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Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In
contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the
dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number
(the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of
flows in such experiments (with kinetic Reynolds numbers in excess of 106). We address these issues here, using
the von Kármán sodium experiment and studying its response to an externally applied magnetic field. We first
show that a dynamo threshold can be estimated from analysis related to critical slowing down and susceptibility
divergence, in configurations for which dynamo action is indeed observed. These approaches are then applied to
flow configurations that have failed to self-generate magnetic fields within operational limits, and we quantify
the dynamo capacity of these configurations.

DOI: 10.1103/PhysRevE.88.013002 PACS number(s): 47.65.−d, 47.27.−i, 82.40.Bj

I. INTRODUCTION

Estimating the proximity to a possible drastic change of be-
havior in a complex system (a bifurcation) is a generic and open
question. Determination of precursors of instabilities (either
transient or steady state) is essential in many applied fields, and
also gives valuable information for the understanding of the
physical mechanisms driving the instability. For some specific
hydrodynamics instabilities, the critical values for the control
parameter at which a supercritical instability develops may be
computed from the dynamical constitutive or model equations
describing the system; see for instance [1]. In other situations,
for example when fluctuations or boundary conditions (BCs)
play an (unknown) leading role, the computation of critical
values for control parameters may become intractable.

Possible methods for instability detection have been sug-
gested using the close analogy between the nonlinear bifurca-
tions of model systems and phase transitions. This is the case of
critical slowing down and susceptibility divergence which have
been thoroughly checked for some continuous instabilities.
A normalized control parameter is usually introduced as
ε = (A − Ac)/Ac, where A is the value of the control
parameter and Ac the critical value at which the instability
develops. One approach—usually restricted to positive values
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of ε—is based on the scaling of the amplitudes of physical
parameters, such as the growth of the amplitude of the unstable
mode, as a function of ε. Another concerns the transient
dynamics, as for instance the critical slowing down, which
has been observed for variations of the control parameter from
(or to) subcritical values (ε < 0) to (or from) supercritical
values (ε > 0). They have been checked for some supercritical
bifurcations such as Rayleigh-Bénard convection [2–4] and in
Taylor-Couette flows [5–7]. In these studies, one usually needs
to cross the instability threshold and the methods may not
be suitable to determine critical values from behavior below
threshold. Allain and coworkers [8] overcame this limitation by
the analysis of the temporal decay of forced thermal variations
in Rayleigh-Bénard convection below threshold. They showed
that the decay-time decreases as ε−1 and gave correct estimates
for the critical value of thermal convection. The authors also
pointed out that the decay-time evolution strongly depends
on the spatial patterns of forced thermal variations, and was
highest when the spatial wavelength of the forcing matched
that of the most unstable pattern. Critical slowing down near
threshold has also been observed in the transition to turbulence
in planar Poiseuille flows (following the spatial decay/growth
rates of forced fluctuations) [9] and more recently in pipe
flows [10]. The estimate of the critical control parameter was
shown to be in good agreement with the real critical value at
which the instability was observed.

In the context of magnetohydrodynamics (MHD), and more
specifically in the context of the dynamo instability, the precise
determination of the critical value of the magnetic Reynolds
number above which magnetic field grows spontaneously is
an important issue. The study of growth/decay rates has long
been used in kinematic dynamo studies where the induction
equation is used to compute growth rates of the magnetic fields
modes, from a prescribed velocity field (as the solution of the
Navier-Stokes equation with vanishing Lorentz force). In other
words, the induction equation is analyzed as an eigenvalue
problem, for which the largest eigenvalue is numerically
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computed, the critical value being the value of the control
parameter for which the most positive eigenvalue is equal to
zero (i.e., when critical slowing down is observed). This is
for instance the case of the swirling flows considered in [11],
which are related to the von Kármán flows, of the optimization
of the von Kármán sodium experiment [12], and of the models
of the von Kármán sodium dynamo [13–15], in contrast to the
case of [16] which considered a two-way coupling between
the velocity and the magnetic fields.

In dynamo experiments, currently restricted to liquid
metals, the accessible magnetic Reynolds numbers are mostly
limited by the available power. The fine tuning of dynamo
flows has been an important part of dynamo experiments, the
estimate of the critical magnetic Reynolds number being a
critical issue. In their initial study, Gailitis and coworkers [17]
studied the evolution of advected harmonic magnetic field
perturbations as a function of magnetic Reynolds number,
below threshold, in a cylindrical helical flow mimicking the
Ponomarenko flow [18]. They observed that the inverse of
the amplitude linearly decreases with the magnetic Reynolds
number, with strong variations as a function of the frequency
of the magnetic perturbations. Unfortunately this experimental
setup failed to generate a dynamo and the method could not
be checked regarding the estimate of a dynamo threshold. In
their later experiment, the Riga group successfully showed that
both magnetic susceptibility divergence and critical slowing
down could be used to estimate the dynamo threshold [19]. It
should be emphasized here that the initial stage of the magnetic
field growth of the Riga dynamo was shown to be correctly
described by laminar theory [20]. Evolution of the decay time
from low-amplitude, large-scale applied magnetic field was
also analyzed in secondary pumps of the fast breeder reactor
Superphenix [21], as well as in the unconstrained and more
turbulent Maryland experiment [22]. These measurements
showed variations of the relaxation time as a function of
the magnetic Reynolds number but were however restricted
to situations where dynamo instability was not reached.
It is the purpose of this paper to analyze in detail the
reliability of these methods in determining the threshold in the
turbulent von Kármán sodium (VKS) experiment, in which, by
changing boundary conditions and driving schemes, dynamo
self-generation has either been reached or has remained outside
of the accessible experimental parameters range.

In Sec. II, the von Kármán sodium experimental dynamo
setup is described. In Sec. III, we focus on a dynamo
configuration, for which the threshold is shown to be accurately
estimated from analysis of induced magnetic field dynamics
and amplitude. In Sec. IV, we use the observations of Sec. III
in a detailed analysis of the influence of boundary conditions
on dynamo generation. Discussion and conclusions are given
in the last section.

II. EXPERIMENTAL SETUP

The von Kármán sodium experiment is schematically
displayed in Fig. 1. Liquid sodium flows are created by
the counterrotation of two coaxial impellers within a copper
cylinder of radius Ro = 289 mm and length 524 mm. Each
impeller is composed of a thick disk (of radius Rimp =
154.5 mm and thickness 18 mm) fitted with eight blades with
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FIG. 1. (Color online) Schematic of the experimental setup, in
flow configuration 2 (see text for details). Probe shafts represent the
location of the magnetic field sensor arrays.

height 41.2 mm. They are driven up to typically 25 Hz by
motors with 300 kW available power, and oil circulation in the
outer copper cylinder regulates the sodium temperature around
120 ◦C.

An integral magnetic Reynolds number is defined as
Rm = μ0σ2πFRimpRo.1 The temperature dependence of the
electrical conductivity of sodium σ is taken into account in
the computation of Rm. Since the magnetic Prandtl number of
sodium is of the order of 10−5, the integral kinetic Reynolds
number is in excess of 106; i.e., the MHD flows considered
are highly turbulent, with a rate of velocity fluctuations (rms
to mean) of order unity.

It has been previously shown [23] that dynamo action was
observed above a critical magnetic Reynolds number Rmc

around 40. In exact counterrotation of the two impellers,
the dynamo magnetic field is statistically stationary, with a
rate of fluctuations of order unity. When the impellers are
driven asymmetrically, dynamical regimes such as magnetic
field reversals or oscillations have also been observed [23].
Self-generation has only been observed when the flow is
driven by the rotation of soft-iron impellers [24]. In the
remaining of the paper, unless otherwise stated, we restrict
our study to the case of exact counterrotation, first considering
cases for which the dynamo threshold has been reached
(in Sec. III). Section IV then focuses on the influence
of modified electromagnetic and hydrodynamic boundary
conditions (obtained by inserting appendices in the flow or
changing impellers and/or vessel materials) in cases for which
self-generation has not been observed. We emphasize that
the term “electromagnetic boundary conditions” refers here
both to static and rotating mechanical parts. As pointed out
in Sec. IV, static or rotating ferromagnetic parts do not
have the same influence on the magnetic response of similar
flows. However, since an exact understanding of the influence
of moving immersed conductive/ferromagnetic material in

1In earlier publications of the VKS collaboration, the integral
magnetic Reynolds number had been defined as Rm = Kμ0σ2πR2

oF

where K = 0.6 is a coefficient that measures the efficiency of
the impellers, resulting in slightly different values for the critical
magnetic Reynolds numbers.
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conductive fluids is not available, we thus encompass both
cases as the effect of “boundary conditions.”

Magnetic fields are recorded using four arrays of ten 3-axis
Hall effect sensors inserted in radial shafts, as shown in Fig. 1.
Two arrays are inserted in the midplane of the vessel, within
long probe shafts (labeled 2 and 3 in Fig. 1), the deepest probe
being 63 mm away from the cylinder’s axis, and neighboring
probes being separated by 28 mm. Two arrays are inserted
closer to the impellers (109 mm away from the midplane of the
vessel), within shorter probe shafts (labeled 1 and 4 in Fig. 1),
the deepest probe being 103 mm away from the cylinder’s
axis. These magnetic field sensors are recorded using National
Instruments PXI6259 16 bit digitizers at a rate of 2000 Hz.
The accuracy of the measured magnetic fields is ±0.1 G. Two
pairs of external coils allow for the application of controlled
magnetic fields in the experimental setup in order to study
the magnetic response of the flow (the applied magnetic field
amplitudes ranging from 1.5 G to 5 G). One pair of coils is
aligned with the cylinder’s axis. Depending on the relative
sign of the current in the axial coils, a magnetic field having
the geometry of an axial dipole can be imposed from the
Helmholtz axial setup (current in the same direction in both
coils) or a magnetic field having the geometry of an axial
quadrupole can be imposed from the anti-Helmholtz axial
setup (current in opposite directions in the two coils). The
other pair of coils is perpendicular to the cylinder’s axis; the
Helmholtz transverse setup creates a magnetic field having
the structure of a transverse dipole. If θ is the angular position
around the rotation axis, we define the azimuthal mode number
m such that the magnetic field dependance is proportional to
eimθ . With this notation, the axial coils provide an m = 0 field
(either dipole or quadrupole), while the transverse coils create
an m = 1 field.

III. BEHAVIOR FOR DYNAMO RUNS

We consider here cases where the flow is driven using
impellers made of an iron disk with iron blades, for which
dynamo action has been observed. We first describe the results
for a configuration with curved blades, where dynamo action is
observed above a critical value Rmc � 44 [25,26] (run labeled
R in Sec. IV). We show that induction measurements allow for a
reliable estimate of this critical value, using two methods. The
first method relies on the determination of relaxation dynamics
from applied magnetic pulses and the observation of critical
slowing down, while the second method analyzes global mag-
netic induction measurements and divergence of susceptibility.
The results are presented as a function of the normalized
control parameter ε = (Rm − Rmc)/Rmc. The two methods
are described in detail in the next two subsections, before
being applied in the last subsection to dynamo configurations
with straight blades and to nondynamo runs in next section.

A. Decay time measurements

1. Description of the method

We study here the decay of an externally applied magnetic
field pulse, and estimate its eventual variation with Rm in the
vicinity of threshold. The external field is applied using the two
Helmholtz axial coils (refer to Fig. 1) which generate an axial

dipole field, i.e., having a large projection onto the dynamo
magnetic field.

Figure 2(a) shows a typical time evolution of the axial
component of the magnetic field B(t) at one location for
one single realization of the relaxation from one applied
pulse, below threshold (namely ε = −0.13), together with
the relaxation of the current applied in the axial coils. One
observes a relaxation of the magnetic field from an ON state
which is the response to a large scale applied magnetic field
at t < 0 (the ON state is around 50 G) to an OFF state without
externally applied magnetic field (the OFF state being around
10 G). Due to the high level of flow fluctuations, the details of
this relaxation vary very much from one pulse to the next.

We first extract a mean behavior, averaging the relaxation
recorded by all sensors in the flow. In this manner, contribu-
tions from all locations in the flow are taken into account, in a
procedure that is appropriate for a global bifurcation in which
a large-scale magnetic dipole is generated. We thus define and
study the global magnetic energy

EB(t) = 1

40

4∑

N=1

10∑

i=1

∣∣Bi,N (t) − 〈
BOFF

i,N

〉∣∣2
,

where |B| is the norm of the magnetic field B, Bi,N (t) is the
instantaneous magnetic field and BOFF

i,N the relaxed magnetic
field without externally applied field at location i within
probe array N , and 〈·〉 stands for time averaged. Figure 2(b)
shows an average of the relaxation dynamics of EB(t) over 30
realizations, at ε = −0.13 (full blue line). The energy level is
normalized to its average value at t < 0 when the coils current
is ON. As expected, the turbulent fluctuations are averaged
out—they are incoherent in space and from one pulse to the
next. The energy decay is close to an exponential behavior
(as observed in the inset) and we extract a characteristic
decay time τ from a least-squares fit of the functional form
exp[−(t − t0)/τ ]. An example of fit is shown as the dashed
red curve in Fig. 2(b). It is also possible to quantify the
fluctuations of decay times about the mean behavior, out of
400 realizations (obtained in run U; see Sec. IV). For every
single realization a decay time is estimated by a best fit of EB (t)
to an exponential decay. The distributions of values are shown
in Fig. 2(c), for ε = −0.41 and ε = −0.11 (the distributions
are normalized to the value of the decay time with no flow).
As one nears threshold the mean decay time and the standard
deviation increase (a 33% increase for the mean value and a
twofold increase for the standard deviation from ε = −0.41 to
ε = −0.11). Although the probability distribution functions
(pdf) are close to a Gaussian [full red curves in Fig. 2(c)],
they are not completely symmetric. The skewness of the
actual distribution is positive and increases as the distance
to threshold decreases—it is 0.5 at ε = −0.41, and 0.9 at
ε = −0.11.

2. Threshold determination

In the following, we focus on the evolution of mean decay
times when the rotation rate of the impellers (and hence Rm
and ε) increases. We first consider the response to an applied
external field, having a similar geometry to the dynamo mode,
as produced by the axial Helmholtz coils shown in Fig. 1.
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FIG. 2. (Color online) Relaxation dynamics at ε = −0.13 for
a dynamo run (run R) and applied m = 0 dipole magnetic field:
(a) time traces for a single realization: magnetic field at one
location [full (blue) curve] and current in axial coils [dotted
(green) curve], and (b) normalized realization-averaged global mag-
netic energy and coil current (30 realizations)—the inset shows
the curves in lin-log scale; see text for details. (c) Individual
probability distribution functions (dashed curves) of the decay
time τ (normalized to the decay time with no sodium motion)
and associated Gaussian distributions [full (red) curve]—dynamo
run U.
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FIG. 3. (Color online) Evolution of relaxation decay time from
an applied Helmholtz axial magnetic field (open blue circles), having
an m = 0 dipolar structure, an applied anti-Helmholtz axial magnetic
field (green squares), having an m = 0 quadrupolar structure, and an
applied Helmholtz transverse magnetic field (red stars), having an
m = 1 dipolar structure, as a function of ε. The lines are the linear
extrapolation of the 1/τ evolution in the range −0.3 < ε < 0.

For each value of ε, the relaxation dynamics from pulsed
applied fields has been averaged over 30 independent real-
izations. Results are shown in Fig. 3, open (blue) circles,
the error bar being estimated as the standard deviation over
the independent realizations. In the absence of motion, one
measures τ = 0.2 s, which corresponds to the ohmic diffusion
of magnetic fields over a length Ld = √

2τ/μ0σ ≈ 0.2 m ∼
Ro. As one nears threshold, our main observations are as
follows:

(i) The decay time increases clearly with values that start
to be noticeably different from simple ohmic decay at about
20% below threshold.

(ii) 1/τ does not reach (or nears) zero, but saturates to a
final value starting from the dynamo threshold and onwards.

(iii) A linear extrapolation of the 1/τ evolution crosses zero
for ε ∼ 0.17, leading thus to an overestimate of the threshold.
The extrapolation is based on the linear best fit of 1/τ for
−0.3 < ε < 0, shown as a full line in Fig. 3.

Some of these features can be understood by a simple
model. Let us consider the following imperfect supercritical
bifurcation:

ẋ = α + εx − x3, (1)

where x stands for the time-averaged magnetic field.
The stationary solutions x0, computed according to

Cardan’s formulas, are displayed as a full line in Fig. 4 (using
α = 0.005). The normalized amplitude of the magnetic field
during OFF phases is also displayed as open symbols; the
dynamical system governed by Eq. (1) thus correctly captures
the dynamo bifurcation. We emphasize here that the imperfect
nature of the dynamo bifurcation has already been observed in
the Karlsruhe dynamo [27]. At first order, the linear relaxation
dynamics of the system governed by (1) corresponds to an
exponential decay with characteristic time τ−1

l = −ε + 3x2
0 ,

shown in the inset of Fig. 4 as a dash-dotted line. This evolution
shows that no divergence of the relaxation time can be observed
near threshold for an imperfect supercritical bifurcation.
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DYNAMO THRESHOLD DETECTION IN THE VON KÁRMÁN . . . PHYSICAL REVIEW E 88, 013002 (2013)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

ε

x

 

 

OFF state
ON state

−1 −0.5 0
0

0.2

0.4

ε

1/
τ

FIG. 4. Experimental (points) and imperfect supercritical model
(lines) for the OFF and ON states (with an axial applied dipolar
magnetic field). Inset: Evolution of the decay time for the imperfect
supercritical model, with α = 0.005.

In Fig. 4, the experimental response to the applied
Helmholtz axial field—ON states—has also been plotted (filled
squares). The observed behavior can be accurately accounted
for as resulting from 3 contributions: (i) the OFF states (i.e.,
the growing dynamo), (ii) a constant applied magnetic field,
(iii) a magnetic field induced from the applied field (and
linearly scaling with Rm). This simple linear model is
displayed as a dashed line in Fig. 4 and correctly describes
the experimental data.

Since in the experiment the relaxation is not observed from
a vanishingly small perturbation (〈BON〉/〈BOFF〉 is of order
unity), one solves numerically the model equation (1) from an
initial condition corresponding to the ON state. The relaxation
is then fitted by an exponential decay, and the results are
displayed as a full line in the inset of Fig. 4. The effect of
finite initial conditions adds up to the fact that a complete
divergence of the relaxation time, down to the smallest distance
to threshold, cannot be observed.

We note here, as a partial conclusion, that relaxation from
an applied magnetic field having a similar geometry to the
dynamo mode displays critical slowing down below dynamo
threshold. This critical slowing down is observed when the
forcing reaches at least 0.75 Rmc, and no divergence is
observed at threshold. The observed critical slowing down
can be used to detect the dynamo threshold with a simple
criterion. This criterion, based on linear extrapolation, leads to
an overestimate of the threshold by 17%.

3. Influence of the applied field geometry

We now investigate how the relaxation dynamics is affected
when the geometry of the applied magnetic field differs from
the geometry of the dynamo mode. As mentioned in the
introduction, the projection of the applied perturbation on the
unstable mode was shown to be an important parameter in
many situations [8,17,22].

We first describe measurements in the anti-Helmholtz axial
setup, for which the externally applied magnetic field is
generated from the axial coils running currents in opposite
directions, thus producing a geometry resembling an axial

(m = 0) quadrupole. The variations of the decay times in this
case are displayed as (green) squares in Fig. 3. Decay times
times evolve similarly to the case of the Helmholtz axial setup.
The linear fit of the 1/τ evolution in the range −0.3 < ε < 0
(dashed green line in Fig. 3) crosses zero at ε = 0.48. We
emphasize here that the geometry of the induced magnetic
field during the ON phase is quadrupolar and that this geometry
was checked to be preserved during the relaxation (i.e., the
magnetic response of the system preserves the symmetries of
the applied magnetic field).

The situation is quite different for the Helmholtz transverse
setup, for which the applied magnetic field has the geometry
of a transverse, m = 1, dipole. In this situation, no significant
change in the decay time is observed either below or above
threshold; cf. red stars in Fig. 3. We recall here that the most
unstable magnetic mode computed from kinematic simulations
taking into account the time-average axisymmetric velocity
field [12] is an m = 1 dipole (satisfying Cowling’s theorem),
while the observed experimental mode is an m = 0 dipole. This
difference in relaxation dynamics between axial and transverse
dipoles has previously been observed in a similar experiment
[22] in which dynamo action was not reached.

To conclude, the evolution of the relaxation dynamics
shows that the projection of the applied magnetic perturbation
on the unstable dynamo mode is, as in other situations
[8,17,22], a crucial parameter, and that critical slowing down
has been observed only for axially axisymmetric applied
magnetic field. No divergence of the relaxation time is
observed at threshold, a reminiscent fact of the imperfect
nature of the dynamo bifurcation. The linear extrapolation
of the 1/τ evolution leads to an overestimate of the dynamo
threshold, by 17% in the Helmholtz axial configuration and
48% in the anti-Helmholtz axial configuration.

B. Induction measurements

We now investigate another method for the estimate of the
dynamo threshold based on the strength of the induced field
in response to an externally applied one. We focus on the
Helmholtz axial and anti-Helmholtz axial cases, and consider
the inverse of a susceptibility χ defined as:

1/χ = 1

40

4∑

N=1

10∑

i=1

∣∣Bapp
i,N

∣∣
〈∣∣Bx

i,N

∣∣〉 + 〈∣∣By

i,N

∣∣〉 + 〈∣∣Bz
i,N

∣∣〉 ,

where |Bapp
i,N | is the norm of the applied magnetic field and

B
x,y,z

i,N are the components of the magnetic response Bi,N to
the applied magnetic field at location i within probe array N .

Several choices may be considered for Bi,N . The simplest
one uses the raw value of the magnetic response, i.e., the
induction recorded by the Hall arrays when the applied field is
turned ON, such that Bi,N = BON

i,N . This leads to a definition of
1/χ1, which is displayed in the top graph of Fig. 5 as a function
of ε for Helmholtz axial and anti-Helmholtz axial applied
magnetic fields. Both curves show a linear decrease below
threshold, which can be used as an estimate for the dynamo
threshold. The 1/χ1 evolutions have thus been linearly fitted
in the range −0.4 < ε < 0. The extrapolation of the linear fits
leads to an overestimate of the threshold, namely ε ∼ 0.19
and 0.37 for the Helmholtz axial and anti-Helmholtz axial
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FIG. 5. (Color online) 1/χ as a function of ε for the dynamo
run, Helmholtz axial, and anti-Helmholtz axial setups. Curves have
been normalized to their values at ε = −0.4; see text for detailed
definitions of χ1 and χ2. Linear fits (in the range −0.4 < ε < 0)
shown as full and dashed lines.

setup, respectively. Similarly to the critical slowing down, no
divergence of the susceptibility is observed at threshold.

Since close to self-generation, the dynamo contribution
to the amplitudes of BON

i,N quickly increases with Rm, it
is instructive to introduce a susceptibility χ2 defined with
Bi,N = BON

i,N − BOFF
i,N . This definition takes into account the

geometry of the applied magnetic field in a better way
since it has been checked that the induced magnetic field
(BON

i,N − BOFF
i,N ) has the same symmetries as the applied mag-

netic field. The evolution of 1/χ2 is shown in the bottom graph
of Fig. 5. The behavior is similar to the one of 1/χ1, except
that saturation is observed for positive values of ε, which
was not observed in the evolution of χ1 due to the dominant
contribution of the dynamo field above threshold. The linear
fit of the 1/χ2 evolution (computed for −0.4 < ε < 0) crosses
zero at ε = 0.28 and ε = 0.54 for the Helmholtz axial and
anti-Helmholtz axial cases, respectively.

These results thus show that a dynamo threshold may also
be estimated from induction measurements and the evolution
of a magnetic susceptibility. In a way similar to the analysis
of relaxation dynamics, thresholds estimated in the Helmholtz
axial configuration are lower than those estimated in the anti-
Helmholtz axial configurations.

C. Application to dynamo runs with straight blades

One distinctive feature of the VKS dynamo is that the
dynamo instability has only been observed when the flow

is driven by impellers entirely made of soft iron (i.e., disk
and blades). The value of threshold does depend on the exact
nature of the flow—for instance the direction of rotation for
impellers with curved blades or the presence of appendices
in the vessel—but the use of soft-iron impellers has proved
essential, so far. In this subsection, we discuss the application
of the two methods previously introduced to dynamo runs
with straight blades (namely runs U and V; refer to Sec. IV for
details).

Dynamo instability has indeed been observed when the
flow is driven by soft-iron impellers fitted with straight blades,
with a higher critical magnetic Reynolds number (∼60 for run
V ) than with curved blades (∼44 for run R with impellers
rotating in the unscooping direction and ∼68 with impellers
rotating in the scooping direction). As a consequence, the
operational power limits are reached for lower values of
ε = (Rm − Rmc)/Rmc with straight blades than with curved
blades [max(ε) ∼ 0.4 for run V and and max(ε) ∼ 0.8 for
run R at exact counterrotation]. A second observation is that
no dynamical regimes have been observed for runs U and
V when driving the flow asymmetrically. This may be due
to the power limits, since dynamical regimes were observed
for run R above ε ∼ 0.55, as secondary instabilities from
stationary dynamo states; based on this argument, observation
of dynamical regimes in run V would require 35% more
mechanical power than presently available.

Despite those discrepancies, the two methods introduced
above gave similar results for the three dynamo runs R,U ,
and V :

(i) Critical slowing down and magnetic susceptibility
increase were observed both for the Helmholtz axial setup
and for the anti-Helmholtz axial setup.

(ii) The linearly extrapolated threshold for the anti-
Helmholtz axial setup is slightly larger than the linearly
extrapolated threshold for the Helmholtz axial setup.

(iii) No critical slowing down has been observed for the
Helmholtz transverse setup.

(iv) During the relaxation, the magnetic response of the
system preserves the symmetries of the applied magnetic field.

The linear extrapolations of the 1/τ and the 1/χ2 evolutions
lead to an overestimate of the dynamo threshold, by 17–35 %
in the Helmholtz axial configuration and 32–66 % in the anti-
Helmholtz axial configuration depending on the dynamo run.
This may reflect the threshold difference between two different
dynamo modes, namely an axial (m = 0) dipole and an axial
(m = 0) quadrupole [28] or the difference in coupling between
symmetric or antisymmetric modes generated in the vicinity
of each impeller [25,30]. Given those results, we postulate that
dynamical regimes were not observed in runs U and V due to
operational limits; i.e., the maximum ε values are too small,
or equivalently, the maximum Rm values are too close to the
critical value.

As a final remark it should be emphasized that for both
methods, the dynamo threshold is overestimated by around
15–30 %. This overestimate might be problematic in terms of
accessible operating parameters since, in the turbulent flows of
interest, the power budget scales as Rm3. A 20% overestimate
in Rm thus corresponds to a 73% overestimate in power
requirements.
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FIG. 6. (Color online) Schematic of the eleven studied VKS configurations. Gray color stands for stainless steel (except for the outer copper
cylinder, which is displayed in gray for clarity of the figure), yellow color for copper, and red for soft iron. Static soft-iron screens behind the
impellers can clearly be seen for runs O, P, and T.

IV. INFLUENCE OF BOUNDARY CONDITIONS ON
DYNAMO GENERATION

As emphasized above, dynamo instability has only been
observed in the VKS experiment when the flow was driven by
impellers (both disk and blades) entirely made of soft iron. A
number of VKS runs (with various configurations) have thus
been dedicated to the study of the influence of electromagnetic
boundary conditions, in regards to the observation of self-
generation and possible dynamical regimes [25]. As already
discussed in Sec. II, here we use “electromagnetic boundary
conditions” in a rather loose manner, since it refers to
modification of the electrical conductivity and/or the magnetic
permeability of both static and rotating parts in contact with
liquid sodium. In this section, using the methods introduced
in the previous section, we investigate which of these runs are
closest to dynamo threshold. The experimental configurations
are first introduced in Sec. IV A. The difference between static
and rotating high magnetic permeability material on dynamo
capability is then analyzed in Sec. IV B using the methods
introduced in the previous section. Finally, in Sec. IV C,
the difference between high magnetic permeability and high
electrical conductivity material is presented.

A. Description of experimental configurations

The experimental configurations investigated are displayed
in Fig. 6, summarized in Table I, for 11 VKS runs (labeled with
capital letters). These configurations differ by (i) the geometry

and material of the impellers, and (ii) the details of the outer
vessel enclosing the flow.

Three kinds of impellers have been used. For most of the
runs, the eight blades are curved, and the impellers rotate
in the unscooping direction. Run K was operated with a
thicker disk body, extending up to the lateral side of the outer
copper cylinder—the blades being curved. For runs U, V, and
W, the impellers were fitted with straight blades. Between
different runs, the materials of the cylinder, the disk of the
impellers, and the blades can be varied independently and
are summarized in the second column of Table I. The flow
volume itself extends laterally to the external stainless steel
vessel (Rc = Ro = 289 mm), except for runs K and run O for
which an inner cylinder (coaxial with the outer cylinder) of
radius Ri = 206 mm confines the flow and sets Rc = Ri ; in
these configurations, a layer of sodium at rest is present for
Ri < r < Ro. The inner cylinder is 5 mm thick and is made
of copper for run K and of soft iron for run O. For run U, four
longitudinal copper baffles (square cross section 60 × 40 mm2,
length 250 mm) have been attached to the outer cylinder. These
modifications are summarized in the third column of Table I.
The last type of configuration change relates to the 50 mm lid
layer between the back of the impellers and the lateral sides
of the vessel. For most of the configurations, liquid sodium
in this region is set into motion by the impeller rotation. For
run K, the use of a thicker impeller dramatically reduced the
thickness of the lid layer down to 5 mm. For runs O, P, and
T, a soft-iron screen disk (of radius 206 mm, thickness 5 mm)
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TABLE I. Description of investigated configurations. SS stands for stainless steel, Cu for copper, and Fe for soft iron. When no experimental
data are available, the cell mentions “no data.” “None” is mentioned in cases when no decrease of either 1/τ or 1/χ is observed. See text for
details on flows. The configurations marked with an asterisk (*) are the ones discussed in Figs. 7 and 8. The maximum reachable Rm is ∼80
except for runs K,O, and W for which it is ∼70.

Impellers Dynamo Threshold estim. Threshold estim.
Run (disk/blades) Cylinder BC Lateral BC Flow threshold (decay time) (induction)

K SS/SS Cu inner cyl. thick impellers 1′′ 62 (transversea) no data
thick impellers

O* SS/SS Fe inner cyl. Fe screen 1′ ∼81 none
P* SS/SS Fe screen 2′ none none
Q* Fe/SS 2 none ∼190
Q′ SS/Fe 2 ∼350 ∼125
R* Fe/Fe 2 Rmc = 44b ∼51 ∼56
S Cu/Cu 2 no data no data
T SS/Fe Fe Screen 2′ ∼250 ∼205
U Fe/Fe straight Cu baffles 3′′′ Rmc = 70 ∼85 ∼100
V Fe/Fe straight 2′′′ Rmc = 60 ∼71 ∼93
W Fe/Cu straight 2′′′ none ∼120c

W Cu/Fe straight 2′′′ none ∼97c

aDecay time measurements were only obtained with an applied transverse magnetic field in run K.
bWhen curved-bladed impellers are rotated in the scooping direction [(−) direction in [23,25]], Rmc = 68.
cEstimated from induction measurement in the closest probe shaft to the referred-to impeller; see text for details.

is set at rest 5 mm behind the impellers. These configurations
are specified in the fourth column of Table I.

In all cases, the sodium flows created by the counter-
rotation of the impellers have a time-averaged structure of
the “s2t2” type according to the Dudley James classification
[11]. However, the details of the flow structure and of the
fluctuations depend on the boundary conditions and vary from
one configuration to the other [29]. These flow configurations
are summarized in the fifth column of Table I, where “flow
1” denotes the flow created in presence of an inner cylinder,
“flow 2” denotes the flow created without the inner cylinder,
and “flow 3” denotes the flow created with the four longitudinal
baffles. X′ denotes the presence of the soft-iron screens behind
the impellers, X′′ denotes the use of thick impellers, and X′′′
the use of straight blades.

All runs, except run W , were symmetric configurations; i.e.,
both impellers were identical. This is not the case for run W

where one impeller was made of a copper disk fitted with eight
straight soft-iron blades (on cylinder’s end; hereafter denoted
W -CuFe) and the other impeller was made of a soft-iron disk
fitted with eight straight copper blades (on cylinder’s end;
hereafter denoted W -FeCu).

An integral magnetic Reynolds number is defined as
Rm = μ0σ2πFRimpRc where Rc is the radius of the sodium
flow (i.e., Rc = Ro, except for runs K and O, where Rc = Ri).

Among the eleven configurations described in Table I, only
three of are prone to dynamo action, namely run R (which
was studied in detail in Sec. III), run U, and run V (impellers
with straight blades; see Sec. III), for which both the disks and
blades are machined from soft iron. The respective dynamo
thresholds are presented in the sixth column of Table I.

For the sake of clarity, only a few of these runs will be
detailed, namely runs O, P, Q, which are indicated in Table I.
These runs will also systematically be compared to dynamo
run R.

B. Static versus rotating soft iron

In this subsection, we will focus on runs where soft-iron
material has been used either for the impellers or as static
appendices, together with stainless steel. Let us first focus
on pulse-decay measurements performed in the Helmholtz
axial case (for which critical slowing down was observed
in dynamo runs). The evolution of decay times with Rm is
displayed for four runs (namely O, P, Q, and R, with curved
blades) in Fig. 7. Two types of behavior are observed:

(i) In runs (P,Q), 1/τ increases slightly with Rm, giving no
indication towards self-generation (reported as “none” in the
seventh column of Table I). A similar increase has also been ob-
served for runs Q′ and T. Its magnitude (about 30%) is consis-
tent with an enhanced turbulent magnetic diffusivity [32–34].

(ii) In run O, 1/τ decreases with Rm. Critical slowing
down is observed and a threshold can be estimated from
linear extrapolation (similarly to the procedure applied to
run R in the previous section); its value is displayed in the
seventh column of Table I. For run O, the linear extrapolation
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FIG. 7. (Color online) Decay time evolution with Rm for runs O,
P, Q, R and applied Helmholtz axial magnetic field.
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FIG. 8. (Color online) Evolution of 1/χ2 with Rm for runs O, P,
Q, R and applied Helmholtz axial magnetic field.

crosses zero around Rm ∼ 81, which may mean a threshold
as low as Rm ∼ 69, if one corrects for a ∼20% overestimate
(based on the observations made earlier on run R). Among the
nondynamo investigated configurations, run O was the only
one that showed a strong decrease of 1/τ when applying an
axial dipole.2

Pulse decay measurements in the Helmholtz transverse
case (applied m = 1 dipole) have also been performed for
several runs (not shown in Fig. 7), but no evolution with Rm
has been measured except for run K; see next subsection.

Let us now investigate the magnetic susceptibility
evolution with Rm for the same runs. The evolutions of
1/χ2 (cf. Sec. III B) as a function of Rm are displayed in
Fig. 8 for runs O, P, Q. Similarly to decay times, two typical
behaviors are observed, namely an increase or a decrease of
1/χ2. An increase of 1/χ2 with Rm corresponds to a case
without dynamo instability; in this case the mention “none” is
again displayed in the eighth column of Table I. When 1/χ2

decreases with Rm, a divergence of susceptibility is possible
and a threshold can be estimated from linear interpolation of
the 1/χ2 decrease to zero. The estimated threshold is reported
in the eighth column of Table I. The evolution of 1/χ2 for
run O does not point to an instability threshold (contrary to
1/τ ). The evolution of 1/χ2 increases for run P (as 1/τ ) and
decreases for run Q (contrary to 1/τ ).

These discrepancies motivate a closer analysis of the
induction processes for runs P and Q. We will focus
on the azimuthal field component, as the ω effect, particularly
in the vicinity of the impellers [30,31], plays a major role in the
VKS dynamo generation. In the midplane of the experimental
setup, the azimuthal component increases with Rm for all
investigated runs (not shown).3 However, nearer the rotating
impellers (i.e., in probe shafts labeled 1 and 4 in Fig. 1),
the behaviors differ, as shown in Fig. 9. In contrast to run
P, in run Q, the radial profile of the normalized induced
azimuthal component increases with Rm, a feature common
to all dynamo runs, as well as with runs with rotating soft-iron

2Note that decay time were not investigated during run S.
3Note that the axial induced component behaves similarly for all

investigated configurations, and does not depend on details of the
boundary conditions.
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FIG. 9. (Color online) Normalized induced azimuthal magnetic
field radial profile in probe shafts closer to one impeller as function
of Rm for (a) run P, (b) run Q.

parts in the impellers, such as runs Q′ and T . We propose
that this feature is related to the decrease of 1/χ2 for run
Q shown in Fig. 8, and possibly pointing to a (distant)
threshold. From these induction measurements, run Q thus
shares more properties with dynamo runs, and thus seems
closer to dynamo action than run P, while the decay time
evolution did not discriminate between the two runs. The
analysis of the induction amplitude is thus complementary
to the analysis of the relaxation dynamics. The extrapolated
threshold for run Q nevertheless remains far out of reach
in the experiment. We thus showed that the global magnetic
induction response of the system (characterized by χ2) can be
understood from a (local) analysis of the magnetic induction
features close to the impellers. The magnetic behavior in the
vicinity of the rotating impellers and the interplay between the
sodium flow and the rotating material have a leading role on
the global magnetic behavior of the system.

C. High magnetic permeability versus high electrical
conductivity

In the present subsection, we investigate the differences on
dynamo capability between similar runs with parts built from
high magnetic permeability (soft iron, μ ∼ 65 [30]) and/or
high electrical conductivity (copper, 42 times more conducting
than stainless steel).

Let us first consider the difference between impellers made
entirely of soft iron (runs R,U,V ) and impellers made entirely
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FIG. 10. (Color online) Evolution of 1/χ ′
2 as a function of Rm between different runs; see legend and text for details.

of copper (run S). As described in Table I, dynamo action
has not been observed in run S, within the accessible Rm
values (Rmmax ∼ 80). Unfortunately, due to technical reasons,
we were not able to investigate the magnetic relaxation or the
magnetic induction. Thus no direct comparison of the magnetic
response of the flow driven by high magnetic permeability
impellers or by high electrical conductivity impellers is
possible.

Let us now consider configurations with mixed impellers,
for which the disk and the blades are from different mate-
rials (runs Q,Q′,W with mixed soft iron/stainless steel and
mixed soft iron/copper impellers). This requires a comparison
between symmetric configurations runs with curved blades
(Q and Q′) and an asymmetric configuration with straight
blades (W ).

The first comparison deals with time-decay measurements.
Similarly to runs Q and Q′, a flat evolution of the decay time
with Rm was observed in run W both in exact counterrotation
and when only one impeller is rotating, the other one being
kept at rest (not shown). In that respect, a higher conductivity
of nonmagnetic materials in mixed impellers has no influence
on magnetic relaxation.

Though no clue of nearing the dynamo threshold is observed
with decay times, it is instructive to investigate in greater de-
tails the magnetic induction features. Since configuration W is
an asymmetric one, we introduce a slightly modified magnetic
susceptibility χ ′

2, for which only one of the shorter probe array
is taken into account (i.e., the summation introduced in Sec. III
is restricted to probe 1 or probe 4 in Fig. 1). This method has
been justified in the previous subsection, where we showed that
the global magnetic response of the system is bounded to the
magnetic behavior close to the impellers. For symmetric con-
figurations, although the difference between χ2 and χ ′

2 values
is around 10%, the linear extrapolation of their evolution with
Rm gave values of the extrapolated threshold within 3%. The
investigated runs involve both curved blades configurations
(runs Q,Q′) and a straight blade configuration (run W ). We
thus first compare the magnetic susceptibility of dynamo runs
R (curved blades) and V (straight blades). Figure 10(a) shows
the normalized evolution of 1/χ ′

2 for these two dynamo runs:
The straight blade configuration is observed to be less efficient
than the curved blade configuration to induce magnetic fields

(as a consequence run V has a higher threshold than run R).
Figure 10(b) [respectively (c)] shows the normalized evolution
of 1/χ ′

2 for the iron disk/stainless steel blades and iron
disk/copper blades configurations (respectively stainless steel
disk/ iron blades and copper disk/iron blades configurations).
For both cases, it is observed that the straight blade configura-
tions are more efficient than the curved blade configurations to
induce magnetic fields: The use of high-conductivity materials
instead of low-conductivity materials eases electrical current
circulation. While the straight blades driven flow is 2.3 less
efficient than the curved blades driven flow with full soft-iron
impellers [Fig. 10(a)], an increase by a factor 1.6 (respectively
1.3) of the magnetic induction has been observed when
stainless steel is replaced by copper for the blades (respectively
the disk). An extrapolation of these data lead to an 3.7-fold
(respectively 3-fold) increase when stainless steel is replaced
by copper for the blades (respectively the disk). In that respect,
a higher electrical conductivity of the blades helps in allowing
azimuthal currents (excited from helical turbulence or gradient
in turbulent properties of the flow close to the impellers)
to flow between the blades, thus complementing the benefit
of high-permeability rotating disks as proposed in [15,30].
However, we emphasize that this effect is not sufficient to
reach the dynamo threshold; in addition, no Rm evolution of
decay times was observed when the flow is driven by mixed
soft iron/copper impellers. The dynamo threshold estimated
from the linear extrapolation of 1/χ ′

2 is 120 (respectively 97)
for WFeCu (respectively WCuFe); the thresholds estimated for
Q and Q′ are 190 and 125. Magnetic induction is thus more
efficient with a rotating nonmagnetic disk fitted with soft-iron
blades than with a rotating soft-iron disk fitted with nonmag-
netic blades, whatever the conductivity of the nonmagnetic
material.

Let us now eventually investigate the effect of a change in
the lateral static boundary condition of the cylinder enclosing
the flow, as investigated in runs K and O. Run O as been
described in detail in the last subsection. For run K , an
evolution of the decay times in the Helmholtz transverse case
(applied m = 1 dipole) with Rm has been observed, however
restricted to only two values of Rm: Rm = 0 and Rm = 51.
A dramatic decrease was observed for 1/τ , from 9 s−1 at
Rm = 0 to 2.2 s−1 at Rm = 51. Within the large uncertainty
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related to the scarce data, a linear extrapolation of this 1/τ

decrease leads to an estimated threshold Rmc ∼ 62.

V. CONCLUSION

The dynamo bifurcation is controlled by the magnetic
Reynolds number Rm, in a turbulent flow where the mechani-
cal power to be fed to the flow scales as Rm3. For this reason,
only restricted Rm intervals are accessible for any given
experimental setup. In these conditions, it is of prime interest
to determine the proximity (if any) of a dynamo bifurcation
from analysis of induction measurements performed below
threshold.

Using a dynamo run in the VKS experiment we have
tested here two methods, inspired by techniques applied to
critical phenomena and phase transitions. The first one relies on
analysis of time-averaged decay times from pulses of applied
magnetic field and the observation of critical slowing down
close to the dynamo instability threshold. The second one is
based on the analysis of the amplitude of magnetic induction,
and the existence of a magnetic susceptibility divergence near
the dynamo threshold. Despite the high level of broadband
turbulent fluctuations, we showed that both methods reveal
the proximity of the dynamo bifurcation, and allow for an
estimate of its threshold. Decay times and the magnetic
induction increase significantly as the magnetic Reynolds
number approaches the critical value from below. Similarly
to Rayleigh-Bénard convection [8] and previous investigations
on the dynamo instability [17,19,22], we verify that one should
test the most unstable mode; i.e., the spatial structure of the
applied magnetic field must have a significant projection onto
the dynamo mode. In VKS, critical slowing down and magnetic
susceptibility divergence are both observed for an applied axial
dipole or quadrupole, while no effect is observed for an applied
field having the geometry of a transverse dipole. We find that
both methods yield a similar estimate of the threshold, but
about 20% above the real value. However, these methods
are restricted to situations in which the control parameter
can be increased to about half the critical value. Moreover,
it is well known that the behavior of the magnetic induction
can show strong nonlinear effects, as observed in numerical
experiment [35,36] (where growth rates of the magnetic

energy were observed to evolve nonlinearly with the magnetic
Reynolds number), and extrapolation techniques such as the
ones presented here may fail. This study nevertheless provides
methods that may be confidently applied to currently operated
or planned dynamo experiments.

In a second part of the paper, we have used the observations
drawn from the dynamo run to the analysis of other flow
and boundary conditions tested in the VKS experiment, as
reported in Fig. 6. No evidence of a dynamo threshold can be
reported from analysis of the response to an axial applied
dipolar magnetic field, except for configurations O,Q,Q′,
and W:

(1) Configuration O has the flow surrounded by a stationary
ferromagnetic shell. Some increase of the decay time is
observed (diamonds in Fig. 7), but this trend is not confirmed
in the susceptibility measurement (diamonds in Fig. 8).

(2) Configurations Q,Q′, and W have rotating ferromag-
netic parts in the impellers. In both cases, an increase of the
susceptibility is observed (filled circles, Fig. 8), but decay
times do not seem to change (filled circles, Fig. 7). In run W ,
it has been observed that changing rotating stainless steel with
copper (i.e., higher electrical conductivity) increases magnetic
induction, while decay times are not modified.

(3) Run K is a peculiar configuration for which an increase
of the decay time has been observed from an applied transverse
dipole, though the dynamo threshold was not reached.

These observations confirm the leading role played by
boundary conditions in the VKS experiment, particularly the
leading effect of rotating ferromagnetic parts.
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