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Abstract 

The McGurk effect has been shown to be modulated by 

attention. However, it remains unclear whether attentional 

effects are due to changes in unisensory processing or in the 

fusion mechanism. In this paper, we used published 

experimental data showing that distraction of visual attention 

weakens the McGurk effect, to fit either the Fuzzy Logical 

Model of Perception (FLMP) in which the fusion mechanism 

is fixed, or a variant of it in which the fusion mechanism could 

be varied depending on attention. The latter model was 

associated with a larger likelihood when assessed with a 

Bayesian Model Selection criterion. Our findings suggest that 

distraction of visual attention affects fusion by decreasing the 

weight of the visual input. 

Index Terms: McGurk effect, attention, FLMP, modeling 

1. Introduction 

While it had been initially claimed since McGurk and 

MacDonald (1976) [1] that the McGurk effect (conflicting 

visual speech altering the auditory speech percept due to 

audio-visual fusion) was automatic and not under the control 

of attention, it appeared later that instruction to attend more to 

audition or to vision might bias perception [2]. More recently, 

Tiippana et al. (2004) [3] showed that if attention is distracted 

from visual speech by the presentation of a concurrent visual 

stimulus (a leaf superimposed on the speaking face), the role 

of visual speech decreases in fusion, so that the McGurk effect 

gets weaker. The authors modeled their data with the Fuzzy 

Logical Model of Perception (FLMP) [2], which provided a 

good fit as assessed with the root mean square error (RMSE). 

Since the FLMP entails a fixed integration rule, a good fit of 

the model suggests that the attentional effect acts on the visual 

input, rather than on fusion. However, they also noted that in 

the experimental data there was little evidence of unisensory 

visual attentional effects. This discrepancy is possible because 

of the non-linearity of the FLMP, which allows small, 

statistically non-significant differences in visual response 

probabilities to cause large, significant changes in audiovisual 

response probabilities. Tiippana et al. concluded that this 

discrepancy prevented them from being able to determine 

whether the attentional manipulation influenced unisensory 

processing or fusion based on FLMP fits. 

Schwartz (2006) [4] argued that the good fits of the 

FLMP to McGurk data might be due to over-fitting. He 

showed that the error function of the FLMP has a very steep 

slope in that area of parameter space, which models the 

McGurk illusion. This means that a small change in the 

parameters can cause a large change in the model likelihood. 

The model is, in other words, very flexible in that its 

parameters can be nudged to accommodate almost any data 

set, particularly for conflicting auditory and visual inputs, as in 

the McGurk effect. This is the hallmark of over-fitting. The 

problem with over-fitting is that, although the model fits well, 

it generalizes poorly: The model with parameters fit to one 

data set does a poor job in describing another, very similar 

dataset. In order to overcome this difficulty, one needs to take 

the entire likelihood function into account rather than just its 

maximum. This is the principle of the Bayesian Model 

Selection (BMS) criterion. This criterion involves computation 

of the global likelihood of a model considering a set of 

experimental data, which is computationally complex, but 

Schwartz introduced the so-called Laplace approximation 

(BMSL), which appears to be easy to implement and compute. 

In a later study, Schwartz [5] introduced a variation of 

the FLMP, the weighted FLMP (WFLMP), in which inputs 

from audition and vision are weighted. He compared the two 

models using various criteria: the RMSE, the RMSE corrected 

for the number of free parameters and the BMSL. He found 

that all measures favored the WFLMP. Closer inspection 

revealed that the RMSE based measures always favored the 

model with more free parameters, which could be due to over-

fitting. The BMS did not show this behavior indicating that it 

is less influenced by over-fitting.  

In addition to good fits and ability to generalize a good 

model should also add to our qualitative understanding of the 

underlying cognitive processes. Schwartz showed that the 

WFLMP did that since its weights provided a meaningful 

indicator of how much individual observers relied on audition 

versus vision. This issue is similar to Tiippana’s question 

whether an irrelevant visual object can distract visual attention 

and thereby decrease the weight of visual information in 

audiovisual speech perception. Therefore, Schwartz’ approach 

might help resolve the paradox that Tiippana et al. 

encountered. Hence, in the current study, we examine this 

issue by comparing data fits provided by various 

implementations of the WFLMP vs. the normal FLMP, by 

minimizing the BMSL criterion to Tiippana et al.’s data. 

2. Methods 

2.1. Experimental data 

In Tiippana & al. (2004) [3], subjects (n=14) recognized 

consonants /k/, /p/ and /t/ in /eCe/ context, presented in 

extended factorial design in two conditions: attend Face and 

attend Leaf. In the latter, subjects attended to a leaf floating 

across the talker’s face instead of the face. The data consisted 

of response distributions to 15 stimuli (3 auditory A, 3 visual 

V, 9 audiovisual AV where 3 were congruent A=V and 6 

incongruent A≠V i.e. McGurk stimuli) in 2 conditions (Face 



and Leaf) for 5 response categories: /k/, /p/, /t/, combination 

(combination of A and V consonants) and ‘other’ (Fig. 1). 

 

 

 
 

Figure 1 – Summarized results of the experimental data in [3]. 
Each plot provides mean response proportions for the 5 response 

categories: /k/, /p/, /t/, combination (C) and ‘other’ (O). Error bars 

indicate the standard error of the mean across subjects. Plots are 

arranged so that rows indicate the auditory stimulus (none, /k/, /p/ or 

/t/) and columns indicate the visual stimulus (none, /k/, /p/ or /t/). Grey 

lines denote the attend Face condition and black lines the attend Leaf 

condition  
 

2.2. Models 

Two models were fitted to the data. Firstly, the FLMP:  

  

P Ri | A,V( ) =
P Ri | A( )P Ri |V( )
P R j | A( )P R j |V( )

j

"
 

 

where Ri and Rj are response categories, A and V  are 

auditory and visual stimuli, P(Ri|A), P(Ri|V) and P(Ri|A,V) 

are auditory, visual and audiovisual response probabilities, 

respectively. Considering the Face and Leaf conditions, the 

equations are: 

 

P Ri | A face,V face( ) =
P Ri | A face( )P Ri |V face( )
P R j | A face( )P R j |V face( )

j

"
 

 

P Ri | Aleaf ,Vleaf( ) =
P Ri | Aleaf( )P Ri |Vleaf( )
P R j | Aleaf( )P R j |Vleaf( )

j

"
 

 

The second model was the WFLMP:   

 

P Ri | A,V( ) =
P Ri | A( )

"A
P Ri |V( )

"V

P R j | A( )
"A
P R j |V( )

"V

j

#

 

 

where λA and λV are factors used to weight the auditory and 

visual inputs in the computation of the audiovisual responses 

(see other introductions of weights inside the FLMP in [6]). 

For each condition (Face or Leaf), we define a λ value 

between 0 and 1, and compute λA and λV from λ by: 

λA = λ / (1 – λ) and λV = (1 – λ) / λ. Therefore the weighted 

model WFLMP needs two more parameters than FLMP (λFace 

and λLeaf). 

 

2.3. Criteria for models assessment 

The assessment criteria applied were RMSE, corrected RMSE 

and BMSL, which all give smaller values, the better the model 

fit. Let us consider a speech perception experiment for 

categorization of speech stimuli involving nE experimental 

conditions Ej, and in each condition, nC possible responses 

corresponding to different phonetic categories Ci. In most 

papers comparing models in the field of audiovisual speech 

perception, the tool used to compare models is the fit 

estimated by the root mean square error RMSE, computed by 

taking the squared distances between observed and predicted 

probabilities of responses, averaging them over all categories 

Ci and all experimental conditions Ej, and taking the square 

root of the result: 

 

RMSE = Pj Ri | A,V( ) " p j Ri | A,V( )[ ]
2

i, j

# nEnC
 

 

where observed probabilities are in lower case and model 

probabilities in upper case. 

Considering that two models might differ in their number of 

degrees of freedom, Massaro (1998) proposes to apply a 

correction factor k/(k-f) to RMSE, where k is the number of 

data points and f the number of degrees of freedom of the 

model. This provides the second criterion, the corrected 

RMSE: 

RMSEcor =
k

k " f( )
RMSE  

The third criterion used here is the Laplacian approximation to 

the Bayesian Model Selection (BMSL) criterion. If D is a set 

of k data points di, and M a model with parameters Θ , the best 

fit is the maximum of the likelihood of the model given the 

data set, that is the value of Θ  maximizing 

L(Θ |M)= P(D|Θ ,M). However, the maximally likely parameter 

set is not the only possible parameter set. By assessing models 

by comparing only their maximum likelihoods we ignore the 

possibility that this is not the true underlying model. BMS 

estimates the likelihood integrated over all parameter values 

[7]: 

 

BMS = "log L # |M( ) P # |M( )d#  

  

Bayesian Model Selection has already been applied to the 

comparison of AV speech perception models, including FLMP 

[8, 9].  

The computation of BMS through this equation is 

complex. It involves the estimation of an integral, which 

generally requires use of numerical integration techniques, 

typically Monte-Carlo methods. However, Jaynes (1995, ch. 

24, [10]) proposes an approximation of the total likelihood 

based on an expansion of log(L) around the maximum 

likelihood point θ: 
 

log L �( )( ) � log L $( )( )+
1

2
�%$( )

T

 2 log L( )  �2[ ]� �%$( )

 

where [∂
2
log(L) / ∂Θ

2
]θ is the Hessian matrix of the function 

log(L) computed at the position of the parameter set 

θ providing the maximal likelihood Lmax of the considered 



model. This leads to the so-called Laplace approximation of 

the BMS criterion [11]:  

 

BMSL = "log Lmax( ) "
m

2
log 2#( ) + log V( ) "

1

2
log $( )  

 

where V is the total volume of the space occupied by 

parameters Θ , m is its dimension, that is the number of free 

parameters in the considered model, and Σ  is defined by: 

 

"#1 = $ 2 log L( ) $�2[ ]
&

 

 

The preferred model considering the data D should minimize 

the BMSL criterion. There are in fact three kinds of terms in 

the computation of BMSL. Firstly, the term −log(Lmax) is 

directly linked to the maximum likelihood of the model, more 

or less accurately estimated by RMSE: the larger the maximum 

likelihood, the smaller the BMSL criterion. Then, the two 

following terms are linked to the dimensionality and volume 

of the considered model. Altogether, they result in the 

handicapping of models that are too “large” (that is, models 

with a too high number of free parameters). Finally, the fourth 

term provides a term favoring models with a large value of 

det(Σ). Indeed, if det(Σ) is large, this means that the 

determinant of the Hessian matrix of log(L) is small, which 

expresses that the likelihood L does not vary too quickly 

around its maximum value Lmax. 

BMSL has the double interest to be easy to compute, and 

easy to interpret in terms of fit and stability. Furthermore, if 

the amount of available data is much greater than the number 

of parameters involved in the models to compare (that is, the 

dimension m of the Θ  space) the probability distributions 

become highly peaked around their maxima, and the central 

limit theorem shows that the approximation of BMS by BMSL 

becomes quite reasonable. Kass & Raftery (1995) [11] suggest 

that the approximation should work well for a sample size 

greater than 20 times the parameter size m. In our case, the 

ratio will be from 24 (in the model with the highest number of 

parameters, that is 50) to 100 (for the model with 12 

parameters) and even 600 (for the smallest model with 2 

parameters). 

 

2.4. Varying the number of free parameters 

The number of free parameters in most model comparison 

studies in AV speech perception is generally kept fixed to the 

“natural number of degrees of freedom” of the model, that is 

the number of free parameters necessary to implement the 

model in its most extensive definition. Care is generally taken 

to check that the models have basically the same number of 

degrees of freedom, otherwise the RMSE correction previously 

described could be applied. Notice that this correction looses 

some sense if a parameter is introduced with no effect on the 

model likelihood (a “useless parameter”) while BMSL 

naturally discards useless parameters.  

Of course, completely useless parameters generally do 

not exist, since this would correspond to some kind of 

misconception of the model.  However, it is important to 

assess the possibility that some parameters are not really 

useful in the model behavior. For example, while all model 

comparisons generally involve a subject-by-subject 

assessment – and it will also be the case here – it may be 

interesting to test if some parameters could not in fact be 

similar from one subject to the other. The same could be done 

from one experimental condition to the other. Therefore, we 

systematically tested various implementations of the models to 

compare, with a progressively increasing number of fixed 

parameters and thus a decreasing number of free parameters, 

in order to attempt to determine the true number of degrees of 

freedom of the model, that is the number of free parameters 

really useful, and providing the highest global likelihood of 

the model knowing the data. Our basic assumption is that it is 

under the condition of true number of degree of freedom that 

models can be really assessed and compared in sound 

conditions.  

The logic guiding these progressive constraints 

decreasing the number of free parameters is that if the FLMP 

exploits the available free parameters to adapt its behavior to 

any pattern of experimental data (see [4]), it will have both a 

very low RMSE (even corrected) and a high BMSL (poor 

global likelihood), and hence it is necessary to take out as 

many free parameters as possible to really assess the regularity 

and consistency of subjects’ behavior. 

We compared six variants of the FLMP and WFLMP 

models. The baseline model is the 48-parameter FLMP_48, 

fitting 48 values for each subject, i.e. values of P(Ri/AFace), 

P(Ri/VFace), P(Ri/ALeaf) and P(Ri/VLeaf) for the three auditory 

and the three visual stimuli and 4 responses (/k/, /p/, /t/, 

“comb”, the fifth one “other” being provided by normalization 

to 1). The corresponding WFLMP_50 model uses 50 

parameters per subject, that is, the 48 previous ones plus λFace 

and λLeaf.  

Then we tested five variants involving various decreases 

of the number of free parameters: 

In FLMP_36, we assumed that since visual but not 

auditory attention was manipulated in the experiments, there is 

no difference between Face and Leaf conditions for auditory-

only responses, so that all values of P(Ri/AFace) and P(Ri/ALeaf) 

are equal, fixing 12 free parameters. WFLMP_38 is the same 

plus λFace and λLeaf. 

In FLMP_24, we further assumed that responses to the 

auditory stimuli do not differ between subjects due to near-

perfect recognition (96-100% correct), so that P(Ri/AFace) and 

P(Ri/ALeaf) are both equal to each other and the same for all 

subjects. This was done through a Round Robin technique, in 

which a given parameter for one subject is estimated from the 

mean value taken by the parameter in the whole corpus 

excluding the current subject from the computation. This 

technique, classical and computationally simple, separates the 

data used to estimate the parameter from the data used to test 

the model. The parameter is therefore not free because it is not 

adjusted to accommodate the test data. Instead, it is fixed by 

independent data. This reduced the number of free parameters 

by 12 leaving 12 free parameters per subject for P(Ri/VFace) 

and P(Ri/VLeaf) each. WFLMP_26 is the same plus λFace and 

λLeaf. 

In FLMP_12, we further assumed that visual responses 

are the same in the Face and Leaf conditions, fixing 12 more 

parameters. WFLMP_14 is the same plus λFace and λLeaf. 

FLMP_16 is a variant of FLMP_12 in which we added 

four free parameters enabling responses to visual /t/ differ 

between Face and Leaf conditions since this was the only 

statistically significant difference for visual-only stimuli in the 

experimental data. WFLMP_18 is the same plus λFace and 

λLeaf. 

Finally, WFLMP_2 is a variant of WFLMP in which we 

assumed that all subjects have the same auditory-only and 

visual-only responses. That is, P(Ri/AFace) is equal to 

P(Ri/ALeaf), and P(Ri/VFace) is equal to P(Ri/VLeaf) and their 

values are identical for all subjects. The only free parameters 

are now λFace and λLeaf. Of course, there is no FLMP 

counterpart, since there would be no free parameter. 



3. Results 

The models were first assessed in terms of the RMSE (Fig. 2), 

which decreases as the number of parameters increases, as can 

be seen in Fig. 2 for both FLMP and WFLMP. However, the 

RMSE is lowest and almost the same for the two model 

variants with the highest number of parameters: 

FLMP_48/WFLMP_50 and FLMP_36/WFLMP_38. The latter 

variant is almost as good as the former despite the large 

decrease in parameters since in the data there is almost no 

difference in auditory-only responses between Face and Leaf 

conditions. However, the difference between FLMP and 

WFLMP becomes quite large for FLMP_16/WFLMP_18 and 

other variants with fewer parameters, so that WFLMP variants 

provide smaller RMSE values than the corresponding FLMP 

variants due to the two additional parameters. 

 

 
 

Figure 2 – RMSE for the FLMP (in blue) and WFLMP (in red) 
 for the corresponding degrees of freedom (48-50 for FLPM-48 and 

WFLMP-50, etc; 2 for WFLMP-2) 

 

Correcting for the degrees of freedom does not change the 

pattern much, as can be seen by comparing Fig. 3 showing the 

corrected RMSE with Fig. 2. Again, there are four equally 

good models, FLMP_48, FLMP_36, WFLMP_50 and 

WFLMP_38. 

 

 
 

Figure 3 – Corrected RMSE for FLMP (blue) and WFLMP (red).  
Other details as in Fig. 2. 

 

When assessing the models using the BMSL, the pattern is 

very different (Fig. 4). The BMSL decreases as the number of 

parameters decreases for all paired FLMP/WFLMP variants. It 

might seem puzzling that FLMP_12/WFLMP_14 have the 

lowest BMSL since here it is assumed that there is no 

difference between Face and Leaf conditions for visual 

responses, even though Tiippana et al. showed that there was a 

statistically significant difference for visual /t/. Probably these 

differences are of a second order compared with the basic 

phenomenon captured by the FLMP that audiovisual responses 

are well modeled by a multiplicative process.  

The main finding here is that the best FLMP variant with 

12 parameters is significantly poorer than the best WFLMP 

variant with 14 parameters, as shown by a Wilcoxon signed 

rank test. Finally, the rise of the BMSL curve for WFLMP_2 

shows that BMSL is not just driven by the trend to decrease 

with the number of degrees of freedom: there is indeed a 

minimum, here for 14 degrees of freedom, and for the 

WFLMP rather than the FLMP. In the same vein, adding two 

free parameters from FLMP to WFLMP can lead to either a 

BMSL increase (for the first variants with too many free 

parameters) or a BMSL decrease for the last variants with 

fewer parameters. 

 

 
 

Figure 4 – BMSL for FLMP (blue) and WFLMP (red).  
The red ellipse marks the best variants. Other details as in Fig. 2. The 

red ellipsis marks the best configurations for FLMP and WFLMP 

4. Discussion 

This modeling work enables us to really assess the 

informational content of the provided experimental material in 

sound terms, relating unisensory and multisensory data in a 

coherent way thanks to Bayesian Model Selection. It appears 

that the WFLMP is associated with a larger global likelihood 

than FLMP, which suggests that in these data, there is indeed a 

modulation of fusion by attentional distraction, inducing a 

decrease in fusion per se, possibly superimposed with a 

modification in unisensory visual performance. This adds to 

the growing literature on attentional modulation of fusion in 

the McGurk effect (e.g. [12] and also the paper submitted by 

Nahorna et al., in the present conference).  

This work extends methodological developments by the 

authors [4, 5, 13, 14] by confirming the superiority of the 

BMS approach to the RMSE approach in model assessment. 

However, while the BMS seems to provide an efficient 

criterion for model assessment and comparison, other tools 

could be used in future experiments, including cross-validation 

which provides a functional way to assess stability of the best 

fit, probably coherent with the BMS. But most importantly, the 

BMS (with its BMSL easy-to-compute approximation) together 

with the variable-degrees-of-freedom technique, should be 

48-50      36-38        24-26        16-18         12-14          2 
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used to re-assess various audiovisual fusion experiments on 

e.g. attentional [15], developmental [16] or cross-linguistic 

[17, 18] effects on audiovisual in speech perception.  
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