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Abstract: In the frequency domain, the multi harmonic balance method is used to study the dynamic behavior of 
bladed assemblies with nonlinearities caused by dry friction dampers. Associated to a Macroslip contact model, this 
method is generalized to be adapted to a multi degrees of freedom mass-spring system characterized by the cyclic 
symmetrical property. The influence of contact parameters is investigated and their capacities in minimizing the 
magnitude of nonlinear responses of the system are studied. The effects of mistuning caused by contact parameters are 
discussed and its influence on the dynamic behavior of the structure is emphasized. 
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INTRODUCTION 

In turbomachines, devices involving dry friction (Popp et al, 2003, Csaba, 1998, Griffin, 1990) are often used to 
decrease maximal amplitudes of structures during resonance. Each device is characterised by a different behaviour 
depending on the geometry, as well as on the position and the dimensions of surfaces in contact. A common 
characteristic between all friction devices relies on the induced flattening of Frequency Response Function (FRF) peaks 
obtained when specific normal loads are applied to the contact.  

Different numerical techniques can be used to solve such non linear problems. Because of the complexity of 
solutions adapted to the dynamics of systems integrating dry friction devices, these results were limited to extremely 
simplified models. On the other hand, it is also recognized that the approach based on direct time integration methods 
leads to computation costs that are too high when dealing with realistic models. Several authors have highlighted the 
significant difficulties involved when implementing the criteria of transition between different states of contacts (stick, 
slip or separation), usually leading to an expensive time step abnormally small to detect these phase changes accurately. 
As exact solutions are available only for very simplified models, and as the techniques of direct time integration lead to 
prohibitive costs, approximated methods have been continuously implemented during the last 20 years. Among the 
latter, the Harmonic Balance Method (HBM), developed by Nayfeh and Mook (1979) has been successfully applied to 
various structures damped by friction. This method is based on the assumption that the forced response of the system is 
harmonic. Using this approximation, the dynamic behavior of clamped free beams has been studied by various 
researchers, as for examples (Dowell, 1983, D'Ambrosio et al. (2004), Menq and Griffin, 1985). Sanliturk et al. (1997) 
applied the method of harmonic balance to the study of the forced response of blades in jet engines. Wang and Chen 
(1993), Girini and Zucca (1994) applied the MHBM to a discrete system with one degree of freedom, considering 3 
harmonics.  

Systems with contact and dry friction effects give the most practical and effective way to reduce high vibrational 
amplitudes. However, these sliding contacts are also a source of mistuning, due to the loss of the property of cyclic 
symmetry they induce, that may lead to dangerous localization of the vibration. The cyclic symmetrical property is 
altered by slight variations of the parameters associated to different blades or to interconnection devices. This alteration 
usually leads to peaks splitting and/or to the concentration of vibration on certain blades of the assembly, resulting in 
responses with high amplitudes (Ewins and Han, 1984). For mistuned bladed disc assemblies, the vibrational energy, 
instead of being distributed uniformly, just concentrate on a few blades generating amplitudes much larger than those 
predicted on the same tuned structure (thereby shortening their life duration). This phenomenon can be explained by 
considering the vibrational energy of the system as a wave of displacement. In a tuned system, the wave propagates 
freely across each identical sector leading to uniform amplitudes which differ only by their relative phase. In the 
mistuned case, the presence of “defaults” causes the reflection of waves on each sector. This can lead to confinement of 
vibrational energy over a small area and therefore, in the presence of forced vibration, certain blades may experience 
stress and amplitudes that exceed those provided by an analysis of the tuned structure.   

Sextro et al.  (2001) developed an approximate method to calculate the envelopes of the FRF of a bladed disk with 
cyclic symmetry including under platform devices when blades frequencies are statistically variable. This method is 
able to identify areas where localization can occur with a high probability. Castanier et al. (1997), Wei and Pierre (1989) 



analysed the possibility of apparition of highly localized vibrations in mistuned cyclic systems under engine order 
excitations. They also discussed the effect of viscous damping and damping brought by dry friction and on localization. 
They showed that the degree of localization decreases as damping increases and that dry friction damped systems are 
more sensitive to localized vibrations. The mistuning of the blades is inherently uncertain (Bladh et al. (2002), Kenyon 
et al. (2003)) and is then difficult to locate and quantify with precision. In many papers on the subject, mistuning is 
assumed to be controlled and imposed intentionally by varying system characteristics such as mass, stiffness or 
frequency. The study of the dynamical behavior of bladed assemblies, considering the combined effects of mistuning 
and nonlinearities associated to dry friction is still relatively underdeveloped and improvements in the understanding of 
the phenomenon are always needed.  

In this paper, the Method of Harmonic Balance (HBM) associated to a “Masing” Macroslip model are briefly 
presented and then adapted to a single dof system incorporating a dry friction device. The method is then applied to a 
system of 13 dof characterised by the property of cyclic symmetry. Parametric studies are then conducted in order to 
determine the influence of variation of contact parameters (such as friction coefficient, tangential stiffness and normal 
force) on the response. Finally, the behaviour of the mistuned system is analysed in the case of engine order excitation.  

  

DEVELOPMENTS AND CONTACT MODEL 

The prediction of responses of systems involving dry friction is complex due to their highly nonlinear behaviour. 
Different techniques are available to solve such non linear problems. Time domain solutions, based on numerical 
integrations, give precise results but are often costly and may induce large discrepancies if time steps are not properly 
chosen. Frequency based methods generally reduce drastically computational efforts by considering that the solution is 
periodic. Different approaches may be used, depending on the complexity of the structure and the level of non linearity. 
The classical Harmonic Balance Method is used in many applications dealing with the dynamics of periodically excited 
structures with contact and dry friction. Steady state response approximations of motion are obtained in frequency 
domain by decomposing the periodical response of the non linear system into a Fourier series, leading to a set of 
algebraic equations. The accuracy of this method to predict responses and friction forces is highly dependent upon the 
number of harmonics retained. But keeping a too large number of harmonics reduces the interest of the method.  

Multi Harmonic Balance Method 

Using the MHBM, differential equations of motion are transformed into a set of algebraic equations for which the 
Fourier coefficients are the unknowns of the problem. A single dof system (Fig. 1) associated with a Masing Macroslip 
contact model (Fig. 2) (Wang and Chen, (1993)) has been chosen in order to simplify the numerical procedures and to 
be able to conduct parametric studies. This system is supposed to model a blade to ground behaviour with Macroslip 
frictional contacts where parts in contact are either slipping or sticking. Contact separation and partial slips are not 
allowed here. A periodic excitation force Fex(t)=f0cosωt  is applied to the system, and a normal load Fn is applied to the 
frictional damper to load the contact. 

 

f0 cosωt 

 

Figure 1: 1 DOF system  

For such systems, the motion equation is:  

 ( ) ( ) ( ) nlexFtktctm fxxx −=++ &&&  (1) 

Structural parameters are: mass m, stiffness k and viscous damping c. The frictional device is represented by its 
stiffness kd, the coefficient of friction µ at the contact interface and the normal load Fn which is supposed to be constant.  
x(t) represents the time dependent displacement of the entire system while z(t) is the displacement of the contact point 
with respect to ground. y(t) is the relative displacement between the mass and the contact point y(t)=x(t)-z(t). According 
to the Macroslip approach (Wang and Chen, (1993)), the friction force fnl can be expressed as:  
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The steady state associated to Eq. (1) may be obtained using the MHBM, which considers the total displacement as 
a superposition of harmonic components with frequency ω :  
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where θ =ω.t,  na   and nb  are harmonic (cosine and sine) components and N is the number of harmonic retained. 

Wang and Chen (1993) showed that the friction force, when associated with the Macroslip model of Fig. 2, can be 
approximated as follows:  
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where Amax is the highest amplitude of the total displacement and x(t) is given as a function of  θ0: 
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The two parameters θ * and θ0 are introduced to determine whether the slider is within stick or slip states. Angle θ0 
is associated to point A of the hysteresis cycle where slip state stops and stick state begins. Angle θ * is associated to 
point B where slip state begins and stick state stops. Taking into account these two parameters, defining contact states, 
the nonlinear force can be developed into two different expressions, one for the stuck state where θ0 < θ < θ *  and 
another for the slip state where θ *  < θ  < θ0+π. 
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Figure 2: Hysteresis loop (Masing Model): Multi terms approximation. Parameters θθθθ *, θθθθ0  

As observed in Fig. 2 and 3, stuck state is characterized by line (AB) and slipping state by line (BC). Changes in 
contact states from slip to stick are identified by points A and C, at θ = θ0 and θ0 = π+θ0 respectively. Change from stick 
to slip occurs at point B where θ =θ *.  The non linear force due to dry friction is also approximated using a truncated 
Fourier series as: 

 
N
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fcn(θ ) and fsn(θ ) are a function of the contact model chosen and, as the non linear force is antisymetric, may be 
obtained from the following Fourier integrals:  
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Both expressions of the nonlinear force (Eq.2) in stuck and slip states, written as a function of the state parameters 
θ0 and θ *, are considered when integrating over the proper intervals. By introducing (Eq.3) and its derivatives and 
(Eq.4) into the equation of motion (Eq.1) and identifying the cosine and sine components, a system of N algebraic 

equations with 2N+2 unknowns 1a  , 1b , ….., na  , nb , θ0, θ * is obtained.  
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Two additional equations are required. The first one states that at θ = θ0, displacement x(t) reaches a maximal value 
Amax  and so, velocity is null. Null velocity is written as:  
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At point B (Fig. 2), the two expressions of the nonlinear force given for stick and slip states are equal. Consequently, 
the second additional equation will be:   
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For each pulsation ω, initial values are needed for θ * and θ0. The unknown coefficients na  , nb , θ * and θ0 are 

determined by solving equations Eq. (9), Eq. (10) and Eq. (11) using a Newton-Raphson iterative method.  

Validation with a 1 dof system 

Validation is illustrated by considering the dynamical response of a single dof system. Fig. 3 gives the maximum 
amplitude of the response of the system excited by a sinusoidal force, as a function of the excitation frequency for 
different values of the normal force Fn. This system models a blade clamped on a disk and vibrating according its first 
bending mode. The simulation parameters are as follows: f0=1N, m=1 Kg, k=1e4 N /m, c=0.5 N/m/s, µ=0.5 and Fn=100 
N, kd =1e4 N /m. For Fn = 0.01 N, contact is slipping and the system has a quasi-linear behavior. The equivalent 
stiffness for the system is the stiffness k of the structure. For Fn> 100 N, contact is completely stuck (linear case). The 
equivalent stiffness is here (k + kd). Contact changes from completely slipping to stick /slip when the normal load 
increases from 0.01 to 3 N. Peaks flatten and the amplitudes become much smaller than those observed for the linear 
case.  
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Figure 3: Maximal Amplitude responses as function as normal forces Fn. 

As proved by Girini and Zucca (1994), comparisons of responses calculated with various harmonics (here noted 
MHBM), one harmonic (noted 1HBM) and using an exact time solution (Fig. 4) prove that,  in this case, only one 
harmonic of the Fourier series is sufficient to obtain good results in terms of amplitude (specific phenomenon of peak 
flattening very well reproduced).  In spite of the greater accuracy of the multi-HBM, the FRF obtained is very similar to 
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the one coming from the HBM. This means the one term-approximation is good enough to predict the dynamic behavior 
of the system studied.  
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Figure 4: Nonlinear force versus time in 1HBM, MHBM and Time solution for Fn=3N, frequency=20Hz. 

In spite of the greater accuracy of the multi-HBM, the FRF obtained is very similar to the one coming from the 
HBM. This means the one term-approximation is good enough to predict the dynamic behavior of the system studied. 
Consequently, due to the cost of calculations, only one term will be considered in what follows. 

CYCLIC SYMMETRICAL SYSTEM WITH N DOF 

The literature allows identifying the most important effects linked to mistuning. However, despite the current level 
of knowledge and understanding phenomena related to friction and mistuning, the overall behavior of mistuned bladed 
discs assemblies in the presence of inter-blade contacts remains quite poorly controlled. Figure 5 shows a 13 DOF 
mass-spring system with friction devices, arranged according to the cyclic symmetrical property.  

 

 

fnl 

mi 

mi+1 

mi-1 

fnl 

disque 

ki 

ki+1 

ki-1 

  

mi 

Ci 

ki 

Fex i 

mi+1 

Ci+1 

ki+1 

kd,i-1 

mi-1 

Ci-1 

ki-1 

µi-1Ni-1 µi+1Ni+1 kd,i+1  kd,i 
µiNi 

Fex i+1 Fex i-1 

 

Figure 5: Cyclic symmetrical Masses-springs system linked by friction devices 

Excitation type 

Mono Point excitation 

The simulation parameters are as follows: f0 = 1N, mi = 1 kg, k = 1e4 N / m, ci = 0.5 N / m / s, µi = 0.5 and Fn = 100 
N, kdi = 1e6 N / m. The periodically 13 blades system may be excited by a harmonic mono point force of constant 
amplitude f0 applied on a single dof. Figure 5 shows the linear response of the system under such excitation. Each color 
on the graph is associated to a specific dof. Seven modes of resonance may be identified as nodal diameter modes of the 
cyclic symmetrical assembly. As well known, if NDDL represents the number of blades, the number of possible 
diametral modes is then equal to (NDDL +1) / 2 = (13 +1) / 2 = 7 here. This result confirms that mono point excitation 
is able to excite all the modes of the structure. 
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Figure 6: Responses of Cyclic symmetrical Mass-spring system for harmonic mono point force 

Engine Order Excitation 

In this case, an engine order excitation is applied to every dof of the system, as defined by the following relation 
where i represent the number of dof, nddl the total number of dof and EO the Engine Order. 

 )i.
nddl

2
.EOsin(.f)i.

nddl

2
.EOcos(.f)i(F 00exc

π+π=  (12) 

Excitation with an engine order EO = 0 corresponds to a force of equal value and same sign on each dof. The 
corresponding response in the tuned case implies that all the DOF will vibrate together in the same direction (Fig. 7a). 
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Figure 7: Nodal diameters for different engine order. 

Engine order excitation EO = 1 implies a sinusoidal excitation of first order and then half of the DOF vibrating 
together in one direction and half in the opposite direction. This vibration pattern is characterized by a nodal diameter 
(symbolized by the red line) which divides the system into two parts (Fig. 7b). Higher values  of EO  (Fig. 7c-7d), 
induce vibrations according to EO diameters, until EO = (NDDL +1) / 2 is reached (up to 7 in our case with 13 DOF). 

TUNED CYCLIC SYMMETRICAL N DOF SYSTEM  

Dynamic behaviour of the tuned system 

Figures 8a to 8c show the frequency responses of the system for different values of Engine Order excitation EO (1, 3 
and 6). The simulation parameters are: f0 = 1N, mi = 1 kg, ki = 1e4 N / m, ci = 0.5 N / m / s, µi = 0.5 and Fn = 100 N, Kdi 
= 1e6 N/m. These graphs show the evolution of the absolute amplitudes of each blade (DOF) versus the excitation 
frequency. It appears that responses of the different dof are overlapped when the system is perfectly tuned.  
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Figure 8: FRF of the tuned system calculated by mono point (a) and Engine Order (b) excitation  
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For EO = 1, using this distributed excitation, the second mode of vibration at one nodal diameter is highlighted (Fig. 
8a). The frequency obtained also corresponds to the second frequency given by the punctual excitation (Fig. 6).  The 
same type of behaviour happens for higher values of EO. 

Parametric studies 

The objective of this section is to show the influence of the characteristics of contact parameters on the response 
amplitudes of systems linked by dry friction devices. 

Effect of contact stiffness kdi 

Values considered in this analysis are:  f0=1N, mi=1 Kg, ki=1e4 N /m, ci=0.5 N/m/s, µ=0.5 and Fn=10 N. Different 
values are considered for the contact stiffness kdi: 1e4 N/m, 1e5 N/m and 1e6 N/m.  The evolution of the nonlinear 
response of each dof as a function of the Engine Order excitation is calculated for several value of engine order 
excitation. For EO=0, the value of the tangential stiffness kdi has no influence on the first resonant frequency located at 
15.9 Hz as well as on the amplitude of its associated mode. This result is obvious as, for the first mode of vibration of 
the system, there is no relative movement between the dof and therefore all the dof have the same magnitude of motion. 
But, for EO >0, whatever the engine order considered, an increase in tangential stiffness kdi causes resonance at higher 
frequencies and peaks flattening (transition from one sliding state to a majority stick/slip state). The same behaviour 
occurs for the other modes.  For kdi = 1e4 N/m, the amplitude peaks appear quite sharp, highlighting a stuck contact 
behaviour. For kdi = 1e5 N/m and kdi = 1e6 N/m, peaks are clearly truncated, and amplitudes are much lower, showing 
the apparition of stick/slip phenomena. Following Fig. 9 illustrates theses comments. 

 

Figure 9: FRF associated for the tuned structure for engine order (EO=2) as function of contact stiffness. 

Effect of friction coefficient µi 

Values considered in this analysis are:  f0=1N, mi=1 Kg, ki=1e4 N /m, ci=0.5 N/m/s, kdi = 1e5N/m, Fn =10 N. The 
range of coefficient of friction µ is now varied from 0.2 to 0.8. The influence of the friction coefficient µ is easily 
identifiable when examining the responses obtained with different Engine Order EO (here EO = 3). While frequency 
does not change as a function of µ, it appears that the larger the friction coefficient is, the larger the percentage of stick 
will be (sliding threshold µ*Fn increases when µ increases). An optimal value in terms of peaks flattening may be found. 
Following Fig. 10 illustrates graphically theses comments. 

20 40 60 80 100 120 140 160 180 200
-120

-110

-100

-90

-80

-70

-60
Amplitude of all dof for EO = 3

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

mu increases

 

Figure 10: FRF associated for the tuned structure for engine order (EO=3) as function of friction coefficients. 



Effect of normal force Fni 

Values considered in this analysis are:  f0=1N, mi=1 Kg, ki=1e4 N /m, ci=0.5 N/m/s, µ=0.5 ,kdi=1e5 N/m. If Fn 
increases (10N, 40N and 100N), the percent of slip decreases (and even disappears for Fn = 100 N) and maximum 
amplitudes increase. The resonant frequencies are insensitive to changes in Fn. Note that it is quite obvious that 
parameters µ and Fn have the same influence on shifts and amplitudes as the product µ*Fn defines the threshold of 
sliding. Thus, the higher this product is, the longer the system remains stucked, with large peak amplitudes. When 
product decreases, slip becomes more important, causing a decrease in level for the maximum amplitudes. 

 

Figure 11: FRF associated for the tuned structure for different engine order (EO=6) as function of forces Fn. 

This qualitative study of the effect of contact parameters µ, Fn and kd can lead to a better knowledge of the system's 
sensitivity to these parameters and then helps for optimization. Parameters µ and Fn allows lowering or increasing 
amplitudes between the limits given by the two linear cases (totally slipping and totally stuck). The tangential stiffness 
kd  leads to a spread of the curve with a majority stick/slip states. 

 

DYNAMICS OF THE MISTUNED CYCLIC SYMMETRICAL N DOF SYSTEM  

A mistuned system happens when all the dof are not characterized by the same parameters m, k, c, and / or contact 
parameters. Mistuning leads to mode splitting: double modes with nodal diameters split at two different frequencies. 
Resultant frequencies are close but the associated modes are distinct and characterized by a richer harmonic content 
than that associated with the corresponding tuned mode. The following study is based on the mistuning of the system 
through different values of contact parameters as friction coefficient µ, tangential stiffness kd and normal force Fn for 
each of the 13 DOF.  The objective is to evaluate the influence of variations of contact parameters on the global 
dynamics of the system.  

The simulation parameters are as follows: f0 = 1N, mi = 1 kg, ki = 1e4 N / m, ci = 0.5 N / m / s, µi = 0.5 and kdi = 1e6 
N/m. From preliminary results with this set of data, the efficiency of friction devices (in terms of peaks flattening) is 
obtained for a value of normal force Fn of about 10 N. This optimal stick/slip configuration is chosen to analyze the 
influence of the variation of contact parameters. The nominal contact parameters are: Fn = 10 N,   = 0.5, kd = 1E6 N/m 
and 25 standard uniform distribution of these parameters around their nominal values will be considered with physically 
acceptable variations of 40% for friction coefficient, 20% for tangential stiffness and 30 % for normal force.  Figure 12 
superimposes the calculated responses of the 13 DOF for an Engine Order excitation EO=3 for an arbitrary set of these 
parameters as well as the response for the tuned system. 

As shown, mistuning due to variations of contact parameters has several effects:  

The first one is that other modes (than the mode normally selected by the shape of the Engine Order excitation) are 
excited. Here for EO=3, we can observe peak flattening around 220 hertz corresponding to the third mode of resonance, 
but peaks associated to other modes are also present (in particular, EO=1, 2, 4, 5 and 6). 

The second concerns the splitting of these modes. Except for the third mode, we can see that modes separate in two 
peaks around the frequency of the tuned system; but splitting is not associated to peak flattening. 

The third effect concerns the amplitude of response of these modes. Figure 12 demonstrates that localization of 
vibrations appears on different DOF of the system, with levels exceeding the level associated to the natural mode (here 
EO=3). Here the first and second modes show higher amplitudes.  
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Figure 12: Responses for the 13 blades for an arbitrary set of random data 

In order to have a better representation of these few results, the lower and upper envelope curves are extracted for 
the 25 set of random data. Figures 13 presents the results obtained on the blades 2, 6, 10 as well as the maximal 
amplification factor for all dof at the worst configuration. The amplification factor is defined by the ratio between the 
maximum amplitude response due to the engine order excitation of mistuned system and the maximum amplitude 
response of the tuned system as function of the frequency. As we can see, the amplification factor is equal to 16.6 for 
the fifth dof. Even if the engine order excitation is equal to 3 (near 220 hertz), the maximal amplitude is observed on the 
first mode of resonance, near 77 hertz.  
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Figure 13: Envelope curves for 25 arbitrary set of random data 

These results demonstrate that it becomes very difficult to calculate with accuracy the response of such system 
because of the randomness of contact parameters. Even if the friction device seems to be efficient in terms of peak 
flattening relative to the principal engine order, the structure exhibits high levels of amplitude for other engine orders, 
associated to high levels of stresses. 

CONCLUSIONS AND PERSPECTIVES  

In this study, the Multi Harmonic Balance Method restricted to a single harmonic has been validated on a mass-
spring system with one degree of freedom. It was then adapted to a 13 DOF mass spring system satisfying the property 
of cyclic symmetry. Dry friction in each contact of an assembly may vary due to tolerances, non uniformities or wear. 



In order to control the behaviour of such system, parametric studies were conducted to determine the influence of 
contact parameters (friction coefficient µ, normal force Fn and tangential stiffness kd) on the response of the system. The 
analysis of the behaviour of a mistuned system generated from the single variation of contact parameters has been 
illustrated and discussed. Phenomena associated to mistuning are highlighted. The prediction of the dynamic behaviour 
of bladed assemblies, including the combined effects of mistuning and nonlinearity associated with dry friction appears 
complex. The effect of such variations cannot be accounted for by deterministic approaches… More realistic modelling 
associated to specific numerical methods have to be developed and probabilistic investigations need to be conducted in 
order to obtain more precise prediction of responses of the structure.  Considering stochastic analyses of bladed 
assemblies, many approaches have been developed but most are limited to linear systems. Dealing with non-linear 
systems, the Monte Carlo technique is easy to apply but becomes very heavy when considering actual structures 
modelled using a high number of degrees of freedom and then should be associated with efficient reduction 
techniques ….  
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