to the associated particle than to any other
particle. It appears that the area of a Voronoï cell
is the inverse of the local concentration of parti-
cles. Studying Voronoï area field is thus equivalent
to studying local concentration fields. The choice
of the Voronoï method was made for two main rea-
sons. First because unlike other methods, using for
instance box counting as a tool to study particles
concentration [2], this technique gives a measure of
the local concentration field at interparticle length
scale, meaning the measure does not depend on the
field size nor on an extrinsic length scale choice.
Second, this method is numerically very efficient
regarding the number of particles we have to pro-
cess (several hundreds per image). To compare the
results of different experiments made with differ-
ent amount of detected particles per image, one
has to find a normalization. This is achieved using
the average Voronoï area Ā defined as the mean
particles concentration inverse, which does not de-
pend on the spatial organization of the particles.
Therefore, we focus on the distribution of the nor-
malized Voronoï area V ≡ A/Ā in the rest of the
study.

III. RESULTS ON THE PREFERENTIAL
CONCENTRATION

Clustering properties can be investigated and
quantified by comparing the probability distribu-
tion function (PDF) of Voronoï cell areas in the
experiment to that of Voronoï cell areas of a syn-
thetic random Poisson process. It has to be noted
that surprisingly, no analytical form is known for
the PDF of Voronoï cell areas of such a Poisson
process, though its form is known to be well ap-
proximated by a Gamma distribution [21]. As a
random Poisson process reference, we use here the
compact analytical expression involving the space
dimension as a single parameter proposed by [21].
In two dimensions it reads:

f(y) = Cy5/2 exp(−7y/2), (7)

with the constant C=24.1358 in our case.
The PDFs of Voronoï cell areas for the differ-
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Figure 3: Superposition of the normalized
Voronoï area (V ≡ A/Ā) PDFs for six

experiments with varying Stokes number (colored
lines, each PDF is calculated from 2000

instantaneous fields) and a Gamma distribution
(black dashed line).

ent experiments described in Table I are plotted
in Figure 3. As it can be seen, all the PDFs col-
lapse within statistical convergence error bars. No
systematic trend is visible with the different exper-
imental configurations. We have superimposed on
the same plot a Gamma distribution. Interestingly
we find that the PDFs and the Gamma distribu-
tion also collapse, meaning the particles do not ex-
hibit any preferential concentration (or clustering)
whatever the Stokes number.

This result can be further quantified using the
standard deviation of the Voronoï areas. The stan-
dard deviations of the normalized Voronoï areas
are given in Table II. The experimental standard
deviations are all very close to 0.53, the standard
deviation of the normalized Voronoï area corre-
sponding to a random Poisson process. This re-
veals again the tendency of particles to distribute
in a random way.

IV. CONCLUSION AND DISCUSSION ON
THE STOKES NUMBER

We have investigated in this study the prefer-
ential concentration of finite size, neutrally buoy-
ant particles using Voronoï diagrams. By varying
the Reynolds number in the closed water flow, we
have been able to vary the Stokes number (the den-
sity and the diameter of the particles being kept
constant). Although such particles are known to
have a different dynamics from that of the flow,
we have found no preferential concentration in the
spatial structuration of these inclusions regardless
the Stokes number.

This result is contrary with most of the studies
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St 1.6 4.7 8.6 13.2 18.4 24.2
σV 0.532 0.530 0.529 0.530 0.535 0.533

σRPP
V ≈ 0.53

Table II: Standard deviations of the normalized Voronoï areas σV =
√
〈V2〉 − 1 for different Stokes

numbers, to be compared with the standard deviation of the normalized Voronoï area corresponding to
a random Poisson process σRPP

V .

describing preferential concentration of particles as
a result of inertial effects. As mentioned previ-
ously, these studies usually account the deviation
of the particles dynamics for inertial effects due to
the difference in density between the particles and
the fluid (hence the name inertial particles). The
clustering is then regarded as an effect of the iner-
tia of the particles, and the model used to quantify
this preferential concentration usually involves the
Stokes number only.

The present study, however, while dealing with
particles whose Stokes number is high (above
unity) and varies, does not exhibit any clustering.
It definitely shows that the Stokes number by itself
is not a sufficient indicator of the clustering trend
in particles laden flows. In our case, we suspect
that the pressure distribution at the surface of the
particles must be preponderant in the dynamics of
the particles.

In future studies we plan to investigate the in-
fluence of the flow anisotropy on the spatial struc-
turation of the particles, thanks to the versatility
of the LEM and its twelve independently driven
impellers. We will also carry out the same kind of
experiments with heavy particles in order to study
the impact of the particles sizes on the clustering
phenomena and on their geometries, and the influ-
ence of anisotropy.
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