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Abstract  11 

Vine vigor, a key agronomic parameter, depends on environmental factors but also on 12 

agricultural practices. The goal of this paper is to model vine vigor according to both 13 

kinds of influential variables. The perspective is to design a decision support tool to 14 

adapt the agricultural practices to the environment in order to get a given vigor target. 15 

The approach was based upon a collected dataset and the available expert knowledge. 16 

It included a data selection step, which was needed because of data imperfection and 17 

incompleteness. Usually implicit in the literature, data selection was carried out with 18 

explicit criteria. Then a fuzzy model was designed from the selected data. Owing to 19 

the fuzzy model interpretability, its structure and behavior were analyzed to identify 20 

input-output relationships and interactions between variables.  21 

The case study was located in a French vineyard in the middle Loire valley. The input 22 

features were related to soil, rootstock and inter-crop management, the output was an 23 

expert assessment of vine plot vigor. Results showed that, despite the data 24 

imperfection, the approach was able to select data that yielded an informative model. 25 
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Well-known relationships were identified, and some elements of new or controversial 26 

knowledge were discussed. 27 

 Keywords: Fuzzy logic, knowledge imprecision, hidden variables, automatic 28 

learning, data selection, data inconsistency, interaction 29 

Highlights 30 

- Supervised learning is done using imperfect data, knowledge and databases 31 

- A selection procedure based on the k-means algorithm is used to select 32 

consistent data 33 

- Fuzzy inference systems built using automatic learning allow to identify 34 

relationships and interaction between variables 35 

1. Introduction 36 

In modern agriculture, an important issue is to optimize the agricultural 37 

practices according to environmental factors, in order to reach a given yield level and 38 

product quality. Models can be used as support for decision making.  39 

In general, agricultural systems are complex systems; this is the case of vine 40 

growing. Vegetative vine development, called ‘vigor’, takes into account the rhythm 41 

and the intensity of the vine shoot growth (Carbonneau et al., 2007). Empirically, vine 42 

vigor level is well known as being stable over the years (Johnson, 2003; Kazmierski et 43 

al., 2011). It is highly influenced by environmental factors, such as soil or climate, but 44 

can also be modified by agricultural practices (choice of rootstock, inter-row 45 

management, pruning type, among others). Vine vigor is a key parameter to control 46 

the balance between vegetative growth and productivity that influences berry 47 

composition and then wine characteristics (Bramley et al., 2011; Kliewer and 48 

Dokoozlian, 2005).  49 

Some complex mathematical models are available for vine development. 50 

These models work at a very large scale and for contrasting environmental conditions 51 
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(Garcia de Cortazar Atauri, 2007; Valdes-Gomez et al., 2009). Some of them were 52 

designed for decision support with respect to very specific problems as the salinity in 53 

Australia (Walker et al., 2005). Some other models were not validated under various 54 

field conditions (Nendel and Kersebaum, 2004). For complex systems, it is difficult to 55 

design formal mathematical models. An alternative approach consists in deriving 56 

empirical statistical models from experiments. 57 

However, for perennial crops such as vine, full experimental designs to test a 58 

large number of factors in interaction are very difficult to implement. On-going 59 

research consists, in most cases, in experimentally quantifying the impact of one 60 

variable on vine development while the other variables are being fixed e.g. (Bavaresco 61 

et al., 2008). Even if, at vineyard scale, interactions between variables involved in the 62 

agricultural system are empirically observed by winegrowers, these observations are 63 

not sufficient to analyze the functioning of the agronomical system. A special case of 64 

interesting interactions is the simultaneous impact of some environmental factors and 65 

agricultural practices. Some interactions between variables have been highlighted for 66 

vine vigor e.g. interactions between cover cropping and water supply (Celette et al., 67 

2005), or between cover cropping and rootstock (Barbeau et al., 2006; Hatch et al., 68 

2011). To identify these interactions is an important step toward a decision support 69 

system to adapt agricultural practices to the environment. However, vine vigor is 70 

difficult to model from experiments, essentially for two reasons. Firstly, the collected 71 

data are tainted with uncertainty; the features can suffer from imprecision, especially 72 

when they are assessed by human beings. Secondly, the data set is likely to be 73 

incomplete, because the agronomical system has some hidden features that are 74 

unknown or hard to assess. Due to these hidden features, the data base will probably 75 

include conflicting data: similar recorded combinations of input features may have 76 

contradictory output assessment.  77 
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Therefore it is important to include a data selection step in the modeling 78 

approach. In the literature, that step is often implicit and not described. In this paper, a 79 

selection method with explicit criteria is proposed.  80 

Once the data are selected, various learning methods can be used to produce a 81 

model to study interactions between variables. They include artificial intelligence or 82 

statistical techniques. Both can deal with some kinds of data imperfection and both 83 

have been used in environmental modeling (Chen et al., 2008).  84 

Common choices include classical linear models (LM) and decision trees 85 

(DT), or for more recent developments, Bayesian networks (BN). These statistical 86 

models are efficient in a wide range of situations, and often yield a confidence 87 

interval, since they are based on probability theory. However, they may be difficult to 88 

interpret for a human being. For instance it is problematic to give a meaning to a LM 89 

coefficient. DT are easy to interpret, and have proven very useful for discriminant 90 

feature selection but this is not the main objective here. BN can incorporate expert 91 

knowledge and yield a graphical model easy to read, provided the number of nodes is 92 

not too high. They have been used for diagnosis purposes (Sicard et al., 2011). There 93 

are also some clear limitations to BN with respect to the proposed application. It may 94 

be difficult for experts to express their knowledge in terms of probability distributions. 95 

BN also have a limited ability to deal with continuous data, and discretization 96 

assumptions can significantly impact the results. Structure learning of a BN is still an 97 

open challenge, and the learning methods have a high complexity. Furthermore, as all 98 

statistical methods, they require a large amount of data to produce significant results, 99 

which is not always possible to get.  100 

Fuzzy logic and inference systems (FIS) are part of artificial intelligence 101 

techniques. In FIS, fuzzy logic is used as an interface between the linguistic space, the 102 

one of human reasoning, and the space of numerical computation. FIS handle 103 

linguistic concepts, e.g. High or Low, implemented using fuzzy sets. Data imprecision 104 

is taken into account thanks to a progressive transition between the qualitative labels 105 
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used for input or output variables. Fuzzy models are able to represent imprecise or 106 

approximate relationships that are difficult to describe in precise mathematical 107 

models. Historically, FIS were designed from expert knowledge (Mamdani and 108 

Assilian, 1975). This approach is limited to small systems and may give poor accurate 109 

results. Specific learning algorithms for FIS have then been proposed by Guillaume 110 

and Charnomordic (2012a) and by Guillaume and Magdalena (2006). Fuzzy logic 111 

based models are interpretable, under a few restrictions (Guillaume and 112 

Charnomordic, 2011), this being particularly important for decision support (Alonso 113 

and Magdalena, 2011). 114 

 Fuzzy modeling was used in a previous work to predict the vine vigor 115 

imparted by the environment (Coulon-Leroy et al., 2012). The objective of the present 116 

paper is to propose a more ambitious work using fuzzy modeling to study the 117 

interactions between environmental factors, agricultural practices and vine vigor. The 118 

approach pays a particular attention to data selection, which is a critical step in 119 

supervised learning; even it is usually not explicitly dealt with in the literature. It 120 

attempts to make the best of domain expertise and of available field data, though they 121 

are incomplete, in order to design an interpretable model. The interpretability makes it 122 

possible to analyze the system behavior and to evaluate interactions between variables. 123 

2. Material and methods 124 

In this section, we propose to follow five steps: 125 

- to describe the case study  with its input and output variables of (Section 2.1). 126 

- to select data used prior to the automatic learning (Section 2.2) by clustering 127 

(Section 2.1.1), generating  sub-clusters (Section 2.1.2) and selecting 128 

consistent sub-clusters (Section 2.1.3).  129 

- to build the fuzzy model (Section 2.3) by partitioning input variables 130 

according to data and expertise (Section 2.3.1) and generating ‘if-then’ rules 131 

from data (Section 2.3.2). 132 
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- to optimize the fuzzy model and to evaluate the system performance (Section 133 

2.4). 134 

- to analyze the optimized system and the interaction between variables (Section 135 

2.5). 136 

The overall procedure is summarized in Figure 1. The multidimensional data 137 

are denoted by (x1,x2…xp, y) where xi (i=1, …,p) are the input variables, and y is the 138 

output variable. In the following, the output variable is a categorical variable with a 139 

given number of ordered levels. 140 

 141 

Figure 1: Overall procedure.  142 

All of the developments described in the present works are accessible using 143 

the R software (R Development Core Team, 2008) and the FisPro toolbox (Guillaume 144 

and Charnomordic, 2012a). R1 is a free software environment for statistical computing 145 

and graphics. FisPro2 is an open source software that corresponds to ten years of 146 

research and software development on the theme of learning interpretable fuzzy 147 

inference systems from data. It has been used in the fields of agriculture and 148 

                                                 
1 http://www.r-project.org 
2 http://www7.inra.fr/mia/M/fispro/ 
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environment (Colin et al., 2011; Coulon-Leroy et al., 2012; Rajaram and Das, 2010; 149 

Tremblay et al., 2010). 150 

 2.1 Case description  151 

The case study is located in the middle Loire Valley, on the Saumur vineyard, 152 

in France. It includes 152 vine plots of a cooperative of winegrowers. Their 153 

localization and the soil and sub-soil characteristics are known. The winegrower’ 154 

practices were surveyed. 155 

Some practices are controlled by Protected Designation of Origin (PDO, the 156 

French “Appellation d'Origine Contrôlée”) Saumur. Thus, some of the practices that 157 

influence vine vigor e.g. planting density (Carbonneau et al., 2007; Morlat et al., 1984; 158 

Murisier, 2007) are not taken into consideration in this study because they are 159 

homogeneous over the whole studied area according to the ‘Saumur PDO’.  160 

The main grape variety is: Vitis vinifera cultivar ‘Cabernet franc’, planted in 161 

all studied vine plots. 162 

In the studied area, the vine vigor is influenced by soil factors and by two 163 

main agricultural practices: rootstock choice and inter-row management. These 164 

influential factors are the input of the system. 165 

2.1.1 Input variables 166 

There are three input variables corresponding to the three influential factors: 167 

i. Vine vigor imparted by soil (VIG_S). An indicator of the vigor imparted by 168 

soil factors to the vine was previously built (Coulon-Leroy et al., 2012). VIG_S is a 169 

continuous variable varying between 1 (low imparted vigor) and 3 (high imparted 170 

vigor).  171 

ii. Vigor conferred by rootstock (VIG_R). Vine is grafted on a rootstock e.g. 172 

the 3309C to fight against the attack of an insect called Phylloxera vastatrix. The 173 

rootstock, at the interface between soil and vine variety, interacts with the variety to 174 
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modify the development of the whole plant (Ollat et al., 2003). For each rootstock, 175 

vigor level was determined from the literature (Galet, 1979; Institut Français de la 176 

Vigne et du Vin et al., 2007).VIG_R is a discrete variable with five values (1 - very 177 

low; 1.5 - low; 2 - medium; 2.5 - high and 3 - very high vigor, as mentioned Table 1). 178 

Table 1: Level of vine vigor imparted to the vine variety by the rootstock (Galet, 1979, 179 
Institut Français de la Vigne et du Vin, 2007). 180 

VIG_R value 
Vine vigor 
conferred 

Rootstocks 

1 Very Low Riparia, 420A-MG, 44-53M 
1.5 Low 101-14, 333EM 
2 Medium 3309C, Gravesac, Fercal, 420A, 8BB, 161-49,  RSB1 

2.5 High SO4, 5BB, 41B 
3 Very High Rupestris, 1103P, 110R, 99R, 140Ru, 196-17 

 181 

iii. The inter-row management constraint on vine vigor (VIG_C). A grass 182 

cover is introduced in the inter-rows of vineyards to limit runoff and soil erosion 183 

however it also limits vine vegetative development of the vine on account of 184 

competitions for soil water and nitrogen (Celette et al., 2009). VIG_C is a discrete 185 

variable with 10 values (between 0 - no constraint and 3 - high constraint). Values of 186 

constraints were obtained by crossing the constraint imparted by the cover crop variety 187 

and the cover crop area (Table 2). The constraint imparted by the cover crop variety 188 

was determined thanks to technical reports of advisory services. The cover crop area 189 

was measured for each vine plot of the studied area. Under a cover of 10%, the surface 190 

was considered by the technicians as Low, and over 30% as High.  191 

Table 2: Level of inter-row crop constraint on vine vigor (VIG_C). 192 
 Cover crop area 
 Low Intermediate High 

Constraint 
imparted by 

the cover crop 
variety  

Very low 1 1.5 2 
Low 1.25 1.75 2.25 

Intermediate 1.5 2 2.5 
High 1.75 2.25 2.75 

Very high 2 2.5 3 

2.1.2 Output variable 193 

The vigor evaluation (named VIG_OBS) linked to the shoot growth and leaf 194 

areas observed on vine plots was used as reference output data to evaluate the 195 
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interactions between environmental factors, agricultural practices and vine growth. A 196 

wide range of direct or indirect, destructive or undestructive methods to assess vine 197 

vigor exists (Tregoat et al., 2001). Among them, some are based on measurements 198 

such as pruning wood weights or leaf areas. However, remote sensing is the most 199 

widely used technique to evaluate vine vigor in precision viticulture. Various 200 

indicators, e.g. the Normalized Difference Vegetation Index (NDVI), are based on leaf 201 

reflectance. High-resolution images and specific algorithms are necessary to 202 

discriminate pixels result from a mix of vine leaf area, inter-row soil, grass and even 203 

shadows (Homayouni et al., 2008; Santesteban et al., 2013). Expert evaluation can 204 

also be used (Carey et al., 2007; Morlat and Lebon, 1992). In that case, the assessment 205 

is performed in ‘three-dimensions’.  206 

It appears that expert evaluation is often the only way to make complex 207 

assessments, and it is currently used to characterize the sensory properties of an 208 

agricultural product. Sensory data are likely to show inconsistency when judges are 209 

untrained (Lesschaeve, 2003). This is the case in vine vigor evaluation.  However, we 210 

chose to use expert evaluation. The main reason was that distinct inter-row crop 211 

management strategies made NDVI value not comparable over the study area 212 

(Homayouni et al., 2008).  The vine vigor was assessed in 2011 by a skilled technician 213 

employed by the Saumur wine cooperative (VIG_OBS). Vine vigor is a discrete 214 

variable labeled using four ordered levels (1 - very low; 2 – low; 3 - high and 4 - very 215 

high). This expert evaluation was used as output training data to build the model.  216 

2.2 Selecting data prior to learning 217 

Classical data cleaning includes feature selection, which was done as 218 

described above, by keeping the main influential input variables, according to 219 

expertise, literature and field availability. When dealing with complex systems in 220 

agronomy, another step may be required. For instance, the soil plant interaction cannot 221 

be reduced to a few scalars; other hidden influential variables, that are not usually 222 
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recorded yet, contribute to explain output variations. That is likely to generate 223 

inconsistencies in the data base. So data items need also to be selected, as pointed out 224 

by Taskin (2009) about classification image, even if, in many applications, the quality 225 

of the learning data is not questioned and the dataset is directly employed in the 226 

learning stage. The R software (R Development Core Team, 2008) was used for these 227 

developments.  228 

2.2.1 Data clustering 229 

Many clustering techniques could be considered: k-means, fuzzy c-means or 230 

hierarchical clustering. We opted for the k-means (Hartigan and Wong, 1979; 231 

MacQueen, 1967) clustering method for the following reasons. It is a simple and 232 

efficient method, with only one parameter: the number of clusters. By contrast, 233 

hierarchical clustering requires the choice of the agglomeration method and the 234 

dendrogram analysis to determine the suitable number of clusters. Fuzzy c-means, 235 

which is the fuzzy generalization of the k-means algorithm, was considered, but 236 

rejected. In fuzzy c-means, each item is assigned a membership degree to each cluster 237 

elements. The membership degree would be responsible for a higher complexity, and 238 

difficult to take into account in the next steps. So the k-means clustering was carried 239 

out on all of the features: input and output variables.  240 

It is well known that the k-means algorithm is highly sensitive to the initial 241 

clustering centers, which are randomly chosen, so the k-means algorithm was run 10 242 

times. Then 10 different partitions of 10 clusters were obtained.  243 

2.2.2 Sub-cluster generation 244 

Because of the random choice of the initial cluster centers, the cluster 245 

composition was likely to change from one run to another. The aim of the second step 246 

was to select sub-clusters with the same composition over a given number of runs.  To 247 

ensure group robustness, we focused on items which had been assigned together in a 248 
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common cluster at least 7 times over the 10 runs. This way, different sets of stable 249 

sub-clusters were obtained, denoted by S10 (10 times over the 10 runs), S9 (9 times 250 

over the 10 runs), S8 (8 times over the 10 runs), and S7 (7 times over the 10 runs). 251 

2.2.3 Consistent sub-cluster selection 252 

For each of the Si sets, a final selection step was applied in order to use 253 

consistent and representative data at the learning step. Only clusters for which the 254 

output variance was less than a given threshold, set according to expertise, were 255 

chosen. In our case study, as the number of output levels was small (4 levels), the 256 

output variance threshold was set to zero. Therefore, each cluster included items with 257 

“similar” input values and the same output label. Then, the clusters were ordered 258 

according to their output level. To get a learning set that best represented the whole 259 

data; the most populated clusters of each output level were selected. 260 

The result is a data set, Di, for each set Si. Among all these data sets, the one 261 

with the highest cardinality was selected for learning the fuzzy model. 262 

2.3 Fuzzy modeling 263 

Fuzzy inference systems were chosen as they provide a modeling framework, 264 

able to combine expertise and data. The inference engine is a set of rules whose 265 

premises use linguistic terms. Each of these linguistic terms was implemented as a 266 

fuzzy set in the numerical space. The fuzzy system design involved two different 267 

steps:  first the input variable partitioning and then the rule generation. Next the fuzzy 268 

inference system was optimized. Variable partitioning only involved the feature data 269 

distribution, without considering any further use. This way the same fuzzy partition 270 

can be used with several rule induction algorithms. Fuzzy partitions and fuzzy rules 271 

define the FIS structure. Model optimization, introduced in Section 2.4, aimed to tune 272 

FIS parameters, membership function location and rule conclusion, while preserving 273 

both system structure and semantics.  274 
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Let us now detail steps 2: partitioning of input variables, and 3: rule structure 275 

generation, of the approach summarized in Figure 1. 276 

2.3.1 Partitioning of input variables 277 

A fuzzy set is defined by its membership function (MF). A point in the 278 

universe, x, belongs to a fuzzy set with a membership degree, 0 ≤ µ(x) ≤ 1. If H is a 279 

fuzzy set representing High vigor levels, the membership degree of a given vigor 280 

value, x, µH(x), can be interpreted as the level up to which the x vigor level should be 281 

considered as High. Several fuzzy sets, e.g. Low, Medium and High, can be defined in 282 

the same universe, as illustrated in Figure 2.  283 

 284 

Figure 2: Example of three fuzzy sets defined in the same universe. They define a fuzzy 285 
partition of the variable. ‘x’: a point of the universe, µM(x): the membership degree in the 286 
‘Medium’ membership function, µH(x): the membership degree in the ‘High’ membership 287 
function. 288 

As fuzzy sets usually overlap, a data point is likely to belong to more than one 289 

fuzzy set. In the partition shown in Figure 2, the value x belongs to the fuzzy sets 290 

Medium and High with the corresponding membership degrees µM(x) and µH(x). 291 

Moreover, for each point in the universe, the sum of the membership degrees to all the 292 

fuzzy sets of this kind of partition is equal to one. These so called “strong fuzzy 293 

partitions” have good properties regarding semantics. They allow managing the 294 

progressiveness of the phenomenon as well as a smooth transition between categories. 295 

Working with the membership degrees in the different linguistic concepts, instead of 296 
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the raw data values, reduces the system sensitivity to raw data variation. This is a 297 

convenient and meaningful way to tackle biological variability.  298 

Discrete variables can also be considered under the condition that their values 299 

are ordered and have a progressive semantic meaning.  300 

The process of partitioning comes to choose the number of fuzzy sets and the 301 

corresponding characteristic points (C1, C2 and C3 in Figure 2).  302 

The number of fuzzy sets was determined by expertise, in order to have a 303 

number of concepts corresponding to the usual expert vocabulary. VIG_S and VIG_C 304 

were partitioned into three fuzzy sets corresponding to the usual terms ‘Low’, 305 

‘Medium’ and ‘High’, used by domain experts and technicians. The discrete variable, 306 

VIG_R, was described by five ordered values (Very Low, Low, Medium, High and 307 

Very High), corresponding to the rootstock imparted potential vigor as indicated in 308 

Table 1 (the ‘Very Low’ label is not represented in the dataset). 309 

The characteristic points of continuous inputs were not so easy to determine 310 

only by expertise so mathematical algorithms were be used. We run the 311 

monodimensional k-means algorithm on the input data, independently for each 312 

variable, and the cluster centers were chosen as characteristic points. More 313 

sophisticated methods, such as hierarchical fuzzy partitioning, available in FisPro, 314 

could be used. Once again, we decided in favor of the k-means, for its simplicity and 315 

efficiency. 316 

Since VIG_S was partitioned into 3 fuzzy sets, VIG_R into 5 and VIG_C into 317 

3, the number of possible rules was 3.5.3=45. However, the rule learning methods did 318 

not generate all of them, as described below. 319 

2.3.2 Rule structure generation 320 

Fuzzy sets are used in a Fuzzy Inference System (FIS) to build linguistic rules. 321 

A fuzzy rule is written as follows: 322 

If X 1 is A1
r and X2 is A2

r … and Xp is Ap
r then Y is Cr 323 
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where Ak
r is the fuzzy set of the kth input variable used within the rth rule, and 324 

Cr is the rule conclusion. 325 

The truth degree of the fuzzy proposition X1 is A1
r is given, for a sample xi 326 

whose value for the X1 variable is x1,by the membership degree of x1 in A1
r , µAr

1(x1) . 327 

All the partial degrees in the conditional part of the rule are combined using an 328 

operator, called a t-norm, which generalizes the logical AND operator: 329 

Wr(xi)= µAr
1(x1) ^ µAr

2(x2) ^ . . . ^ µAr
p(xi

p) 330 

where ^ is the t-norm. The most common t-norms are the minimum and the 331 

product. 332 

Wr(xi) is called the matching degree of rule r for the ith sample.  333 

The rule conclusion can be either fuzzy, Mamdani type FIS (Mamdani and 334 

Assilian, 1975), or crisp. When the output is crisp, and the rule conclusion is reduced 335 

to scalar, the type of system is referred to as a zero-order Sugeno FIS (Takagi and 336 

Sugeno, 1985) which is equivalent to a Mamdani FIS (Glorennec, 1999). 337 

In the following, the system is a zero-order Sugeno FIS and the t-norm is the 338 

minimum. 339 

Thanks to the fuzzy set overlap, a given input is likely to fire several rules 340 

simultaneously. Consequently, all these rules will be involved in the system inference 341 

and the rule conclusions will be aggregated to give the final output. The Sugeno rule 342 

aggregation is performed using a weighted sum of the rule conclusions, the weights 343 

being the respective rule matching degrees (Equation 1). 344 
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Where ˆiy   is the final output value, n the number of rules, Wr (xi) the rth rule 346 

matching degree and Cr the rth rule conclusion. That way, the output is continuous. 347 
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Many rule generation methods are available in the literature. Four of them, tuned 348 

to yield interpretable results, are implemented in FisPro: Fuzzy Decision Trees (FDT), 349 

a procedure proposed by Wang and Mendel (1992) (WM), Fuzzy Orthogonal Last 350 

Squares (F-OLS) and the Fast Prototyping Algorithm (FPA). Let us give a quick 351 

summary of them.  352 

FDT are an extension of classical decision trees, starting from a root node 353 

including all data set items, FDT use a recursive procedure to split each node into Mj 354 

child nodes, where Mj is the number of fuzzy sets in the jth input variable partition 355 

selected for the split. For each node, the algorithm selects the variable according to a 356 

discriminant criterion, based on entropy or variance. The FDT implementation in 357 

FisPro is based on Weber (1992).  358 

In its FisPro implementation, WM is not very different from FPA, The main 359 

difference stems from the way the rules are initialized. With FPA, they are calculated 360 

using a subset of examples, whereas WM only takes into account a single item. 361 

F-OLS is inspired from linear regression model fitting. The algorithm maps the input 362 

variables into a transformed linear space, and ranks the induced rules by decreasing 363 

order of explained output variance. 364 

The Fast Prototyping Algorithm (Glorennec, 1999) consists of generating the rules 365 

that, among all possible combinations of antecedents, satisfy the two following 366 

criteria: (i) the rule matching degree is higher than a given threshold for (ii) at least a 367 

given number of data items. 368 

FPA has the advantage of providing a summarized but fair view of the dataset. It is 369 

less sensitive to outliers than FDT and F-OLS. WM has a rough management of 370 

conflicts, which is not adequate here. For those reasons, we decided to use FPA as a 371 

rule generation method. Let us give some more details about it. 372 

Using FPA, in a first step, the rules corresponding to the input combinations are 373 

generated, only if there are corresponding data in the data set. In a second step their 374 

conclusions are initialized according to the data values as given by the Equation 2.   375 
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Where Wr (xi) is the matching degree of the ith example for the rth rule, and Er 377 

is a subset of examples chosen according to their matching degree to the rule. Cr is the 378 

rth rule conclusion. 379 

If there are not enough items that fire the r th rule with a degree higher than the 380 

user defined threshold, the rule is not kept. Thus, FPA yields a subset of all the 381 

possible rules. We set the threshold to a membership degree of 0.2, and the minimum 382 

cardinality of Er to 1. In order to carry a complete analysis, we did not exclude rules 383 

that only correspond to a few examples, as the sample has been carefully selected.  384 

2.4 Fuzzy model optimization and system performance evaluation 385 

The FIS accuracy can be improved using an optimization sequence without 386 

losing the system interpretability (Casillas et al., 2003; Evsukoff et al., 2009). As 387 

partition parameters and rules have been generated separately, it is interesting to run 388 

an optimization procedure of the model as a whole. The optimization algorithm used 389 

in this work has been proposed in Guillaume and Charnomordic (2012a). It is adapted 390 

from Glorennec (1999) and based upon the work of Solis and Wets (1981). It allows 391 

optimizing all of the FIS parameters: input or output partitions and rule conclusions.  392 

The input variables were optimized each in turn, the order depending on the 393 

variable importance. To assess that importance, the variables were ranked according to 394 

a fuzzy decision tree.  395 

The selected data set was split into a learning set (70% of the vine plots) and a 396 

test set (30% of the vine plots). Ten pairs of learning and test sets were randomly 397 

created, taking into account the output distribution levels. The optimization procedure 398 

yielded as many FIS as training test pairs. Then a median FIS was computed, resulting 399 

of the combination of the ten optimized FIS; the various optimized parameters were 400 
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replaced by their median value, which is statistically more robust than the mean 401 

(Guillaume and Charnomordic, 2012b). 402 

The optimization procedure was guided by the root mean square error 403 

(RMSE) index, given in Equation 3 , and the R-squared (R2), given in Equation 4.  404 

(3) 
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i i
i

RMSE y y
N =

= −∑   405 

where ˆiy  is the inferred value for the ith item, yi its observed value and N the 406 

number of items. 407 

The R squared (R²), defined in Equation 4, was used to characterize the 408 

system accuracy. 409 
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 410 

where y is the average of observed values.  411 

The optimization process does not change the system structure; the number of 412 

MFs remains the same for all the variables as well as the rule premise structure. Only 413 

the MF parameters and the rule conclusions are modified. This allows the semantic 414 

properties of the initial model to be preserved while the model accuracy is improved. 415 

The fuzzy characteristics points and the rule conclusions were compared 416 

before and after optimization. 417 

2.5 Optimized system analysis 418 

Due to the linguistic reasoning, the system behavior can be analyzed through 419 

the study of input-output relationships. Ideally, some well-known relationships should 420 

be found as they have been identified in the literature, and some others should appear 421 

and raise questions about the empirical or scientific knowledge. Their analysis may 422 

yield interesting information about variable interactions (Delgado et al., 2009). 423 
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Finally, the optimized system was tested on the items that were part of the 424 

initial data set, but did not belong to the learning data set. A classical validation 425 

procedure was not reasonable, due to the presence of conflicting data in the initial data 426 

set. Let us note that these conflicts arise from the complexity of the phenomena, and 427 

that we only have a partial view of the studied system. The main features were 428 

recorded, but some auxiliary ones were not. 429 

Therefore the test procedure had for main objective to check which cases were 430 

consistent with the system and to focus on the reasons behind the inconsistent cases. 431 

The expected outcome was some complementary knowledge on the agricultural 432 

system behavior. 433 

3. Results and discussion 434 

We now present the results of the approach, applied to the case study 435 

described in Section 2.1. The various steps detailed in Sections 2.2, 2.3 and 2.4 are 436 

illustrated, each in turn. 437 

3.1 Selection of learning data 438 

Our objective was to select consistent data in order to learn coherent input 439 

output relationships, using the procedure described in Section 2.2, with a three-step 440 

selection scheme based on the k-means clustering. 441 

3.1.1 k-means clustering 442 

The cluster cardinalities ranged from 4 to 32 and the cluster composition 443 

varied from one run to another. This experimentally confirmed the necessity to repeat 444 

the k-means clustering. As an example, let us analyze the results shown in Table 3, 445 

where the 19 reported vine plots have the same values of VIG_C and VIG_OBS. We 446 

focus on the 8 plots that were in cluster #1 or #6. The vine plots 320-24, 372-6, 436-40 447 

and 45-19 were together in the same cluster over the ten runs (cluster #1). The same 448 

phenomenon occurred for another set of vine plots: 339-27 and 406-8 (cluster #1 or 449 
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#6). But for run 7, 339-27 and 406-8 were in the cluster #6 with plots 339-22 and 339-450 

23 that were in cluster #2 over the other runs. Therefore all these 8 plots are in S9 (the 451 

selection of sub-clusters with the same composition over 9 runs), but only the 4 plots 452 

320-24; 372-6, 436-40 and 45-19 are in S10. 453 

Table 3: Some clustering results. VIG_S: vine vigor imparted by soil. VIG_R: vine vigor 454 
conferred by the rootstock, the level of inter-row management constraint on vine vigor 455 
(VIG_C) is here equal to 2.25 and the observed vine vigor (VIG_OBS) equal to 4 for all of 456 
the 19 vine plots; k-means were run 10 times, the Run i column gives the cluster 457 
assignment for each row and the ith run. 458 

Vine 
plot 

VIG_S VIG_R 
Run 

1 
Run 

2 
Run 

3 
Run

4 
Run 

5 
Run

6 
Run

7 
Run

8 
Run

9 
Run 
10 

320-24 2.75 2 1 1 1 1 1 1 1 1 1 1 

323-14 1.471 2 2 2 2 2 2 2 5 2 2 2 

339-16 2.228 2.5 3 3 3 3 3 3 3 3 3 3 

339-22 1.699 2 2 2 2 2 2 2 6 2 2 2 

339-23 1.753 2 2 2 2 2 2 2 6 2 2 2 

339-27 2.147 2 1 1 1 1 1 1 6 1 1 1 

372-6 2.809 2 1 1 1 1 1 1 1 1 1 1 

403-18 1.734 2.5 4 3 4 4 4 4 3 4 3 4 

406-52 1.5 2.5 4 4 4 4 4 4 3 4 4 4 

406-8 2.216 2 1 1 1 1 1 1 6 1 1 1 

426-25 1.457 2 2 2 2 2 2 2 5 2 2 2 

433-7 1.214 2.5 4 4 4 4 4 2 5 4 4 4 

436-40 2.787 2 1 1 1 1 1 1 1 1 1 1 

45-19 2.543 2 1 1 1 1 1 1 1 1 1 1 

476-8 1 2 2 2 2 2 2 2 5 2 2 2 

485-9 1.932 3 3 7 3 3 3 3 3 3 3 3 

510-16 1.229 2 2 2 2 2 2 2 5 2 2 2 

516-42 2 2.5 3 3 3 3 3 3 3 3 3 3 

516-52 1.5 2.5 4 4 4 4 4 3 3 4 4 4 

3.1.2 Sub-cluster generation 459 

Sub-clusters of S7, S8, S9 and S10 were generated according to the results of the 460 

10 k-means runs. The characteristics of the sub-clusters that belong to the S8 (items 461 

which have been assigned a common cluster at least 8 times over 10 runs) set are 462 

given in Table 4, sorted by increasing values of VIG_OBS. S8 included 19 sub-463 

clusters, totaling 148 vine plots, out of 152. Three sub-clusters #3, #8 and #14 are 464 

composed of vine plots with different VIG_OBS levels, as indicated by a non-null 465 

variance. Sub-cluster cardinality ranges from 2 to 16. 466 
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Table 4: Characteristics of sub-clusters obtained by the selection of vine plots that were 467 
together in the same cluster eight times out of the ten k-means runs. VIG_OBS: the 468 
observed vine vigor, VIG_S: vine vigor imparted by soil. VIG_R: vine vigor conferred by 469 
the rootstock and VIG_C: inter-row management constraint on vine vigor. 470 

Sub-
Clusters 

Number of 
vine plots 

Mean 
VIG_OBS 

Variance 
(n) 

VIG_OBS 

Mean 
VIG_S 

Variance 
(n) 

VIG_S 

Mean 
VIG_R 

Variance 
(n) 

VIG_R 

Mean 
VIG_C 

Variance 
(n)  

VIG_C 

# 1 10 1 0 1.4 0.1 2.1 0 2.1 0.1 

# 2 3 1 0 2.8 0 2.5 0 1.92 0.06 

# 3 9 1.8 0.2 2.9 0 1.9 0 2.03 0.12 

# 4 16 2 0 1.8 0 2 0 1.97 0.09 

# 5 8 2 0 1.5 0 2.5 0 1.72 0.1 

# 6 6 2 0 2.4 0.1 2.5 0 1.75 0.08 

# 7 3 2 0 2.3 0 2 0 1.58 0.06 

# 8 7 2.7 0.2 2.5 0.1 2.1 0.1 0 0 

# 9 10 3 0 2.5 0.1 2.5 0 1.9 0.07 

# 10 7 3 0 1.5 0.1 2.5 0 1.71 0.15 

# 11 6 3 0 1.4 0.1 2 0 1.92 0.06 

# 12 3 3 0 2.1 0 2 0 1.75 0 

# 13 2 3 0 2.8 0 2 0 2.25 0.25 

# 14 7 3.1 0.4 1.7 0.1 2.4 0.1 0 0 

# 15 14 4 0 2.6 0.1 2 0 1.95 0.18 

# 16 13 4 0 1.4 0 2.6 0 1.83 0.1 

# 17 12 4 0 2.1 0 2.7 0.1 1.88 0.06 

# 18 10 4 0 1.5 0.1 2 0 2.18 0.08 

# 19 2 4 0 2.2 0.2 3 0 1.75 0 

3.1.3 Consistent sub-cluster selection 471 

Data sets were generated from the S7, S8, S9 and S10 clusters. 472 

To illustrate the procedure for the generation of D8 from S8, let us examine 473 

Table 4. Sub-clusters #3, #8 and #14 were discarded because of their non-null 474 

VIG_OBS variance. In order for the selected data to be representative of the initial 475 

data set, the two most populated sub-clusters for each VIG_OBS level were kept. 476 

There was only one remaining sub-cluster for VIG_OBS level 1, this reflecting the 477 

unbalanced VIG_OBS levels. 478 

Some situations i.e. combinations with a rootstock that conferred a very low 479 

vigor, are not represented in the D8 dataset. Only four vine plots had this type of 480 

rootstock in the whole dataset, and all four of them were assigned to sub-cluster #3 481 

(Table 4), which was discarded from the selection, for the reason given above; they 482 

are associated with high values of VIG_S, that corresponding to the choice of the 483 
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rootstock by the winegrowers to comply with the environmental factors. This complex 484 

phenomenon is not integrated in the fuzzy model. 485 

We chose the D8 dataset for fuzzy model learning, because it had the highest 486 

number of vine plots (78), while D10 has 55 plots, D9 has 76 plots and D7 has 75 plots. 487 

The vigor level distributions of the dataset D8 are quite similar to those of the initial 488 

dataset as shown in Figure 3.  489 
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 490 
Figure 3: Vigor level (VIG_S: vine vigor imparted by soil, VIG_R: vigor conferred by the 491 
rootstock and VIG_C: inter-row management constraint on vine vigor) distribution of 492 
the initial dataset (in light grey) and of the selected dataset D8 (in dark grey).  493 

3.2 Initial system design 494 

The initial system was built considering the D8 data set (78 vine plots chosen 495 

to be consistent and representative of the initial data set). The fuzzy set characteristics 496 

points are indicated in Section 3.3 (see in particular Tables 5 and 6). The rule base is 497 

shown in Table 7, and we now give some comments on the rules. 498 

First of all, only 19 rules were generated because some combinations were 499 

absent from the learning data set. No vine plots were planted with a rootstock that 500 

confers either a Very Low or a Very High vine vigor level. Some incoherent 501 

combinations from an agricultural point of view were absent, winegrowers choosing 502 

the agricultural practices according to the environmental factors. These 19 rules 503 

summarize the data using approximate concepts defined by experts. 504 

Rule analysis (Table 7) shows the adaptation or not of the agricultural 505 

practices according to the environmental factors. Each rule is matched by different 506 

vine plots/examples (see Table 7). Some rules are fired by an important number of 507 

Author-produced version of the article published in Computers and Electronics in Agriculture, 2013, 99, 135-145. 
The original publication is available at http://www.sciencedirect.com/science/article/pii/S0168169913002275 
DOI :  10.1016/j.compag.2013.09.010 



22 
 

examples i.e. rules 1, 3 and 4. Other rules are only matched by a single example or a 508 

few, i.e. rules 16, 17 and 19. 509 

In rules 11, 13 and 19, environmental factors imparting a high vigor are 510 

associated to a rootstock that confers a high vigor level. Goulet and Morlat (2010) 511 

already noticed that the practices in the vineyard are sometimes unsuitable because 512 

they have not been well adapted to environmental factors. For example, the authors 513 

indicate that in the vineyard of the Sarthe in Loire Valley (France), 72% of the vine 514 

plots have a too vigorous rootstock since the environmental factors induce already a 515 

very strong vigor. Combinations existing in a vineyard reflect various levels of 516 

practice adaptation according to environmental factors. In the Saumur area, regarding 517 

the number of vine plots that activate rules 11, 13 and 19 (Table 7); the adaptation of 518 

practices seems to be better. 519 

The performance of the initial system is as follows:  RMSE and R² are respectively 520 

equal to 0.67 and 0.62. 521 

3.3 System optimization  522 

The initial FIS built using the dataset D8 was optimized, according to the 523 

learning and test procedure described in Section 2.4.  524 

After optimization, the fuzzy set parameters C2 and C3 of VIG_S were 525 

identical (2.1), so that there was no smooth transition between a Medium level of 526 

VIG_S and a High level (Table 5). The scale of VIG_S varies between 1 and 3, 527 

meaning that the half-scale of VIG_S (values >2.1) is considered as a High vigor 528 

level.  529 

Table 5: Fuzzy parameters of VIG_S before and after optimization. 530 

VIG_S fuzzy 
parameters 

Initial FIS 
Optimized 

FIS 

C1 1.4 1.4 
C2 2.0 2.1 
C3 2.8 2.1 
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Fuzzy characteristic points of VIG_R correspond to the discrete values of 531 

VIG_R: 1.5, 2 and 2.5. VIG_R can take only five values so the optimization is not 532 

relevant. 533 

 Even if VIG_C is a discrete variable, with 16 possible values, as for VIS_S, it 534 

was difficult to determine fuzzy parameters only by expertise. Optimization 535 

procedures led to adjust the fuzzy parameter values of VIG_C (Table 6). 536 

Table 6: Fuzzy parameters of VIG_C before and after optimization. 537 

VIG_C fuzzy 
parameters 

Initial FIS 
Optimized 

FIS 

C1 1.00 1.02 
C2 1.65 1.50 
C3 2.25 2.18 

Rule conclusions are shown in Table 7. Consequents of rules 8 and 9 strongly 538 

decreased after optimization (-1.3 and -1.6 on a [1-4] scale) in contrast with the 539 

consequent of rule 2 that did not much change. For the rules corresponding to a 540 

Medium VIG_S, the rule conclusions systematically decreased after the optimization.  541 

Table 7: Rule conclusions of the three input variables combinations VIG_S, VIG_R and 542 
VIG_C. 543 

 Inputs Values of rule conclusions 
Number of vine plots that 

activate each rule 

Rules VIG_S VIG_R VIG_C 
Initial 
FIS 

Optimized 
FIS 

Initial 
FIS 

Optimized 
FIS 

1 Medium Low High 2.6 2.1 26 28 

2 Low Medium Medium 3.7 4.0 20 14 

3 Low Low High 1.3 1.2 20 38 

4 Low Low Medium 1.2 1.3 20 26 

5 Medium Low Medium 2.5 2.4 26 19 

6 Low Medium High 3.5 3.8 15 15 

7 High Low High 4.0 4.0 13 19 

8 Medium Medium Medium 2.7 1.4 23 10 

9 Medium Medium High 2.7 1.1 17 10 

10 Low Medium Low 2.5 2.2 8 7 

11 High Medium Medium 3.0 2.9 10 7 

12 Medium Medium Low 3.3 3.2 10 6 

13 High Medium High 3.0 2.9 9 9 

14 High Low Medium 4.0 4.0 15 13 

15 Low Low Low 3.2 3.8 3 10 

16 Low High Medium 4.0 3.9 2 2 

17 High Low Low 4.0 3.9 3 3 

18 Medium Low Low 2.7 2.5 3 8 

19 High Medium Low 3.5 4.0 3 1 
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 The optimization procedure managed to improve the system accuracy. Table 544 

8 summarizes the results of optimization runs, comparing the average results of the 545 

initial and the median FIS over the learning and test samples. The median FIS 546 

significantly improved the accuracy over the test samples, with a relative gain of 19% 547 

for the RMSE and 22% for the R2. It will be used in the following. 548 

Table 8: Performance of the system before and after optimization over the test set. 549 
 550 
 FIS RMSE R2 

Learning set 
Initial 0.67 0.64 

Optimized 0.52 0.77 
Relative gain 22% 20% 

Test set 
Initial 0.67 0.60 

Optimized 0.54 0.73 
Relative gain 19% 22% 

 551 

3.4 Identification of relationships by expert analysis of the optimized 552 

system behavior 553 

The model based on the fuzzy inference system, built using the selected data, 554 

has a relatively good accuracy, as discussed in Section 3.3. so its behavior can be 555 

interpreted and validated by the agronomists, according to the objectives stated in 556 

Section 2.5. 557 

Let us discuss the effect of the VIG_C variable. When vine plots have no 558 

intercrop, i.e. no constraint on vine vigor, VIG_C=Low (rules 10, 12, 15, 17, 18 and 559 

19), the estimated vigor is always higher than ‘2’, unlike vine plots with an intercrop 560 

(Table 7). The impact of a grass cover as intercrop on vine is well known in the 561 

literature due to competition for water and nitrogen (Celette et al., 2009).  The same 562 

authors indicated that intercrop reduces vine growth, i.e. the vigor, of the present year 563 

but also of the next years by decreasing grapevine nitrogen reserves. These already 564 

known relationships, interpreted by expertise, confirm the ability of the method to 565 

extract knowledge from a database. 566 
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The study of the impact of rootstock in combination with the other variables 567 

required a detailed analysis. Expert analysis of the system behavior disclosed 568 

unexpected or new relations. 569 

Let us consider non intercropped vine plots (Figure 4(a)), i.e. without 570 

constraint on vine vigor. 571 

When the soil imparts a high vigor level (VIG_S>2.1), the effect of the 572 

rootstock is reduced or even erased. The soil effect is predominant.  We can visualize 573 

these relations in Figure 4.  574 

 575 

Figure 4: Fuzzy inference system output, estimated vine vigor, according to VIG_S (vine 576 
vigor imparted by the soil), VIG_R (vine vigor imparted by the rootstock); (a): 577 
Intercropped vine plots – high constraint of the inter-row management on vine vigor, (b): 578 
Non-intercropped – low constraint. 579 
 580 

The new element brought out by our procedure is to study the combinations of 581 

features, while the expertise is often related to the effect of one feature, independently 582 

from the other ones. 583 

When the soil imparts a Low or Medium vigor level, the rootstock impact is 584 

not as expected. Vine plots with a rootstock that imparts a High vigor (rules 10, 12 and 585 

19) have a lower predicted vigor than vine plots with a rootstock that imparts a low 586 

vigor (rules 15, 17 and 18, Table 7). This is at first sight puzzling. After investigation 587 

together with technicians of the wine cooperative, the following plausible reason for 588 

that contradiction came out. Winegrowers, knowing the potential vigor of their vine 589 

plots, fertilized their plots to compensate for that low potential. In the case of non-590 

intercropped plots, a great quantity of fertilizer became available for the top-soil roots 591 
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of the vine, and that may have increased the vegetative development. This reveals the 592 

potential impact of a variable - the level of soil fertility - not yet taken into account.  593 

Presently this variable is not systematically measured by winegrowers, except at the 594 

time of planting, so it is only available for a few number of vine plots. 595 

Let us now consider plots intercropped with a crop that involves a High 596 

constraint (Figure 4(b)). When the soil imparts a Medium or a Low vigor, the 597 

estimated vigor is coherent with the empirical knowledge: a Low vigor rootstock leads 598 

to a lower vigor; the more the soil imparts a Low vigor, the greater the difference 599 

between rootstocks. As can be seen in Figure 4(b), when the soil imparts a High vigor 600 

level, and for Low vigor rootstock, the system estimates a higher vigor level than 601 

expected. Let us discuss that effect. 602 

Several rootstock varieties impart the same vigor level, nevertheless, in the 603 

studied area, most of the time; a low vigor rootstock corresponds to the 101-14 kind 604 

and a high vigor rootstock to the SO4 kind. Recent works have shown that some 605 

rootstocks are more efficient to extract the soil water content, independently of the 606 

conferred vigor (Marguerit et al., 2011). The adaptation of the 101-14 rootstock to the 607 

humidity is better than the adaptation of the SO4 rootstock. That way, in the case of 608 

soils imparting a high vine vigor level due to high water content, the 101-14 rootstock 609 

could be better adapted and so could lead to higher vine vigor. The rootstock ability to 610 

adapt to soil humidity should also be taken into account in the model. However it has 611 

to be considered in relation with the type of soil and with the climate. 612 

Modeling with linguistic rules allowed the experts to analyze the agricultural 613 

system behavior. Induced rules can be considered as pieces of extracted knowledge, 614 

and well-known relationships were identified that support the validity of the approach, 615 

while unexpected ones were found that led to interesting hypotheses.  616 
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3.5 Running the optimized system on unselected data 617 

We run the optimized system on the 74 (152 – 78) vine plots that were 618 

removed from the learning data set. This is not a test procedure in the classical way, 619 

when the available data set is split into two parts: learning and test. It would have been 620 

interesting to run such a classical validation procedure, had more data been available. 621 

In our case, where data have a lot of inconsistencies, that would have drastically 622 

reduced the representativeness of the model. 623 

 So the unselected data used in this section are not new data. They were not 624 

removed randomly from the initial data set, but after a careful and explicit analysis, 625 

the objective being to learn the model on consistent data. The model generalization 626 

ability cannot be assessed in this way. Nevertheless, some useful information can be 627 

found from these experiments on the unselected data.  628 

First of all, 11 vine plots out of 74 agree with the system, the inferred value 629 

being equal to the observed value.  630 

Then let us analyze some inconsistencies, by focusing on the plots with the 631 

highest differences between inferred and observed vine vigor, whose characteristics 632 

are given in Table 9. 633 

For instance, two vine plots have an inferred vine vigor value equal to 4 and 634 

an observed value equal to 1. The inferred value is explained by the high VIG_S 635 

values (3 and 2.8). We can formulate the hypothesis that hidden variables not taken 636 

into account have an impact on the observed vine vigor. The same remark can be done 637 

for inferred values equal to 1 instead of 4, mainly due to low vigor imparted by soil 638 

factors. Our hypothesis is that soil fertility may explain such results. Winegrowers can 639 

compensate for a low vigor imparted by soil factors, by fertilizing their vine plots. The 640 

algorithms of Coulon-Leroy (2012) do not take into account the soil fertility. 641 

According to the variables taken into account, a high vigor level imparted by soil 642 

factors should be predicted but a mineral deficiency can explain such apparent 643 

inconsistencies. 644 
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Table 9: Values of input variables of 9 vine plots with the highest differences between 645 
inferred and observed vine vigor. VIG_S: vine vigor imparted by soil. VIG_R: vine vigor 646 
conferred by the rootstock and VIG_C: the level of inter-row crop constraint on vine 647 
vigor and VIG_OBS: the observed vine vigor. 648 
 649 

Vine plots VIG_S VIG_R VIG_C VIG_OBS 
Vine vigor 
inferred by 

the FIS 
284-14 3 2 1.75 1 4 
372-24 2.8 2 2.25 1 4 
161-20 1.5 2 2 4 1 
323-14 1.5 2 2.25 4 1 
426-25 1.5 2 2.25 4 1 
433-6 1.2 2 1.75 4 1 
444-24 1.5 2 1.75 4 1 
476-8 1 2 2.25 4 1 
510-16 1.2 2 2.25 4 1 

 Finally, the interpretation of some other prediction errors may be partly due to 650 

uncertainties in expert evaluation, in particular vigor assessment.  651 

4. Conclusion 652 

The modeling approach developed in this work proposed a methodology to 653 

analyze a complex agricultural system, by using available data and knowledge. The 654 

key points in the approach are the use of a selection procedure, to select consistent and 655 

representative data from the data set, and the choice of a Fuzzy Inference System-656 

based model, built using automatic learning and expertise. 657 

In the fields of Agriculture and Environment, it is very difficult, not to 658 

mention naïve and perhaps delusional, to build a full experimental design to study a 659 

complex system, such as vine, because of the many features to test out. Therefore the 660 

observed data are incomplete, and cannot be used as such for learning a model, while 661 

of course the characteristics of the learning dataset have a deep influence on the model 662 

design. Data inconsistency would be likely to result in incoherence in the model, so 663 

we proposed a method to select consistent agricultural data, with the aim to study the 664 

interactions between variables. Both input and output variables were considered in the 665 

selection process.  666 
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An interesting asset of the model built using a fuzzy inference system is its 667 

interpretability, due to the use of linguistic terms. These terms are implemented by 668 

fuzzy sets that avoid the systematic use of crisp thresholds and allow for data 669 

uncertainty management. Results could be interpreted, and their analysis showed deep 670 

interactions between variables, which comforted the hypothesis that a simplistic expert 671 

system based on direct relationships cannot be sufficient.  672 

We considered the main influential input variables for the studied area; other 673 

variables, such as soil fertility, could be added in future work because soil fertility 674 

impact can explain some of the results obtained by the fuzzy inference system that was 675 

built. The future directions could also integrate the impact of fertilization practices.  676 

This work raised some questions about new methodological developments to 677 

deal with the uncertainty of input and output measurements or assessments. 678 

Undergoing work includes the definition of a new index taking into account a fuzzy 679 

target i.e. a fuzzy value of the expert evaluation of the vine vigor.    680 

From the agronomical perspective,  the interest of this kind of work is to lay 681 

down the foundations of a decision support tool aiming to adapt the agricultural 682 

practices to the environment in order to get a given vigor target. The methodology 683 

used in this paper is generic, and has been applied to a French vineyard, in the Saumur 684 

area. A next step consists in testing the method in other vineyards, including rule 685 

analysis and system behavior assessment.  686 
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