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Ricci curvature on polyhedral surfaces via optimal
transportation

Benoît Loisel and Pascal Romon

Abstract

The problem of defining correctly geometric objects such as the curvature is a hard
one in discrete geometry. In 2009, Ollivier [Oll09] defined a notion of curvature applicable
to a wide category of measured metric spaces, in particular to graphs. He named it coarse
Ricci curvature because it coincides, up to some given factor, with the classical Ricci
curvature, when the space is a smooth manifold. Lin, Lu & Yau [LLY11], Jost & Liu [JL11]
have used and extended this notion for graphs giving estimates for the curvature and
hence the diameter, in terms of the combinatorics. In this paper, we describe a method
for computing the coarse Ricci curvature and give sharper results, in the specific but
crucial case of polyhedral surfaces.

Keywords: discrete curvature; optimal transportation; graph theory; discrete lapla-
cian; tiling.

MSC: 05C10, 68U05, 90B06

1 The coarse Ricci curvature of Ollivier

Let us first recall the definition of the coarse Ricci curvature as given originally by Ollivier
in [Oll09]. Since our focus is on polyhedral objects, we will use, for greater legibility, the
language of graphs and matrices, rather than more general measure theoretic formulations.
In this section, we will assume that our base space X = (V ,E) is a simple graph (no loops, no
multiple edges between vertices), unoriented and locally finite (vertices at finite distance are
in finite number) for the standard distance (the length of the shortest chain between x and
x ′):

∀x, x ′ ∈V , d(x, x ′) = inf
{
n, n ∈N∗, ∃x1, . . . , xn−1, x = x0 ∼ x1 ∼ ·· · ∼ xn = x ′}

where x ∼ y stands for the adjacency relation and adjacent vertices are at distance 1. We shall
call this distance the uniform distance; the more general case will be considered in section 4.
Polyhedral surfaces (a.k.a. two-dimensional cell complexes) studied afterwards will be seen
as a special case of graphs. We do not require our graphs to be finite, but we will nevertheless
use vector and matrix notations (with possibly infinitely many indices).

For any x ∈ X , a probability measure µ on X is a map V → R+ such that
∑

y∈V µ(y) = 1.
Assume that for any vertex x we are given a probability measure µx . Intuitively µx(y) is the
probability of jumping from x to y in a random walk. For instance we can take µ1

x to be the
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uniform measure on the sphere (or 1-ring) at x, Sx = {y ∈V , y ∼ x}, namely µ1
x (y) = 1

dx
if y ∼ x,

where dx = |Sx | denotes the degree of x, and 0 elsewhere. A coupling or transference plan ξ
between µ and µ′ is a measure on X ×X whose marginals are µ,µ′ respectively:∑

y ′
ξ(y, y ′) =µ(y) and

∑
y
ξ(y, y ′) =µ′(y ′).

Intuitively a coupling is a plan for transporting a mass 1 distributed according to µ to the
same mass distributed according to µ′. Therefore ξ(y, y ′) indicates which quantity is taken
from y and sent to y ′. Because mass is nonnegative, one can only take from x the quantity
µ(x), no more no less, and the same holds at the destination point, ruled by µ′. We may view
measures as vectors indexed by V and couplings as matrices, and we will use that point of
view later.

The cost of a given coupling ξ is

c(ξ) = ∑
y,y ′∈V

ξ(y, y ′)d(y, y ′)

where cost is induced by the distance traveled. The Wasserstein distance W1 between proba-
bility measures µ,µ′ is

W1(µ,µ′) = inf
ξ

∑
y,y ′∈V

ξ(y, y ′)d(y, y ′)

where the infimum is taken over all couplings ξ between µ and µ′ (such a set will never be
empty and we will show that its infimum is attained later on). Let us focus on two simple but
important examples:

1. Let µx be the Dirac measure δx , i.e. δx(y) equals 1 when y = x and zero elsewhere.
Then there is only one coupling ξ between δx and δx ′ and it satisfies ξ(y, z) = 1 if y = x
and z = x ′, and vanishes elsewhere. Obviously W1(x, x ′) = d(x, x ′).

2. Consider now µ1
x ,µ1

x ′ the uniform measures on unit spheres around x and x ′ respec-
tively; then a coupling ξ vanishes on (y, y ′) whenever y lies outside the sphere Sx or
y ′ outside Sx ′ . So the (a priori infinite) matrix ξ has at most dxdx ′ nonzero terms, and
we can focus on the dx ×dx ′ submatrix ξ(y, y ′)y∈Sx ,y ′∈Sx′ whose lines sum to 1

dx
and

columns to 1
dx′

. For instance, ξ could be the uniform coupling

ξ= 1

dxdx ′

 1 · · · · · · 1
...

...
1 · · · · · · 1


where we have written only the submatrix.

3. A variant from the above measure is the measure uniform on the ball Bx = {x}∪Sx .

Ollivier’s coarse Ricci curvature1 between x and x ′ (which by the way need not be neighbors)
measures the ratio between the Wasserstein distance and the distance. Precisely, we set

κ1(x, x ′) = 1− W1(µ1
x ,µ1

x ′)

d(x, x ′)
·

1Also called Wasserstein curvature.

2



Since µ1
x is the uniform measure on the sphere, then κ1 compares the average distance

between the spheres Sx and Sx ′ with the distance between their centers, which indeed
depends on the Ricci curvature in the smooth case (see [Oll09, Oll10] for the analogy with
riemannian manifolds which prompted this definition).

We will rather use the definition of Lin, Lu & Yau [LLY11] (see also Ollivier [Oll10]) for a
smooth time variable t : let µt

x be the lazy random walk

µt
x(y) =


1− t if y = x

t
dx

if y ∈ Sx

0 otherwise

so that µt
x = (1− t )δx + tµ1

x interpolates linearly between the Dirac measure and the uniform

measure on the sphere2. We let κt (x, x ′) = 1− W1(µt
x ,µt

x′ )
d(x,x ′) , and κt (x, x ′) → 0 as t → 0. We then

set

r i c(x, x ′) = liminf
t→0

κt (x, x ′)
t

and we will call r i c the (asymptotic) Ollivier–Ricci curvature. The curvature r i c is attached to
a continuous Markov process whereas κ1 corresponds to a time-discrete process3. Lin, Lu &
Yau [LLY11] prove the existence of the limit r i c(x, x ′) using concavity properties. In the next
section, we give a different proof by linking the existence to a linear programming problem
with convexity properties.

The relevance of such a definition comes from the analogy with riemannian manifolds
but can also be seen through its applications, e.g. the existence of an upper bound for the
diameter of X depending on r i c (see Myers’ theorem below).

2 A linear programming problem

In the case of graphs, the computation of W1 is surprisingly simple to understand and imple-
ment numerically. Recall that a coupling ξt betweenµt

x and µt
x ′ is completely determined by a

(dx +1)× (dx ′ +1) submatrix, and henceforward we will identify ξt with this submatrix. A cou-
pling is actually any matrix inR(dx+1)(dx′+1) with nonnegative coefficients, subject to the follow-
ing t-dependent linear constraints: ∀y ∈ Bx , 〈ξt ,Ly〉 =µt

x(y) and ∀y ′ ∈ Bx ′ , 〈ξt ,Cy ′〉 =µx ′(y ′),
for all y ∈ Bx and y ′ ∈ Bx ′ , where Ly and Cy ′ are the following matrices

Ly =


· · · 0 · · · · · ·
1 · · · · · · 1
· · · 0 · · · · · ·
· · · 0 · · · · · ·

 , Cy ′ =



... 1
...

...

0
... 0 0

...
...

...
...

... 1
...

...


〈M , N〉 = t M N is the standard inner product between matrices. We will write the nonneg-
ativity constraint 〈Ey y ′ ,ξt 〉 ≥ 0, where Ey y ′ is the basis matrix whose coefficients all vanish

2In [LLY11], a different notation is used: the lazy random walk is parametrized by α= 1− t and the limit point
corresponds to α= 1.

3However both approaches are equivalent, by considering weighted graphs and allowing loops (i.e. weights
wxx ). See [BJL11] and also §4 for weighted graphs.
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except at (y, y ′). The set of possible couplings is therefore a bounded convex polyhedron K t

contained in the unit cube [0,1](dx+1)(dx′+1). In the following, we will also need the limit set
K 0 = {Exx ′} which contains a unique coupling (see case 1 above).

In order to compute κt , we want to minimize the cost function c, which is actually linear:

c(ξt ) = ∑
y,y ′∈V

ξt (x, y)d(x, y) = ∑
y∈Bx ,y ′∈Bx′

ξt (x, y)d(x, y) = 〈ξt ,D〉

where D stands for the distance matrix restricted to Bx ×Bx ′ , so that D is the (constant) L2

gradient of c. Clearly the infimum is reached, and minimizers lie on the boundary of K t .
Then either the gradient D is perpendicular to some facet of K t , and the minimizer can
be freely chosen on that facet, or not, and the minimizer is unique and lies on a vertex of
K t . Moreover the Kuhn–Tucker theorem gives a characterization of minimizers in terms of
Lagrange multipliers (a.k.a. Kuhn–Tucker vectors) : ξt minimizes c on K t if and only if there
exists (λy )y∈Bx , (λ′

y ′)y ′∈Bx′ and (νy y ′)y∈Bx ,y ′∈Bx′ such that

∇c = D =∑
y
λy Ly +

∑
y ′
λ′

y ′Cy +
∑

y ′,y ′
νy y ′Ey y ′ with νy y ′ ≥ 0 (1)

and
∀y, y ′, νy y ′〈Ey y ′ ,ξt 〉 = νy y ′ ξt (y, y ′) = 0 (2)

meaning that the Lagrange multipliers νy y ′ have to vanish unless the inequality constraint
is active (or saturated): ξt (y, y ′) = 0. As a consequence, (i) finding a minimizer is practically
easy thanks to numerous linear programming algorithms and (ii) proving rigorously that a
given ξt is a minimizer requires only writing the relations (1) and (2) for ξt ∈ K t .

The non-uniqueness is quite specific to the W1 metric, when cost is proportional to
length and therefore linear instead of strictly convex (instead of, say, length squared as in the
2-Wasserstein metric W2). It corresponds to the following geometric fact: transporting mass
m from x to z is equivalent in cost to transporting the same mass m from x to y and from
y to z, as long as y is on a geodesic from x to z (andµ(y) ≥ m, since we prohibit negative mass).

Computing the Olivier–Ricci curvature requires a priori taking a derivative, however it is
actually much simpler due to the following lemma, which also proves its existence, without
the need for subtler considerations like in [LLY11]:

Lemma 1. For t , s small enough, convex sets K t and K s are homothetic. More precisely,

K s −Exx ′ = s

t
(K t −Exx ′).

Proof. First write the constraint corresponding to the lazy random walk as µt
x(y) = δx(y)+

t∆x y , where ∆xx = −1 and ∆x y = 1
dx

iff y ∼ x. Let ξt lie in K t and t , s be positive. Then

ξs = s
t ξ

t + (
1− s

t

)
Exx ′ lies in K s . Indeed

〈Ly ,ξs〉 = s

t
(δx(y)+ t∆x y )+

(
1− s

t

)
δx(y) = δx(y)+ s∆x y =µs

x(y)

〈Cy ′ ,ξs〉 = s

t
(δx ′(y ′)+ t∆x ′y ′)+

(
1− s

t

)
δx ′(y ′) = δx ′(y ′)+ s∆x ′y ′ =µs

x ′(y ′).
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We see immediately that ξs
y y ′ = s

t ξ
t
y y ′ ≥ 0 whenever (y, y ′) 6= (x, x ′). Moreover ξs

xx ′ = s
t ξ

t
xx ′ +1−

s
t ≥ 0, provided s

t ≤ 1. All the previous arguments hold in generality, but the nonnegativity
of ξs

xx ′ needs a different argument when s ≥ t . Because µt
x and µt

x ′ are probability measures,∑
y µ

t
x(y) =∑

y ′ µt
x ′(y ′) = 1, and for any t ,

0 ≤ ∑
y 6=x

( ∑
y ′ 6=x ′

ξt
y y ′

)
= ∑

y 6=x
(µt

x(y)−ξt
y x ′) = (1−µt

x(x))− ∑
y 6=x

ξt
y x ′

= 1−µt
x(x)− (

µt
x ′(x ′)−ξt

xx ′
)

consequently ξt
xx ′ ≥ µt

x(x)+µt
x ′(x ′)−1 = 1+ t(∆xx +∆y y ) = 1−2t . Hence, for t < 1

2 , ξt
xx ′ is

positive for any matrix ξt satisfying the equality constraints (and the same holds for ξs , using
again that t < 1

2 ).
The signification of this positivity is that the constraint ξt

xx ′ ≥ 0 is never saturated: there
will always be some mass transported from x to x ′ if t is small enough, because the other
vertices cannot hold all the mass from x.

Remark 1. The lemma holds true for t , t ′ small enough, as long as ∆xx is uniformly bounded
on X , a property which we will meet later. More precisely if |∆xx ′ | ≤ C , then the homothety
property holds for all t ≤ 1

2C .

Proposition 2. The Ollivier–Ricci curvature r i c is equal to any quotient κt /t for t small
enough (e.g. t ≤ 1/2).

Proof. As a consequence of lemma 1, the gradient D has the same projection on the affine
space determined by the equality constraints, and the minimizers can be chose to be homo-
thetic for t ≤ t0 small enough. If (ξt ) denotes this family of homothetic minimizers:

W1(µt
x ,µt

x ′) = 〈D,ξt 〉 = 〈D,
t

t0
ξt0 +

(
1− t

t0

)
Exx ′〉 = t

t0
W1(µt0

x ,µt0
x ′)+

(
1− t

t0

)
d(x, x ′)

κt (x, x ′) = 1− W1(µt
x ,µt

x ′)

d(x, x ′)
= 1− t

t0

W1(µt0
x ,µt0

x ′)

d(x, x ′)
−

(
1− t

t0

)
= t

t0

(
1−

W1(µt0
x ,µt0

x ′)

d(x, x ′)

)
= t

t0
κt0

So κt is linear for t small enough and

r i c(x, x ′) = dκt (x, x ′)
dt |t=0

= κt0 (x, x ′)
t0

As a consequence, computing r i c(x, x ′) is quite simple: one needs only solve the linear
problem for t small enough (e.g. t ≤ 1/4).

Remark 2. This property linking the time-continuous Olivier–Ricci curvature to the time-
discrete curvature is true in generality, as soon as the random walk is lazy enough, i.e. the
probability of staying at x is large enough (see [Vey12]).

Finally, we note that this optimization problem is an instance of integer linear program-
ming and as a consequence, the solution is integer-valued up to a multiplicative constant:

Theorem 3. For any pair of adjacent vertices x, x ′ with degrees d ,d ′, and t = 1/N , there exists
an optimal coupling ξt with coefficients in 1

N dd ′N; consequently κ1(x, x ′) and r i c(x, x ′) lie in
1

dd ′Z.
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Proof. Let us first rewrite the constraints above as the following single linear equation. Num-
bering x = x0 and (x1, . . . , xd ) the neighbours of x, x ′ = x ′

0 and (x ′
1, . . . , x ′

d ) the neighbours of x ′,
we consider the vector

X = (ξt (x0, x ′
0), . . . ,ξt (x0, x ′

d ′),ξt (x1, x ′
0), . . . ,ξt (x1, x ′

d ′), . . . ,ξt (xd , x ′
0), . . . ,ξt (xd , x ′

d ′)).

The constraints amounts to AX = b for the following data



1 · · · 1
· · ·

1 · · · 1
1 1

. . . · · · . . .
1 1





ξt (x0, x ′
0)

...
ξt (x0, xd ′)
ξt (x1, x ′

0)
...

ξt (xd , x ′
0)

...
ξt (xd , xd ′)


=



µt
x0

(x0)
...

µt
x0

(xd )
µt

x ′
0
(x ′

0)
...

µt
x ′

0
(x ′

d ′)



The integral matrix A is totally unimodular: Every square, non-singular submatrix B of A has
determinant ±1. Indeed A satisfies the following requirements:

• the entries of A lie in {−1,0,1}

• A has no more than 2 nonzero entries on each column

• its rows can be partitioned into two sets I1 = {1, . . . ,d +2} and I2 = {d +3, . . . ,d +d ′+2}
such that if a column has two entries of the same sign, their rows are in different sets.

Then, whenever b is integer-valued, the vertices of the constraint set {X ∈R(d+1)(d ′+1)
+ , AX = b}

are also integer-valued. We refer the reader to classical results of integer linear programming
which can be found in [PS98].

In our setting, choose t = 1/N , so that the coefficients of b lie in 1
N dd ′N. By the above

remarks, so do the coefficients of ξt , since an optimal coupling can be chosen to be a vertex of
the contraint set. Since the distance matrix in also integer-valued, the cost W1 lies in 1

N dd ′N,
and for two neighbors x, x ′, κt (x, x ′) ∈ 1

N dd ′N. The curvature r i c(x, x ′) is obtained by diving
by t = 1/N , hence the result. The reasoning also holds for κ1.

3 Curvature of discrete surfaces

Estimates for the Ollivier–Ricci curvature are given in [LLY11] and [JL11] (r i c in the first paper,
κ1 in the second) for general graphs and for some specific ones such as trees. Essentially they
rely on studying one coupling, which gives an upper bound on W1, hence a lower bound on
the curvature, which may or may not be optimal. We will give below exact values, albeit in
the specific setting which concerns us: polyhedral surfaces. Furthermore, we will always
assume that vertices x, x ′ are neighbors; in other words, we see r i c as a function on the edges.
Actual computing of r i c(x, x ′) for more distant vertices is of course possible, but much more
complicated. However, it should be noted that r i c trivially enjoys a concavity property, as a

6



direct consequence of the triangle inequality on the distance W1: if x = x0, x1, . . . , xn = x ′ is a
geodesic path from x to x ′ then

κt (x0, xn) ≥
n∑

i=1

d(xi−1, xi )

d(x0, xn)
κt (xi−1, xi ) = 1

d(x0, xn)

n∑
i=1

κt (xi−1, xi ) (3)

the latter equality holding only in the uniform metric, because d(xi−1, xi ) = 1 between neigh-
bors. This inequality passes to the limit and applies to r i c as well. The concavity property
implies in particular that if r i c is bounded below on all edges, then r i c(x, y) has the same
lower bound on all couples x, y .

We use this fact to give a trivial proof of Myers’ theorem (see also [GHL90] for the smooth
case).

Theorem 4 (Ollivier [Oll09, prop. 23]). If r i c is bounded below on all edges by a positive
constant ρ, then S is finite, and its diameter is bounded above by 2/ρ.

Proof. Using the triangle inequality again on W1

d(x, y) = W1(δx ,δy )

≤ W1(δx ,µt
x)+W1(µt

x ,µt
y )+W1(µt

y ,δy )

≤ J t (x)+ (1−κt (x, y))d(x, y)+ J t (y)

where J t (x) = W1(δx ,µt
x) is the jump at x, which is also the expectation Eµt

x
(d(x, .)) of the

distance to x w.r.t. the probability µt
x . For the uniform metric J t (x) = t , so that

d(x, y) ≤ 2

r i c(x, y)
≤ 2

ρ

which gives the upper bound for the diameter. Since S is locally finite, it is therefore finite.

We will now give our results, and compare them with those obtained either by Jost & Liu
[JL11] or by using Forman’s definitions of Ricci curvature [For03].

As first example, let us give the Ollivier–Ricci curvature for the Platonic solids (with κ1

as a comparison, corresponding to the non-lazy random walk) in table 1: This stresses

tetrahedron cube octahedron dodecahe-
dron

icosahedron

r i c 4/3 2/3 1 0 2/5
κ1 2/3 0 1/2 −1/3 1/5

1
3 Forman 4/3 2/3 2/3 0 0

Table 1: Ollivier-Ricci (asymptotic and discrete at time 1 for the Platonic solids, along Forman’s
version of Ricci curvature (divided by 3, to be comparable).

the difference between κ1 (used in [JL11]) and r i c, which exhibits, in our opinion, a more
geometric4 behavior. In particular, the values of r i c are sharp w.r.t. Myers’ theorem for the
cube and the octahedron. Forman refers to the combinatorial Ricci curvature for unit weights

4And less graph-theoretic.
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defined in [For03], which also satisfies a Myers’ theorem, albeit with a different constant: the
diameter is bounded above by 6/ρ, hence our choice to divide it by 3, to allow comparison
between with the Ollivier–Ricci curvature. Here, only the cube is optimal.

Tessellations by regular polygons fit well in this framework since all edges have the same
length. Regular tiling are the triangular, square and hexagonal tiling. The triangular tiling
corresponds to the (6,6) case above and has zero Ollivier–Ricci curvature, and so does the
square tiling. However the hexagonal lattice has negative Ollivier–Ricci curvature equal to
−2/3.

The method can also be applied to semiregular tiling, but those are only vertex-transitive
in general and not edge-transitive (with the exception of the trihexagonal tiling), hence one
must treat separately the different types of edges. For example, for the snub square tiling,
r i c = 0 for an edge between two triangles, but r i c =−1/5 for an edge between a triangle and
a square.

The results above can easily be derived using making computation by hand or by using in-
teger linear programming software (a program with all the above examples using opensource
software Sage5 is attached to the article). The next results however are of a more general
nature, with variable degrees, and cannot be obtained by simple computations. We consider
adjacent vertices x, x ′ on a triangulated surface with the following genericity hypotheses:

(B) x, x ′ are not on the boundary,

(G) for any y ∈ star(x) and y ′ ∈ star(x ′), there is a geodesic of length d(y, y ′) in star(x)∪
star(x ′).

Under hypothesis (G), the distance matrix D in X agrees with its restriction to star(x)∪star(x ′),
hence all computations are local. For this genericity assumption to fail, one needs very
small loops close to x and x ′, which can usually be excluded as soon as the triangulation
is fine enough. Note that the Platonic solids are not generic in that sense, and many other
configurations are ruled out (e.g. (3,4)). Then we conclude with the following.

Theorem 5. Under the genericity hypotheses (B) and (G), the Ollivier–Ricci curvature depends
only on the degrees d ,d ′ of vertices x, x ′ and is given in table 2.

Proof. To compute the optimal cost W1(µt
x ,µt

x ′), we need only find a coupling ξt for which
the Kuhn-Tucker relation (1) holds. Thanks to the genericity hypothesis (G), we can restrict
ourselves to finite matrices (on star(x)∪star(x ′)). Details are given in the section 5. Note that
the hypothesis (B) makes for simpler calculations, but they could obviously be extended to
deal with the presence of boundary.

The table 2 gives r i c and κ1 in function of respective degrees d ,d ′. Because r i c(x, x ′) =
r i c(x ′, x) we may assume without loss of generality that d ≤ d ′. We compare with Forman’s
expression and also to the lower bound

](x, x ′)
d ′ −

(
1− 1

d
− 1

d ′ −
](x, x ′)

d

)
+
−

(
1− 1

d
− 1

d ′ −
](x, x ′)

d ′

)
+

5http://www.sagemath.org/
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(d ,d ′) (3,3) (4,4) (4,5) (4,6) (5,5) (5,6) others

r i c
4

3

3

4

11

20

1

3

2

5

2

15

4

d
+ 8

d ′ −2

κ1 2

3

1

2

7

20

1

4

1

5

1

10

4

d
+ 8

d ′ −2

κ1 ≥ 2

3

1

2

1

5
0 0 −1

5


5

d ′ −
2

3
if d = 3

4

d
+ 6

d ′ −2 if d ≥ 4

1

3
Forman

4

3

2

3

1

3
0 0 −1

3

10−d −d ′

3

Table 2: Asymptotic Ollivier–Ricci curvature r i c(x, x ′) according to respective degrees of x
and x ′, compared to the time 1 Ollivier–Ricci κ1, as well as Forman’s Ricci curvature (divided
by 3 for comparison purposes); κ1 ≥ refers to the estimates of Jost & Liu.

given by Jost & Liu [JL11] for general graphs, where ](x, x ′) is the number of triangles incident
to the edge (xx ′), which under our hypotheses is always equal to 2. Jost & Liu conclude that
the presence of triangles improves the lower Ricci bound. We see here that when there are
only triangles one obtains an actual value, which differs from their lower bound as soon as
d ′ ≥ 5.

Remark 3. 1. The (3,3) case is given here although it contradicts either (B) or (G), the latter
being the tetrahedron computed above; similarly the (3,4) case is excluded.

2. Zero Ollivier–Ricci curvature is attained only with degrees (6,6) (regular triangular
tiling), (4,8) and (3,12).

4 Varying edge lengths

While many authors have focused on the graph theory, the case of polyhedral surfaces is
somewhat different: The combinatorial structure is more restrictive, as we have seen above,
but the geometry is more varied. In particular, edge lengths d(x, y) may be different from
one. This is partially achieved in the literature [LLY11, JL11] by allowing weights on the edges,
which amounts to changing the random walk, but we think the geometry should intervene
at two levels: measure and distance. We will present here a general framework to approach
the problem, using the Laplace operator, which depends on both the geometric and the
combinatorial structure of S. One must also note the ambiguous definition of the Ollivier–
Ricci asymptotic curvature, which plays the role of a length in Myers’ theorem, and yet its
definition makes it a dimensionless quantity. Indeed multiplying all lengths by a constant λ
will not change r i c (W1 being multiplied by c as well).

9



In the following we assume that S is a polyhedral (or discrete) surface with set of ver-
tices V , edges E and faces F . Furthermore S is not only locally finite, but its vertices have
a maximum degree dmax (dmin denotes the minimal degree, which is at least 2 for surfaces
with boundary, and 3 for surfaces without boundary). The geometry of S is determined by
the geometry of its faces, namely a isometric bijection between each face f and a planar
face of identical degree, with the compatibility condition that edge lengths measured in
two adjacent faces coincide. Then two natural notions of length arise: (i) the combinatorial
length, which counts the number of edges along a path and (ii) the metric length, where
each edge length is given by the geometry. Each notion of length yields a different distance
between vertices: the combinatorial distance d̄ , which we have used above, and the metric
distance d . Note that if each face is assumed to be a regular polygon with edges of length
one, then both distances agree, and metric theory coincides with graph theory. We will make
the following assumption on the geometry: the distance d and d̄ are metrically equivalent:
∃C , C−1d̄ ≤ d ≤C d̄ . Such an hypothesis holds if the lengths of edges are uniformly bounded
above and below; in particular, the aspect ratio is bounded6.

We consider a differential operator ∆ (a laplacian, see [CdV98]) determined by its values
∆x y for vertices x, y and the usual properties7:

(a) ∆x y > 0 whenever x ∼ y ,

(b) ∆x y = 0 whenever x 6= y and x � y (locality property)

(c)
∑

y ∆x y = 0, which implies that ∆xx < 0 (note that the sum is finite due the previous
assumption and the local finiteness of S).

Often this operator is obtained by putting a weight wx y = wy x on each edge (x y). The
degree at x is then the sum dx =∑

y∼x wx y and ∆x y = wx y /dx . Obviously property (c) implies
∆xx = −1. The case studied above corresponds to a graph with all weights equal to one
(therefore unweighted), and the corresponding Laplace operator is called the harmonic
laplacian ∆̄.

The laplacian is not a priori symmetric, i.e. L2-self-adjoint (though it could be made
so w.r.t. some metric on vertices). Thanks to the finiteness assumption (b), we can define
iterates ∆k of ∆ for integer k, and the x y coefficient (not to be confused with (∆x y )k ) is

∆k
x y =

∑
z1,...,zk−1

∆xz1∆z1z2 · · ·∆zk−1 y

the sum being taken on all paths of length k on S. By direct recurrence, we see that our
boundedness hypotheses imply the bound |∆k

x y | ≤ 2k . Indeed,

∣∣∣∣∑
z
∆xz∆

k
z y

∣∣∣∣≤ 2k
∣∣∣∣∑

z
∆xz

∣∣∣∣≤ 2k

(
1+ ∑

z 6=x
|∆xz |

)
= 2k

(
1− ∑

z 6=x
∆xz

)
= 2k+1.

6This also rules out extremely large or extremely small faces, which could happen with only the bounded
aspect ratio.

7Note that our sign convention is such that the Laplacian is a negative operator; [CdV98] uses the opposite.
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As a consequence, the heat semigroup e t∆ =∑∞
k=0

t k

k !∆
k is well-defined. It acts on measures,

and defines the image measure δt
x = δxe t∆ of the Dirac measure at x by

δt
x(y) =∑

z
δx(z)(e t∆)z y = (e t∆)x y =µt

x(y)+O (t 2)

where µt
x (y) = δx (y)+t∆x y is the lazy random walk studied above (for the harmonic laplacian,

but results hold in the general case). The random walks (δt
x)x∈V have finite first moment, as

can be inferred from the proof of the following.

Proposition 6. The Ollivier–Ricci curvature depends only on the first order expansion of the
random walk:

lim
t→0

1

t

(
1−

W1(δt
x ,δt

y )

d(x, y)

)
= lim

t→0

1

t

(
1−

W1(µt
x ,µt

y )

d(i , j )

)
.

Proof. Consider any coupling ξ that transfers mass from points at (uniform) distance d̄ from
x at least 2, to x and its neighbors. If the vertex y is at d̄-distance k from x, then ∆`x y = 0 for
`< k and

|δt
x(y)| =

∣∣∣∣∣∑
`≥k

t`

`!
∆`x y

∣∣∣∣∣≤ ∑
`≥k

(2t )`

`!
≤ (2t )k

k !
e2t .

The points at uniform distance k from x are at most d k
max numerous, and using the equiv-

alence between distances, they will be moved at most by d ≤ C (k + 1) to x or one of its
neighbors:

W1(δt
x ,µt

x) ≤
∞∑

k=2
C (k +1)d k

max
(2t )k

k !
e2t ≤ 3Ce2t

2

∞∑
k=2

(2tdmax)k

(k −1)!

= 3C dmaxte2t
∞∑

k=1

(2tdmax)k

k !
≤ 3C dmaxt 2e2t e2tdmax =O (t 2).

Since
|W1(δt

x ,δt
y )−W1(µt

x ,µt
y )| ≤W1(δt

x ,µt
x)+W1(δt

y ,µt
y ) =O (t 2)

we conclude that both limits coincide.

As a consequence, it is natural to replace in the section above the random walk by µt
x =

δx + t∆x,., for some definition of the Laplacian (see [BS07, WMKG08, AW11]). However in
order to recover the geometric properties above one needs to normalize the random walk
µt

x , so that the jump J t (x) = t , i.e. the average distance of points jumping from x should be t .
That amounts to setting:

µt
x(y) = δx(y)+ t∆x y∑

z∼x d(x, z)∆xz

equivalently one might renormalize the laplacian accordingly. As a consequence, r i c now
behaves as the inverse of a length, as expected. Furthermore, Myers’ theorem 4 is still valid.
Indeed, while equation (3) no longer holds when edge lengths vary, it remains true that
r i c(x, y) ≥ ρ if r i c is bounded below on all edges by ρ.

An example: The rectangular parallelepiped.

11



For the rectangular parallelepiped with edges of lengths a,b,c , the Ollivier–Ricci curvature
is

r i c = 1

a
− 1

a +b + c

along an edge of length a, and others follow (see §5.4). For the cube, we recover r i c = 2
3a . If a

is the length of the longest edge, an application of Myers’ theorem yields an upper bound for
the diameter 2a

b+c times greater than its actual value a +b + c.

Remark 4. A more general theory can be developed with non-local operators, by replacing local
finiteness (property (b) above) with convergence requirements. Another, still finite, natural
generalization of (b) is to allow ∆x y 6= 0 whenever x and y belong to the same face. For a
triangulated manifold this amounts to the usual neighborhood relation, but as soon as some
faces have more than three edges, this makes a difference (e.g. the cube). Note however that
the corresponding Myers’ theorem needs to be adjusted as well since the jump will change
accordingly. In our experiments on Platonic solids with µx a uniform measure on vertices of
star(x), we did not find better diameter bounds with this method.

Remark 5. One might also be tempted to compute Ollivier–Ricci curvature on the surface S
seen as a smooth flat surface with conical singularities (so that distances are computed between
points on the faces). If vertices x, x ′ both have nonnegative Gaussian curvature (a.k.a. angular
defect α,α′ ∈R+) then by a computation analog to Ollivier’s [Oll09], we infer

r i c = 4

3

(
1

2π−α′ sin
α′

2
+ 1

2π−α sin
α

2

)
which differs from our previous computations. This emphasizes that this setup is somewhere
in between the smooth and the discrete setup.

5 Appendix: solutions for the linear programming problem
on generic triangulated surfaces

We give here the Lagrange multipliers for the linear programming problem and the corre-
sponding minimizer. The regular tetrahedron is given first as an example of the method, and
the main result consists of analyzing the various cases according to their (arbitrary) degrees.
Cases with degrees less or equal to 6 can easily be computed by a machine and we refer to
the Sage program attached.

5.1 The regular tetrahedron

The distance matrix for vertices 1,2,3,4 is

D =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


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and the optimal coupling from µt
1 to µt

2 shifts mass 1− 4t
3 from vertex 1 to vertex 2 (provided

t ≤), leaving other vertices untouched:

ξt =


t
3 1− 4t

3 0 0
0 t

3 0 0
0 0 t

3 0
0 0 0 t

3

 with cost 〈ξt ,D〉 = 1− 4t

3

with Lagrange multipliers

D =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

=C2 −L2 +


0 0 1 1
2 0 2 2
1 0 0 1
1 0 1 0


the last matrix corresponding to a linear combination of Ey y ′ with positive coefficients νy y ′ ,
only where ξt (y, y ′) = 0. Conversely, it is straightforward from νy y ′ξt (y, y ′) = 0 to deduce that
ξt is unique. Hence κt = 4t

3 and r i c = 4/3. The case t = 1 cannot be dealt with in the same
way, but admits the following optimal transference plan

ξ1 =


0 0 0 0

1/3 0 0 0
0 0 1/3 0
0 0 0 1/3

 , D = L2 −C2 +


0 2 1 1
0 0 0 0
1 2 0 1
1 2 1 0


with cost 1/3 and therefore curvature κ1 = 2/3.

Remark 6. The case of degrees (3,3) differs only in that the distance between vertices 3 and 4 is
equal to 2 instead of 1. However the optimal couplings found above do not move mass from 3
nor from 4. Hence it is also optimal for the (3,3) case.

5.2 Generic triangulated surfaces

We analyse now generic triangulated surfaces according to the degrees d ≤ d ′ of x and x ′. In
our matrix notation, x will have index 1 and x ′ index 2. Since x and x ′ are not on the boundary,
all edges containing them belong to two triangular faces. In particular there are two vertices,
with indices 3 and 4, that are neighbors of both x and x ′ (see figure 1). There remains d −3
exclusive neighbors of x (that are not neighbors of x ′), ordered from 5 to d+1 along the border
of star(x), and d ′−3 exclusive neighbors of x ′, ordered from d +2 to n = d +d ′−2 along the
border of star(x ′).
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1 2

3

4

5

6

d

d +1 d +2
d +3

d +4

n
n −1

n −2

Figure 1: Generic description of star(1)∪ star(2).

The distance matrix is

D =



0 1 1 1 1 · · · · · · · · · 1 2 · · · · · · · · · 2
1 0 1 1 2 · · · · · · · · · 2 1 · · · · · · · · · 1
1 1 0 2 1 2 · · · · · · 2 2 · · · · · · 2 1
1 1 2 0 2 · · · · · · 2 1 1 2 · · · · · · 2
1 2 1 2 0 1 2 · · · 2 3 · · · · · · 3 2
...

... 2
... 1

. . . . . . . . .
...

... 3
...

...
...

... 2
. . . . . . . . . 2

...
...

...
...

... 2
...

. . . . . . . . . 1 3
...

1 2 2 1 2 · · · 2 1 0 2 3 · · · · · · 3
2 1 2 1 3 · · · · · · 3 2 0 1 2 · · · 2
...

...
... 2

... 3 1
. . . . . . . . .

...
...

...
...

...
...

... 2
. . . . . . . . . 2

...
... 2

... 3
...

...
. . . . . . . . . 1

2 1 1 2 2 3 · · · · · · 3 2 · · · 2 1 0


The form of the distance matrix is somewhat different when d or d ′ are very small. Indeed,
due to the genericity assumption (B), both degrees are larger or equal to 4. We see easily
that the distance from an exclusive neighbor y of x to an exclusive neighbor y ′ of x ′ is in
general (i.e. for d −5 neighbors y and d ′−5 neighbors y ′) obtained by a geodesic passing
though x and x ′. But when d < 6 or d ′ < 6, “shortcuts” predominate, hence the need for ad
hoc computations.

Applying the constraints, we see that any coupling, and in particular the optimal coupling,
takes the following block form

ξt =
∗ 0 ∗
∗ 0 ∗
0 0 0


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so, we may as well restrict to the lines 1 through d +1 and columns 1,2,3,4 and d +2 through
d +d ′−2 of matrices D and ξt . Then, the (d +1)× (d ′+1) submatrix D̃ of D can be written
(for d ,d ′ ≥ 5):

D̃ =



0 1 1 1 2 · · · · · · · · · 2
1 0 1 1 1 · · · · · · · · · 1
1 1 0 2 2 · · · · · · 2 1
1 1 2 0 1 2 · · · · · · 2
1 2 1 2 3 · · · · · · 3 2
...

... 2
...

... 3
...

...
...

...
...

...
...

...
... 2 3

...
1 2 2 1 2 3 · · · · · · 3


Similarly we will write ξ̃t the relevant submatrix of the coupling ξ, and 〈ξt ,D〉 = 〈ξ̃t ,D̃〉 =∑

i , j ξ
t
i , j d(xi , x j ).

When d and d ′ are large, the optimal coupling moves the mass mainly along the edge
(x, x ′). This gives a general formula for values of d and d ′. For values of d ′ ≥ 6, we set

∆= D̃ +L1 +2L2 +L3 +L4 −C1 −2C2 −C3 −C4 −2C5 −3(C6 +·· ·+Cd ′)−2Cd ′+1

and show that ∆ has only nonnegative coefficients.

• d ′ ≥ 6 and d ≥ 5:

∆=



0 0 1 1 1 0 · · · 0 1

2 0 2 2 1
...

... 1

1 0 0 2 1
...

... 0
1 0 2 0 0 0 · · · 0 1
0 0 0 1 1 0 · · · 0 0
...

... 1
...

...
...

... 1
...

...
...

...
...

...
...

...
...

...
... 1 1

...
...

...
0 0 1 0 0 0 · · · 0 1



, ξ̃t =



t
d ′ xt 0 0 0 · · · · · · · · · 0
0 t

d ′ 0 0 0 yt · · · yt 0
0 0 t

d ′ 0 0 yt · · · yt 0
0 0 0 t

d ′ 0 yt · · · yt 0
0 · · · · · · 0 0 yt · · · yt

t
d ′

...
...

... zt · · · zt 0
...

...
...

...
...

...
...

... 0 zt · · · zt
...

0 · · · · · · 0 t
d ′ yt · · · yt 0


where

xt = 1− t − t

d ′ , yt = t

d ′−5

(
1

d
− 1

d ′

)
, zt = t

d(d ′−5)

(xt ≥ 0 whenever t ≤ d ′
d ′+1 ) and the cost is W1 = 1+ t

(
2− 4

d − 8
d ′

)
. We check easily that ξ̃t

has nonnegative coefficients and satisfies conditions (1) and (2).

• d ′ ≥ 6 and d = 4:
The distance matrix D has only 5 rows, and its submatrix is slightly different:

D̃ =


0 1 1 1 2 · · · · · · · · · 2
1 0 1 1 1 · · · · · · · · · 1
1 1 0 2 2 · · · · · · 2 1
1 1 2 0 1 2 · · · · · · 2
1 2 1 1 2 3 · · · 3 2

 , ∆=


0 0 1 1 1 0 · · · 0 1
2 0 2 2 1 0 · · · 0 1
1 0 0 2 1 0 · · · 0 0
1 0 2 0 0 0 · · · 0 1
0 0 0 0 0 · · · · · · · · · 0


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and an optimal transportation plan is

ξ̃t =


t

d ′ xt 0 0 0 · · · · · · · · · 0
0 t

d ′ 0 0 0 yt · · · yt 0
0 0 2t

3d ′ 0 0 zt · · · zt
2t

3d ′
0 0 0 2t

3d ′
2t

3d ′ zt · · · zt 0
0 0 t

3d ′
t

3d ′
t

3d ′ zt · · · zt
t

3d ′


where

xt = 1− t − t

d ′ , yt = t

d ′−5

(
1

4
− 1

d ′

)
, zt = t

d ′−5

(
1

4
− 4

3d ′

)
, t ≤ d ′

d ′+1

with cost W1 = 1+t− 8t
d ′ = 1+t

(
2− 4

4 − 8
d ′

)
. Note that, thanks to d ′ ≥ 6, we have 1

4− 4
3d ′ ≥ 0,

so zt ≥ 0 as needed.

• d ′ ≥ 6 and d = 3:
Similarly, we have

D̃ =


0 1 1 1 2 · · · · · · · · · 2
1 0 1 1 1 · · · · · · · · · 1
1 1 0 2 2 · · · · · · 2 1
1 1 2 0 1 2 · · · · · · 2

 , ∆=


0 0 1 1 1 0 · · · 0 1
2 0 2 2 1 0 · · · 0 1
1 0 0 2 1 0 · · · 0 0
1 0 2 0 0 0 · · · 0 1



ξ̃t =


t

d ′ xt 0 0 0 · · · · · · · · · 0
0 t

d ′ 0 0 0 yt · · · yt 0
0 0 t

d ′ 0 0 zt · · · zt
t

d ′
0 0 0 t

d ′
t

d ′ zt · · · zt 0


where

xt = 1− t − t

d ′ , yt = t

d ′−5

(
1

3
− 1

d ′

)
, zt = t

d ′−5

(
1

3
− 2

d ′

)
, t ≤ d ′

d ′+1

and the cost is W1 = 1+ t
(
2− 4

3 − 8
d ′

)
. Thanks to d ′ ≥ 6, we have zt ≥ 0 as needed.

We conclude that in all cases where d ′ ≥ 6, we have r i c = 4
d + 8

d ′ −2 as claimed.

5.3 κ1 computation

In the case t = 1, the measure µ1
x does not put any weight on x, hence any transfer plan is

identically zero along the line corresponding to x (and along the column corresponding to
y). In our notations, it would amount to discarding the first line and the second column of
all matrices previously written, but for clarity and comparison purposes we will keep them,
though they play no role. Again we only deal with the cases of variable degree, and leave the
remaining cases to the computer program.
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• d ′ ≥ 6 and d ≥ 6
The matrix ∆ is the same as above, but because of the additional constraint, an optimal
coupling is now given by

ξ̃1 = 1

dd ′



0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d ′
d ′−5 · · · d ′

d ′−5 0

0 0 d 0 0 d ′−d
d ′−5 · · · d ′−d

d ′−5 0

0 0 0 d 0 d ′−d
d ′−5 · · · d ′−d

d ′−5 0

0 0 · · · 0 0 d ′−d
d ′−5 · · · d ′−d

d ′−5 d

d
...

... 0 d ′−d
d ′−5 · · · d ′−d

d ′−5 0

0
...

...
... d ′

d ′−5 · · · d ′
d ′−5 0

...
...

...
...

...
...

...
...

...
... 0 d ′

d ′−5 · · · d ′
d ′−5

...

0 0 · · · 0 d d ′−d
d ′−5 · · · d ′−d

d ′−5 0


with cost W1 = 1

dd ′ (−4d ′−8d +3dd ′) = 3− 4
d − 8

d ′ . Since we need at least eight distinct
lines, we cannot compute κ1 by this method anymore when d ≤ 5.

• d = 5 and d ′ ≥ 7

D̃ =



0 1 1 1 2 · · · · · · · · · 2
1 0 1 1 1 · · · · · · · · · 1
1 1 0 2 2 · · · · · · 2 1
1 1 2 0 1 2 · · · · · · 2
1 2 1 2 3 · · · · · · 3 2
1 2 2 1 2 3 · · · · · · 3

 , ∆=



0 0 1 1 1 0 · · · 0 1

2 0 2 2 1
...

... 1

1 0 0 2 1
...

... 0
1 0 2 0 0 0 · · · 0 1
0 0 0 1 1 0 · · · 0 0
0 0 1 0 0 0 · · · 0 1


An optimal coupling is given by

ξ̃1 = 1

5d ′



0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d ′
d ′−5 · · · d ′

d ′−5 0

0 0 2 0 0 d ′−7
d ′−5 · · · d ′−7

d ′−5 5

0 0 0 5 1 d ′−6
d ′−5 · · · d ′−6

d ′−5 0

3 0 3 0 0 d ′−6
d ′−5 · · · d ′−6

d ′−5 0

2 0 0 0 4 d ′−6
d ′−5 · · · d ′−6

d ′−5 0


W1 = 11d ′−40

5d ′ = 3− 4

5
− 8

d ′

• d = 4 and d ′ ≥ 7

D̃ =


0 1 1 1 2 · · · · · · · · · 2
1 0 1 1 1 · · · · · · · · · 1
1 1 0 2 2 · · · · · · 2 1
1 1 2 0 1 2 · · · · · · 2
1 2 1 1 2 3 · · · 3 2

 , ∆=



0 0 1 1 1 0 · · · 0 1

2 0 2 2 1
...

... 1

1 0 0 2 1
...

... 0
1 0 2 0 0 0 · · · 0 1
0 0 0 0 1 0 · · · 0 0


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An optimal coupling is given by

ξ̃1 = 1

4d ′


0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d ′
d ′−5 · · · d ′

d ′−5 0

0 0 3 0 0 d ′−7
d ′−5 · · · d ′−7

d ′−5 4

0 0 0 3 4 d ′−7
d ′−5 · · · d ′−7

d ′−5 0

4 0 1 1 0 d ′−6
d ′−5 · · · d ′−6

d ′−5 0

 W1 = 1

4d ′ (8d ′−32) = 3− 4

4
− 8

d ′

• d = 3 and d ′ ≥ 8

D̃ =


0 1 1 1 2 · · · · · · · · · 2
1 0 1 1 1 · · · · · · · · · 1
1 1 0 2 2 · · · · · · 2 1
1 1 2 0 1 2 · · · · · · 2


In this case, the Lagrange multipliers are a bit different and

∆ = D̃ +2L1 +2L2 +L3 +L4

−2C1 −2C2 −C3 −C4 −2C5 −3(C6 +·· ·+Cd ′)−2Cd ′+1

=


0 1 2 2 2 1 · · · 1 2
1 0 2 2 1 0 · · · 0 1
0 0 0 2 1 0 · · · 0 0
0 0 2 0 0 0 · · · 0 1


An optimal coupling is given by

ξ̃1 = 1

3d ′


0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 d ′
d ′−5 · · · d ′

d ′−5 0

2 0 3 0 0 d ′−8
d ′−5 · · · d ′−8

d ′−5 3

1 0 0 3 3 d ′−7
d ′−5 · · · d ′−7

d ′−5 0

 W1 = 1

3d ′ (5d ′−21) = 3− 4

3
− 7

d ′

5.4 The rectangular parallelepiped

1

23

4

5

67

8
b

ac

Figure 2: Rectangular parallelepiped.

The (Delaunay) cotangent laplacian for the rectangular parallelepiped with edges of
lengths |e12| = a, |e14| = b, |e15| = c, is given by

∆12 = b + c

2a
, ∆14 = c +a

2b
, ∆15 = a +b

2c
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so that
∑

y∼1 d(1, y)∆1y = a +b + c, hence we normalize to µx = (1− t )δx + t µ̇x with

µ̇1(2) = b + c

2a(a +b + c)
= 1

2a
− 1

2(a +b + c)
, µ̇1(1) = 1

2

(
1

a
+ 1

b
+ 1

c
− 3

a +b + c

)

µ̇1(4) = 1

2b
− 1

2(a +b + c)
, µ̇1(5) = 1

2c
− 1

2(a +b + c)

The distance matrix is

D =



0 a a +b b c c +a
a 0 b a +b c +a c

a +b b 0 a a +b + c b + c
b a +b a 0 b + c a +b + c
c c +a a +b + c b + c 0 a

c +a c b + c a +b + c a 0



D −aL1 +aC1 +aC4 +aC5 −aL4 −aL5

=



0 0 b b c c
2 a 0 b 2 a +b 2 a + c c

2 a +b b 0 2 a 2 a +b + c b + c
b b 0 0 b + c b + c
c c b + c b + c 0 0

2 a + c c b + c 2 a +b + c 2 a 0


A optimal coupling is

ξt =



t
2

( 1
a − 1

a+b+c

)
1− t

2

( 2
a + 1

b + 1
c − 4

a+b+c

)
0 0 0 0

0 t
2

( 1
a − 1

a+b+c

)
0 0 0 0

0 0 0 0 0 0
0 0 t

2

( 1
b − 1

a+b+c

)
0 0 0

0 0 0 0 0 t
2

(1
c − 1

a+b+c

)
0 0 0 0 0 0


with cost W1 = a

(
1− t

(
1

a
− 1

a +b + c

))
and curvature r i c = 1

a
− 1

a +b + c
along an edge of

length a as claimed.
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