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Ultrasound images are corrupted by a multiplicative noise – the speckle – which makes hard high level image analysis. In order to 
solve the difficulty of designing a filter for an effective speckle removing, we propose a new approach for de-noising images while 
preserving important features. This method combines a data misfit function based on Loupas et al. model and a Weighted Total 
Variation (WTV) function as a multiplicative factor in the cost functional. The de-noising process is performed using a multiplicative 
regularization method through an adaptive window whose shapes, sizes and orienta-tions vary with the image structure. 
Instead of performing the smoothing uniformly, the process is achieved in preferred orientations, more in homogeneous areas 
than in detailed ones to preserve region boundaries while reducing speckle noise within regions. Quantitative results on synthetic and 
real images have demonstrated the efficiency and the robustness of the proposed method compared to well-established and state-of-
the-art methods. The speckle is removed while edges and structural details of the image are preserved.

1. Introduction

Ultrasound (US) is a widely used, safe medical diag-

nostic technique, due to its noninvasive nature, low cost,

capability of forming real time imaging and the continuing

improvements in image quality [1]. However, the main

weakness of medical ultrasound image is the poor quality

which interferes with multiplicative speckle noise that

degrades the visual evaluation. This phenomenon is com-

mon to laser, sonar and synthetic aperture radar (SAR)

imagery [2,3]. Speckle pattern is a form of a multiplicative

noise. It depends on the structure of imaged tissue and

various imaging parameters. Speckle has a negative impact

on medical US images. It tends to reduce the image

contrast to make obscure and blur image details which

affect the human ability to identify normal and patholo-

gical tissue. It also degrades the speed and accuracy of

ultrasound image processing tasks such as segmentation

and registration. The macroscopic properties of studied

biological tissues demonstrate that speckle noise tends to

mask important details, consequently confusing the diag-

nosis. The speckle noise is a random process. It does not

provide enough information which lead to a wide subject

of investigations [2,4–11]. In order to improve the quality

of US images, it is imperative to reduce this speckle

without destroying the image features. Recently, it has

been demonstrated that Total Variation (TV) methods

are relevant models for de-noising images in different

cases [12–16]. Accordingly, in this paper a variational

model to deal with speckle noise in real ultrasound images

is proposed. To eliminate the choice of the artificial
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regularization parameter, the energy functional is chosen

as the product of a data fidelity term and a TV regulariza-

tion term. The multiplicative TV regularization was pro-

posed by van den Berg et al. [17] to solve contrast source

inversion problem. In this work, we propose an adaptation

of the multiplicative regularization to a dedicated US noise

model [11] using a locally adaptive energy minimization

based on weighted total variation model. To de-noise US

images, the challenge is to enhance and preserve impor-

tant features; the proposed method is applied on a locally

adaptive window, where shapes, sizes and orientations

varying with image structures [18]. This proposed Adap-

tive Weighted Multiplicative Total Variation Regularization

method is denoted as AWMTVR.

This paper is organized as follows: in Section 2, we give

an overview of speckle filters and related methods.

Section 3 describes our adaptive weighted multiplicative

Total Variation Filter. Quantitative results on artificial and

real US images are presented in Section 4; Section 5 con-

cludes our contribution and describes the future works.

2. Speckle filtering: related works

The need for image processing methods to suppress

speckle noise has been proven to enhance image quality

and increase diagnostics potential for medical ultrasound

images. Therefore image de-noising problem has been

studied widely. A number of locally adaptive statistic filters

based on multiplicative speckle noise were developed. The

typical filtering methods include Lee filter [19], Kuan filter

[20], Frost filter [21], enhanced Lee filter and enhanced

Frost filter [22]. These filters reduce the speckle noise

by adjusting the size of the filtering window. They also

decrease the image resolution inside this latter, which

makes image edges and linear targets blurry. Some edge

information is saved well, but speckle is not fully

smoothed. Recently, inverse problems such as image

restoration appeared in many applications like remote

sensing, medical imaging, astronomy and digital photo-

graphy [23]. Most of inverse problems are nonlinear and

highly ill-posed. In order to solve this problem, a large

number of techniques have been developed. One of the

most well-known techniques is the Total Variation mini-

mization and regularization. Total variation (TV) is a

powerful concept for robust estimation [24]. It was first

introduced for regularization in image restoration [25].

It has been extensively used with great success for inverse

problems, because the TV has the ability of smoothing

noise in flat image areas and at the same time preserves

finer image details such as edges and texture, due to the

piecewise smooth regularization property of the TV norm.

It received many theoretical research attention. It has been

used in many signal and image processing applications

[16,26–32]. Nevertheless, TV- based image restoration has

some drawbacks. One of them is the regularization para-

meter selection. For this purpose, numerous studies were

conducted [33–38]. A solution is to use the multiplicative

type of regularization of inverse algorithms, eliminating

the choice of the artificial regularization parameters [17].

However, most of existing multiplicative regularization is

applied on electromagnetic problems [39–45]. To our

knowledge, multiplicative regularization approach has

not been applied for speckle reduction in US images. In

this aim, we implement the multiplicative regularization

within the framework of speckled image de-noising. We

combine the data misfit function based on the Loupas et al.

noise model [11] and a weighted total variation function as

a multiplicative factor in the cost functional. The computa-

tion of the appropriate parameter is controlled by the

minimization process itself. The minimization is achieved

through local adaptive windows. Experiments have proven

the excellent performance of the proposed method which

constitutes a robust approach for speckled images.

3. Proposed method

Several multiplicative regularization techniques have

been developed in different fields, but there are none

specific to speckle suppression. Therefore, a new Speckle

reduction technique – an Adaptive Weighted Multiplica-

tive Total Variation Regularization method, AWMTVR

method – is instituted to reduce the speckle. We first

determine the noise model used for US images with a new

formulation of the proposed method.

3.1. Notations

The notations below are used.

dðx; yÞ observed noisy image

dðx; yÞ mean image

f ðx; yÞ original image

f̂ ðx; yÞ approximative solution

bðx; yÞ zero-mean Gaussian noise

JTV ðf ;ΩÞ weighted total variation function

W(f) weight function

JRðf ;ΩÞ regularization function

Jðd; f ;ΩÞ cost function

ηR normalization factor of the regularization

function

δ2 positive steering parameter

ζ conjugate gradient update image

g cost function gradient

gTV gradient of the total variation function

gR gradient of the regularization function

Ω a bounded domain Ω�R2

NΩ area of the domain Ω

3.2. Noise model in US images

A relevant noise model for US image de-noising cannot

be easily described. Generally, complex image formation

process is considered. Recent research in the US image

domain proves that multiplicative speckle noise distribu-

tion can be approximated by a Gamma distribution [46]

or a Fisher–Tippett distribution [47]. Consequently, the

general speckle noise model should be chosen as follows:

dðx; yÞ ¼ f ðx; yÞþ f ðx; yÞm � bðx; yÞ ð1Þ

f ðx; yÞ is the original image, dðx; yÞ is the observed image,

bðx; yÞ �ℵð0; s
2Þ is a zero-mean Gaussian noise. This model
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is more flexible and less restrictive than the usual radio-

frequency model. It is able to capture reliably image

statistics since the factor m depends on ultrasound devices

and additional processing related to image formation. In

opposition to additive white Gaussian noise model, the

noise components in (1) are image-dependent. In [11]

based on the experimental estimation of mean versus

standard deviation in Log- Compressed images, Loupas

et al. have shown that m¼0.5 model fits better for

data than the multiplicative model or Rayleigh model.

Since, this model has been successfully used in many

studies [11,43,44], in our approach, we use the TV formu-

lation considering speckle noise model introduced by

Loupas et al.

3.3. The proposed AWMTVR method

Inverse problems as image restoration consists of deter-

mining an approximation of original data f ðx; yÞ from a

knowledge noisy image dðx; yÞ on Ω.

In general this problem is both nonlinear and highly ill-

posed. Uniqueness is in some ways a more interesting

question, if the computed values of f ðx; yÞ are a solution to

the inverse problem. In order to avoid the lack of rigorous

results uniqueness, we propose to cast the inverse pro-

blem as an iterative optimization problem. Then a

weighted total variation function is minimized as

JTV f ;Ωð Þ ¼ 1

NΩ

�
Z

Ω

W2 fð Þ ∇f dx dy
�

�

�

� ð2Þ

where the squared weight W is used to facilitate the

computations. The Weighted function is defined as fol-

lows:

W fð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇f j2þδ2
q ð3Þ

Considering the model of Loupas et al. in (1), the total

variation function JTV is minimized taking into account a

multiplicative regularization functional as the following:

JR d; f ;Ωð Þ ¼ ηR

Z

Ω

d� f
fm

� �2

dx dy ð4Þ

with

ηR ¼
1

R

Ω
f 2dx dy

ð5Þ

The minimization problem formulation is as follows:

Assume d the observed data and f an optimal solution

to our problem, the cost function to be minimized is

Jðd; f ;ΩÞ ¼ JTV ðf ;ΩÞ � JRðd; f ;ΩÞ ð6Þ

3.3.1. Local minimum
Supposing that f satisfies the minimization problem of

the non-quadratic cost functional J, the challenge is how to

find its global minimum. Knowing that, the minimization

problem may lead to several solutions in which the

approximative solution to our problem exists, assuming

the existence of a unique one. Therefore, the exact value is

among obtained values and the global minimum is the one

that satisfies these two conditions:

First, if J is defined in an interval ½a; b� with a; bAR and

differentiable with respect to f̂ where f̂ A ½a; b� then

∇Jðf̂ Þ ¼ 0,

Second, ∇2Jðf̂ Þ must to be positive on f̂ .
We assume that fapprox represents the approximative

solution to our problem. Then, it can be written as a linear

combination of an approximate solution and a generic

direction ζ:

f ¼ f approxþα � ζ ð7Þ

α being a real value. Substituting (7) into the cost func-

tional (6) and considering the fact that the individual

terms in the right-side of (6) vanish for the approximative

solution, the minimization problem takes the form of

f̂ ¼ arg min
α real

½Jðd; ðf approxþαζÞ;ΩÞ� ð8Þ

Thus Eq. (8) can be written as follows:

f̂ ¼ arg min
α real

ðXα2þ2YαþZÞðAα2�2BαþCÞ
ðbαþaÞ ð9Þ

where

A¼ ηR � Jζn J2Ω ð10Þ

B¼ ηR � real〈d� f n�1
; ζn〉 ð11Þ

C ¼ ηR � Jd� f n�1
J
2
Ω ð12Þ

X ¼ ηR � JWn�1 �∇ζn J2Ω ð13Þ

Y ¼ ηR � real〈Wn�1 � ∇f n�1
;Wn�1 �∇ζn〉 ð14Þ

Z ¼ ηR � JWn�1 � ∇f n�1
J
2
Ω ð15Þ

and

a¼ ηR � J ðζnÞm J
2
Ω ð16Þ

b¼ ηR � J ðf
n�1Þm J

2
Ω ð17Þ

The norm over the bounded domain Ω is approximated

by summing the vector magnitude j∇f i;jj over all pixels,

J f JΩ � ∑
M�1

i ¼ 0

∑
N�1

j ¼ 0

j∇f i;jj

where ∇f is the discrete gradient developed as follow:

In two dimensions, the discrete gradient of f i;j, ði; jÞAZ
2,

is defined along the x and y dimensions as

∇f i;j≔
f xði; jÞ
f yði; jÞ

!

¼
∂f i;j
∂x
∂f i;j
∂y

0

@

1

A

:

where ∂ is the partial derivative, the Total Variation is

defined as follows:

TV ¼
Z

Ω

j∇f x;yj dx dy

The inner product is computed as follows:

〈d; f 〉Ω ¼
Z

Ω

dððx; yÞÞ � f ððx; yÞÞ dx dy

where the over bar denotes complex conjugate.
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3.3.2. Algorithm
Direct minimization of Jðd; f ;ΩÞ in (6) is unwanted

because it leads to noisy data inversion. A Conjugate

Gradient (CG) method is employed to optimize the pro-

blem, in which the cost functional Jðf ;ΩÞ changes as a

function of iterations. Therefore, the algorithm involves an

iterative sequence construction ff ng;nZ0.

In the nth iteration, fn update is found by minimizing

the cost functional:

Jnðd; f n;ΩÞ ¼ JnTV ðf
n
;ΩÞ � JnRðd; f n;ΩÞ ð18Þ

The regularization and the Total Variation functions are

respectively given by

JnR d; f n;Ω
� �

¼ 1
R

Ω
f n

2
dx dy

�
Z

Ω

d� f n

ðf nÞm
� �2

dx dy ð19Þ

and

JnTV f n;Ω
� �

¼ 1

NΩ

�
Z

Ω

j∇f nj
j∇f nj2þδ2n

dx dy ð20Þ

NΩ ¼
R

Ω
dx dy denotes the area of the domain Ω.

In this work, the integral through Ω is calculated using

the sum rule.

The proposed cost functional is based on the minimiza-

tion of a weighted total variation factor and the observa-

tion that the minimization of the regularization function JR
converges to a constant factor. The cost functional form

minimizes the total variation factor JTV with a large cost

because the weighting function values are still high. The

regularization factor JnR will remain at a small value during

the whole optimization process. Therefore the weight of

the total variation factor will be more significant. And the

noise will be at all times suppressed until optimization

process stabilization.

The factor δ
2 in (3) is introduced for restoring differ-

entiability to the TV-factor. We have chosen the value of δ2

to be large in the beginning of the optimization. It will

decrease gradually to small values to become constant at

the end (Fig. 1). Thus, the optimization will restore the

noisy image from the first iterations. In particular, δ2 is

chosen as follows:

δ2 ¼ 1

∣d� f n∣
ð21Þ

fn represents an optimal solution to our problem.

We notice at the end that our algorithm belongs to an

iterative regularization method. The proposed AWMTVR-

filter updates the system solution as follows:

d is the observed image and fn the approximative

solution of the minimization problem. Then, we suppose

that f n�1 is known. The sequence ff ng is constructed and

updated as

f 0 ¼ d

f n ¼ f n�1þαn � ζn; n¼ 1;2;3;… ð22Þ

where αn is a real parameter, ζn is a conjugate gradient

update image and d is the mean image.

First, as the update for the image we take the gradient

of J with respect to changes in the image f at the ðn�1Þ th

iteration, i.e.,

ζ0 ¼ g0 ¼ �ηM � d
2� f 20
f 20

ζn ¼ gnþγnPR � ζn�1
; n¼ 1;2;3;… ð23Þ

where ζ
0 is the gradient of the regularization function JR

n

with respect to f0, γPR
n

is the Polak–Ribière conjugate

gradient directions, i.e.,

γnPR ¼
Real〈gn; gn�gn�1〉Ω

Jgn�1 J
2
Ω

ð24Þ

and gn is the gradient of the cost functional Jn with respect

to f evaluated at the ðn�1Þ th iteration

gn ¼ gnTV � Jn�1
R þ Jn�1

TV � gnR ð25Þ

In the optimization process, we start the procedure by

using the mean image ðf 0 ¼ dÞ as the initial guess and by

initializing the total variation factor at 1 ðJ0TV ¼ 1Þ. In the

reminder of the paper, m is included in the proposed filter

as m¼0.5.

Algorithm I.

1. Initialization: f 0 ¼ d; J0TV ¼ 1

2. Iteration: For n¼ 1; 2; 3;… Compute f
ðnÞ by the following

steps:

(a) Compute gn ¼ gnTV � Jn�1
R þ Jn�1

TV � gnR
(b) Compute ζn ¼ gnþγnPR � ζn�1 n¼1,2,3,…

(c) Compute α using the minimization problem

f̂ ¼ argmin
α real

½Jðd; ðf approxþαζÞ;ΩÞ�

3. Compute f n ¼ f n�1þαn � ζn n¼1,2,3,…

If satisfies the stopping criteria

Stop iteration output;

else go to step 2(a)

3.4. The adaptive window mechanism

To maintain the image structure while reducing noise,

windows with various sizes, shapes, and orientations are

used [20]. Instead of using square windows, rectangular

windows whose dimensions and orientations adapt to

Fig. 1. δ function variations with respect to the iteration numbers.
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local image details are used. Near a region boundary, the

rectangular windows decrease and align with the bound-

ary. In a homogeneous area, the windows will be enlarged

which implies that the width l and height h of the window

are related to the minimum and maximum differences

between neighboring pixels and central one according to

l¼ a
ðlnþ1Þ ð26Þ

h¼ a
ðlmþ1Þ ð27Þ

where the addition of 1 in the denominator is to avoid

division by zero. Parameter a is the proportionality term.

ln and lm are the minimum and the maximum differences

between neighboring pixels and central one, and are

computed as in Fig. 2. More details on the used method

are given in [20]. While traditional methods use a sliding

window with fixed dimensions to smooth an image inde-

pendently to the local content, in adaptive smoothing, the

window size, shape and orientation are adapted to the local

image context. Windows size is increased with decreasing

neighboring distance magnitude and window shape and

orientation are adjusted to smooth more in the direction of

least neighboring pixel distances. In such a way, near a

region boundary, the rectangular window becomes narrow

and small and aligns with the boundary. In a homogeneous

area, the window becomes square and large. The adaptive

window contains fewer pixels when it is in a detailed area

than in a homogeneous one, and pixels used in smoothing

lie more along region boundaries than across them. There-

fore, rather than performing smoothing noise isotropically,

smoothing is performed in preferred orientations with

optimal size and shape according to the local image

structures (Fig. 3). This mechanism maintains edge details

while reducing speckle noise within regions.

4. Experimental results

In this section, experimental results of the proposed

method on both synthetic and ultrasound images are

described. A comparative study with other speckle reduc-

tion methods is carried. The considered classical relevant

filters are ATV (Additive Total Variation) [15], AD (Aniso-

tropic Diffusion) [48] and Bilateral Filter [49]. All the

experiments have been implemented on an i3 personal

computer, 2.4 GHz, 4 GB RAM.

Fig. 2. The fifth directions computed around the pixel (i, j).
Fig. 3. Adaptive window (white windows) used in the proposed

AWMTVR method.

Algorithm II.

1. Input: a: window size

2. For (i, j)¼1, 2, …, (M, N) Compute:

� L¼ ½L1; L2; L3; L4; L5�
� ln ¼ jðminðLÞÞj
� lm ¼ jðmaxðLÞÞj

3. Compute: l¼ a
lnþ1

; h¼ a
lmþ1

4. Choose the appropriate window using the following tests:

If ðL3¼ ¼ lmÞ or ðL2¼ ¼ lm and L3¼ ¼ lm and L4¼ ¼ lmÞ or ðL2¼ ¼ lm and L3¼ ¼ lmÞ
Then

Algorithm I is applied on a centered rectangular window to smooth the area around the treated pixel

Else If ðL1¼ ¼ lmÞ or ðL5¼ ¼ lmÞ or ðL1¼ ¼ lm and L2¼ ¼ lmÞ or ðL4¼ ¼ lm and L5¼ ¼ lmÞ
Then

Algorithm I is applied on a centered lying rectangular window to smooth the area around the treated pixel

Else If ðL3¼ ¼ lm and L4¼ ¼ lm and L5¼ ¼ lmÞ or ðL4¼ ¼ lmÞ or ðL3¼ ¼ lm and L5¼ ¼ lmÞ
Then

Algorithm I is applied on a centered oblique window to smooth the area around the treated pixel

Else If ðL1¼ ¼ lm and L2¼ ¼ lm and L3¼ ¼ lm or ðL2¼ ¼ lm Þ or ðL1¼ ¼ lm and L3¼ ¼ lmÞ Then
Algorithm I is applied on a centered oblique window to smooth the area around the treated pixel

Else Algorithm I is applied on a centered square window to smooth the area around the treated pixel end

5



4.1. Experiments on synthetic images

In order to evaluate and to measure the quality of the

restoration, some quantitative measures are computed.

FOM, PSNR, NMSE, MSSIM, FSIM and Q index are used to

evaluate the capability of speckle reduction, edge preser-

ving, feature similarity and image quality of the restored

images. The computed evaluations are calculated only for

simulated images for which original images are available

for comparison.

4.1.1. Stopping criterion
The mean absolute error (MAE) between two adjacent

steps can be used to stop the iteration:

MAE f nð Þð Þ ¼ 1

M � N � ∑
M;N

ði;jÞ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf ði; j;nÞ� f ði; j;n�1ÞÞ2
q

ð28Þ

where f ði; j;nÞ and f ði; j;n�1Þ are the filtered values of the

pixel (i,j) at time n and n�1, and M;N are respectively the

numbers of columns and rows in the processed image.

Fig. 4. Original images. (a) An image with intersected bars in different positions and directions, (b) a phantom image with different circular forms.

Fig. 5. Speckle removal capability of proposed algorithm with different speckle strength. (a, b, c) Synthetic noisy images using image model (1) with:

s
2 ¼ 2, s2 ¼ 6, s2 ¼ 10; (d, e, f) corresponding images using method.
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4.1.2. Performance evaluation
For a given observed image X and X̂ its reconstructed

image, performance evaluation tests, in terms of edge

preservation, speckle reduction, feature similarity and

image quality are defined as follows.

Edge preservation test: To compare the edge preserva-

tion performance of the different filtering approaches,

Pratt0s figure of merit is used. The figure of merit (FOM)

is given by [50]

FOM¼ 1

maxfN̂ ;Nidealg
� ∑

N̂

ði;jÞ ¼ 1

1

1þd2i β
ð29Þ

where N̂ and Nideal are the number of detected and ideal

edge pixels, di is the Euclidean distance between the ith
detected edge pixel and the nearest ideal edge pixel and

β is a constant typically set to 1
9. FOM ranges between

0 and 1, with unity for the ideal edge detection.

Speckle reduction test: For each filtering operation, the

measurement of ability to reduce the speckle noise is

defined by the peak signal to noise ratio (PSNR) of the

form:

PSNR¼ 20 log10
2n�1
ffiffiffiffiffiffiffiffiffiffi

MSE
p

� 	

dB ð30Þ

Fig. 6. PSNR and NMSE comparison for different speckle strength on phantom image (Fig. 4(b)) corrupted by speckle noise.

Fig. 7. (a) An image corrupted by speckle noise. (b) Traditional WMTVR filtering. (c) Adaptive WMTVR filtering. In the second row, (d, e, f) the gradient map

of traditional and filtered images.
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where n is the number of bits used in representing an

image pixel. For grey scale image, n is 8. The mean-squared

error (MSE) of the reconstructed image is defined as

MSE¼
∑M

i ¼ 1∑
N
j ¼ 1jXði; jÞ� X̂ ði; jÞj2

M 	 N
ð31Þ

where Xði; jÞ is the original image, X̂ ði; jÞ is the recon-

structed image and the size of image is M 	 N.
The normalized mean-squared error (NMSE) of the

reconstructed image is defined as

NMSE¼
∑M

i ¼ 1∑
N
j ¼ 1jXði; jÞ� X̂ ði; jÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑M
i ¼ 1∑

N
j ¼ 1Xði; jÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑M
i ¼ 1∑

N
j ¼ 1X̂ ði; jÞ

2
q ð32Þ

where Xði; jÞ is the original image and X̂ ði; jÞ is the

reconstructed image.

Structural similarity test: In order to evaluate the de-

noising filters, we propose to use the Mean SSIM (Mean

Structural Similarity) index. This metric is based on a

similarity measure between two images [51].

The MSSIM index is described as a function of three

factors: the luminance, contrast and structural similarity. It

is defined as

MSSIM X; X̂

 �

¼ 1

M
� ∑

M

j ¼ 1

SSIM xj; yj

 �

ð33Þ

Fig. 8. Plots of the instantaneous parameter α as a function of iterations on the two critical points. (b) α using a sliding window (c) α using an adaptive

window mechanism computed on an edge point (white point on (a)). (d) α using a sliding window (e) α using an adaptive window mechanism and

computed on a region point (black point on (a)).
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where X and X̂ are respectively the original and the

reconstructed images, xj and yj are the image contents at

the jth local window andM is the number of windows. The

MSSIM has values in [0,1], with unity representing struc-

turally identical images.

The structural similarity (SSIM) is defined by

SSIM x; yð Þ ¼
ð2μxμyþC1Þð2sxyþC2Þ

ðμ2x þμ2yþC1Þðs2x þs
2
yþC2Þ

ð34Þ

where μx and μy are the mean intensity of x and y for

luminance comparison, sx and sy are the standard devia-

tion for contrast measurement and sxy is the correlation

coefficient, C1 ¼ ðK1LÞ2, C2 ¼ ðK2LÞ2, where L is the dynamic

range of the pixel intensities (255, for 8 bits Grey-scale

images). K151 and K251 are small constant. For our

experiments, we have used the following parameter set-

tings: K1 ¼ 0:001 and K2 ¼ 0:03.

Feature similarity (FSIM) test: In [52] the authors have

addressed the problem of the image quality assessment.

An approach based on the fact that the human visual

system (HVS) understands an image mainly according to

its low-level feature is developed. Specifically, the phase

congruency (PC), which is a dimensionless measure of the

significance of a local structure, is used as the primary

feature in FSIM. Considering that the PC is contrast

invariant while the contrast information does affect the

HVS perception of an image quality, the image gradient

magnitude (GM) is employed as a secondary feature in

FSIM. PC and GM play complementary roles in character-

izing the image local quality.

At first, let PC1 (PC2) and GM1 (GM2) be the phase

Congruency PC and the Gradient Magnitude GM of the

image XðX̂ Þ, respectively, the similarity between gray scale

features is defined as

SPC xð Þ ¼ 2PC1ðxÞ � PC2ðxÞþT1

PC2
1ðxÞþPC2

2ðxÞþT1

ð35Þ

SGM xð Þ ¼ 2GM1ðxÞ � GM2ðxÞþT2

GM2
1ðxÞþGM2

2ðxÞþT2

ð36Þ

where T1 and T2 are positive constants. Since T1 and T2
components depend on the dynamic range of PC and GM
values, in the experiments, both T1 and T2 will be fixed to

all data. So that the proposed FSIM can be conveniently

used. Then, SPC(x) and SGM(x) are combined to get the

similarity SL(x) of X and X̂ , defined as

SL ¼ SPCðxÞ � SGMðxÞ ð37Þ

where X and X̂ are respectively the original and the

reconstructed images. Finally, the FSIM index between

X and X̂ is defined as

FSIM¼ ∑xAΩSLðxÞ � PCðxÞ
∑xAΩPCðxÞ

ð38Þ

where Ω means the whole image spatial domain.

Image quality test: Let X ¼ fXi; i¼ 1;2;…;Ng and

X̂ ¼ fX̂ i; i¼ 1;2;…;Ng be the reference image and the

reconstructed image signals, respectively. The quality

Table 1

FOM, PSNR, NMSE, MSSIM, FSIM and Q values applied with several filters

applied on two synthetic images.

FOM PSNR NMSE MSSIM FSIM Q

Image of Fig. 4(a)

ATV 0.8405 77.4514 0.0415 0.8507 0.9659 0.3119

AD 0.7771 70.22 0.0614 0.7399 0.9762 0.3285

Bilateral 0.7707 77.2617 0.03029 0.7720 0.9697 0.3210

AWMTVR 0.8618 77.3159 0.0168 0.8663 0.9929 0.6186

Image of Fig. 4(b)

ATV 0.9565 75.0713 0.334 0.7905 0.9850 0.4885

AD 0.8524 63.5433 0.2513 0.6336 0.9891 0.4788

Bilateral 0.6119 74.5079 0.1595 0.8135 0.9811 0.4224

AWMTVR 0.9599 74.2363 0.1141 0.9177 0.9892 0.4903

Fig. 9. Comparison of different speckle reduction methods. (a, f) Synthetic noisy images using model (1) with s
2 ¼ 2; (b, g) restored image by ATV model;

(c, h) restored image by AD model; (d, i) restored image by Bilateral method; (e, j) restored image by proposed method.
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index Q is defined as [53]

Q ¼
4sXX̂XX̂

ðs2Xþs
2
X̂
Þ½ðX Þ2þðX̂ Þ2�

ð39Þ

where

X ¼ 1

N
∑
N

i ¼ 1

Xi; X̂ ¼ 1

N
∑
N

i ¼ 1

X̂ i;

s
2
X ¼ 1

N�1
∑
N

i ¼ 1

ðXi�X Þ2

s
2
X̂
¼ 1

N�1
∑
N

i ¼ 1

ðX̂ i� X̂ Þ2

sXX̂ ¼ 1

N�1
∑
N

i ¼ 1

Xi�X
� �

X̂ i� X̂

 �

The dynamic range of Q is [�1, 1]. The best value 1 is

achieved if and only if X̂ i ¼ Xi for all i¼ 1;2;…;N . The

lowest value of �1 occurs when X̂ i ¼ 2X�Xi for all

i¼ 1;2;…;N. This quality index models any distortion as

a combination of three different factors: loss of correlation,

luminance distortion, and contrast distortion. The quality

measurement is applied to local regions using a sliding

window approach. The local quality index Qj is computed

within the sliding window. If there are a total of M
windows, the overall quality index is given by

Q̂ ¼ 1

M
∑
M

j ¼ 1

Q j ð40Þ

4.2. Results and comparison

The suggested method has been tested on original

images of Fig. 4(a) and (b) corrupted by a speckle noise with

standard deviation s
2 ¼ 2, s2 ¼ 6 and s

2 ¼ 10. De-noising

these images using our algorithm has been performed

respectively in 4, 7 and 10 iterations for noise with standard

deviations values cited above. The images of Fig. 5 illustrate

the results of AWMTVR filter on synthetic images. It is

observed that the more an image is noisy, the less is the

noise reduction. Even the image is quite noisy, the proposed

Table 2

Elapsed time for the four methods.

177	175 (pixels) Iterations Execution time (s)

Phantom image

ATV 20 3.33

AD 20 1.977

Bilateral 1 3.056

AWMTVR 4 4.31

180 	171 (pixels) Iterations Execution time (s)

Bar image

ATV 20 2.97

AD 20 2.392

Bilateral 1 2.959

AWMTVR 4 5.919

Fig. 10. Comparison with different methods on ultrasound images. (a) A real ultrasound ovary cancer image; (f) a real breast cancer mass ultrasound

image; (k) a real ultrasound thyroid nodules image; (b, g, l) restored images by ATV model; (c, h, m) restored images by AD model; (d, i, n) restored images

by Bilateral method; (e, j, o) restored images by proposed method.
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method can improve the image quality. The plots of the

PSNR and NMSE show a decreasing respectively an increas-

ing of their values versus the number of iterations and the

noise strength. The PSNR (NMSE) values decrease (increase)

versus the number of iterations because in the first iteration

the noise is at its maximum values so the de-noising is

maximum, i.e. when PSNR takes great values, the noise

is reduced, and consequently the PSNR is decreased and

when NMSE takes low values, the noise is reduced, and

consequently the NMSE is increased. The effectiveness of the

method is clearly shown in Fig. 6.

In order to demonstrate the importance of the adaptive

window mechanism in maintaining edge details while

reducing speckle noise within regions, we propose in this

section to compare the sliding and the adaptive mech-

anisms. Fig. 7 illustrates a comparison of the Adaptive

WMTVR speckle reduction method with the WMTVR

method applied to a synthetic phantom image. At a glance,

Fig. 11. Corresponding signal of one row, (a) with row 65; (b) restored image by ATV model; (c) restored image by AD model; (d) restored image by

Bilateral method; (e) restored image by proposed method.
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images of Fig. 7(c) and (f) look alike but when examined

more closely it is clear that small details are preserved by

the adaptive method better than the sliding method.

The local variation of the parameter α over 20 iterations

on two critical points has been computed, one of them is

situated on an edge named edge point and the other one is

situated on a region area called region point, as illustrated

in Fig. 8(a). Using the adaptive window mechanism, α is

instantaneously computed. For each iteration α values are

small on or near an edge and large on a homogeneous

area. When using a sliding window, α is always the same

and does not adapt to each iteration. While using adaptive

windowmethod, α is computed with more accuracy than a

fixed window method. We conclude that the adaptive

window mechanism adapts to each image detail which

favors a better image structures preservation than the

classical one.

Table 1 summarizes FOM, PSNR, NMSE, MSSIM, FSIM

and Q for the synthetic images. Table values corroborate

the visual observation. In these evaluation frameworks,

the ATV model has a large PSNR value than the other

models in most tests. Therefore, it reduces only noise.

Fig. 12. Corresponding signal of one row, (a) with row 95; (b) restored image by ATV model; (c) restored image by AD model; (d) restored image by

Bilateral method; (e) restored image by proposed method.
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For all tests, the FOM and MSSIM values for the ATV model

are slightly higher than Bilateral and AD filters which

indicate less similarity between the original and the

filtered images and less edge preservation for the two

models. Yet, FSIM and Quality index of the AD model are

higher than Bilateral and ATV models which reveal that AD

model outperforms the two models in terms of image

quality and feature similarity. However, the proposed

AWMTVR algorithm produces the highest FOM, NMSE,

MSSIM, FSIM and Q index values, with large PSNR which

means that the proposed method has been able to reduce

the noise significantly without blurring or changing the

image features and structures more than the other tested

models.

Based on these tests, the AWMTVR retains more

structures in the de-noised images than the other three

methods. It can suppress the noise well, while keeping

edges and fine details. In Fig. 9, we compare visually our

model with other three popular speckle removal methods.

The simulated noisy images are constructed based on

Fig. 13. Corresponding signal of one row, (a) with row 75; (b) restored image by ATV model; (c) restored image by AD model; (d) restored image by

Bilateral method; (e) restored image by proposed method.
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Eq. (1) with s
2 ¼ 2 (Fig. 9(a, f)). In the experiments, the AD

filter removes noise but blurs the image edges and the

linear targets (Fig. 9(c, h)), the Bilateral de-speckles

well but some noise appears in the object boundaries

(Fig. 9(d, i)). The ATV method can remove speckle noise

and retain edges (Fig. 9(b, g)). Nevertheless, some artifacts

appear in the homogeneous region. The proposed method

is the most effective for removing noise, keeping image

features and edges with the higher values for all the

quality metrics. Although, it is slower than ATV, AD and

Bilateral methods, for an image of size 177	175 pixels, the

proposed method takes 4.301 s, and for an image of size

180	171 pixels, it takes 5.919 s. The corresponding tests

are reported in Table 2. The results correspond to the

number of iterations for all tested methods and the

execution time against the number of iterations. AWMTVR

execution time is a bit higher compared to the other

methods because of its adaptive property. For one itera-

tion, Algorithm II (Adaptive windows) calls 30 975 times

Algorithm I (WMTVR) for an image of size 177	175 and

30 780 times for an image sized 180	171. However, our

filter reduces the number of iterations while yielding good

results. Using adaptive windows provides to the multi-

plicative regularization a local processing which improves

the restoration results and makes the proposed algorithm

good and competitive with the existing methods.

4.3. Experiments on real US images

In this section, we test the performance of the proposed

method on real ultrasound images and compare with three

other methods. Fig. 10 shows the results on three real

ultrasound images used in our experiments. From this

figure, we can see the experiments on the real ultrasound

abdomen image, the breast cancer mass image and the

thyroid nodules image. It is noticed that the restored

images using AD model mix a boundary of the mass region

with the background region (Fig. 10(c, h, m)). It causes loss

of information regarding the important details of the

image. ATV method gives good results however strong

artifacts have been observed (Fig. 10(b, g, l)). Bilateral

(Fig. 10(d, i, n)) and proposed method (Fig. 10(e, j, o)) have

a better performance than the other two methods.

Figs. 11–13 show the pixel values on one row of the image

(the highlighted line) versus the column positions. From

figures, labels 1–4 are marked a corresponding region or

transition. From Fig. 11(a) labels 1 and 2 indicate the limit

of the ovary mass, labels 3 and 4 are the limits of the outer

region. In Fig. 12(a), labels 1 and 2 limit the solid breast

cancer, label 3 the interior solid region. In Fig. 13(a), labels

illustrate 3 thyroid nodules. Filtering operation along the

marked row shows the potential transitions and smoothed

areas and reveals the effectiveness of the tested methods.

Fig. 14. Minimization versus to the number of iterations. (a) JTV function. (b) JR function. (c) Cost function J ¼ JTV � JR .

Fig. 15. Test functions versus the number of iterations. (a) Factor δn . (b) Weight function Wn . (c) Global minimum α
n.
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ATV presents some artifacts (Figs. 11–13(b)). AD, Bilateral

and the proposed method operate better than ATV. How-

ever some fine details are over smoothed using AD and

Bilateral filters.

Finally, Fig. 14(a) presents the TV functional JTV, the JR
and J as functions of the iteration0s number n. We observe

that JTV converges slower than the Regularization function

JR (Fig. 14(b)). The Cost functional J is represented in Fig. 14

(c). Fig. 15(a–c) exhibits the quantity δn, the weight func-

tion Wn and the parameter α
n which is computed as the

mean of local αni;j through each iteration. Considering these

parameters, it is assumed that our algorithm converges in

few iterations.

5. Conclusion

A new adaptive filter approach, Adaptive Weighted

Multiplicative Total Variation regularization (AWMTVR),

is proposed for suppressing speckle while preserving

texture feature in US medical images. The filter is based

on an adaptation of a multiplicative regularization func-

tion. The new functional combines a data misfit function

based on Loupas et al. model and a Weighted Total

Variation (WTV) function as a multiplicative factor in the

cost functional. The basic goal of the multiplicative form is

to eliminate the choice of the artificial regularization

parameter. The proposed method uses the conjugate

gradient algorithm to update the approximative solution

of the minimization problem. The filtering process of the

AWMTVR is performed on an adaptive window with

various shapes, sizes and orientations. This adaptive win-

dow method calculates the instantaneous coefficient of

variation for the edge area with more accuracy than a fixed

window. We have compared the proposed method with

three other popular speckle reduction methods in terms of

image quality, speckle reduction, edge and feature pre-

servation performance. Our method is effective to remove

speckle noise and has competitive results on synthetic

images as well as on real US images.
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