
HAL Id: hal-00941248
https://hal.science/hal-00941248v1

Submitted on 10 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Framework to Specify and Verify Real Time
Properties on Critical Systems

Didier Le Botlan, Silvano Dal Zilio, Nouha Abid

To cite this version:
Didier Le Botlan, Silvano Dal Zilio, Nouha Abid. A Formal Framework to Specify and Verify Real
Time Properties on Critical Systems. International Journal of Critical Computer-Based Systems,
2014, 5 (1/2), pp 4-30. �10.1504/IJCCBS.2014.059593�. �hal-00941248�

https://hal.science/hal-00941248v1
https://hal.archives-ouvertes.fr

A Formal Framework to Specify and Verify Real Time

Properties on Critical Systems

Nouha Abid Silvano Dal Zilio Didier Le Botlan

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse

Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

February 10, 2014

Abstract

We propose a verified approach to the formal verification of timed proper-
ties using model-checking techniques. We focus on properties commonly found
during the analysis of reactive systems, expressed using real-time specification
patterns. We use observers in order to transform the verification of these timed
patterns into the verification of simpler LTL formulas. While the use of observers
for model-checking is quite common, our contribution is original in several ways.
First, we define a formal framework to verify that observers are correct and non-
intrusive. Second, we define different classes of observers for each pattern and
use a pragmatic approach in order to select the most efficient candidate in prac-
tice. This approach is implemented in an integrated verification tool chain for
the Fiacre language.

Keywords: Verification, Requirement, Specification, Patterns, Model Checking,
Observers, Real Time Systems, Time Petri Nets, Formal Methods.

1 Introduction

An issue limiting the adoption of model checking technologies by the industry is the dif-
ficulty, for non-experts, to express their requirements using the specification languages
supported by the verification tools. Indeed, there is often a significant gap between
the boilerplates used in requirement statements and the low-level formalisms used by
model checking tools; the latter usually relying on temporal logic. This limitation has
motivated the definition of new languages, methods and tools to specify and verify
properties. Hence, the following questions: “How to express the requirements of a real-
time system?”, “How to check real-time properties?”, “How to verify that the results
obtained after verification are correct (meaningful)?” or to rephrase it, “who checks
that the model checker is correct?”.

Many works have been done in this context, which we can divide into three main
categories: works related (1) to the specification of real time properties; (2) to the
verification of such properties; and (3) to the soundness proof of these verification ap-
proaches.

1

Regarding (1), two categories of works have been proposed to specify properties.
The first category is based on temporal logics. It provides most of the theoretically
well-founded body of works, such as complexity results for different fragments of real-
time temporal logics Henzinger (1998): Temporal logic with clock constraints (TPTL);
Metric Temporal Logic (MTL, MITL); Event Clock Logic; etc. The algebraic nature of
logic-based approaches make them expressive and enable an accurate formal semantics.
However, it may be impossible to express all the necessary requirements inside the same
logic fragment if we ask for an efficient model-checking algorithm (with polynomial time
complexity). For example, Uppaal Behrmann et al. (2004) choose a restricted fragment
of TCTL with clock variables, while Kronos provides a more expressive framework, but
at the cost of a much higher complexity. As a consequence, this approach requires dif-
ferent model-checkers for each interesting fragment of these logics—and a way to choose
the right tool for every requirement—which may be impractical. The second category
is based on specification patterns. Patterns propose a user-friendly syntax which fa-
cilitates their adoption by non-experts. However, in the real-time case, most of these
approaches lack in theory or use inappropriate definitions. One of our goal is to re-
verse this situation. In the seminal work of Dwyer et al. (1999), patterns are defined
by translation to formal frameworks, such as LTL and CTL. There is no need to pro-
vide a verification approach, in this case, since efficient model-checkers are available for
these logics. This work on patterns has been extended to the real-time case. For exam-
ple, Konrad & Cheng (2005) extends the patterns language with time constraints and
give a mapping from timed pattern to TCTL and MTL, but they do not study the de-
cidability of the verification method (the implementability of their approach). Another
related work is Gruhn & Laue (2006), where the authors define observers based on
Timed Automata for each pattern. However, they lack a formal framework for proving
the correctness or the innocuousness of their observers and have not integrated their
approach inside a model-checking tool chain.

Concerning verification by means of observers (2), Aceto et al. (2003, 1998) use
test automata to check safety and bounded liveness properties of reactive systems. A
similar approach has been experimented by Toussaint et al. (1997) on Time Petri Nets,
but they propose a less general model for observers and consider only two verification
techniques over four kinds of time constraints. Bayse et al. (2005) propose a formal
method to verify the correctness of their approach, however, they do not prove all their
invariants (patterns in our case).

Few works consider the verification of model-checking tools (3). Indeed, most of the
existing approaches focus on the verification of the model-checking algorithm, rather
than on the verification of the tool itself. For example, using the Isabelle theorem
prover, Schimpf et al. (2009) introduce a proved algorithm for generating Bchi au-
tomata from a LTL formula. This algorithm is at the heart of many LTL model-
checker based on an automata-theoretic approach. The issue of verifying verification
tools also appears in conjunction with certification issues. In particular, many certifica-
tion norms, such as the DO-178B, requires that any tool used for the development of a
critical equipment be qualified at the same level of criticality than the equipment. (Of
course, certification does not necessarily mean formal proof!) For instance, consider the
certification of the SCADE compiler Esterel Technologies (n.d.), a tool-suite based on
the synchronous language Lustre that integrates a model-checking engine. Nonetheless,
only the code-generation part of the compiler is certified and not the verification part.

2

A main motivation for the work performed in this paper is to fill some of the gaps
left by the existing solutions. Our goal is to develop a complete framework to specify
and verify properties in the context of real time critical systems, that is, where the
correctness of the system depends upon timing constraints, such as the “timeliness”
of some interactions. For the implementation part of this study, we have worked with
Fiacre, Berthomieu et al. (2008)—a formal language for the specification of real time
systems developed in our team—and the Tina toolbox, Berthomieu et al. (2004), a
model-checker for Timed Petri Nets and their extensions.

In this paper, we propose a complete framework that includes: the definition of
timed patterns; an approach for checking timed properties; and methods for proving
the correctness of this verification scheme. This article is an extension of the workshop
article by Abid et al. (2012), providing more detailed material (use cases, patterns,
observers), and simplifying the formal treatment thanks to a new definition of timed
traces, as was suggested by former reviewers.

Contributions Our first contribution to the specification of requirements is the def-
inition of real time patterns that can be viewed as a real time extension of patterns
formerly defined by Dwyer et al. (1999). (A recent study by Bianculli et al. (2012) has
shown that Dywer’s patterns are the most used in practice in industry and academia.)
As an alternative to timed extensions of temporal logic, we propose patterns designed to
express general timing constraints commonly found in the analysis of real time systems
(such as compliance to deadlines; event duration; bounds on the worst-case traversal
time; etc.). They are also designed to be simple in terms of both clarity and com-
putational complexity. In particular, each pattern should correspond to a decidable
model-checking problem. We believe that this approach may ease the task of system
engineers that are not well trained for the use of formal verification techniques.

When compared with temporal logics, our catalog of real time patterns is less ex-
pressive, but suffices to express most common requirements. Indeed, in the case of un-
timed patterns, Dwyer shows through a study of 500 specification examples that 80% of
the temporal requirements can be covered by a small number of patterns. Moreover, we
are able to implement an automatic verification method, using a less complex algorithm
and with an overall better runtime and space complexity than with a model-checker for
a “full-fledged” timed temporal logic.

Our second contribution is a verification method for checking timed patterns on
real-time models. By grafting observers to these models, we simplify the verification of
timed patterns into the verification of simple LTL formula. While the use of observers
for model checking is quite common, our contribution is original in one way. Indeed,
we define different classes of observers for each pattern and use a pragmatic approach
in order to select the most efficient candidate in practice, in terms of verification time
and system size growth.

Our third contribution is the definition of a formal framework to verify that our
observers are sound and non-intrusive, meaning that they compute the correct answer
and have no impact on the system under observation. The formal framework we have
defined is not only useful for proving the validity of formal results but also for checking
the soundness of optimisations in the implementation. We use this theoretical proof
method for checking the correctness of our best “candidates”.

3

Outline The formal framework used to prove the correctness of the verification ap-
proach is introduced in Section 2. Section 3 contains our catalogue of real time patterns,
while Section 4 deals with our verification scheme. Section 5 details the observers we
use to check our patterns. Before concluding, we present some use cases in Section 6.

2 Formal framework

This section introduces the formal foundations we rely on to provide a sound semantics
to patterns, and to sustain our verification approach. We are based on an extension
of Time Petri Nets (TPN), Merlin (1974), with shared variables and priorities, called
Time Transition Systems (TTS) (Def. 2). The behaviour of a Time Transition System
is abstracted as a set of traces, called Timed Traces (Def.3).

2.1 Time Transition Systems

Time Transition Systems (TTS) is an internal format used in our model-checking tool.
It is the output of the Fiacre compiler, Berthomieu (2012).

p0

click

p1 [1; 1]

τ

p2

double

pre: dbl == true

act: dbl := false

click

act: dbl := true

single

act: dbl := false

pre: dbl == false

Figure 1: A double-click example in
TTS

Informal Definition We introduce TTS
models thanks to a graphical syntax, as
shown in Fig. 1. Ignoring at first side con-
ditions and side effects (the pre and act ex-
pressions inside dotted rectangles), the TTS
in Fig. 1 can be viewed as a TPN with one
token in place p0 as its initial marking. From
this “state”, a click transition may occur and
move the token from p0 to p1. With this
marking, the internal transition τ is enabled
and will fire after exactly one unit of time,
since the token in p1 is not consumed by any
other transition. Meanwhile, the transition
labeled click may fire one or more times with-
out removing the token from p1, as indicated
by the read arc (the one with a black dot). After exactly one unit of time, because of
the priority arc (a dashed arrow between transitions), the click transition is disabled
until the token moves from p1 to p2.

Data is managed within the act and pre expressions that may be associated to each
transition. These expressions may refer to a fixed set of variables that form the store
of the TTS. Assume t is a transition with guards act t and pre t. In comparison with a
TPN, a transition t in a TTS is enabled if there is both: (1) enough tokens in the places
of its pre-condition; and (2) the predicate pre t is true. With respect to the firing of t,
the main difference is that we modify the store by executing the action guard act t. For
example, when the token reaches the place p2 in the TTS of Fig. 1, we use the value of
the variable dbl to test whether we should signal a double click or not.

4

Formal Definition Since the TTS model is an extension of TPN, we first present a
formal definition of the latter. Labeled Time Petri Nets (or TPN) extends Time Petri
Nets, Merlin (1974), with an action alphabet and a function labelling the transitions
with those actions.

Notation : Let I+ be the set of nonempty real intervals with non negative rational
endpoints. For i ∈ I+ , the symbol ↓i denotes the left end-point of the interval i and
↑i its right end-point, if i is bounded, or ∞ otherwise. We use N to denote the set of
non negative integers.

Definition 1 A labeled Time Petri Net (or TPN) is a 8-tuple (P, T,B, F,M0, Is,L, L),
in which:

◦ P is a finite set of places pi ;

◦ T is a finite set of transitions ti ;

◦ B is the backward incidence function B : T → P → N ;

◦ F is the forward incidence function F : T → P → N ;

◦ M0 is the initial marking function M0 : P → N ;

◦ Is is a function called the static interval function Is : T → I+

Is associates a temporal interval Is(t) ∈ I+ with every transition of the system.
Assuming that a transition t became enabled at time τ , then t cannot fire before
(τ + ↓Is(t)) and no later than (τ + ↑Is(t)) unless disabled by firing some other
transition.

◦ L is a finite set of actions, or labels, not containing the silent action ε;

◦ L : T → L∪ {ε} is a transition labelling function.

A marking is a function M : P → N that records the current (dynamic) value of
the places in the net, as transitions are fired. The transition t ∈ T is enabled by M iff
M > B(t). The dynamic interval function I : T → I+ is a mapping from transitions
to time intervals. It is used to record the current timing constraints associated to each
transition, as time passes. A state of the TPN is a pair (M, I). Its initial state is
(M0, Is).

In the state (M, I), a transition t can fire iff t is enabled at M and instantly fireable,
that is 0 ∈ I(t). In the target state, the transitions that remained enabled while t is
fired (t excluded) keep their time interval, the intervals of the others (newly enabled)
transitions are set to their respective static intervals. Together with those “discrete”
transitions, a Time Petri Nets adds the ability to model the flowing of time. A contin-
uous transition of amount d (i.e. taking d time units) is possible iff d is less than ↑I(t)
for all enabled transitions t.

The definition of TTS is a natural extension of TPN that takes variables and prior-
ities into account. We present, next, a definition of TTS based on Definition. 1.

The main difference lies, on the one hand, in the priority relation on transitions,
and, on the other hand, in the fact that each transition has preconditions and postcon-
ditions, interpreted relatively to a store.

Definition 2 (Time Transition Systems) A Time Transition Systems (or TTS) is a
10-tuple (P, T,B, F,M0, Is,L, L, S,<) where:

5

◦ (P, T,B, F,M0, Is,L, L) is a labeled Time Petri Net.

◦ S is a set of stores si. s0 is the initial store. To each store s, we associate a
partial function fs : T → S, whose domain contains only the transitions whose
preconditions are satisfied by s, and such that fs(t) is the store s updated by post-
conditions of t.

◦ < is a binary, transitive relation over T which encodes the (static) priority relation
between transitions;

The transition t ∈ T is enabled by a marking M and a store s ∈ S iff M > B(t) and
fs(t) is defined. A transition is time-enabled if it is enabled and 0 ∈ I(t). It is fireable
if it is time-enabled and there is no time-enabled transition t′ that has priority over t
(that is t < t′). In the target state, time intervals and markings are updated as in Time
Petri Nets, and the new store is fs(t).

The state of a TTS is a triple (M, s, I). Its initial state is (M0, s0, Is).

2.2 Semantics of Time Transition Systems expressed as Timed

Traces

The execution of a TTS results in a set of timed sequences of events called Timed
Traces. Formally, we define a timed event e as a pair (t, τ) recording the transition
t and the date τ at which it was fired. We denote E the set T × R

+ of events. For
convenience, we write d the second projection: d : E → R

+ is such that d(t, τ) = τ .

Definition 3 (Timed Trace) A Timed Trace σ is a (possibly infinite) sequence of
timed events e ∈ E. Formally, σ is a partial mapping from N to E such that σ(i) is
defined whenever σ(j) is defined and i 6 j. The domain of σ is written domσ. Addition-
ally, dates are required to be weakly increasing: ∀i, j ∈ domσ, i 6 j ⇒ d◦σ(i) 6 d◦σ(j).

We write d(σ) the set {d(e) | e ∈ codomσ}. Its least upper bound and greatest lower
bound are written sup(d(σ)) and inf(d(σ)), respectively. They indicate the temporal
range of σ. Using classic notations for sequences, the empty sequence is denoted ǫ;
given a finite sequence σ and a—possibly infinite—sequence σ′, we denote σ.σ′ the
concatenation of σ and σ′, provided sup(d(σ)) 6 inf(d(σ′)). We say that σ is a prefix
of σ.σ′. The concatenation operation is associative.

Infinite traces are expected to have an infinite duration. Indeed, to rule out Zeno
behaviours, which means that the system includes an infinite number of discrete steps
in a finite amount of time, we only consider traces that let time elapse. Hence, the
following definition:

Definition 4 (Well-formed Traces) A trace σ is well-formed if and only if its do-
main is finite or sup(d(σ)) = +∞

We capture the semantics of TTS as a labeled relation between states, (M, s, I) 7−→l

(M ′, s′, I ′), where l is either a delay δ ∈ R
+ or a transition t ∈ T . Like a TPN, a TTS

with state (M, s, I) may progress in two ways:

◦ Time elapses by an amount δ in I+, provided δ ∈ I(t) for all enabled transitions,
meaning that no transition t is urgent. In that case, we define I ′(t) = I(t)− δ for

6

all enabled transitions t and I ′(t) = Is(t) for disabled transitions. Under these
hypotheses, we have

(M, s, I) 7−→δ (M, s, I ′)

◦ A fireable transition t fires:

(M, s, I) 7−→t (M ′, s′, I ′)

such that M ′, s′ and I ′ are respectively the new marking, store and dynamic
interval function, obtained after firing t.

Given a sequence of reductions st0 7−→l1 st1 7−→l2 st2 . . . 7−→
ln stn, we can build a

timed trace as described next.

Definition 5 We define the ternary relation st −→σ st′ over pairs of states and finite
timed traces as the smallest relation satisfying the following inference rules:

st −→ǫ st

st 7−→t st′

τ ∈ R
+

st −→(t,τ) st′

st1 −→σ st2 st2 7−→δ st3
st3 7−→t st4 τ ′ = sup(d(σ)) + δ

st1 −→σ.(t,τ ′) st4

We write st −→σ whenever there exist a state st′ such that st −→σ st′. Given an
infinite trace σ, we write st −→σ if and only if st −→σ′

holds for all σ′ finite prefixes
of σ. Finally, the set of traces of a TTS N is the set of well-formed traces σ such that
(M0, s0, Is) −→σ holds. This set is written Σ(N).

2.3 Composition of Time Transition Systems and Composition of

Timed Traces

We study the composition of two TTS and consider the relation between traces of the
composed system and traces of both components. This operation is particularly signif-
icant in the context of this work, since both the system and the observer are TTS and
we use composition to graft the latter to the former. In particular, we are interested
in conditions ensuring that the behaviour of the observer does not interfere with the
behaviour of the observed system.

The “parallel composition” of Labeled Time Petri Nets is a fundamental operation
that is used to model large systems by incrementally combining smaller nets. Basically,
the composition of two Labeled TPN N1 and N2 is a Labeled net N

def
=(N1 ‖ N2) such

that: the places of N is the cartesian product of the places of N1 and N2, and the
transitions of N is the fusion of the transitions in N1 and N2 that have the same label.
A formal definition for the composition of two TPN is given in Peres et al. (2011).

Composition of TTS is basically the same, with the noticeable restriction that tran-
sitions which have priority over other transitions may not be synchronised across com-
ponents. This is required to ensure the composition property 1.

Definition 6 (Composable TTS, synchronised transitions) We consider two TTS,
namely N1 and N2, defined as (Pi, Ti, . . .) for i ∈ {1, 2}, respectively. The set of syn-
chronised transitions of N1 is {t1 ∈ T1 | ∃t2 ∈ T2 . L1(t1) = L2(t2)}. We define the set
of synchronised transitions of N2 similarly. Then, N1 and N2 are composable iff the
following conditions hold:

7

1. P1 ∪ T1 ∪ S1 is disjoint from P2 ∪ T2 ∪ S2.

2. for i = 1, 2, every synchronised transition ti of Ni is such that Isi (ti) = [0,+∞[,
and there is no transition t′ ∈ Ti with t′ <i ti.

The first condition ensures that N1 and N2 are disjoint. As stated by the second condi-
tion, in every pair of synchronised transitions, both transitions must have a trivial time
constraint [0,+∞[. This condition as well as the condition on priorities is necessary to
ensure composition, as stated by Property 1 below.

Definition 7 (Composition of two TTS) Assuming N1 and N2 are defined as above,
let N be the TTS corresponding to their composition, which we write N = N1 ‖ N2. It
is defined by a 10-tuple (P, T,B, F,M0, Is,L, L, S,<) where, in particular:

1. P = P1 ∪ P2, S = S1 × S2, L = L1 ∪ L2

2. Let ⊥ be an element not in T1∪T2. Let T
⊥
1 be T1∪{⊥} and T⊥

2 be T2∪{⊥}. We de-

fine T as the following subset of T⊥
1 ×T⊥

2 :
T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, L1(t1) = L2(t2)}

∪ {(t1,⊥) | t1 ∈ T1 and t1 is not synchronised}
∪ {(⊥, t2) | t2 ∈ T2 and t2 is not synchronised}

3. Other elements (markings, incidence functions, static intervals) are, intuitively,
obtained by merging elements of N1 and N2. By lack of space, we omit the details.
The full definition is available in the appendix.

We now define composition of timed traces, and then show, in Property 1, that
traces generated by N correspond to composition of traces from N1 and traces from
N2.

We say that an event e is synchronised iff e is (t, τ) and t is synchronised (as defined
in Def. 6). In the same way that systems can be composed, it is possible to compose a
timed trace of a TTS N1 with the trace of another TTS N2 when some conditions are
met. Basically, events with the same label must occur synchronously, and unsynchro-
nised events are freely interleaved.

Definition 8 (Composition of finite traces) Assume N1, N2, and N are defined as
in Def 7. We define a ternary relation σ1 ⊲⊳ σ2 ∼ σ between σ1, σ2, and σ, finite timed
traces of N1, N2, and N (respectively). The relation means that σ is an acceptable
composition of σ1 and σ2. It is defined as the smallest relation satisfying the following
inference rules:

ǫ ⊲⊳ ǫ ∼ ǫ

Sync

L1(t1) = L2(t2) σ′

1 ⊲⊳ σ′

2 ∼ σ′

(t1, τ)σ
′

1 ⊲⊳ (t2, τ)σ
′

2 ∼ ((t1, t2), τ)σ
′

Unsync-left

t1 not synchronised τ 6 inf(d(s2))
σ′

1 ⊲⊳ σ2 ∼ σ′

(t1, τ)σ
′

1 ⊲⊳ σ2 ∼ ((t1,⊥), τ)σ′

Unsync-right

(similar)

Rule Sync states that synchronised transitions must occur at the same time in both
traces σ1 and σ2. Rule Unsync-left (resp. Unsync-right) states that an unsynchronised
transition t1 (resp. t2) must appear as (t1,⊥) (resp. (⊥, t2)) in the composed trace σ.

8

Definition 9 (Composition of traces) Given three (possibly infinite) traces σ1, σ2,
and σ, the relation σ1 ⊲⊳ σ2 ∼ σ holds if and only if for all date τ ∈ R

+, there exist
finite prefixes σ′

1, σ
′
2 and σ′, of σ1, σ2, and σ (respectively), such that τ 6 sup(d(σ1)) ⇒

τ 6 sup(d(σ′
1)), τ 6 sup(d(σ2)) ⇒ τ 6 sup(d(σ′

2)), and σ′
1 ⊲⊳ σ′

2 ∼ σ′ holds. We write
σ1 ⊲⊳ σ2, whenever there exists σ such that σ1 ⊲⊳ σ2 ∼ σ holds.

We are now able to state the composition property. Remind that Σ(N) is the set of
traces of N .

Property 1 (Compositionality) Assume N1 and N2 are composable systems with
events in E1 and E2 respectively. Let N be N1 ‖ N2 ; we write E its set of events.
Then, both propositions hold:

∀σ ∈ Σ(N), ∃σ1 ∈ Σ(N1), σ2 ∈ Σ(N2) . σ1 ⊲⊳ σ2 ∼ σ

∀σ1 ∈ Σ(N1), σ2 ∈ Σ(N2), σ ∈ E∗ . σ1 ⊲⊳ σ2 ∼ σ ⇒ σ ∈ Σ(N)

In other words, given a trace σ ∈ Σ(N), one may extract two composable traces
σ1 ∈ Σ(N1) and σ2 ∈ Σ(N2). Conversely, given two composable traces σ1 ∈ Σ(N1)
and σ2 ∈ Σ(N2), their composition is guaranteed to be in Σ(N). Thus, this property
characterises the set of traces of N in terms of traces of N1 and N2.

By lack of space, we only provide a proof sketch. Given σ ∈ Σ(N), we build σ1 by
mapping (t1, t2) ∈ T to t1 and by discarding events of the form ((⊥, t2), τ). One has
to show, then, that the resulting trace belongs to Σ(N1). This is done by induction on
the size of the considered finite prefix (see Def. 5 and related notations). The trace σ2

is built similarly. It is easy, then, to check that σ1 ⊲⊳ σ2 ∼ σ holds. Conversely, assume
σ1 ⊲⊳ σ2 ∼ σ holds for some traces σ1 ∈ Σ(N1), σ2 ∈ Σ(N2), and σ ∈ E∗. Then, thanks
to Definitions 7 and 8, σ can be proven to be a trace of N by induction on the size of
finite prefixes of σ1, σ2, and σ.

This result is used to show the innocuousness of observers in Section 4.3.

2.4 Formal Framework for Expressing Timed Properties

We will use different methods to define the semantics of patterns (that is, essentially,
to define the set of timed traces for which the pattern holds). Our experience shows
that being able to confront different definitions for the same pattern, using contrasting
approaches, is useful for teaching patterns.

2.4.1 Metric Temporal Logic

Metric Temporal Logic (MTL), Ouaknine & Worrell (2007); Koymans (1990), is an
extension of LTL where temporal modalities can be constrained by a time interval. For
instance, the MTL formula A U[1,3[B states that in every trace of the system, the
event B must occur at a time t0 ∈ [1, 3[and that A holds everywhere in the interval
[0, t0[. A MTL formula is defined as follows:

φ ::= p | φ1 ∧ φ2 | φ1 ∨ φ2 | ©Iφ | φ1 UI φ2 | ♦Iφ | �Iφ

9

where p is a proposition, I ⊆ R
+ is an open, closed, or half-open interval with end

points in N ∪∞, © represents the next operator, UI represents the until operator and
♦ and � represent the eventually and globally operator respectively. We will use also
a weak version of the “until modality”, denoted A W B, that does not require B to
eventually occur.

An advantage of using MTL is that it provides a sound and unambiguous framework
for defining the meaning of patterns. On the negative side, however, it is known that
the model-checking problem for full MTL is undecidable. Some works, see e.g. Ouak-
nine & Worrell (2007), have been done to find suitable decidable fragments of MTL.
One such subset, called MITL, is obtained by disallowing punctual time intervals in
formulas, that is, intervals of the form [d, d].

2.4.2 First Order Formula over Timed Traces

Using MTL to define our patterns partially defeats one of the original goal of patterns,
that is to circumvent the use of temporal logic in the first place. For this reason, we
propose an alternative way for defining the semantics of patterns that relies on first-
order formulas over timed traces (FOTT). Timed traces have been defined in Def. 3.

Assume A is a predicate overs transitions. By abuse of notation, we write (A, τ) to
denote an event (t, τ) such that t satisfies A. Given a timed trace σ, we write A ∈ σ
for the formula ∃σ1, σ2, τ. (σ = σ1.(A, τ).σ2). Similarly, if A is a state predicate, then
the notation σ(A) means that A holds for all the intermediate states visited through σ.

We can give more useful examples of FOTT formulas that corresponds to the notion
of “scope” found in Dwyer’s patterns. We consider a timed trace σ and predicates A
and B. The “part” (or sub-trace) of σ occurring after the first occurrence of A—or
simply σ after A—can be defined as the trace σ2 such that:

∃σ1, τ . σ = σ1.(A, τ).σ2 ∧A /∈ σ1

Likewise, the scope σ before A—which determines the part of σ located before the first
occurrence of A—can be defined as the trace σ1 such that:

∃σ2, τ . σ = σ1.(A, τ).σ2 ∧A /∈ σ1

Finally, we can define constraints such as: the duration “between A and B” is equal
to d—which determines the trace σ located between the first occurrence of A and the
first occurrence of B—using the FOTT formula:

∃σ1, τa, τb . σ = (A, τa).σ1.(B, τb) ∧ τb − τa = d

We believe that the use of FOTT may ease the work of engineers who are not trained
with formal verification techniques but who have a background on mathematical anal-
ysis.

3 Real-time specification patterns

A pattern is a template that specifies a property which occurs commonly in the spec-
ification of concurrent and reactive systems; We describe, in this section, our patterns

10

using a hierarchical classification borrowed from Dwyer Dwyer et al. (1999) but adding
the notion of “timing modifiers”. Our patterns are built from five categories, listed
below, or from the composition of several patterns:

◦ Existence Patterns (Present): conditions that must eventually occur;

◦ Absence Patterns (Absent): conditions that should not occur;

◦ Universality Patterns: conditions that must occur throughout the whole exe-
cution;

◦ Response Patterns (Response): (trigger) conditions that must always be fol-
lowed by a given (response) condition;

◦ Precedence Patterns : (signal) conditions that must always be preceded by a
given (trigger) condition.

In each class, generic patterns may be specialised using one of five scope modifiers that
limit the range of the execution trace over which the pattern must hold:

◦ Global : the default scope modifier, that does not limit the range of the pattern.
The pattern must hold over the whole timed trace;

◦ Before R : limit the pattern to the beginning of a timed trace, up to the first
occurrence of R;

◦ After Q : limit the pattern to the events following the first Q;

◦ Between Q and R : limit the pattern to the events occurring between an event
Q and the following occurrence of an event R;

◦ After Q Until R : similar to the previous scope modifier, except that we do not
require that R must necessarily occur after a Q.

Finally, timed patterns are obtained using one of four possible kinds of timing modifiers
that limit the possible dates of events referred in the pattern:

◦ Within I, For interval I : to constraint the delay between two given events to
belong to the time interval I;

◦ Lasting D, For duration D : to constraint the length of time during which a
given condition holds (without interruption) to be greater than D.

For each pattern, we present a textual description and an example inspired from the
TTS example in Fig. 2. This TTS models an airlock containing two doors (D1 and D2)
and two buttons. At any time, at most one door can be open.

Our model includes two boolean variables, req1 and req2, indicating whether a re-
quest to open door D1 (resp. D2) is pending. Those variables are read by pre-conditions
on transitions Openi, Buttoni, and Shutdown and are modified by post-actions on tran-
sitions Buttoni and Closei. For instance, the pre-condition ¬req2 on Button2 is used to
disable the transition when the door is already open. This implies that pressing the
button while the door is open has no further effect.

Moreover, for each pattern, we provide both its denotational interpretation based
on FOTT, and a logical definition based on MTL. Next, we use the symbol I as a
shorthand for the time interval [d1, d2].

11

Idle

Shutdown

pre: ¬(req
1
∨ req

2
)

Ventil.

[6; 6]

Refresh

Close1
act: req1 := false

[4; 4]
D1isOpen

act: req2 := false

Close2

[4; 4]
D2isOpen

Open1
pre: req

1

[0, 0]

pre: req
2

Open2

[0, 0]

Button1
act: req1 := true

pre: ¬req
1

Button2
act: req2 := true

pre: ¬req
2

Figure 2: The Airlock system: at any time, at most one door is open. When a door
closes, some ventilation takes place for 6 u.t.

3.1 Existence patterns

An existence pattern is used to express that, in every trace of the system, some events
must occur.

Present A after B within I

Predicate A must hold between d1 and d2 units of time (u.t) after the first occurrence of
B. The pattern is also satisfied if B never holds.

Example: present Ventil. after (Open1 ∨Open2) within [0, 10]

mtl def.: (¬B) W (B ∧ True UI A)

fott def.: ∀σ1, σ2 . (σ = σ1(B, τ1)σ2 ∧B /∈ σ1) ⇒ ∃σ3, σ4 . σ2 = σ3(A, τ2)σ4 ∧ τ2 − τ1 ∈ I

Present first A before B within I

The first occurrence of predicate A holds between d1 and d2 u.t. before the first occur-
rence of B. The pattern is also satisfied if B never holds. (The difference with Present
B after A within I is that B should not occur before the first A.)

Example: present first Button1 ∨ Button2 before (Open1 ∨Open2) within [0, 0]

mtl def.: (♦B) ⇒ ((¬A ∧ ¬B) U (A ∧ ¬B ∧ (¬B UI B)))

fott def.: ∀σ1, σ2 . (σ = σ1(B, τ1)σ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ1 = σ3(A, τ2)σ4 ∧ A /∈
σ3 ∧ τ1 − τ2 ∈ I

Present A lasting D

Starting from the first occurrence of predicate A, it remains true for at least duration
D. The pattern makes sense only if A is a predicate on states (that is, on the marking
or store); since transitions are instantaneous, they have no duration.

Example: present Refresh lasting 6

mtl def.: (¬A) U (@[0,D]A)

fott def.: ∃σ1, σ2, σ3 . σ = σ1σ2σ3 ∧A /∈ σ1 ∧A(σ2) ∧ inf(d(σ3))− inf(d(σ2)) > D

12

3.2 Absence patterns

Absence patterns are used to express that some condition should never occur.

Absent A after B for interval I

Predicate A must never hold between d1–d2 u.t. after the first occurrence of B. This
pattern is dual to Present A after B within I (it is not equivalent to its negation because,
in both patterns, B is not required to occur).

Example: absent Open1 ∨Open2 after Close1 ∨ Close2 for interval [0, 10]

mtl def.: ¬B W (B ∧ @I¬A)

fott def.: ∀σ1, σ2, σ3 . (σ = σ1(B, τ1)σ2σ3 ∧B /∈ σ1 ∧ inf(d(σ3))− τ1 ∈ I) ⇒ A /∈ σ2

Absent A before B for duration D

No A can occur less than D u.t. before the first occurrence of B. The pattern holds if
there are no occurrence of B.

Example: absent Open1 before Close1 for duration 3

mtl def.: ♦B ⇒ (A ⇒ (@[0,D]¬B)) U B

fott def.: ∀σ1, σ2, σ3 . (σ = σ1σ2(B, τ1)σ3 ∧B /∈ σ1σ2 ∧ τ1 − inf(d(σ2)) 6 D) ⇒ A /∈ σ2

3.3 Response patterns

Response patterns are used to express “cause–effect” relationship.

A leadsto first B within I

Every occurrence of A must be followed by an occurrence of B within time interval I
(considering only the first occurrence of B after A).

Example: Button2 leadsto first Open2 within [0, 10]

mtl def.: @(A ⇒ (¬B) UI B)

fott def.: ∀σ1, σ2 . (σ = σ1(A, τ1)σ2) ⇒ ∃σ3, σ4 . σ2 = σ3(B, τ2)σ4 ∧ τ2 − τ1 ∈ I ∧B /∈ σ3

A leadsto first B within I before R

Before the first occurrence of R, each occurrence of A is followed by a B—and these two
events occur before R—in the time interval I. The pattern holds if R never occur.

Example: Button2 leadsto first Open2 within [0, 10] before Shutdown

mtl def.: ♦R ⇒ (@(A ∧ ¬R ⇒ (¬B ∧ ¬R) UI B ∧ ¬R) U R

fott def.: ∀σ1, σ2, σ3 . (σ = σ1(A, τ1)σ2(R, τ)σ3 ∧ R /∈ σ1(A, τ1)σ2 ⇒ ∃σ4, σ5 . σ2 =
σ4(B, τ2)σ5 ∧ τ2 − τ1 ∈ I ∧B /∈ σ4

A leadsto first B within I after R

Like A leadsto first B within I but only considering occurrences of A after the
first R.

Example: Button2 leadsto first Open2 within [0, 10] after Shutdown

mtl def.: @(R ⇒ (@(A ⇒ (¬B) UI B)))

fott def.: ∀σ1, σ2 . (σ = σ1(R, τ)σ2(A, τ1)σ3 ∧R /∈ σ1) ⇒ ∃σ4, σ5 . σ3 = σ4(B, τ2)σ5 ∧ τ2 −
τ1 ∈ I ∧B /∈ σ4

13

3.4 Pattern Composition

Finally, patterns can be easily combined together using the usual boolean connectives
(or, and, imply). The pattern P1 and P2 holds for all the traces where P1 and P2
both hold. The pattern P1 or P2 holds for all the traces where P1 or P2 holds. The
pattern not P1 holds for all the traces where P1 does not hold.

4 Verification

We use timed observers to verify our timed patterns. Different types of observers are
defined at the TTS level. Note that we do not provide an automatic method to generate
observers. Rather, we define a set of observers for each patterns and, after selecting the
“most efficient one”, we prove that it is correct (see the discussion in Section. 4.3). We
make use of the whole expressiveness of the TTS model to build observers: synchronous
or asynchronous rendez-vous (through places and transitions); shared memory (through
data variables); and priorities. We believe that an automatic method for generating
the observer, while doable, will be detrimental for the performance of our approach.
Moreover, when compared to a “temporal logic” approach, we are in a more favourable
situation because we only have to deal with a finite number of patterns.

4.1 Observers for the leadsto Pattern

We focus on the example of the leadsto pattern. We assume that some events of the
system are labeled with E1 and some others with E2. In our context, the event of a
model can be: a transition that is fired, the system entering or leaving a state, a change
in the value of variables, . . .We give three examples of observers for the pattern: E1

leadsto E2 within [0,max [. The first observer monitors transitions and uses a single
place; the second one monitors shared, boolean variables injected into the system (by
means of composition); the third one monitors places. We define our TTS observers
using a classical graphical notation for Petri Nets, where arcs with a black circle denote
read arcs, while arcs with a white circle are inhibitor arcs. (These extra categories of
arcs can be defined in TTS and are supported in our tool chain.) The use of a data
observer is quite new in the context of TTS systems. The results of our experiments
seem to show that, in practice, this is the best choice to implement an observer.

4.1.1 Transition Observer

The observer Ot, see Fig. 3, uses a place, obs, to record the time since the last transition
E1 occurred. The place obs in Ot is emptied if a transition labeled E2 is fired, otherwise
the transition error is fired after max unit of time. The priority arc (dashed arrow)
between error and E2 is used to observe the transition error even in the case where a
transition E2 occurs exactly max u.t. after the place obs was filled.

By definition of the TTS composition operator, the composition of the observer Ot

with the system N duplicates each transitions in N that is labeled E1: one copy can
fire if obs is empty—as a result of the inhibitor arc—while the other can fire only if the
place is full. As a consequence, in the TTS N ‖ Ot, the transition error can fire if and
only if the place obs stays full—there has been an instance of E1 but not of E2—for

14

E1

error

[max ,max] E2

obs
E1 E2

act: flag := true

E1

error

pre: flag == true

[max,max]

act: flag := false

E2

S1

[0, 0]
t1

obs
error

[max,max]

[0, 0]

t2S2

Figure 3: From left to right: transition observer Ot, data observer Od, place observer
Op

a duration of max . Then, to prove that N satisfies the leadsto pattern, it is enough
to check that the system N ‖ Ot cannot fire the transition error. This can be done by
checking the LTL formula @(¬error) on the system N ‖ Ot.

The observer Ot given in Fig. 3 is deterministic and will observe every occurrence of
E1 in a given execution. It is also possible to define a non-deterministic observer, such
that some occurrences of E1 may be disregarded. This approach is safe since model-
checking performs an exhaustive exploration of the states of the system; it considers all
possible scenarios. This non-deterministic behaviour is quite close to the treatment ob-
tained when compiling an (untimed) LTL formula “equivalent” to the leadsto pattern,
namely @(E1 ⇒ ♦E2), into a Bchi automaton Gastin & Oddoux (2001). We have im-
plemented the deterministic and non-deterministic observers and compared them taking
into account their impact on the size of the state graphs that need to be generated and
on the verification time. Experiments have shown that the deterministic observer is
more efficient, which underlines the benefit of singling out the best possible observer
and looking for specific optimisation.

4.1.2 Data Observer

The data observer Od, depicted in Fig. 3, features a transition error conditioned by the
value of a boolean variable, flag, that “takes the role” of the place obs in Ot (every
boolean variable is considered to be initially set to false). Indeed, flag is true between
an occurrence of E1 and the following transition E2. Therefore, like in the previous
case, to check if a system N satisfies the pattern, it is enough to check the reachability
of the event error. Notice that the whole state of the data observer is encoded in its
store, since the underlying net has no place.

4.1.3 Place Observer

The place observer Op is also depicted in Fig. 3. In this section, to simplify the presen-
tation, we assume that the events E1 and E2 are associated to the system entering some
given states S1 and S2. (But we can easily adapt this net to observe events associated
to transitions in the system.) We also rely on a composition operator that composes
TTS through their places instead of their transitions Peres et al. (2011) and that is

15

available in our tool chain. In Op, we use a transition t1 whenever a token is placed
in S1 and a transition t2 for observing that the system is in state S2 (we assume that
the labels t1 and t2 are fresh—private to the observer—and should not be composed
with the observed system). The remaining component of Op is just like the transition
observer. We consider both a place and a transition observer since, depending on the
kind of events that are monitored, one variant may be more efficient than the other.

4.2 Choice of the best observer in practice

Our verification framework has been integrated into a prototype extension of frac, the
Fiacre compiler for the TINA toolbox.

We define the empirical complexity of an observer as its impact on the augmentation
of the state space size with respect to the observed system. For a system S, we define
size(S) as the size (in bytes) of the State Class Graph (SCG), Berthomieu et al. (2004),
of S generated by our verification tools. In TINA, we use SCG as an abstraction of the
state space of a TTS. State class graphs exhibit good properties: an SCG preserves the
set of discrete traces—and therefore preserves the validation of LTL properties—and
the SCG of S is finite if the Petri Nets associated with S is bounded and if the set of
values generated from S is finite. We cannot use the “plain” labeled transition system
associated to S to define the size of S; indeed, this transition graph is usually infinite
since we work within a dense time model.

The size of S is a good indicator of the memory footprint and the computation
time needed for model-checking the system S: the time and space complexity of the
model-checking problem is proportional to size(S). Building on this definition, we say
that the complexity of an observer O applied to the system S, denoted CO(S), is the
quotient between the size of (S ‖ O) and the size of S.

We resort to an empirical measure for the complexity since we cannot give an ana-
lytical definition of CO outside of the simplest cases. However, we can give some simple
bounds on the function CO. First of all, since our observers should be non-intrusive,
we can show that the SCG of S is a sub graph of the SCG of S ‖ O, and therefore
CO(S) ≥ 1. Also, in the case of the leadsto pattern, the transitions and places-based
observers add exactly one place to the net associated to S. In this case, we can show
that the complexity of these two observers is always less than 2; we can at most double
the size of the system. We can prove a similar upper bound for the leadsto observer
based on data. While the three observers have the same (theoretical) worst-case com-
plexity, our experiments have shown that one approach was superior to the others. We
are not aware of previous work on using experimental criteria to select the best ob-
server for a real time property. In the context of “untimed properties”, this approach
may be compared to the problem of optimising the generation of Bchi Automata from
LTL formulas, see e.g. Gastin & Oddoux (2001).

We have used our prototype compiler to experiment with different implementations
for the observers. The goal is to find the most efficient observer “in practice”, that
is the observer with the lowest complexity. To this end, we have used a fixed set of
representative examples and for a specific set of properties (we consider both valid and
invalid properties). Fig. 4 shows a synthesis of the results obtained for the leadsto
pattern. In this paper, we consider only three case examples, for they exhibit very
different features (size of the state space, amount of concurrency and symmetry in the

16

 0

 10

 20

 30

 40

 50

TRAIN CAR APOTA
S

ta
te

 S
p

a
c
e

 S
iz

e
 G

ro
w

th
 (

%
) Place Observer

Data Observer

Figure 4: Compared complexity of the data and place observers (in percentage of sys-
tem size growth) for invalid properties (above) and valid properties (below).

system, . . .):

◦ TRAIN is a model of a train gate controller. The example models a system re-
sponsible for controlling the barriers protecting a railroad crossing gate. When
a train approaches, the barrier must be lowered and then raised after the train’s
departure. The valid property, for the TRAIN example, states that the delay be-
tween raising and lowering a barrier does not exceed 100 units of time. For the
invalid property, we use the same requirement, but shortening the delay to 75.

◦ APOTA is an industrial use case that models the network protocol in charge of
data communications between an air plane and ground stations, Berthomieu et
al. (2010b). This example has been obtained using a translation from AADL to
Fiacre. In this case, timing constraints arise from timeouts between requests and
periods of the tasks involved in the protocol implementation. The property, in
this case, is related to the worst-case execution time for the main application
task.

◦ CAR is a system modelling an automated rail car system taken from Dong et
al. (2008). The system is composed of four terminals connected by rail tracks in
a cyclic network. Several rail cars, operated from a central control centre, are
available to transport passengers between terminals. When a car approaches its
destination, it sends a request to the terminal to signal its arrival. Passengers in
the terminal can then book a travel in the car. The valid property, for the CAR
example, states that a passenger arriving in a terminal, must have a car ready to
transport him within 15 units of time. For the invalid property, we use the same
requirement, but shortening the delay to 2 units of time.

In Fig. 4, we compare the growth in the state space size—that is the value of
Co(S)—for the place and data observers defined in Section. 4.1 and our three running
examples. We do not consider the transition observer in these results since the events
used in the requirements are all related to a system entering a state (and therefore our
benchmark favor the place observer over the transition observer).

17

4.3 Proving the correctness of TTS observers

We start by giving sufficient conditions for an observer O to be non-intrusive, meaning
that the observer does not interfere with the observed system. Formally, we show that
any trace σ of the observed system N is preserved in the composed system N ‖ O: the
observer does not obstruct a behaviour of the system (see Lemma 1 below). Conversely,
we show that, from any trace of the composition N ‖ O, we can obtain a trace of N by
erasing the events from O: the observer does not add new behaviours to the system.
This is actually a consequence of Property 1.

Let Σ(N) be the set of well-formed traces of the TTS N . We write Tsync the set of
synchronised transitions of the observer, that is, the set of transitions t of O such that
L(t) = L(t′) for some transitions t′ of N . We define Timm as the set of transitions of
the observer whose static time interval is [0, 0]. By construction, no transiton in Tsync

can also be part of Timm.

Lemma 1 Assume O satisfies the following conditions:

◦ all synchronised transitions have a trivial static time interval and no priority (that
is, for every t in Tsync, I

t
s = [0;+∞[and t has no priority over another transition

in O);

◦ from any state of the observer, and for every label l ∈ Lsync, there is at least one
transition t in O with label l that can fire immediately;

◦ from any state of the observer, there is no infinite sequence of transitions in Timm.

then, for all timed trace σ in Σ(N) there exists a timed trace σ′ in Σ(N ‖ O) and a trace
σo in Σ(O) such that σ ⊲⊳ σo ∼ σ′.

That is, every trace σ in N still appears in the composed system N ‖ O.

Proof sketch: Given a trace σ in Σ(N), we build a trace σo in Σ(O) that is
composable with σ. This is done by induction on the size of finite prefixes of σ (in
accordance with Def. 9). The last condition ensures that the observer does not intro-
duce an infinite number of interruptions within a finite time interval (that is, σo is
well-formed).

The conditions in Lemma 1 are true for the leadsto observer Od defined in Fig. 3.
Therefore this observer cannot interfere with the system under observation. Next, we
prove that the transition observer is sound, meaning that it reports correctly if its
associated pattern is valid or not. We prove the soundness of this observer by showing
that, for any TTS N , the event error does not appear in the traces of N ‖ Od if and
only if the pattern is valid for N . We write error ∈ N ‖ Od to mean that there exists a
trace σ′ in Σ(N ‖ Od) such that error ∈ σ′.

Theorem 1 We have error /∈ N ‖ Od if and only if, for all σ ∈ Σ(N) such that σ =
σa(E1, τ1)σ

b, there exist σc and σd with σb = σc(E2, τ2)σ
d, E2 /∈ σc, and τ2−τ1 6 max.

Proof
This is a consequence of the two following properties, in which we assume that

σ1 ⊲⊳ σ2 ∼ σ′ holds, with σ1 ∈ Σ(N) and σ2 ∈ Σ(Od).
18

Property 2 If there exist σa
1 , σ

b
1, and σc

1 such that σ1 = σa
1 (E1, τ1)σ

b
1σ

c
1 ∧ sup(d(σb

1))−
τ1 > max ∧ E2 /∈ σb

1, then error ∈ σ2.

Proof By Definitions 8 and 9, and since σ1 ⊲⊳ σ2 ∼ σ′ holds, E1 ∈ σ1 ⇒ E1 ∈ σ2 and
∃σb

2, a finite prefix of σ2, such that σb
1 ⊲⊳ σb

2 holds. By hypothesis, sup(d(σb
1))−τ1 > max

and E2 /∈ σb
1. Thus, sup(d(σb

2)) − τ1 > max and E2 /∈ σb
2. In σb

2, transition error is
enabled for duration max, and is therefore fired in σ2, that is error ∈ σ2.

Property 3 If error ∈ σ2, then there exist σa
1 , σ

b
1, and σc

1 such that σ1 = σa
1 (E1, τ1)σ

b
1σ

c
1∧

sup(d(σb
1))− τ1 > max ∧ E2 /∈ σb

1.

Proof By hypothesis, error ∈ σ2. By construction of Od, this means that flag was true
for max units of time, that is, σ2 is of the form σa

2 (E1, τ1)σ
b
2(error, τ2)σ

c
2 with τ2−τ1 =

max and E2 /∈ σb
2. As a consequence of Def. 8, σ1 is of the form σa

1 (E1, τ1)σ
b
1σ

c
1, with

E2 /∈ σb
1 and sup(d(σb

1))− τ1 > max.

5 Catalog of observers

We introduce, for each pattern, the corresponding TTS observer, as well as the asso-
ciated LTL formula. By convention, Error, Start, . . . are transitions that belong to the
observer, whereas E1 (resp. E2) stand for all the transitions of the system that match
predicate A (resp. B). We also use the symbol I as a shorthand for the time inter-
val [d1, d2]. The observers for the pattern obtained with other time intervals–such as
]d1, d2],]d1,+∞[, or in the case d1 = d2–are essentially the same, except for some pri-
orities between transitions that may change. By convention, the boolean variables used
in the definition of an observers are initially set to false.

5.1 Simple observers

◦ Present A after B within [d1, d2] : The LTL formula to verify is []¬Error.

act: foundB := true

E2 Start

pre: foundB ∧¬ flag

act: flag := true

[d1, d1]

act: if flag then
foundA := true

E1 Error

pre: foundB ∧¬ foundA

[d2, d2]

In this observer, transition Error is conditioned by the value of the shared boolean
variables foundA and foundB. Variable foundB is set to true after transition E2

and transition Error is enabled only if the predicate foundB ∧¬ foundA is true.
Transition Start is fired d1 u.t after an occurrence of E2 (because it is enabled
when foundB is true and flag is false). Then, after the first occurrence of E1 and
if flag is true, foundA is set to true. This captures the first occurrence of E1 after
Start has been fired. After d2 u.t., in the absence of E1, transition Error is fired.
Therefore, the verification of the pattern boils down to checking if the event Error
is reachable. The priority (dashed arrows) between Start, Error, and E1 is here
necessary to ensure that occurrences of E1 occurring at d1 or d2 are taken into
account.

19

◦ Present A before B within I : The LTL formula to verify is (♦B) ⇒ ¬♦(Error ∨
(foundB ∧ ¬flag)).

act: foundA := true

E1 Start

pre: foundA

act: flag := true

[d1, d1]

act: foundB := true

E2 Error

pre: foundA ∧¬ foundB

[d2, d2]

Like in the previous case, variables foundA and foundB are used to record the
occurrence of transitions E1 and E2. Transition Start is fired, and variable flag
is set to true, d1 u.t. after the first E1. Then transition Error is fired only if its
precondition—the predicate foundA ∧¬ foundB—is true for d2 u.t. Therefore
transition Error is fired if and only if there is an occurrence of E2 before E1

(because then foundB is true) or if the first occurrence of E2 is not within [d1, d2]
of the first occurrence of E1.

◦ Present A lasting D : The LTL formula to verify is @¬Error.

pre: A

act: win := true

OK [D,D]

pre: A ∧ ¬ foundA

act: foundA := true

Poll

pre: foundA ∧¬ win

Error [D,D]

Variable foundA is set to true when transition Poll is fired, that is when A be-
comes true for the first time. Transition OK is used to set win to true if A is true
for duration D without interruption (otherwise its timing constraint is resetted).
Otherwise, if variable win is still false after D u.t., then transition Error is fired.
We use a priority between Error and OK to disambiguate the behaviour D u.t.
after Poll is fired.

◦ Absent A after B for interval I : The LTL formula to verify is ♦B ⇒ ♦Error.

We use the same observer as for Present A after B within I, but here Error is
the expected behaviour.

◦ Absent A before B for duration D : The LTL formula to verify is @¬(foundB ∧
bad).

E1

act: bad := true
foundB := false

E2

act: foundB := true

idle Reset

act: bad := false

[D,D]

Variable foundB is set to true after each occurrence of E2. Conversely, we set
the variables bad to true and foundB to false at each occurrence of E1. Therefore
foundB is true on every “time interval” between an E2 and an E1. We use tran-
sition Reset to set bad to false if this interval is longer than D. As a consequence,
the pattern holds if we cannot find an occurrence of E2 (foundB is true) while
bad is true.

◦ A leadsto B within I : The LTL formula to verify is (@¬Error) ∧ (@¬(B ∧ bad)).

E1

act: foundA := true
bad := true

Start

act: bad := false

[d1, d1]

E2

act: foundA := false

Error

pre: foundA

[d2, d2]

20

After each occurrence of E1, variables foundA and bad are set to true and the
transition Start is enabled. Variable bad is used to control the beginning of the
time interval. After each occurrence of E2 variable foundA is set to false. Hence
Error is fired if there is an occurrence of E1 not followed by an occurrence of E2

after d2 u.t. We use priorities to avoid errors when E2 occurs precisely at time d1
or d2.

◦ A leadsto B within I before R : The LTL formula to verify is ♦R ⇒ (@¬Error ∧
@¬(B ∧ bad)).

E1

act: if ¬ foundR then foundA := true
bad := true

Start

act: bad := false

[d1, d1] Error

pre: foundA

]d2,∞[

E2

act: if ¬ foundR then foundA := false

E3

act: foundR=true

Same explanation than for the previous case, but we only take into account tran-
sitions E1 and E2 occurring before E3.

◦ A leadsto B within I after R : The LTL formula to verify is ♦R ⇒ (@¬Error ∧
@¬(B ∧ bad)).

It is similar to the observer of the pattern A leadsto first B within I before R .
We should just replace ¬foundR in transition E1 and E2 by foundR.

Same explanation than in the previous case, but we only take into account tran-
sitions E1 and E2 occurring after an E3.

5.2 Observers for Composed patterns

To check a composed pattern, we use a combination of the respective observers, as well
as a combination of the respective LTL formulas. For instance, if (T1, φ1) and (T2, φ2)
are the observers and LTL formulas corresponding to the patterns P1 and P2, then the
composite pattern P1 and P2 is checked using the LTL formula φ1 ∧ φ2. Similarly,
if we check the LTL formula φ1 ⇒ φ2 (implication), we obtain a composite pattern
P1 ⊸ P2 that is satisfied by systems T such that, for all traces of T , the pattern P2

holds whenever P1 holds.

6 Use cases and experimental results

In this section, we report on three experiments that have been performed using an
extension of a Fiacre compiler that automatically compose a system with the necessary
observers. In case the system does not meet its specification, we obtain a counter-
example that can be converted into a timed sequence of events exhibiting a problematic
scenario. This sequence can be played back using two programs provided in the TINA
tool set, nd and play. The first program is a graphical animator for Time Petri Net,
while the latter is an interactive (text-based) animator for the full TTS model.

21

Avionic Protocol and AADL. Our first example is a network avionic protocol
(NPL) which includes several functions allowing the pilot and ground stations to receive
and send information relative to the plane: weather, speed, . . . AADL has been used to
model the dynamic architecture for this demonstrator, Berthomieu et al. (2010a). The
AADL model includes several threads that exchange information through shared mem-
ory data and amounts to about 8 diagrams and 800 lines of code (using AADL textual
syntax). The AADL code specifies both the hardware and software architecture of the
system and defines the real time properties of threads, like for instance their dispatch
protocol (periodic or sporadic) or their periods.

We used the AADL2Fiacre plug-in of Topcased to check properties on the NPL
specification. The Fiacre model obtained after transformation takes into account the
complete behavior described in the AADL model but also the whole language execution
model, meaning that our interpretation takes fully into account the scheduling seman-
tics as specified in the AADL standard. The abstract state space for the TTS generated
from Fiacre has about 120 000 states and 180 000 transitions and can be generated in
less than 12s on a typical development computer (Intel dual-core processor at 2GHz
with 2Gb of RAM). On examples of this size, our model checker is able to prove for-
mal properties in a few seconds. We checked a set of 22 requirements that were given
together with the description of the system, all expressed using a natural language de-
scription and, in one case, a scenario based on a UML sequence diagram. Of these 22
requirements, 18 where instances of “untimed patterns”, such as checking the absence
of deadlock or that threads are resettable. The four remaining requirements where “re-
sponse patterns” of the kind A leadsto first B within [0, d]. Using patterns, we were
able to check the 22 patterns in less than 5min.

Service Oriented Applications. We consider models obtained from the composi-
tion of services expressed using a timed extension of BPEL, the Business Process Exe-
cution Language. Our example models a scenario from the health-care domain related
to patient handling during a medical examination. The scenario involves three enti-
ties, each one managed by a service: a Clinic Service (CS); a Medical Analysis Ser-
vice (MAS); and a Pharmacy Service (PS). When a patient arrives in clinic, a doctor
should check with the MCS whether its social security number is valid. If so, the doc-
tor may order some medical analyses from the MAS and, after analyzing the results,
he can order drugs through the PS. Timing constraints can be added to this scenario
by associating a duration to each activity of the workflow and a delay to each service
invocation.

We use our patterns to express different requirements on this system. An example
involving the absence pattern is that we cannot have two medical analyses for a patient
in less than 10 days (240 hours): absent MAS.medicalAnalysis after MAS.medicalAnalysis
for interval]0, 240]. A more complicated example of requirement is to impose that if
a doctor does not cancel a drug order within 6 hours, then it should not cancel drugs
for another 48 hours. This requirement can be expressed using the composition of two
absence patterns (see Section. 3.4):

(absent MCS.drugsChanging after MCS.drugsAsking for interval [0; 6])
⊸ (absent MCS.drugsChanging after MCS.drugsAsking for interval [0; 54]).

Finally, using the notation S.init and S.end to refer to a start (resp. end) event in the
22

service S, we can express that drugs must be delivered within 48 hours of the medical
examination start: MCS.init leadsto PS.sendDrugsOrder within [0; 48].

The complete scenario is given in Guermouche & Dal Zilio (2012), where we de-
scribe a transformation tool chain from Timed BPEL processes to Fiacre. For a more
complex version of the health care scenario, with seven different services and more con-
current activities, the state graph for the TTS generated from Fiacre is quite small,
with only 886 states and 2476 transitions. The generation of the Fiacre specification
and its corresponding state space takes less than a second. For examples of this size,
the verification time for checking a requirement is negligible (half a second).

Transportation Systems. Our third example is an automated railcar system, taken
from Dong et al. (2008), that was directly modeled using Fiacre. It is composed of
four terminals connected by rail tracks in a cyclic network. Several railcars, operated
from a central control center, are available to transport passengers between terminals.
When a car approaches its destination, it sends a request to signal its arrival to the
terminal. This system has several real-time constraints: the terminal must be ready
to accommodate an incoming car in 5s; a car arriving in a terminal leaves its door
open for exactly 10s; passengers entering a car have 5s to choose their destination; etc.
There are three key requirements:
(P1) when a passenger arrives in a terminal, a car must be ready to transport him

within 15s. This property can be expressed with a response pattern, where Passenger/sndReq
is the state where the passenger requests a car and Car/ackTerm is the state where it
is served:

Passenger/sendReq leadsto Car/ackTerm within [0, 15]

(P2) When the car starts moving, the door must be closed:

present CarDoor/closeDoor after CarHandler/moving within [0, 10]

(P3) When a passenger selects a destination (in the car), a signal should stay illumi-
nated until the car has arrived:

absent Terminal/buttonOff before Control/ackTerm for duration 10

These three patterns are valid on our Fiacre model. Concerning performance, we
generate the complete state space in 310ms, using 400kB of memory. This gives an
upper-bound to the complexity of checking simple (untimed) reachability properties
on the system, like for instance the absence of deadlocks. The three patterns can all
be checked in less than 1.5s. For instance, we observed that checking property (P1)
is not more complex than exploring the complete system: the property is checked in
450ms, using 780kB of memory. Also, this is roughly the same complexity than check-
ing the corresponding untimed requirement in LTL that is: @ (Passenger/sendReq ⇒
♦Control/ackTerm).

Conclusion. According to several benchmarks, it appears that the complexity of
checking timed patterns is in the same order of magnitude than checking their untimed
temporal logic equivalent. An exception to this observation is when the temporal val-
ues used in the patterns are far different from those found in the system; for example if

23

checking a periodic system, with a period of a few milliseconds, against a requirement
using an interval of a few minutes. These experiments, while still modest in size, give a
good appraisal of the use of formal verification techniques for real industrial software.

7 Contributions and perspectives

We have reduce the problem of checking real-time properties on a given model to the
problem of checking LTL properties on the composition of this model with an observer.
We have also defined a real-time pattern language based on the work of Dwyer et al.
(1999) and inspired from real-case studies. To choose the best way to verify a pattern,
we have defined, for each pattern, a set of non-intrusive observers. We have proposed
a formal framework to prove the correctness of observers, in particular regarding their
non-interfererence with the system under observation.

Our approach has been integrated into a complete verification tool chain for the
Fiacre modelling language. Experimental results have helped us designing the most
efficient observers. Indeed, another contribution of our work is the use of a pragmatic
approach for comparing the effectiveness of different observers for a given property. In
this context, data observers look promising.

We are following several directions for future work. A first goal is to define a new
low-level language for observers—adapted from the TTS model—equipped with more
powerful optimisation techniques and with easier soundness proofs. On the theoretical
side, we are currently looking into the use of mechanised theorem proving techniques
to support the validation of observers. On the experimental side, we need to define an
improved method to select the best observer. For instance, we would like to provide a
tool for the “syntax-directed selection” of observers that would choose (and even adapt)
the right observers based on a structural analysis of the target system.

8 References

References

Abid, N., Dal Zilio, S. & Le Botlan, D. (2012), A Verified Approach for Checking Real-
Time Specification Patterns, in ‘VECOS 2012’.

Aceto, L., Bouyer, P., Burgueño, A. & Larsen, K. G. (2003), ‘The power of reachability
testing for timed automata’, Theoretical Computer Science 300(1-3), 411–475.

Aceto, L., Burgueño, A. & Larsen, K. G. (1998), Model checking via reachability testing
for timed automata, in ‘TACAS’98’, Vol. 1384 of LNCS, Springer, pp. 263–280.

Bayse, E., Cavalli, A., Núñez, M. & Zäıdi, F. (2005), ‘A passive testing approach based
on invariants: application to the wap’, Comput. Netw. 48(2), 247–266.

Behrmann, G., David, A. & Larsen, K. G. (2004), A tutorial on uppaal, in M. Bernardo
& F. Corradini, eds, ‘SFM’, Vol. 3185 of LNCS, Springer, pp. 200–236.

Berthomieu, B. (2012), ‘The Fiacre Compiler’, http://projects.laas.fr/fiacre.

24

Berthomieu, B., Bodeveix, J.-P., Dal Zilio, S., Dissaux, P., Filali, M., Gaufillet, P.,
Heim, S. & Vernadat, F. (2010a), Formal Verification of AADL models with Fiacre
and Tina, in ‘ERTSS 2010 - Embedded Real-Time Software and Systems’, pp. 1–9.

Berthomieu, B., Bodeveix, J.-P., Dal Zilio, S., Dissaux, P., Filali, M., Heim, S., Gaufil-
let, P. & Vernadat, F. (2010b), Formal Verification of AADL models with Fiacre and
Tina, in ‘ERTSS 2010 – Embedded Real-Time Software and Systems’.

Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P., Lang,
F. & Vernadat, F. (2008), Fiacre: an Intermediate Language for Model Verification
in the Topcased Environment, in ‘ERTS 2008’.

Berthomieu, B., Ribet, P.-O. & Vernadat, F. (2004), ‘The tool TINA – Construction of
Abstract State Spaces for Time Petri Nets’, Int. Journal of Production Research.

Bianculli, D., Ghezzi, C., Pautasso, C. & Senti, P. (2012), Specification patterns from
research to industry: a case study in service-based applications, in ‘ICSE 2012’, IEEE
Computer Society Press, pp. 992–1000.

Dong, J. S., Hao, P., Qin, S., Sun, J. & Yi, W. (2008), ‘Timed automata patterns’,
IEEE Trans. Software Eng. 34(6), 844–859.

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999), Patterns in property specifica-
tions for finite-state verification, in ‘ICSE’99’, pp. 411–420.

Esterel Technologies (n.d.), ‘Scade tool suite’.

Gastin, P. & Oddoux, D. (2001), Fast ltl to büchi automata translation, in ‘CAV’01’,
Springer, pp. 53–65.

Gruhn, V. & Laue, R. (2006), ‘Patterns for timed property specifications’, Electr. Notes
Theor. Comput. Sci. 153(2), 117–133.

Guermouche, N. & Dal Zilio, S. (2012), Towards Timed Requirement Verification
for Service Choreographies, in ‘8th IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing’, p. 10.

Henzinger, T. A. (1998), It’s about time: Real-time logics reviewed, in D. Sangiorgi &
R. de Simone, eds, ‘CONCUR’, Vol. 1466 of LNCS, Springer, pp. 439–454.

Konrad, S. & Cheng, B. H. C. (2005), Real-time specification patterns, in G.-C. Roman,
W. G. Griswold & B. Nuseibeh, eds, ‘ICSE’, ACM, pp. 372–381.

Koymans, R. (1990), ‘Specifying real-time properties with metric temporal logic’, Real-
Time Syst. 2(4), 255–299.

Merlin, P. (1974), A Study of the Recoverability of Computing Systems, University of
California, Irvine.

Ouaknine, J. & Worrell, J. (2007), On the decidability and complexity of metric tem-
poral logic over finite words, in ‘Logical Methods in Computer Science’, p. 2007.

25

Peres, F., Berthomieu, B. & Vernadat, F. (2011), ‘On the composition of time petri
nets’, Discrete Event Dynamic Systems 21(3), 395–424.

Schimpf, A., Merz, S. & Smaus, J.-G. (2009), Construction of bchi automata for ltl
model checking verified in isabelle/hol, in ‘TPHOLs ’09’, Springer-Verlag, pp. 424–
439.

Toussaint, J., Simonot-Lion, F. & Thomesse, J.-P. (1997), Time constraints verification
methods based on time petri nets, in ‘FTDCS’, IEEE Computer Society, pp. 262–269.

Appendices

A TTS Composition

Here is the full definition of TTS composition (only sketched in Definition 7).

Definition 10 (Composition of two TTS) Assuming N1 and N2 are defined as above,
let N be the TTS corresponding to their composition, which we write N = N1 ‖ N2. It
is defined by the 10-tuple (P, T,B, F,M0, Is,L, L, S,<) where:

1. P = P1 ∪ P2

2. Let ⊥ be an element not in T1∪T2. Let T
⊥
1 be T1∪{⊥} and T⊥

2 be T2∪{⊥}. We de-

fine T as the following subset of T⊥
1 ×T⊥

2 :
T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, L1(t1) = L2(t2)}

∪ {(t1,⊥) | t1 ∈ T1 and t1 is not synchronised}
∪ {(⊥, t2) | t2 ∈ T2 and t2 is not synchronised}

3. The backward incidence function B is defined as follows:
B((t1, t2)) = B1(t1) +B2(t2) when L1(t1) = L2(
B((t1,⊥)) = B1(t1) when t1 is not synchronised.
B((⊥, t2)) = B2(t2) when t2 is not synchronised.

4. The forward incidence function is defined similarly.

5. M0 equals M0
1 on P1 and equals M0

2 on P2.

6. The function Is is defined as follow:
Is((t1, t2)) = [0,+∞[when L1(t1) = L2(t2)
Is((t1,⊥)) = Is1(t1) when t1 is not synchronised.
Is((⊥, t2)) = Is2(t2) when t2 is not synchronised.

7. L = L1 ∪ L2

8. L : T → L∪ {ε} such that:

L(t) = L(t1, t2) | t1 ∈ T1, t2 ∈ T2, L(t1) = L(t2)
∪ L(t1) | t1 ∈ T1 and t1 is not synchronised
∪ L(t2) | t2 ∈ T2 and t2 is not synchronised

9. S = S1 × S2
26

10. <1 is a binary relation on T1. We may freely consider it as a binary relation on
T⊥
1 (and so there is no t ∈ T⊥

1 with t < ⊥ or ⊥ < t). Similarly, <2 is considered
as a binary relation on T⊥

2 . Then, < is defined by: for all (t1, t
′
1, t2, t

′
2) ∈ (T⊥

1)2 ×
(T⊥

2)2, we have (t1, t2) < (t′1, t
′
2) if and only if t1 < t′1 or t2 < t′2. As required, <

is transitive (the proof uses Def. 6).

Additionally, the initial state is defined as ((M0
1 ,M

0
2), (s

0
1, s

0
2), (I

s
1 , I

s
2)).

27

