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We study the six-dimensional dynamics—position and orientation—of a large sphere advected by a
turbulent flow. The movement of the sphere is recorded with two high-speed cameras. Its orientation
is tracked using a novel, efficient algorithm; it is based on the identification of possible orientation
“candidates” at each time step, with the dynamics later obtained from maximization of a likelihood
function. Analysis of the resulting linear and angular velocities and accelerations reveal a surprising
intermittency for an object whose size lies in the inertial range, close to the integral scale of the
underlying turbulent flow. © 2011 American Institute of Physics. [doi:10.1063/1.3554304]

I. INTRODUCTION

The advent of resolved Lagrangian measurements has
helped understand the dynamics of turbulence from the point
of view of fluid particles.1 In the experiments, solid tracers
are followed in lieu of fluid particles, which naturally raises
the question of the understanding of the dynamics of finite size
objects in turbulent flows. It is a subclass of the issue of the
dynamics of inertial particles, i.e., particles which have iner-
tia with respect to the fluid motions, either because their den-
sity differs from that of the fluid or because their spatial extent
cannot be ignored. If the particles are quite small compared to
the smallest fluid motion (the Kolmogorov dissipative length
scale η), arguments show that they behave as tracers of fluid
motions. Observations have revealed a very intense intermit-
tency in the motion of fluid tracers.2, 3 They experience very
strong accelerations, with a probability distribution which dis-
plays stretched exponential tails.4

When the diameter D of the advected particles is of the
order of, or larger than η, their equation of motion is not
known (see, however Refs. 5–7). We restrict our discussion
to neutrally buoyant spheres. Several recent studies8–11 have
shown that the acceleration statistics of such inertial particles
does not gently reduce to a Gaussian behavior as their diame-
ter increases. It is an important feature because the character-
ization of forces acting on an object advected by a turbulent
flow has many applications in engineering (from mixing is-
sues in industrial processes to dispersion in the oceans or in
the atmosphere).

The study reported here takes a leap forward in size and
considers the motion of a neutrally buoyant sphere with di-
ameter D of the order of the integral scale L int (the scale at
which energy is fed into the flow). In addition, we aim at re-
solving the 6 degrees of freedom of the particle dynamics, i.e.,
the goal is to obtain a simultaneous tracking in time of the
particle’s position and its absolute orientation with respect to
a reference frame. This enables the study of the forces and
torques acting on a large inertial particle, thus permitting to

ask yet fundamental questions about their dynamics.12 Fur-
thermore, the absolute orientation is important for future work
using instrumented particles and for problems where there
is a preferential direction—such as when there is a global
rotation, a temperature gradient, or an imposed magnetic
field.

The tracking of the particle position in space can be car-
ried out by using methods already developed and successfully
tested for small particles.13 In comparison, following the
absolute orientation of the particle is much more challenging,
both because of the specifics of angular variables, and of
specific algorithmic requirements.

Previous studies focused on directly measuring the
angular velocity without resolving the absolute orientation as
a function of time. Ye and Roco14 tracked dots painted on a
particle with high-speed cameras and computed the angular
velocity from their displacement between two consecutive
frames. Frish and Webb15 created an Eulerian technique
measuring one component of the angular velocity using
specially engineered, transparent particles which contain
an embedded mirror. The reported particle diameter is less
than 50 μm, which is of the order of the Kolmogorov length
scale, η.

The principle used here is completely different: it con-
sists simply in painting the particle with a suitable layout, and
in retrieving its orientation. For algorithmic efficiency (and
robustness) this is not done step by step but for the entire tra-
jectory using a global path extraction.

The text below is organized as follows: we first present
the experimental setup and recall some important features of
the orientation algebra in 3D. We then describe how the par-
ticle images are extracted from the movie images, and com-
pared to synthetic images with arbitrary orientations. Possible
candidates are identified and then assembled into an orienta-
tion time series using a global maximization of a likelihood
function. Finally, we present some results concerning the par-
ticle dynamics.
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II. BASICS

A. Experimental setup

A turbulent flow is generated in the gap between two
counter-rotating impellers of radius R = 10 cm fitted with
straight blades 1 cm in height. The flow domain in between
the impeller has characteristic lengths H = 2R = 20 cm and
the working fluid is a water–glycerol mixture, whose density
can be finely tuned. In order to be able to perform direct op-
tical measurements, the container is build with flat Plexiglas
(Poly[methyl methacrylate]) side walls, so that the cross sec-
tion of the vessel is square. This type of von Kármán swirling
flow has been used extensively in the past for the study of fully
developed turbulence;1 its local characteristics approximate
homogeneous turbulence in its center, although it is known to
have a large scale anisotropy.16, 17 A sketch of the setup is pro-
vided in Fig. 1—further details about the flow turbulence are
given later in Sec. IV.

A white, PolyAmid sphere with diameter D = 18 mm
(accuracy 0.01 mm, Marteau & Lemarié, France) moves and
rotates in the turbulent flow. It is neutrally buoyant in the
fluid—whose density is adjusted to that of the particle ρp

= 1.14 g cm−3 by addition of glycerol to water. The density
mismatch, measured from sedimentation speeds, is found to
be less than �ρ /ρ = 10−4. The particle is textured black and
white by hand using either black nail polish or a black-ink
permanent marker. Its motion is tracked using two high-speed
video cameras (Phantom V12, Vision Research) which record
synchronously two views at ∼90◦. The flow is illuminated
by high power light-emitting diodes (LEDs) and sequences of
8 bit gray scale images are recorded at a rate of 600 frames
per second.

Both cameras observe the measurement region with
a resolution of 650 × 650 pixels, covering a volume of
15 × 15 × 15 cm3. Hence, the particle diameter is 70–90 pix-
els. In the choice of the particle texture, several features have
to be considered:

FIG. 1. (Color online) Sketch of the experimental setup: (a) image of the von
Kármán mixer, (b) sketch of the camera arrangement, and (c) textured sphere
for different orientations.

- A single view should correspond to a unique orienta-
tion.

- Illumination inhomogeneities may cause regions to look
similar in the camera images. Optically resembling views
should correspond to clearly distinct orientations.

- The cameras are gray scale so the texture has to be black
and white.

- The number of black and white pixel should be approx-
imately the same in every possible view.

In our configuration, the camera can store on the order
of 15 000 frames in on-board memory, thus limiting the du-
ration of continuous tracks. The movies are downloaded to
a personal computer (PC), waiting to be processed. The pro-
cessing is done on a gaming PC with a state of the art graphics
card. Algorithm development and code testing is done on an
Apple Macbook Pro. The code is written in MATLAB 2009a
using the image and signal processing toolboxes as well as the
PSYCHTOOLBOX extensions18, 19 which provide OPENGL

wrappers for MATLAB.

B. Angular variables

The parametrization of an angular position in 3D space
causes a number of difficulties which are briefly addressed
in this section (see, e.g., Refs. 20–22 for a more complete
presentation). One of them is caused by the degeneracy of
the axes of rotation for certain orientations (the “gimbal lock”
problem). Another is the choice of a suitable measure of dis-
tance between two orientations.

1. Describing orientations

As stated by the Euler rotation theorem, three parameters
are needed to describe any rotation in 3D. We use here Eu-
ler angles with the Tait–Bryan convention as shown in Fig. 2.
In the transformation from lab to particle coordinate system,
we first apply a rotation around the z axis of angle θz , fol-
lowed by a rotation around the intermediate y axis of angle
θy and last a rotation of angle θx around the new x axis. The
rotations work on the object using a right handed coordinate
system and right handed direction of rotation. We will denote
an orientation triplet by an underscore, e.g., θ , in order to dis-
tinguish them from vectors (which are typeset in bold font,
e.g., ω).

The orientation of the object is fully described by an or-
thogonal 3 × 3 matrix R, obtained from the composition of

FIG. 2. (Color online) Tait–Bryan rotation sequence describing the sphere’s
orientation.
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the three elementary rotations

R(θx , θy, θz) = R
x
(θx )R

y
(θy)R

z
(θz)

=

⎡
⎢⎣

cθy cθz −cθy sθz sθy

sθx sθy cθz + cθx sθz −sθx sθy sθz + cθx cθz −sθx cθy

−cθx sθy cθz + sθx sθz cθx sθy sθz + sθx cθz cθx cθy

⎤
⎥⎦

(1)

with c· = cos (·) and s· = sin (·). Consequently, from any ro-
tation matrix the three Euler angles can be extracted using

θ = {θx , θy, θz} =

⎛
⎜⎜⎝

atan2(−R
23

, R
33

)

asin(R
13

)

atan2(−R
12

, R
11

)

⎞
⎟⎟⎠ (2)

enforcing θx , θz ∈ [0, 2π [ and θy ∈ [−π/2, π/2]. However
this choice is not unique because there is a second triplet with
R

(
θx + π, sign(θy) · π − θy, θz + π

) = R
(
θx , θy, θz

)
. Need-

less to say, multiples of 2π can be added to each angle. An im-
portant practical consequence is that even for small changes
in orientation the difference between two Euler angle triplets,
θ1 and θ2, has formally four possible results.

The curvilinear coordinate θ is related to the angular
velocity, ωP , (in the particle frame) by

ωP
(
θ(t)

) =

⎡
⎢⎣

1 0 sθy

0 cθx −sθx cθy

0 sθx cθx cθy

⎤
⎥⎦ · d

dt

⎛
⎜⎝

θx

θy

θz

⎞
⎟⎠

= H(θx , θy) · d

dt

⎛
⎜⎝

θx

θy

θz

⎞
⎟⎠ . (3)

For cos
(
θy

) ≈ 0, the determinant of the matrix H, det(H),
vanishes and its inverse is not defined. In other words, finite
body rotations need infinite change in the Euler angles. This
singularity is called a gimbal lock and is a well-known prob-
lem in robotics and aerospace engineering. Geometrically, the
second rotation turns the first axis parallel to the third axis of
rotation, and the rotation loses 2 degrees of freedom. Unfor-
tunately gimbal locks cannot be avoided by a wise choice of
representation.

One then needs to define a distance between two arbitrary
orientations, immune to this type of singularity. A natural dis-
tance between two arbitrary orientation matrixes, A and B, is

Tr
(
(A − B)(A − B)T

) = 6 − 2Tr
(
ABT )

= 4(1 − cos (φ)) (4)

using A AT = B BT = 1 and that ABT is a rotation matrix
with the eigenvalues 1, eiφ, e−iφ . The distance is thus a grow-
ing function of φ. We measure here the distance between two
rotation matrices by

d(A, B) ≡ acos

(
1

2

[
Tr

(
A BT ) − 1

])
. (5)

Because it works directly on the orientation matrices it is nei-
ther sensitive to gimbal locks nor to the choice of the represen-
tation and thus an important tool in our algorithm. It should
be noted that d(A, B) is the angle of the rotation which turned
the orientation from A to B.

In the search of the particle orientation, one last inconve-
nience of Euler angles is that they are not locally orthogonal,
in the sense that

d({θx , θy, θz}, {θx + �θx , θy + �θy, θz + �θz})2

≈ �θ2
x + �θ2

y + �θ2
z + 2�θx · �θz · sin(θy) (6)

for � small. As a consequence, a uniform spacing of the Euler
angles in θx , θy, θz does not sample the space of possible ori-
entations in an optimal way. In particular near gimbal locks,
the sampling rate would be higher at no higher accuracy. The
so called Lattman angles23

{θ+, θ, θ−} ≡ {θx + θz, θy, θx − θz} (7)

fulfill local orthogonality since they verify

d({θ+, θ, θ−}, {θ+ + �θ+, θ + �θ, θ− + �θ−})2

≈ �θ2
+(1 + sin θ )

2
+ �θ2 + �θ2

−(1 − sin θ )

2
. (8)

As they are locally orthogonal, it is sufficient for sam-
pling purposes to keep �θ2

+(1 + sin θ )/2, �θ2 and �θ2
−(1

− sin θ )/2 constant. After a constant sampling of N values of
θ with �Latt ≡ �θ = π/(N − 1), the stepping in θ+ and θ−
can be computed with �θ+(θ ) = �Latt/sin(θ/2 + π/2) and
�θ−(θ ) = �Latt/sin(π/2 − θ/2). It should be emphasized,
that θ− ∈ [0, 2π [ whereas θ+ ∈ [0, 4π [. The Lattmann angles
allow us to sample the set of orientations in an optimal way, in
terms of achieving the best resolution from the point of view
of the metric given by Eq. (8), and also from an algorithmic
point of view.

Finally, in several instances it is convenient to describe a
rotation by the direction of an axis n̂ about which the systems
is rotated by an amount φ. The corresponding rotation matrix
can be computed using the Rodrigues formula20, 22

R (n̂, φ)

=

⎡
⎢⎣

cφ + n2
x A −nzsφ + nx ny A nysφ + nx nz A

nzsφ + nx ny A cφ + n2
y A −nx sφ + nynz A

−nysφ + nx nz A nx sφ + nynz A cφ + n2
z A

⎤
⎥⎦

with A = (1 − cφ). (9)

Equation (9) also allows us to extract the axis, n̂ , and the an-
gle, φ from any arbitrary rotation matrix. As a result, changing
the coordinate system or changing the representation of rota-
tion can be done by expressing the orientation in its matrix
form, applying the transformation which changes the coordi-
nate system and extracting the desired representation.

2. Angular velocity and acceleration

Angular velocity and acceleration are often obtained by
direct differentiation of a time series of Euler angles, e.g.,
using Eq. (3). However, it is possible to obtain the angular
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velocity in the particle frame directly from the matrices. This
technique is not sensitive to Gimbal locks because of the
uniqueness of the orientation matrices.

Let eP ,k
x,y,z be the particle coordinate system at time step k,

whereas the fixed lab coordinate system is eLx,y,z . For two time
steps, k and k + m, we know the corresponding orientation
matrices which rotate the particle

R(θ k) : eLx,y,z
R(θ k)
−−−−→ eP ,k

x,y,z

R(θ k+m) : eLx,y,z
R(θ k+m)
−−−−−−−→ eP ,k+m

x,y,z

T : eP ,k
x,y,z

R(θ k+m)R(θ k)T

−−−−−−−−−−−−→ eP ,k+m
x,y,z

in which the matrix T is the change in orientation, in other
words the matrix representation of the discrete angular veloc-
ity (for a given time difference). The change is with respect
to the particle coordinate system at time k: eP ,k

x,y,z . T expressed
in the axis–angle convention [see Eq. (9)] returns a direction
vector, n̂, of length unity and an angle, �φ (meaning that be-
tween times k and k + m the particles has rotated an angle
�φ around the vector n̂). The time difference, �t , between
the steps is a function of m. Therefore an estimator of angular
velocity is

ωP (t(k))= �φ

�t(m)

(
nx · eP ,k

x +ny · eP ,k
y +nz · eP ,k

z

)
. (10)

Averaging n̂ �φ

�t over several separations, m, returns the angu-
lar velocity in the particle frame without a prior unwrapping
nor problems near gimbal locks. The angular velocity with
respect to the lab coordinate system is defined as

ωL(t(k)) = R
(
θ k

)T
ωP (t(k)). (11)

The angular acceleration in either particle or lab frame is
defined as

αL/P = d

dt
ωL/P . (12)

In practice, it is obtained from a convolution of the angular
velocity time series with the derivative of a Gaussian kernel.
This technique has proved to be efficient in removing noise.4

III. TRACKING

A. Position

Although the identification of a large sphere from the
camera images causes no particular conceptual difficulty, the
fact that the sphere is textured raises some practical issues.
A simple thresholding returns only either the white or the
black part of the particle. Reflections from the impellers con-
tinuously change the background, and small impurities in
the flow and possible bubbles add sharp gradient noise to
the images. Furthermore, the illumination of the flow is not
perfectly uniform, and thus, shadows as well as reflections
occur.

For each movie and for each camera, we compute the
background view as the average of an equally distributed sub-
set of its images. For each frame we then subtract the back-
ground and perform a difference of Gaussians blob detection.
The threshold is adjusted by hand for each camera and light

arrangement. MATLAB’s image-processing toolbox is used to
identify blobs with a round shape and a diameter close to that
of the particle. Shadows, bubbles, and reflections might be
found during blob detection because of their sharp separa-
tion from the background, but they are of uniform texture and
hence characterized by a small value of the variance of light
intensity across the blob. The blob with highest variance and
closest resemblance to a sphere is considered to be the par-
ticle. The precise position of the particle is refined using a
Canny edge detection in a tight region around the blob. For
each time step we record the position, (x, y), of the particle
on the image in pixels plus its diameter, 2 r , and the deviation
from the spherical shape as an error estimator. Since only one
particle is placed into the flow, the track assembly is straight-
forward. The algorithm may temporarily loose the particle for
short times (because of bad light reflection, blurs, ...); this is
compensated by the large oversampling and gaps of less than
five frames are interpolated to obtain longer tracks. Outliers
are identified using a least square spline and replaced by an
interpolation.

Tsai’s camera model and calibration technique24 is used
to project the 2D positions into 3D. The calibration of the
cameras contains the position of the camera plus its rotation
with respect to the lab coordinate system, which is needed
later for the orientation processing.

B. Orientation

The algorithm used to process the camera images and ob-
tain a time series of orientations (and angular velocities) can
be split into three parts: (i) by comparison of the sphere’s pic-
ture with synthetic images, the algorithm identifies a set of
possible orientations; (ii) from the set of possible candidates
at successive instants, a flow algorithm identifies a likely time
series; (iii) a post-treatment adjusts remaining ambiguities.
These steps are described in details in this section.

1. Candidate finding

a. Synthetic images. The first step is to obtain a 2D projec-
tion, S(θ), of a sphere with known texture and size at an arbi-
trary orientation, θ . This rendering is achieved using OPENGL,
via the PSYCHTOOLBOX extensions for MATLAB—for a disk
image of about 60 pixels, the algorithm can render several
thousand orientations per second (see Fig. 3 for an illustra-
tion).

b. Texture extraction. Once the particle position and diam-
eter are known, one extracts a disk subset of the image, cen-
tered on the particle, G. In the first step the contrast is adjusted
such that the global histogram of intensity contains at least b
percent of black and w percent of white pixels (the algorithm
only takes into account the disk/particle region in G). The
adjustable parameters b, w are fixed to b = w ∼30% which
is the minimum amount of black/white pixel in an arbitrary
orientation. In a second step, the image is thresholded using
Otsu’s method25 for the global histogram as well as for two
moving regions. The thresholded image, I, is adjusted such
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FIG. 3. (Color online) Synthetic 2D projections of the particle for a range of
orientations, using OPENGL. A camera image of the moving particle is shown
in the upper left corner (contrast enhanced; note the driving disks on either
side).

that pixels outside the particle/disk are set to 0 whereas black
is −1 and white +1. These steps are shown in Fig. 4.

c. Comparison, possible orientations. The image I (with
diameter 2 r ) obtained as above is ready for comparison with
synthetic images. The resemblance to a rendered image S(θ)
with orientation θ is estimated by

T (I, θ ) = 1

2
+ 1

2πr2

∑
i

∑
j

I
i, j

· S
i, j

(θ), (13)

which is ratio of the number of correct pixels to the total num-
ber of pixels.

At this point we note that the computational cost
of directly comparing an image I to synthetic ones S(θ)
covering the set of possible orientation {θ} scales roughly
as �−3

Latt, where �Latt is the grid spacing in the orientation
space. There is also the additional difficulty that the particle
apparent diameter changes slightly as the sphere moves
in the flows. For efficiency and physical correctness, we use
the following strategy: instead of finding at any time step
the best images, we identify a set of possible candidates for
all time steps and then extract globally the time series of
orientations.

First we render images, S({θ coarse}), covering all possi-
ble orientations with a coarse grid—in practice �Latt ≈ 12◦.

FIG. 5. (Color online) Particle camera image (left) and corresponding can-
didates, after analysis of the possible orientations (steps 1a–1c described in
the text).

Lattman angles are locally orthogonal and thus more efficient
in creating such grids. The size of the rendered images is
fixed to approximately one half of the particle’s real diameter.
Since their size does not change, these images are kept in the
computer memory and do not need to be recomputed for every
new image.

The thresholded particle image, I, is then re-
sized to the size of the renderings, I

coarse
, and com-

pared to all synthetic images, S({θ coarse}) as shown
in Fig. 3 using Eq. (13). All angles θ satisfying
T (I

coarse
, θ ) > max(T (I

coarse
, {θ coarse})) − δcoarse are con-

sidered to be possible orientations. Here δcoarse is an arbitrary
thresholding value, with inspection showing that a value
equal to 0.1 gives good results.

Experience shows that the identified possible orientations
usually cover several broad classes. They are thus separated
into groups of images whose orientations differ by less than
a rough threshold, ∼30–45◦. For each group, synthetic im-
ages are further added using a fine grid spacing, �fine = 3◦

(at this point “bad” images may cause the code to runaway;
they are dropped and the code advances to the next time step).
The possible orientations are then rendered in real size and
compared [using Eq. (13)] to the image I. For each group,
the code returns the final best guess, i.e., the orientation with
the maximum resemblance, thus drawing a list of candidates,
see Fig. 5 for an example of a particle with its corresponding
candidates.

2. Track assembly

After identifying the candidates for each time step, the
most likely orientation for each time step has to be deter-
mined. However, the candidate with the highest count of
correct pixels is not necessarily the best choice. Although

FIG. 4. (Color online) Texture extraction and comparison with a synthetic image. The resemblance between the image I and the synthetic projection S at angle
θ is estimated using Eq. (13).
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FIG. 6. (Color online) Sketch of a graph connecting the possible candidates
using the cost function C [cf. Eq. (15)]. For each time step t , we have b(t)
candidates with an orientation θ t

b and a resemblance Dt
b . In the time se-

ries t = 1 . . . N , the candidates are labeled k ∈ 1 . . . K . The directed graph
C connects all candidates at t to all their next valid time step t + �t ; gaps
are skipped as indicated for time step 2.

counterintuitive, the direct use of two cameras seeing the par-
ticle at different angles does not simplify the problem, be-
cause in the case of a bad image, one camera falsifies the
choice of the candidates found by the other camera. Moreover,
gimbal locks prevent the use of a predictor–corrector scheme
for the prediction of the orientation. However, the norm of
angular velocity is assumed to be smooth and we search
the time series which globally minimizes the sum

∑
t ξ (t)

along the time series of the so called direct neighbor distance
function

ξ (t) ≡ ∣∣ω(θ (t), θ(t + �t))
∣∣ = d(θ (t), θ(t + �t))

�t
. (14)

A direct neighbor is the next valid time step at t + �t . The
distance between two orientations does not depend on the
representation, ensuring the robustness of the algorithm even
at gimbal locks. Minimizing

∑
t ξ (t) is only meaningful for

small changes in orientation between two time steps, another
requirement for high (over)sampling rates.

Flow algorithms are highly efficient in finding a global
optimum for a discrete set of candidates. The following is
done for each camera without considering the extra infor-
mation from the second camera. In a first step we remove
all candidates with a resemblance T < squality—in practice
squality = 0.5. Then a directed graph is built which connects
all candidates at time step t with all their direct neighbors at
the nonempty time step t + �t . The cost function is chosen
such that it takes into account both the change in orientation
and the quality of the matching

C({θ A, TA}, {θ B, TB}) = d(θ A, θ B)
2 − TA − TB

�t
(15)

with {θ A, TA} a candidate at time t and {θ B, TB} a directly
neighboring candidate at t + �t .

A Dijkstra path finding algorithm returns the sequence
of candidates having a global minimum of the total cost,
i.e., the global minimum of change of orientation (weighted
by the image quality) (cf. Fig. 6). In most cases this al-
gorithm returns directly the time series of absolute orien-
tation. Nevertheless, bad images introduce false candidates
forcing the path finding algorithm to take a different, non-

physical path. These points manifest as spikes in the direct
neighbor distance function, ξ (t). After a spike, there is no
guarantee that the path is still physical. Therefore, we seg-
ment the time series based on the spikes. The second view
(from the second camera) treated with the same algorithm
contains the information to correct such wrong segments.
From the camera calibration the rotation matrix which trans-
forms the orientations seen by one camera into the coordi-
nate system of the other one, is known. Therefore, both views
are expressed in an intermediate, common coordinate sys-
tem where the segments with d

(
θ cam1, θ cam2

)
� 30◦ can be

corrected.
The algorithm presented so far assumes an orthographic

view. This condition holds only true if the particle center
is on the optical axis of the camera or in the case one uses
telecentric lenses. In the present experiment we do not,
and the perspective effect alters the measured orientation
(note that the parallax displacement corresponds to a change
in the 2D projection, and hence to a rotation). The distortion
induced by the perspective is characterized by the position
of the particle center in the camera image, X , and the focal
length, f . Common camera objectives allow only small
angles, γpersp ≡ atan(‖X‖/ f ) � 15◦. As a consequence we
assume that the shape of the particle does not change and we
introduce an orientation matrix Rpersp. [taking advantage of
the Rodrigues formula Eq. (9)]

R
persp.

(X = (x, y), f ) = R

(
(−y, x, 0)√

x2 + y2
, atan

(‖X‖
f

))

(16)

such that the measured orientation is related to the absolute
orientation θ abs by R ∼= R

persp.
R(θ abs). The perspective dis-

tortion can then be removed from the orientation time series.
Finally, after correcting for perspective distortion, a

combined time series of orientation can be built using the in-
formation from both views, if they are expressed in the same
coordinate system. Euler angles are not locally orthogonal,
hence, we use the weighted mean of the orientation expressed
in the axis–angle representation. The variance within a
moving window of the direct neighbor distance function,
ξ (t), proves to be a good error estimator of the noise, since
for short times the particle is assumed to rotate smoothly. A
sample orientation track is shown in the upper panel of Fig. 7.

C. Robustness

A full study of the accuracy and robustness consider-
ing all possible distortions is beyond the scope of this ar-
ticle. In practice, the problems with real images are mainly
caused by reflections, bad illumination, and objects (such as
bubbles or dirt particles) between the particle and the cam-
era. The setup, light conditions, and particle texture must be
first tuned in order to optimize these parameters—by trial
and error methods. For the orientation algorithm per se, we
have used a series of synthetic images of known orienta-
tion. We found that the measurement error is 2◦, which is
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FIG. 7. (Color online) A sample orientation track; it is θx = ©, θy = +, θz

= �, the bottom plot shows the distance (in degrees) between the independent
orientation measurements from the two cameras.

smaller than the size, �fine = 3◦ of the fine grid used in
the image processing (cf. paragraph III B 1 c). A finer grid
would improve the resolution for ideal images, but not for
real images which, as stated above, always contain some
amount of distortions or impurities. In addition, the fast dy-
namics of the particle and high frame rate ensure that wrong
detection do not persist for longer than a few frames. As
a result, most defects are detected and skipped or interpo-
lated or handled as part of postprocessing (wrong orienta-
tions correspond to jumps in the direct neighbor distance
function).

We illustrate the accuracy of the detection on two
examples. The first one concerns the agreement between the
orientation as estimated from each camera measurement. In
the upper panel of Fig. 7, the combined three angles with
respect to the lab coordinate system are plotted. The lower
panel shows the distance (in degrees of angle) between the
two estimations, d

(
θ cam1, θ cam2

)
. The probability density

function (PDF) of these distances, computed with and without
processing for perspective corrections are shown in Fig. 8.
Correcting the systematic error induced by the perspective
distortion reduces the mean value and width of the distribu-
tion. The remaining error is of random nature. Combining the

FIG. 8. (Color online) Probability density function (PDF) of the distance
between the orientations measured from cameras 1 and 2, without correction
for perspective distortion (×) and with it (◦).

two independent views as described early leads to a weighted
error of ∼3◦.

IV. RESULTS

The results in this section correspond to the flow created
by counter-rotation of the driving disks at a rate of 3 Hz.
In this case the net power injection is of the order of ε

∼1.7 W/kg, a value in agreement with bulk scalings and
measurements, as reported in Ref. 26. The integral time scale
TL is about 0.3 s, so that the dissipative time and space scales
are η ∼30 μm and τη ∼1 ms. As a result, the particle tracked
has a size corresponding to D/η ∼600 and D/L int ∼0.6
(L int is the scale at which energy is fed into the flow).
The flow Reynolds number based on the Taylor microscale
is Rλ ∼300. The camera frame-rate is 600 Hz, and the
trajectories analyzed have been selected so that their duration
is longer than 0.25TL and most range between 0.5 and 3TL .

Figure 9 shows a histogram of the duration of recorded
tracks for which the 6D coordinates of the particle are
recorded. It has an exponential tail (as it was also the case
when using acoustic tracking27). For very small times the his-
togram is biased by the fact that tracks shorter than 50 con-
tiguous frames are discarded. Note also that long tracks are
likely to correspond to trajectories spanning the flow volume,
i.e., a spatial extend over which the large scale (anisotropic)
circulation cannot be ignored.

However, one first result is that the particle explores uni-
formly the orientation space. This is seen in Fig. 10 showing
the probability distribution functions of the Euler angles:
as expected from a random distribution of orientations, the
θx and θz components have a flat distributions spanning a
[−π,+π [ interval, with the inner angle θy having a cos(θy)
distribution over [−π/2, π/2].

Interesting features are observed for the rotation dy-
namics. The statistics of angular velocity fluctuations are
shown in Fig. 11. The distributions are symmetric. The three
components, with respect to the lab coordinate system, follow
the same statistics. This reflects the spherical symmetry of the
particle; furthermore, it also shows that the turbulent swirls
at the scale of the particle have no preferred orientation. The

FIG. 9. (Color online) Histogram of track segments. The exponential decay
rate is of the order of the integral time TL of the flow.
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FIG. 10. (Color online) PDF of the orientation θ = {θx , θy , θz}, the solid
lines correspond to a uniform sampling of the orientation space.

mean of the angular velocity components (with respect to
the lab reference frame) is essentially zero, up to statistical
error. The rms amplitude of angular velocity fluctuation is
of the order of 12 rad/s, see Table I, which is of the order
of urms/D = 30 rad/s. That is, it corresponds to the rotation
that would result from imposing a velocity difference equal
to almost urms across the diameter D of the sphere. Note that
it is also of the order of the rotation rate of the driving disks.
The PDF themselves displays weakly stretched-exponential
tails; for a quantitative estimation we use the fitting function

�a(x) = e3a2/2

4
√

3

⎛
⎝1 − erf

⎛
⎝ ln

∣∣∣x/
√

3
∣∣∣ + 2a2

a
√

2

⎞
⎠

⎞
⎠ , (17)

which has been used extensively in the analysis of the inter-
mittency of the translational motion of Lagrangian tracers4

—it stems from the approximation that the norm of the
vector has a lognormal distribution. For the angular velocity,
one finds a fitting parameter a = 0.45, which corresponds
to a flatness factor F = 4. It would be F = 3 for Gaussian
statistics, so that our measurements show only a slightly
non-Gaussian behavior for the angular velocity. This differs

FIG. 11. (Color online) PDF of the (normalized) components of the angular
velocity, ωx = ©, ωy = +, ωz = �, the dotted curve is a Gaussian and the
dashed one shows a stretched exponential with a = 0.45(F = 4).

TABLE I. Characteristic values (mean ± rms) for the particle motion. The
angular variables are given for the lab and particle coordinate systems.

x y z Norm

v (m/s) 0 ± 0.28 0 ± 0.40 0 ± 0.37 0.6 ± 0.2
a (m/s2) −0.2 ± 5.6 −0.3 ± 5.8 0.2 ± 6.3 8.5 ± 5.6

ωL (rad/s) 0 ± 7.7 0.1 ± 7.3 0.1 ± 7.2 11.6 ± 5.5
ωP (rad/s) 0 ± 6.5 −0.2 ± 7.8 −0.1 ± 7.8

αL (rad/s2) 0 ± 540 0 ± 480 0 ± 420 670 ± 580
αP (rad/s2) 0 ± 510 0 ± 440 0 ± 460

from the translational velocity, which is found to be slightly
sub-Gaussian.

The angular acceleration has a strong non-Gaussian be-
havior, as seen in Fig. 12. Again, the three components fol-
low identical statistics: there is no preferred direction for the
torques acting on the moving sphere (with respect to the lab
reference frame only—the issue of lift forces is addressed
elsewhere12). The rms amplitude of angular acceleration is
about 700 rad/s2, see Table I, again of the order of (urms/D)2.
The statistics is strongly non-Gaussian, a fit using the
same stretched exponential distribution yields a = 0.6, i.e., a
flatness factor F ∼7.6. The angular acceleration can be
viewed as an angular velocity increment over a very short
time lag. Hence, the PDFs of angular velocity increments
change shape with the length of the time lag—from the one in
Fig. 11 for small time increments to the one in Fig. 12 for
integral times.

For comparison, we recall some features of the transla-
tional dynamics of the particle. It has statistical characteristics
which are very close to the one reported for neutrally buoyant
inertial particles with a size much closer to the dissipa-
tion scales of turbulence.3, 9–11 The translational velocity
follows a Gaussian distribution, its acceleration is strongly
non-Gaussian, with stretched exponential tails. Using the
stretched exponential distribution leads to a = 0.6. One thus
observes that the angular variables have intermittent dynam-
ics, just as the translational motion. The fact that it is quite

FIG. 12. (Color online) PDF of angular acceleration; it is αx = ©, αy = +,
αz = �, the dotted curve is a Gaussian and the dashed one shows a stretched
exponential with a = 0.6(F = 7.6).
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pronounced, even for an object of size close to the integral
scale of motions came as a surprise and deserves further
investigations.

V. CONCLUDING REMARKS

The focus of the work reported here has been to estab-
lish a technique for the study of angular and translational mo-
tion of a particle freely advected by a turbulent flow. We have
shown that the measurement technique is robust, efficient, and
accurate. As an application, we report here the first observa-
tion of intermittency for the rotational dynamics of an iner-
tial particle. It should be pointed out, that the technique can
be easily extended to track multiple spheres in a flow. Suit-
able algorithms for the tracking of multiple particle are pre-
sented in, e.g., Ref. 13. Smaller particle sizes are possible, if
the particle texture is sufficiently well resolved and accurately
painted.

We note that the algorithm used to compute the angu-
lar velocity can be applied to a set of particle attached to a
rigid body which are tracked using standard particle track-
ing algorithms. If one records the positions in space of three
or more points, P1 . . . P N at time t and t + �t , their motion
can be split up into a translation of their center of mass plus
a rotation. Once the translation part is subtracted, the rota-
tion, R

kabsch
, of the points P1 . . . P N around their center of

mass can be computed efficiently using Kabsch’s28, 29 algo-
rithm. R

kabsch
is then the matrix representation of the change

in orientation, and the angular velocity, ωP , (in the particle
reference frame) at time t can be extracted as done here. It
should be pointed out that, one does not gain access to neither
the angular velocity in the lab reference frame, ωL, nor to the
absolute orientation, θ .

The strong intermittency in the particle’s rotation may
eventually be traced back to the complex interaction between
the particle and its wake. One notes that this is inherently
a finite size effect; for particles with very small diameters
(compared to the Kolmogorov length) the translational and
rotational dynamics are note coupled. For larger particles, as
in our case, the influence of rotation on the motion of the par-
ticle is of interest, and will be the object of further analysis.
One may also note that the influence of the inhomogeneity at
large scale must be clarified. Further measurements in a more
isotropic turbulent flow (such as the Lagrangian Exploration
Module30) are underway.
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