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Abstract: The problem of correctly defining geometric objects, such as the curvature, is a
hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to
a wide category of measured metric spaces, in particular to graphs. He named it coarse
Ricci curvature because it coincides, up to some given factor, with the classical Ricci
curvature, when the space is a smooth manifold. Lin, Lu and Yau and Jost and Liu have
used and extended this notion for graphs, giving estimates for the curvature and, hence, the
diameter, in terms of the combinatorics. In this paper, we describe a method for computing
the coarse Ricci curvature and give sharper results, in the specific, but crucial case of
polyhedral surfaces.
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1. The Coarse Ricci Curvature of Ollivier

Defining the concept of curvature in the discrete setting, as it exists on smooth manifolds, has been,
and still is, a challenging goal, both for theoretical and applied purposes. Whether a discrete analog is
meaningful or not lies in the geometric properties one can recover, such as diameter estimates (Myers’
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theorem below), isoperimetric or functional inequalities [1], topological properties (e.g., Gauss–Bonnet,
Hodge theorem), spectral properties [2,3] or the limit behavior for discretizations. In the intrinsic case
(the case of extrinsic curvature and, in particular, discretized surfaces in three-space goes beyond the
presented paper, and we refer the reader to [4], for instance.), the angular defect and its counterpart
for graphs, the combinatorial curvature (see [1,5,6]) play the role of the Gaussian (or scalar) curvature.
Ricci curvature, however, is different in that it is a directional quantity, attached to a point and a tangent
vector; therefore, a discrete analog would be edge-based. The earliest attempt at defining a combinatorial
Ricci curvature comes from Stone [7,8], who implements Myers’ proof on Jacobi fields in order to
get a diameter bound. Forman [9] later defined Ricci curvature by means of the decomposition of the
Laplace operator analogous to the Bochner–Weitzenböck formula on smooth manifolds, also deriving
a Myers-type theorem. More recently, the methods from probability theory and optimal transportation
have made new inroads into smooth and discrete (metric) geometry. This new field is wide and thriving,
and we will not attempt to describe it ( In particular, we will leave out the so-called curvature-dimension
inequalities; see [10,11].). Rather, we will focus on a surprising notion defined by Ollivier, which we
will eventually compare to Forman’s.

Let us first recall the definition of the coarse Ricci curvature, as given originally by Ollivier in [12].
Since our focus is on polyhedral objects, we will use, for greater legibility, the language of graphs and
matrices, rather than more general measure theoretic formulations. In this section, we will assume that
our base space X = (V,E) is a simple graph (no loops, no multiple edges between vertices), unoriented
and locally finite (vertices at finite distance are in finite number) for the combinatorial distance (the
length of the shortest chain between x and x′):

∀x, x′ ∈ V, d(x, x′) = inf {n, n ∈ N∗, ∃x1, . . . , xn−1, x = x0 ∼ x1 ∼ · · · ∼ xn = x′}

where x ∼ y stands for the adjacency relation and adjacent vertices are at distance 1. We shall call
this distance the uniform distance; the more general case will be considered in Section 4. Polyhedral
surfaces (also known as two-dimensional cell complexes) studied afterwards will be seen as a special
case of graphs (specifically, they obey the assumption in [1]). We do not require our graphs to be finite,
but we will nevertheless use vector and matrix notations (with possibly infinitely many indices).

For any x ∈ X , a probability measure, µ onX , is a map, V → R+, such that
∑

y∈V µ(y) = 1. Assume
that for any vertex, x, we are given a probability measure, µx. Intuitively, µx(y) is the probability of
jumping from x to y in a random walk. For instance, we can take µ1

x to be the uniform measure on the
sphere (or one-ring) at x, Sx = {y ∈ V, y ∼ x}, namely µ1

x(y) = 1
dx

if y ∼ x, where dx = |Sx| denotes
the degree of x and zero elsewhere. A coupling or transference plan ξ between µ and µ′ is a measure on
X ×X , whose marginals are µ, µ′, respectively:∑

y′

ξ(y, y′) = µ(y) and
∑
y

ξ(y, y′) = µ′(y′)

Intuitively, a coupling is a plan for transporting a mass of one distributed according to µ to the same
mass distributed according to µ′. Therefore, ξ(y, y′) indicates which quantity is taken from y and sent to
y′. Because mass is nonnegative, one can only take from x the quantity, µ(x), no more no less, and the
same holds at the destination point, ruled by µ′. We may view measures as vectors indexed by V and
couplings as matrices, and we will use that point of view later.
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The cost of a given coupling ξ is:

c(ξ) =
∑
y,y′∈V

ξ(y, y′)d(y, y′)

where cost is induced by the distance traveled. The Wasserstein distance, W1, between probability
measures µ, µ′ is:

W1(µ, µ′) = inf
ξ

∑
y,y′∈V

ξ(y, y′)d(y, y′)

where the infimum is taken over all couplings, ξ, between µ and µ′ (such a set will never be empty, and
we will show that its infimum is attained later on). Let us focus on two simple, but important examples:

(1) Let µx be the Dirac measure, δx, i.e., δx(y) equals one when y = x and zero elsewhere. Then,
there is only one coupling, ξ, between δx and δx′ , and it satisfies ξ(y, z) = 1 if y = x and z = x′

and vanishes elsewhere. Obviously, W1(x, x′) = d(x, x′).
(2) Consider now µ1

x, µ
1
x′ , the uniform measures on unit spheres around x and x′, respectively; then, a

coupling, ξ, vanishes on (y, y′), whenever y lies outside the sphere, Sx, or y′ outside Sx′ . So the
(a priori infinite) matrix, ξ, has at most dxdx′ nonzero terms, and we can focus on the dx × dx′

submatrix, ξ(y, y′)y∈Sx,y′∈Sx′
, whose lines sum to 1

dx
and columns to 1

dx′
. For instance, ξ could be

the uniform coupling:

ξ =
1

dxdx′

 1 · · · · · · 1
...

...
1 · · · · · · 1


where we have written only the submatrix.

(3) A variant from the above measure is the measure uniform on the ball Bx = {x} ∪ Sx.

Ollivier’s coarse Ricci curvature (also called Wasserstein curvature) between x and x′ (which, by
the way, need not be neighbors) measures the ratio between the Wasserstein distance and the distance.
Precisely, we set:

κ1(x, x′) = 1− W1(µ1
x, µ

1
x′)

d(x, x′)

Since µ1
x is the uniform measure on the sphere, then κ1 compares the average distance between the

spheres, Sx and Sx′ , with the distance between their centers, which indeed depends on the Ricci curvature
in the smooth case (see [12,13] for the analogy with Riemannian manifolds, which prompted this
definition).

We will rather use the definition of Lin, Lu and Yau [14] (see also Ollivier [13]) for a smooth time
variable, t: let µtx be the lazy random walk:

µtx(y) =


1− t if y = x
t
dx

if y ∈ Sx
0 otherwise

so that µtx = (1 − t)δx + tµ1
x interpolates linearly between the Dirac measure and the uniform measure

on the sphere (in [14], a different notation is used: the lazy random walk is parametrized by α = 1 − t,
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and the limit point corresponds to α = 1). We let κt(x, x′) = 1− W1(µtx,µ
t
x′ )

d(x,x′)
and κt(x, x′)→ 0 as t→ 0.

We then set:

ric(x, x′) = lim inf
t→0

κt(x, x′)

t

and we will call ric the (asymptotic) Ollivier–Ricci curvature. The curvature, ric, is attached to
a continuous Markov process, whereas κ1 corresponds to a time-discrete process (however, both
approaches are equivalent, by considering weighted graphs and allowing loops ( i.e., weights wxx).
See [2] and also §4 for weighted graphs). Lin, Lu and Yau [14] prove the existence of the limit, ric(x, x′),
using concavity properties. In the next section, we give a different proof by linking the existence to a
linear programming problem with convexity properties.

The relevance of such a definition comes from the analogy with Riemannian manifolds, but can also
be seen through its applications, e.g., the existence of an upper bound for the diameter of X depending
on ric (see Myers’ theorem below).

2. A Linear Programming Problem

In the case of graphs, the computation of W1 is surprisingly simple to understand and implement
numerically. Recall that a coupling, ξt, between µtx and µtx′ is completely determined by a (dx + 1) ×
(dx′ + 1) submatrix, and henceforward, we will identify ξt with this submatrix. A coupling is actually
any matrix in R(dx+1)(dx′+1) with nonnegative coefficients, subject to the following t-dependent linear
constraints: ∀y ∈ Bx, 〈ξt, Ly〉 = µtx(y) and ∀y′ ∈ Bx′ , 〈ξt, Cy′〉 = µtx′(y

′), for all y ∈ Bx and y′ ∈ Bx′ ,
where Ly and Cy′ are the following matrices:

Ly =


· · · 0 · · · · · ·
1 · · · · · · 1

· · · 0 · · · · · ·
· · · 0 · · · · · ·

 , Cy′ =


... 1

...
...

0
... 0 0

...
...

...
...

... 1
...

...


〈M,N〉 = tr (tMN) is the standard inner product between matrices and tM denotes the transpose
of M . We will write the nonnegativity constraint, 〈Eyy′ , ξt〉 ≥ 0, where Eyy′ is the basis matrix, whose
coefficients all vanish, except at (y, y′). The set of possible couplings is therefore a bounded convex
polyhedron, Kt, contained in the unit cube [0, 1](dx+1)(dx′+1). In the following, we will also need the
limit set K0 = {Exx′}, which contains a unique coupling (see Case 1 above).

In order to compute κt, we want to minimize the cost function, c, which is actually linear:

c(ξt) =
∑
y,y′∈V

ξt(x, y)d(x, y) =
∑

y∈Bx,y′∈Bx′

ξt(x, y)d(x, y) = 〈ξt, D〉

whereD stands for the distance matrix restricted toBx×Bx′ , so thatD is the (constant) L2 gradient of c.
Clearly, the infimum is reached, and minimizers lie on the boundary of Kt. Then, either the gradient D
is perpendicular to some facet of Kt. The minimizer can be freely chosen on that facet, or not, and the
minimizer is unique and lies on a vertex of Kt. Moreover the Kuhn–Tucker theorem ([15], part VI)
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gives a characterization of minimizers in terms of Lagrange multipliers (a.k.a. Kuhn–Tucker vectors):
ξt minimizes c on Kt if and only if there exists (λy)y∈Bx , (λ′y′)y′∈Bx′

and (νyy′)y∈Bx,y′∈Bx′
, such that:

∇c = D =
∑
y

λyLy +
∑
y′

λ′y′Cy +
∑
y′,y′

νyy′Eyy′ with νyy′ ≥ 0 (1)

and:
∀y, y′, νyy′〈Eyy′ , ξt〉 = νyy′ ξ

t(y, y′) = 0 (2)

meaning that the Lagrange multipliers, νyy′ , have to vanish unless the inequality constraint is active
(or saturated): ξt(y, y′) = 0. As a consequence: (i) finding a minimizer is practically easy thanks to
numerous linear programming algorithms; and (ii) proving rigorously that a given ξt is a minimizer
requires only writing the Relations (1) and (2) for ξt ∈ Kt.

The non-uniqueness is quite specific to the W1 metric, when cost is proportional to length and,
therefore, linear instead of strictly convex (instead of, say, length squared as in the 2-Wasserstein metric,
W2). It corresponds to the following geometric fact: transporting mass m from x to z is equivalent in
cost to transporting the same mass, m, from x to y and from y to z, as long as y is on a geodesic from x

to z (and µ(y) ≥ m, since we prohibit negative mass).
Computing the Olivier–Ricci curvature requires a priori taking a derivative; however, it is actually

much simpler, due to the following lemma, which also proves its existence, without the need for subtler
considerations, like in [14]:

Lemma 1. For t, s small enough, convex sets Kt and Ks are homothetic. More precisely,

Ks − Exx′ =
s

t
(Kt − Exx′)

Proof. First, write the constraint corresponding to the lazy random walk as µtx(y) = δx(y)+t∆xy, where
∆xx = −1 and ∆xy = 1

dx
iff y ∼ x. Let ξt lie in Kt and t, s be positive. Then, ξs = s

t
ξt +

(
1− s

t

)
Exx′

lies in Ks. Indeed:

〈Ly, ξs〉 =
s

t
(δx(y) + t∆xy) +

(
1− s

t

)
δx(y) = δx(y) + s∆xy = µsx(y)

〈Cy′ , ξs〉 =
s

t
(δx′(y

′) + t∆x′y′) +
(

1− s

t

)
δx′(y

′) = δx′(y
′) + s∆x′y′ = µsx′(y

′)

We see immediately that ξsyy′ = s
t
ξtyy′ ≥ 0 whenever (y, y′) 6= (x, x′). Moreover, ξsxx′ = s

t
ξtxx′ + 1 −

s
t
≥ 0, provided s

t
≤ 1. All the previous arguments hold in generality, but the nonnegativity of ξsxx′

needs a different argument when s ≥ t. Because µtx and µtx′ are probability measures,
∑

y µ
t
x(y) =∑

y′ µ
t
x′(y

′) = 1, and for any t,

0 ≤
∑
y 6=x

(∑
y′ 6=x′

ξtyy′

)
=

∑
y 6=x

(µtx(y)− ξtyx′) = (1− µtx(x))−
∑
y 6=x

ξtyx′

= 1− µtx(x)−
(
µtx′(x

′)− ξtxx′
)

consequently:
ξtxx′ ≥ µtx(x) + µtx′(x

′)− 1 = 1 + t(∆xx + ∆yy) = 1− 2t (3)
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Hence, for t < 1
2
, ξtxx′ is positive for any matrix, ξt, satisfying the equality constraints (and the same

holds for ξs, using again that t < 1
2
).

The significance of this positivity is that the constraint ξtxx′ ≥ 0 is never saturated; there will always
be some mass transported from x to x′ if t is small enough, because the other vertices cannot hold all the
mass from x.

Remark 1. The lemma holds true for t, s small enough, as long as ∆xx is uniformly bounded on X ,
a property that we will meet later. Equation (3) generalizes, and we see easily that if |∆xx′| ≤ C, then
the homothety property holds for all t ≤ 1

2C
.

Proposition 2. The Ollivier–Ricci curvature, ric, is equal to any quotient κt/t for t small enough (e.g.,
t ≤ 1/2).

Proof. As a consequence of Lemma 1, the gradient, D, has the same projection on the affine space
determined by the equality constraints, and the minimizers can be chosen to be homothetic for t ≤ t0

small enough. If (ξt) denotes this family of homothetic minimizers:

W1(µtx, µ
t
x′) = 〈D, ξt〉 = 〈D, t

t0
ξt0 +

(
1− t

t0

)
Exx′〉 =

t

t0
W1(µt0x , µ

t0
x′) +

(
1− t

t0

)
d(x, x′)

κt(x, x′) = 1− W1(µtx, µ
t
x′)

d(x, x′)
= 1− t

t0

W1(µt0x , µ
t0
x′)

d(x, x′)
−
(

1− t

t0

)
=

t

t0

(
1− W1(µt0x , µ

t0
x′)

d(x, x′)

)
=

t

t0
κt0

So, κt is linear for t small enough and:

ric(x, x′) =
dκt(x, x′)

dt |t=0
=
κt0(x, x′)

t0

As a consequence, computing ric(x, x′) is quite simple: one needs only solve the linear problem for
t small enough (e.g., t ≤ 1/4).

Remark 2. This property linking the time-continuous Olivier–Ricci curvature to the time-discrete
curvature is true in generality, as soon as the random walk is lazy enough, i.e., the probability of staying
at x is large enough (see the remark of Ollivier [12] at the end of Section 1.1, [16] for time-continuous
and space-discrete Markov chains with exponential jump times and, also, [17] for more details on
Ollivier–Ricci curvature in the continuous case).

Finally, we note that this optimization problem is an instance of integer linear programming, and as a
consequence, the solution is integer-valued up to a multiplicative constant:

Theorem 3. For any pair of adjacent vertices, x, x′, with degrees d, d′, and t = 1/N , there exists an
optimal coupling, ξt, with coefficients in 1

Ndd′
N; consequently, κ1(x, x′) and ric(x, x′) lie in 1

dd′
Z.

Proof. Let us first rewrite the constraints above as the following single linear equation. Numbering
x = x0 and (x1, . . . , xd), the neighbors of x and x′ = x′0
and (x′1, . . . , x

′
d′) the neighbors of x′, we consider the vector X =
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(ξt(x0, x
′
0), . . . , ξt(x0, x

′
d′), ξ

t(x1, x
′
0), . . . , ξt(x1, x

′
d′), . . . , ξ

t(xd, x
′
0), . . . , ξt(xd, x

′
d′)). The constraints

amounts to AX = b for the following data:



1 · · · 1

· · ·
1 · · · 1

1 1
. . . · · · . . .

1 1





ξt(x0, x
′
0)

...
ξt(x0, xd′)

ξt(x1, x
′
0)

...
ξt(xd, x

′
0)

...
ξt(xd, xd′)


=



µtx0(x0)
...

µtx0(xd)

µtx′0
(x′0)
...

µtx′0
(x′d′)



The integral matrix, A, is totally unimodular: Every square, non-singular submatrix, B of A, has
determinant ±1. Indeed, A satisfies the following requirements:

• the entries of A lie in {−1, 0, 1};
• A has no more than two nonzero entries on each column;
• its rows can be partitioned into two sets I1 = {1, . . . , d + 2} and I2 = {d + 3, . . . , d + d′ + 2},

such that if a column has two entries of the same sign, their rows are in different sets.

Then, whenever b is integer-valued, the vertices of the constraint set {X ∈ R(d+1)(d′+1)
+ , AX = b} are

also integer-valued. We refer the reader to classical results of integer linear programming, which can be
found in [18].

In our setting, choose t = 1/N , so that the coefficients of b lie in 1
Ndd′

N. By the above remarks, so
do the coefficients of ξt, since an optimal coupling can be chosen to be a vertex of the constraint set.
Since the distance matrix is also integer-valued, the cost, W1, lies in 1

Ndd′
N, and for two neighbors, x, x′,

κt(x, x′) ∈ 1
Ndd′

N. The curvature ric(x, x′) is obtained by diving by t = 1/N , hence the result. The
reasoning also holds for κ1.

3. Curvature of Discrete Surfaces

Estimates for the Ollivier–Ricci curvature are given in [11,14] (ric in the first paper, κ1 in the second)
for general graphs and for some specific ones, such as trees. Essentially, they rely on studying one
coupling, which gives an upper bound on W1, hence a lower bound on the curvature, which may or
may not be optimal. We will give below exact values, albeit in the specific setting that concerns us:
polyhedral surfaces. Furthermore, we will always assume that vertices x, x′ are neighbors; in other
words, we see ric as a function on the edges. Actual computing of ric(x, x′) for more distant vertices
is, of course, possible, but much more complicated. However, it should be noted that ric trivially
enjoys a concavity property, as a direct consequence of the triangle inequality on the distance, W1: if
x = x0, x1, . . . , xn = x′ is a geodesic path from x to x′, then:

κt(x0, xn) ≥
n∑
i=1

d(xi−1, xi)

d(x0, xn)
κt(xi−1, xi) =

1

d(x0, xn)

n∑
i=1

κt(xi−1, xi) (4)



Axioms 2014, 3 126

the latter equality holding only in the uniform metric, because d(xi−1, xi) = 1 between neighbors. This
inequality passes to the limit and applies to ric, as well. The concavity property implies in particular
that if ric is bounded below on all edges, then ric(x, y) has the same lower bound on all couples, x, y.

We use this fact to give a trivial proof of Myers’ theorem (see also [19] for the smooth case).

Theorem 4 (Ollivier [12], prop. 23). If ric is bounded below on all edges by a positive constant, ρ, then
S is finite, and its diameter is bounded above by 2/ρ.

Proof. Using the triangle inequality again on W1:

d(x, y) = W1(δx, δy)

≤ W1(δx, µ
t
x) +W1(µtx, µ

t
y) +W1(µty, δy)

≤ J t(x) + (1− κt(x, y))d(x, y) + J t(y)

where J t(x) = W1(δx, µ
t
x) is the jump at x, which is also the expectation, Eµtx(d(x, .)), of the distance

to x with respect to the probability, µtx. For the uniform metric J t(x) = t, so that:

d(x, y) ≤ 2

ric(x, y)
≤ 2

ρ

which gives the upper bound for the diameter. Since S is locally finite, it is therefore finite.
We will now give our results and compare them with those obtained either by Jost and Liu [11] or by

using Forman’s definitions of Ricci curvature [9].
As the first example, let us give the Ollivier–Ricci curvature for the Platonic solids (with κ1 as a

comparison, corresponding to the non-lazy random walk) in Table 1:

Table 1. Ollivier–Ricci (asymptotic and discrete at time 1 for the Platonic solids, along
Forman’s version of Ricci curvature (divided by three, to be comparable). Values in bold are
sharp with respect to Myers’ theorem.

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

ric 4/3 2/3 1 0 2/5

κ1 2/3 0 1/2 −1/3 1/5
1
3

Forman 4/3 2/3 2/3 0 0

This stresses the difference between κ1 (used in [11]) and ric, which exhibits, in our opinion, a more
geometric (and less graph-theoretic) behavior. In particular, the values of ric are sharp with respect to
Myers’ theorem for the cube and the octahedron. Forman refers to the combinatorial Ricci curvature for
unit weights defined in [9], which also satisfies a Myers’ theorem, albeit with a different constant: the
diameter is bounded above by 6/ρ, hence our choice to divide it by three, to allow comparison between
with the Ollivier–Ricci curvature. Forman’s Ricci curvature is sharp only for the cube.

Tessellations by regular polygons fit well in this framework, since all edges have the same length.
Regular tilings are the triangular, square and hexagonal tiling. The triangular tiling corresponds to the
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(6, 6) case (see Table 2 below) and has zero Ollivier–Ricci curvature, and so does the square tiling.
However, the hexagonal lattice has negative Ollivier–Ricci curvature equal to −2/3.

Table 2. Asymptotic Ollivier–Ricci curvature, ric(x, x′), according to respective degrees of
x and x′, compared to the Time 1 Ollivier–Ricci κ1, as well as Forman’s Ricci curvature
(divided by three for comparison purposes); κ1 ≥ refers to the estimates of Jost and Liu.

(d, d’) (3, 3) (4, 4) (4, 5) (4, 6) (5, 5) (5, 6) Others

ric
4

3

3

4

11

20

1

3

2

5

2

15

4

d
+

8

d′
− 2

κ1 2

3

1

2

7

20

1

4

1

5

1

10

4

d
+

8

d′
− 2

κ1 ≥ 2

3

1

2

1

5
0 0 −1

5


5

d′
− 2

3
if d = 3

4

d
+

6

d′
− 2 if d ≥ 4

1

3
Forman

4

3

2

3

1

3
0 0 −1

3

10− d− d′

3

The method can also be applied to semiregular tiling, but those are only vertex-transitive in general
and not edge-transitive (with the exception of the trihexagonal tiling); hence, one must treat separately
the different types of edges. For example, for the snub square tiling, ric = 0 for an edge between two
triangles, but ric = −1/5 for an edge between a triangle and a square.

The results above can easily be derived using making computation by hand or by using integer linear
programming software (a source file with all the above examples to be used with open source software
Sage [20] is attached to the article). The next results however are of a more general nature, with
variable degrees, and cannot be obtained by simple computations. We consider adjacent vertices x, x′ on
a triangulated surface with the following genericity hypotheses:

(B) x, x′ are not on the boundary;
(G) for any y ∈ star(x) and y′ ∈ star(x′), there is a geodesic of length d(y, y′) in star(x) ∪ star(x′).

Under hypothesis (G), the distance matrix, D, inX agrees with its restriction to star(x)∪star(x′); hence,
all computations are local. For that genericity assumption to fail, one needs very small loops close to x
and x′, which can usually be excluded as soon as the triangulation is fine enough. For instance, the
tetrahedron and the octahedron do not satisfy (G) (see remark 6). Furthermore, hypothesis (B) prohibits
the vertex, x (or x′), to be of degree three, because it would have to lie on the boundary, unless its two
other neighbors belong to the same face, therefore contradicting (G). We conclude with the following.

Theorem 5. Under the genericity Hypotheses (B) and (G), the Ollivier–Ricci curvature depends only
on the degrees, d, d′, of vertices x, x′ and is given in Table 2.
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Proof. To compute the optimal cost, W1(µtx, µ
t
x′), we need only find a coupling, ξt, for which the

Kuhn–Tucker relation (1) holds. Thanks to the genericity Hypothesis (G), we can restrict ourselves
to finite matrices (on star(x) ∪ star(x′)). Details are given in the Section 5. Note that Hypothesis (B)
makes for simpler calculations, but they could obviously be extended to deal with the presence of a
boundary. Despite its incompatibility with our genericity hypotheses, we include the (3, 3) case for the
sake of completeness.

Table 2 gives ric and κ1 as a function of respective degrees d, d′. Because ric(x, x′) = ric(x′, x), we
may assume without loss of generality that d ≤ d′. We compare with Forman’s expression and also to
the lower bound:

](x, x′)

d′
−
(

1− 1

d
− 1

d′
− ](x, x′)

d

)
+

−
(

1− 1

d
− 1

d′
− ](x, x′)

d′

)
+

given by Jost and Liu [11] for general graphs, where ](x, x′) is the number of triangles incident to the
edge (xx′), which, under our hypotheses, is always equal to two. Jost and Liu conclude that the presence
of triangles improves the lower Ricci bound. We see here that when there are only triangles, one obtains
an actual value, which differs from their lower bound as soon as d′ ≥ 5.

Remark 3. 1. The (3, 3) case is given here, although it contradicts either (B) or (G), the latter being
the tetrahedron computed above; similarly, the (3, 4) case is excluded.

2. Zero Ollivier–Ricci curvature is attained only with degrees (6, 6) (regular triangular tiling), (4, 8)

and (3, 12).

4. Varying Edge Lengths

While many authors have focused on the graph theory, the case of polyhedral surfaces is somewhat
different: the combinatorial structure is more restrictive, as we have seen above, but the geometry is more
varied. In particular, edge lengths d(x, y) may be different from one. This is partially achieved in the
literature [11,14] by allowing weights on the edges, which amounts to changing the random walk, but we
think the geometry should intervene at two levels: measure and distance. We will present here a general
framework to approach the problem, using the Laplace operator, which depends on both the geometric
and the combinatorial structure of S. One must also note the ambiguous definition of the Ollivier–Ricci
asymptotic curvature, which plays the role of a length in Myers’ theorem, and yet, its definition makes it
a dimensionless quantity. Indeed multiplying all lengths by a constant λ will not change ric (since W1

is multiplied by λ, as well).
In the following, we assume that S is a polyhedral (or discrete) surface with set of vertices V , edges

E and faces F . Furthermore, S is not only locally finite, but its vertices have a maximum degree, dmax

(dmin denotes the minimal degree, which is at least two for surfaces with boundary and three for surfaces
without boundary). The geometry of S is determined by the geometry of its faces, namely an isometric
bijection between each face, f , and a planar face of identical degree, with the compatibility condition that
edge lengths measured in two adjacent faces coincide. Then, two natural notions of length arise: (i) the
combinatorial length, which counts the number of edges along a path; and (ii) the metric length, where
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each edge length is given by the geometry. Each notion of length yields a different distance between
vertices: the combinatorial distance, d̄, which we have used above, and the metric distance, d. Note that
if each face is assumed to be a regular polygon with edges of length one, then both distances agree, and
metric theory coincides with graph theory. We will make the following assumption on the geometry:
the distances, d and d̄, are metrically equivalent: ∃C, C−1d̄ ≤ d ≤ Cd̄. Such a hypothesis holds if the
lengths of the edges are uniformly bounded above and below; in particular, the aspect ratio is bounded
(this also rules out extremely large or extremely small faces, which could happen with only the bounded
aspect ratio).

We consider a differential operator, ∆ (a Laplacian, see [21]) determined by its values, ∆xy, for
vertices x, y and the usual properties (note that our sign convention is such that the Laplacian is a negative
operator; [21] uses the opposite):

(a) ∆xy > 0 whenever x ∼ y;
(b) ∆xy = 0 whenever x 6= y and x � y (locality property);
(c)

∑
y ∆xy = 0, which implies that ∆xx < 0 (note that the sum is finite, due to the previous assumption

and the local finiteness of S).

Often, this operator is obtained by putting a weight wxy = wyx on each edge (xy). The degree at x is
then the sum dx =

∑
y∼xwxy and ∆xy = wxy/dx. Obviously, property (c) implies ∆xx = −1. The

case studied above corresponds to a graph with all weights equal to one (therefore, unweighted), and the
corresponding Laplace operator is called the harmonic Laplacian ∆̄.

The Laplacian is not a priori symmetric, i.e., L2-self-adjoint (though it could be made so with respect
to some metric on vertices). Thanks to the finiteness assumption (b), we can define iterates ∆k of ∆ for
integer k, and the xy coefficient (not to be confused with (∆xy)

k) is:

∆k
xy =

∑
z1,...,zk−1

∆xz1∆z1z2 · · ·∆zk−1y

the sum being taken on all paths of length k on S. By direct recurrence, we see that our boundedness
hypotheses imply the bound |∆k

xy| ≤ 2k. Indeed,∣∣∣∣∣∑
z

∆xz∆
k
zy

∣∣∣∣∣ ≤ 2k

∣∣∣∣∣∑
z

∆xz

∣∣∣∣∣ ≤ 2k

(
1 +

∑
z 6=x

|∆xz|

)
= 2k

(
1−

∑
z 6=x

∆xz

)
= 2k+1

As a consequence, the heat semigroup et∆ =
∑∞

k=0
tk

k!
∆k is well defined. It acts on measures and defines

the image measure δtx = δxe
t∆ of the Dirac measure at x by:

δtx(y) =
∑
z

δx(z)(et∆)zy = (et∆)xy = µtx(y) +O(t2)

where µtx(y) = δx(y) + t∆xy is the lazy random walk studied above (for the harmonic Laplacian, but
results hold in the general case). The random walks, (δtx)x∈V , have finite first moment, as can be inferred
from the proof of the following.

Proposition 6. The Ollivier–Ricci curvature depends only on the first order expansion of the
random walk:

lim
t→0

1

t

(
1−

W1(δtx, δ
t
y)

d(x, y)

)
= lim

t→0

1

t

(
1−

W1(µtx, µ
t
y)

d(x, y)

)
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Proof. Consider any coupling, ξ, that transfers mass from points at (uniform) distance d̄ from x of at
least two, to x and its neighbors. If the vertex, y, is at d̄-distance k from x, then ∆`

xy = 0 for ` < k and:

|δtx(y)| =

∣∣∣∣∣∑
`≥k

t`

`!
∆`
xy

∣∣∣∣∣ ≤∑
`≥k

(2t)`

`!
≤ (2t)k

k!
e2t

The points at uniform distance k from x are at most dkmax numerous, and using the equivalence between
distances, they will be moved at most by d ≤ C(k + 1) to x or one of its neighbors:

W1(δtx, µ
t
x) ≤

∞∑
k=2

C(k + 1)dkmax

(2t)k

k!
e2t ≤ 3Ce2t

2

∞∑
k=2

(2tdmax)k

(k − 1)!

= 3Cdmaxte
2t

∞∑
k=1

(2tdmax)k

k!
≤ 3Cdmaxt

2e2te2tdmax = O(t2)

Since:
|W1(δtx, δ

t
y)−W1(µtx, µ

t
y)| ≤ W1(δtx, µ

t
x) +W1(δty, µ

t
y) = O(t2)

we conclude that both limits coincide.

As a consequence, it is natural to replace in the section above the random walk by µtx = δx + t∆x,.,
for some definition of the Laplacian (see [22–24]). However, in order to recover the geometric properties
above, one needs to normalize the random walk, µtx, so that the jump J t(x) = t, i.e., the average distance
of points jumping from x should be t. That amounts to setting:

µtx(y) = δx(y) +
t∆xy∑

z∼x d(x, z)∆xz

equivalently, one might renormalize the Laplacian accordingly. As a consequence, ric now behaves
as the inverse of a length, as expected. Furthermore, Myers’ theorem 4 is still valid. Indeed, while
Equation (4) no longer holds when edge lengths vary, it remains true that ric(x, y) ≥ ρ if ric is bounded
below on all edges by ρ.

An example: The rectangular parallelepiped.
For the rectangular parallelepiped with edges of lengths a, b, c, the Ollivier–Ricci curvature is:

ric =
1

a
− 1

a+ b+ c

along an edge of length a, and others follow (see §5.4). For the cube, we recover ric = 2
3a

. If a is the
length of the longest edge, an application of Myers’ theorem yields an upper bound for the diameter 2a

b+c

times greater than its actual value, a+ b+ c.

Remark 4. A more general theory can be developed with non-local operators, by replacing local
finiteness (property (b) above) with convergence requirements. Another, still finite, natural generalization
of (b) is to allow ∆xy 6= 0 whenever x and y belong to the same face. For a triangulated manifold, this
amounts to the usual neighborhood relation, but as soon as some faces have more than three edges, this
makes a difference (e.g., the cube). Note, however, that the corresponding Myers’ theorem needs to be
adjusted, as well, since the jump will change accordingly. In our experiments on Platonic solids with µx,
a uniform measure on vertices of star(x), we did not find better diameter bounds with this method.
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Remark 5. One might also be tempted to compute Ollivier–Ricci curvature on the surface, S, seen as
a smooth flat surface with conical singularities (so that distances are computed between points on the
faces). If vertices x, x′ both have nonnegative Gaussian curvature (a.k.a. angular defect α, α′ ∈ R+),
then by a computation analog to Ollivier’s [12], we infer:

ric =
4

3

(
1

2π − α′
sin

α′

2
+

1

2π − α
sin

α

2

)
which differs from our previous computations. This emphasizes that this setup is somewhere in between
the smooth and the discrete setup.

5. Appendix: Solutions for the Linear Programming Problem on Generic Triangulated Surfaces

We give here the Lagrange multipliers for the linear programming problem and the corresponding
minimizer. The regular tetrahedron is given first as an example of the method, and the main result
consists of analyzing the various cases according to their (arbitrary) degrees. Cases with degrees less or
equal to six can easily be computed by a machine, and we refer to the Sage program attached.

5.1. The Regular Tetrahedron

The distance matrix for Vertices 1, 2, 3 and 4 is:

D =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


and the optimal coupling from µt1 to µt2 shifts mass 1− 4t

3
from Vertex 1 to Vertex 2 (provided t ≤ 3/4),

leaving other vertices untouched:

ξt =


t
3

1− 4t
3

0 0

0 t
3

0 0

0 0 t
3

0

0 0 0 t
3

 with cost 〈ξt, D〉 = 1− 4t

3

with Lagrange multipliers:

D =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 = C2 − L2 +


0 0 1 1

2 0 2 2

1 0 0 1

1 0 1 0


the last matrix corresponding to a linear combination of Eyy′ with positive coefficients νyy′ , only where
ξt(y, y′) = 0. Conversely, it is straightforward from νyy′ξ

t(y, y′) = 0 to deduce that ξt is unique. Hence
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κt = 4t
3

and ric = 4/3. The case t = 1 cannot be dealt with in the same way, but admits the following
optimal transference plan:

ξ1 =


0 0 0 0

1/3 0 0 0

0 0 1/3 0

0 0 0 1/3

 , D = L2 − C2 +


0 2 1 1

0 0 0 0

1 2 0 1

1 2 1 0


with cost 1/3 and, therefore, curvature κ1 = 2/3.

Remark 6. The case of degrees (3, 3) differs only in that the distance between Vertices 3 and 4 is equal
to two instead of one. However, the optimal couplings found above do not move mass from 3 nor from 4.
Hence, it is also optimal for the (3, 3) case.

5.2. Generic Triangulated Surfaces

We analyze now generic triangulated surfaces according to the degrees d ≤ d′ of x and x′. In our
matrix notation, x will have an index 1 and x′ an index 2. Since x and x′ are not on the boundary, all
edges containing them belong to two triangular faces. In particular, there are two vertices, with indices 3

and 4, which are neighbors of both x and x′ (see Figure 1). There remains d− 3 exclusive neighbors of
x (that are not neighbors of x′), ordered from 5 to d+ 1, along the border of star(x), and d′− 3 exclusive
neighbors of x′, ordered from d+ 2 to n = d+ d′ − 2 along the border of star(x′).

Figure 1. Generic description of star(1) ∪ star(2).

1 2

3

4

5

6

d

d+ 1 d+ 2

d+ 3

d+ 4

n
n− 1

n− 2
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The distance matrix is:

D =



0 1 1 1 1 · · · · · · · · · 1 2 · · · · · · · · · 2

1 0 1 1 2 · · · · · · · · · 2 1 · · · · · · · · · 1

1 1 0 2 1 2 · · · · · · 2 2 · · · · · · 2 1

1 1 2 0 2 · · · · · · 2 1 1 2 · · · · · · 2

1 2 1 2 0 1 2 · · · 2 3 · · · · · · 3 2
...

... 2
... 1

. . . . . . . . . ...
... 3

...
...

...
... 2

. . . . . . . . . 2
...

...
...

...
... 2

... . . . . . . . . . 1 3
...

1 2 2 1 2 · · · 2 1 0 2 3 · · · · · · 3

2 1 2 1 3 · · · · · · 3 2 0 1 2 · · · 2
...

...
... 2

... 3 1
. . . . . . . . . ...

...
...

...
...

...
... 2

. . . . . . . . . 2
...

... 2
... 3

...
... . . . . . . . . . 1

2 1 1 2 2 3 · · · · · · 3 2 · · · 2 1 0


The form of the distance matrix is somewhat different when d or d′ are very small. Indeed, due to the
genericity assumption (B), both degrees are larger or equal to 4. We see easily that the distance from an
exclusive neighbor, y, of x to an exclusive neighbor, y′, of x′ is in general ( i.e., for d − 5 neighbors,
y, and d′ − 5 neighbors, y′) obtained by a geodesic passing though x and x′. However, when d < 6 or
d′ < 6, “shortcuts” predominate, hence the need for ad hoc computations.

Applying the constraints, we see that any coupling, and, in particular, the optimal coupling, takes the
following block form:

ξt =

∗ 0 ∗
∗ 0 ∗
0 0 0


so, we may as well restrict to the Lines 1 through d + 1 and Columns 1, 2, 3 and 4 and d + 2 through
d + d′ − 2 of matrices D and ξt. Then, the (d + 1) × (d′ + 1) submatrix D̃ of D can be written (for
d, d′ ≥ 5):

D̃ =



0 1 1 1 2 · · · · · · · · · 2

1 0 1 1 1 · · · · · · · · · 1

1 1 0 2 2 · · · · · · 2 1

1 1 2 0 1 2 · · · · · · 2

1 2 1 2 3 · · · · · · 3 2
...

... 2
...

... 3
...

...
...

...
...

...
...

...
... 2 3

...
1 2 2 1 2 3 · · · · · · 3


Similarly, we will write ξ̃t, the relevant submatrix of the coupling ξ, and 〈ξt, D〉 = 〈ξ̃t, D̃〉 =∑

i,j ξ
t
i,jd(xi, xj).
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When d and d′ are large, the optimal coupling moves the mass mainly along the edge (x, x′). This
gives a general formula for values of d and d′. For values of d′ ≥ 6, we set:

∆ = D̃ + L1 + 2L2 + L3 + L4 − C1 − 2C2 − C3 − C4 − 2C5 − 3(C6 + · · ·+ Cd′)− 2Cd′+1

and show that ∆ has only nonnegative coefficients.

• d′ ≥ 6 and d ≥ 5:

∆ =



0 0 1 1 1 0 · · · 0 1

2 0 2 2 1
...

... 1

1 0 0 2 1
...

... 0

1 0 2 0 0 0 · · · 0 1

0 0 0 1 1 0 · · · 0 0
...

... 1
...

...
...

... 1
...

...
...

...
...

...
...

...
...

...
... 1 1

...
...

...
0 0 1 0 0 0 · · · 0 1



, ξ̃t =



t
d′

xt 0 0 0 · · · · · · · · · 0

0 t
d′

0 0 0 yt · · · yt 0

0 0 t
d′

0 0 yt · · · yt 0

0 0 0 t
d′

0 yt · · · yt 0

0 · · · · · · 0 0 yt · · · yt
t
d′

...
...

... zt · · · zt 0
...

...
...

...
...

...
...

... 0 zt · · · zt
...

0 · · · · · · 0 t
d′

yt · · · yt 0


where:

xt = 1− t− t

d′
, yt =

t

d′ − 5

(
1

d
− 1

d′

)
, zt =

t

d(d′ − 5)

(xt ≥ 0 whenever t ≤ d′

d′+1
) and the cost is W1 = 1 + t

(
2− 4

d
− 8

d′

)
. We check easily that ξ̃t has

nonnegative coefficients and satisfies Conditions (1) and (2).
• d′ ≥ 6 and d = 4:

The distance matrix, D, has only five rows, and its submatrix is slightly different:

D̃ =


0 1 1 1 2 · · · · · · · · · 2

1 0 1 1 1 · · · · · · · · · 1

1 1 0 2 2 · · · · · · 2 1

1 1 2 0 1 2 · · · · · · 2

1 2 1 1 2 3 · · · 3 2

 , ∆ =


0 0 1 1 1 0 · · · 0 1

2 0 2 2 1 0 · · · 0 1

1 0 0 2 1 0 · · · 0 0

1 0 2 0 0 0 · · · 0 1

0 0 0 0 0 · · · · · · · · · 0


and an optimal transportation plan is:

ξ̃t =



t
d′

xt 0 0 0 · · · · · · · · · 0

0 t
d′

0 0 0 yt · · · yt 0

0 0 2t
3d′

0 0 zt · · · zt
2t
3d′

0 0 0 2t
3d′

2t
3d′

zt · · · zt 0

0 0 t
3d′

t
3d′

t
3d′

zt · · · zt
t

3d′


where:

xt = 1− t− t

d′
, yt =

t

d′ − 5

(
1

4
− 1

d′

)
, zt =

t

d′ − 5

(
1

4
− 4

3d′

)
, t ≤ d′

d′ + 1

with cost W1 = 1 + t− 8t
d′

= 1 + t
(
2− 4

4
− 8

d′

)
. Note that, thanks to d′ ≥ 6, we have 1

4
− 4

3d′
≥ 0,

so zt ≥ 0 as needed.
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• d′ ≥ 6 and d = 3:
Similarly, we have:

D̃ =


0 1 1 1 2 · · · · · · · · · 2

1 0 1 1 1 · · · · · · · · · 1

1 1 0 2 2 · · · · · · 2 1

1 1 2 0 1 2 · · · · · · 2

 , ∆ =


0 0 1 1 1 0 · · · 0 1

2 0 2 2 1 0 · · · 0 1

1 0 0 2 1 0 · · · 0 0

1 0 2 0 0 0 · · · 0 1



ξ̃t =


t
d′

xt 0 0 0 · · · · · · · · · 0

0 t
d′

0 0 0 yt · · · yt 0

0 0 t
d′

0 0 zt · · · zt
t
d′

0 0 0 t
d′

t
d′

zt · · · zt 0


where:

xt = 1− t− t

d′
, yt =

t

d′ − 5

(
1

3
− 1

d′

)
, zt =

t

d′ − 5

(
1

3
− 2

d′

)
, t ≤ d′

d′ + 1

and the cost is W1 = 1 + t
(
2− 4

3
− 8

d′

)
. Thanks to d′ ≥ 6, we have zt ≥ 0 as needed.

We conclude that in all cases where d′ ≥ 6, we have ric = 4
d

+ 8
d′
− 2, as claimed.

5.3. κ1 Computation

In the case t = 1, the measure, µ1
x, does not put any weight on x; hence, any transfer plan is identically

zero along the line corresponding to x (and along the column corresponding to y). In our notations,
it would amount to discarding the first line and the second column of all matrices previously written, but
for clarity and comparison purposes, we will keep them, though they play no role. Again, we only deal
with the cases of variable degree and leave the remaining cases to the computer program.

• d′ ≥ 6 and d ≥ 6

The matrix, ∆, is the same as above, but because of the additional constraint, an optimal coupling
is now given by:

ξ̃1 =
1

dd′



0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d′

d′−5
· · · d′

d′−5
0

0 0 d 0 0 d′−d
d′−5

· · · d′−d
d′−5

0

0 0 0 d 0 d′−d
d′−5

· · · d′−d
d′−5

0

0 0 · · · 0 0 d′−d
d′−5

· · · d′−d
d′−5

d

d
...

... 0 d′−d
d′−5

· · · d′−d
d′−5

0

0
...

...
... d′

d′−5
· · · d′

d′−5
0

...
...

...
...

...
...

...
...

...
... 0 d′

d′−5
· · · d′

d′−5

...
0 0 · · · 0 d d′−d

d′−5
· · · d′−d

d′−5
0


with cost W1 = 1

dd′
(−4d′ − 8d + 3dd′) = 3 − 4

d
− 8

d′
. Since we need at least eight distinct lines,

we cannot compute κ1 by this method anymore when d ≤ 5.
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• d = 5 and d′ ≥ 7

D̃ =



0 1 1 1 2 · · · · · · · · · 2

1 0 1 1 1 · · · · · · · · · 1

1 1 0 2 2 · · · · · · 2 1

1 1 2 0 1 2 · · · · · · 2

1 2 1 2 3 · · · · · · 3 2

1 2 2 1 2 3 · · · · · · 3


, ∆ =



0 0 1 1 1 0 · · · 0 1

2 0 2 2 1
...

... 1

1 0 0 2 1
...

... 0

1 0 2 0 0 0 · · · 0 1

0 0 0 1 1 0 · · · 0 0

0 0 1 0 0 0 · · · 0 1


An optimal coupling is given by:

ξ̃1 =
1

5d′



0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d′

d′−5
· · · d′

d′−5
0

0 0 2 0 0 d′−7
d′−5

· · · d′−7
d′−5

5

0 0 0 5 1 d′−6
d′−5

· · · d′−6
d′−5

0

3 0 3 0 0 d′−6
d′−5

· · · d′−6
d′−5

0

2 0 0 0 4 d′−6
d′−5

· · · d′−6
d′−5

0


W1 =

11d′ − 40

5d′
= 3− 4

5
− 8

d′

• d = 4 and d′ ≥ 7

D̃ =


0 1 1 1 2 · · · · · · · · · 2

1 0 1 1 1 · · · · · · · · · 1

1 1 0 2 2 · · · · · · 2 1

1 1 2 0 1 2 · · · · · · 2

1 2 1 1 2 3 · · · 3 2

 , ∆ =



0 0 1 1 1 0 · · · 0 1

2 0 2 2 1
...

... 1

1 0 0 2 1
...

... 0

1 0 2 0 0 0 · · · 0 1

0 0 0 0 1 0 · · · 0 0


An optimal coupling is given by:

ξ̃1 =
1

4d′


0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d′

d′−5
· · · d′

d′−5
0

0 0 3 0 0 d′−7
d′−5

· · · d′−7
d′−5

4

0 0 0 3 4 d′−7
d′−5

· · · d′−7
d′−5

0

4 0 1 1 0 d′−6
d′−5

· · · d′−6
d′−5

0

 W1 =
1

4d′
(8d′ − 32) = 3− 4

4
− 8

d′

• d = 3 and d′ ≥ 8

D̃ =


0 1 1 1 2 · · · · · · · · · 2

1 0 1 1 1 · · · · · · · · · 1

1 1 0 2 2 · · · · · · 2 1

1 1 2 0 1 2 · · · · · · 2


In this case, the Lagrange multipliers are a bit different and:

∆ = D̃ + 2L1 + 2L2 + L3 + L4

−2C1 − 2C2 − C3 − C4 − 2C5 − 3(C6 + · · ·+ Cd′)− 2Cd′+1

=


0 1 2 2 2 1 · · · 1 2

1 0 2 2 1 0 · · · 0 1

0 0 0 2 1 0 · · · 0 0

0 0 2 0 0 0 · · · 0 1
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An optimal coupling is given by:

ξ̃1 =
1

3d′


0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d′

d′−5
· · · d′

d′−5
0

2 0 3 0 0 d′−8
d′−5

· · · d′−8
d′−5

3

1 0 0 3 3 d′−7
d′−5

· · · d′−7
d′−5

0

 W1 =
1

3d′
(5d′ − 21) = 3− 4

3
− 7

d′

5.4. The Rectangular Parallelepiped

The (Delaunay) cotan Laplacian [22] for the rectangular parallelepiped with edges of lengths
|e12| = a, |e14| = b, |e15| = c (see Figure 2) is given by:

∆12 =
b+ c

2a
, ∆14 =

c+ a

2b
, ∆15 =

a+ b

2c

so that
∑

y∼1 d(1, y)∆1y = a+ b+ c; hence we normalize to µx = (1− t)δx + tµ̇x with:

µ̇1(2) =
b+ c

2a(a+ b+ c)
=

1

2a
− 1

2(a+ b+ c)
, µ̇1(4) =

1

2b
− 1

2(a+ b+ c)
, µ̇1(5) =

1

2c
− 1

2(a+ b+ c)

µ̇1(1) =
1

2

(
1

a
+

1

b
+

1

c
− 3

a+ b+ c

)
The distance matrix is:

D =



0 a a+ b b c c+ a

a 0 b a+ b c+ a c

a+ b b 0 a a+ b+ c b+ c

b a+ b a 0 b+ c a+ b+ c

c c+ a a+ b+ c b+ c 0 a

c+ a c b+ c a+ b+ c a 0



D− aL1 + aC1 + aC4 + aC5− aL4− aL5 =



0 0 b b c c

2 a 0 b 2 a+ b 2 a+ c c

2 a+ b b 0 2 a 2 a+ b+ c b+ c

b b 0 0 b+ c b+ c

c c b+ c b+ c 0 0

2 a+ c c b+ c 2 a+ b+ c 2 a 0


A optimal coupling is:

ξt =



t
2

(
1
a
− 1

a+b+c

)
1− t

2

(
2
a

+ 1
b

+ 1
c
− 4

a+b+c

)
0 0 0 0

0 t
2

(
1
a
− 1

a+b+c

)
0 0 0 0

0 0 0 0 0 0

0 0 t
2

(
1
b
− 1

a+b+c

)
0 0 0

0 0 0 0 0 t
2

(
1
c
− 1

a+b+c

)
0 0 0 0 0 0
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with cost W1 = a

(
1− t

(
1

a
− 1

a+ b+ c

))
and curvature ric =

1

a
− 1

a+ b+ c
along an edge of

length a, as claimed.

Figure 2. Rectangular parallelepiped.
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