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Abstract. Flux applications prior to the convention Gas Tungsten Arc Welding (GTAW) is known 

to improve weld penetrations and improve process competitiveness. This paper summarizes the 

investigations on aluminum, plain carbon steels, stainless steels and titanium. The importance of 

flux composition, homogeneity and profile of its application are shown to be primordial in 

determining the weld depth to width ratio of weld pools. The mechanisms that lead to improved 

penetrations along with some industrial case studies are presented. 
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Introduction 

Gas Tungsten Arc Welding (GTA or TIG welding) has successfully been used ever since its 

invention as a reliable welding technique. Easy to implement in application with a comparatively 

low capital investment, the process yields cosmetic welds of excellent characteristics. However, due 

to low inherent weld penetrations at nominal currents, the process lacks productivity in comparison 

with other welding technologies on the market. For thickness over 3 mm, multi-pass welds with 

filler additions remain mandatory. Attempts to improve penetrations by increasing welding current 

or reducing weld speeds generally remain ineffective. In fact, the weld pool widens with 

insignificant effect on penetration. It seems thus important to look for alternative means to improve 

GTA performance. 

Flux for TIG welding efficiency improvements: ATIG (Activated TIG) & FBTIG (Flux 

Bounded TIG). Theoretical studies supplemented with experimental investigations suggest that the 

weld penetration is dominated by surface tension temperature gradients over the pool [1,2]. The 

presence of some surface-active species that increase the melt surface tension with temperature 

induces thermo-capillary flows deep into the weld and results in deeper penetrations. As such, 

sulfur and to some extent oxygen in the pool has been suggested to produce deep and narrow welds. 

Increasing the arc power density through its constriction is an alternative route to improve weld 

penetration [3,4]. 

Fluxes have long been used to finely tune weld metal chemistry, ensure arc stability and 

shielding in welding industry. However the application of flux coatings in GTAW is still a rare 

practice. Some of the reasons being lack of information on flux composition, its role in weld 

formation, probable loss of weld cosmetic and weld instability with variations in coating thickness. 

Fluxes can intervene in modifying drastically the weld formation in multiple ways notably by 

modifying surface tension, its temperature gradients and constricting the arc that would increase 



power density and consequently the weld penetration. The arc constriction itself is possibly 

attributed to:  

• modified charge distribution created by elements with large electron cross-sections such as 

Oxygen, halides and fluorides;  

• the creation of a conducting channel around the joint following flux vaporization in this 

hotter central region of the arc and to some extent; 

• indirect effect of weld pool deformation in case of low surface tension melts. The central 

depression with curved sidewalls is propitious for arc localization and subsequent better heat 

exchange with the weld pool. 

 

The above listed changes can intervene all together or one may be more predominant than 

others. From theoretical considerations, it may be postulated that one of the requirements for the 

flux to be effective is that its melting temperature should be close to that of the material and it 

should not form stable compounds with the molten pool that would badly affect weld cosmetic. 

Authors have thus investigated the effect of different coatings on plain carbon steels, stainless 

steels, titanium, and aluminum. Both continuous and gapped coatings have been explored and 

possible mechanisms that contribute to improved penetrations (>7-10mm) are examined [6,7,8,9]. 

GTAW (or TIG), which when applied in conjunction with flux coating is designated as ATIG or 

activated TIG. Preliminary developments were first made in former Soviet Union and gained 

interest in western countries later when scientific information circulated by open exchanges. In 

ATIG process, the flux covers only a small proportion of the surface facing electrical around the 

joint.  Flux coating may continuously cover the joint as in Fig. 1.a or discontinuous over a small 

width around the joint as in Fig. 1.b, the former is ATIG and the latter is called FBTIG or Flux 

bounded TIG. For better process stability, it is essential to ensure that it does not seep inside the 

joint and that its application is as uniform as possible. The flux is manually applied by brush and 

before application the flux ingredients are mixed in a solvent mostly acetone. After application, the 

flux is easily dried and is prerequisite for welding. 

The paper will present a summary of results on the above-mentioned materials and examine 

future prospects.  Some ongoing or proposed applications would be discussed. 
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Fig.1. Flux disposition in ATIG (a) and FBTIG (b)   

Results and Discussion 

 

ATIG. One of the consequences, besides important increase of weld penetration observed on cut 

cross sections, can be seen directly on the arc profile and its intensity. Figure 2, shows variation of 

arc profile and its digitalized image as it goes from the non covered or TIG to the covered flux 

(ATIG arc). Soon as it enters the flux covered side, arc starts to increase in intensity and higher hear 

intensity zone is drawn close to the surface (Fig. 2.b) and at stabilization, plasma ejection from the 

weld pool with depressions in its free surface are seen (Fig. 2.c). These changes become more 

significant as the welding current is increases. The most significant observation is related to the 

depression of the weld pool, hardly visible in TIG at higher currents, but very prominent at higher 

ATIG currents. This suggests a confined arc on surfaces with flux coatings, implying a significant 

increase in power density that would generate deeper weld pools.  In case of titanium weld 



penetrations exceeding 7 mm have been obtained by a suitable combination of arc current and travel 

speed. 

 The flux developed by Perry et al. [4,5] for titanium alloys is composed of a blend of fluorides, 

though mono component MgF2 can be seen to be equally efficient except a minor change in weld 

cosmetic. In order to see if the increase in weld penetration is purely related to arc as seen from 

brighter arcs, bead on plate experiments with a defocused laser beam (Fig. 3) equally showed a 

subsequent increase in weld penetration when the surface was covered with a flux layer (Fig. 3b). In 

a mixed configuration (Fig. 3.c), penetrations became higher on non-coated side, which strongly 

indicates a surface tension driven flow as laser is in no way deflected as arc would be by an 

asymmetric disposition of a non-conducting flux reported later on here. This lends support that at 

least in case of flux proposed by Perry et al; surface tension did play some role in increasing weld 

penetrations via Marangoni type convection currents. However, the extent of each one of the 

possible mechanisms is difficult to ascertain.  
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Fig.  2.   Arc views and intensity profiles in going from TIG to ATIG, 100A, 15 cm/min, T-40 [4,5] 
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Fig.  3.  Bead on plate weld pool penetrations with a defocused laser beam (T-40); Penetrations are weaker on 

flux side in a mixed configuration (c)  

 

With manual flux application, it is very difficult to ensure its uniform application. Rückert et al. 

[6] investigated the effect of flux thickness in case of a 304 stainless steel where a SiO2 coating did 

increase weld penetrations by 50 to 75 percent in comparison to pure TIG at equivalent process 

parameters. The optimum flux thickness depends on the weld current and was found to vary from 

40 to 70 microns as the current was increased from 100 to 150A. Beyond this optimum thickness, a 

rapid decline in weld penetrations is observed (Figure 4). With thicker coatings, the ATIG weld 

penetrations would not be significantly different from those observed on uncovered surfaces. The 

thickness effect explains the reason of variable bead penetrations observed when the flux is applied 

manually.  

Silica is equally effective as activating TIG flux for plain carbon steels. As shown in Figure 5 for 

plain carbon steel, whatever the current level, the depth to width ratio with flux is superior for flux-

covered plates. At a given current, weld penetrations are virtually twice those with conventional 

TIG. Silica is a highly resistive material and its positive role in increasing weld penetration needs 

some further comments (Figure 5). Due to its higher resistance, it is expected that silica might 

destabilize the arc as it progresses from the uncovered to the coating side. This is effectively 

observed and schematically represented in Figure 6. As the arc progresses from the bare to the 

covered side, weld pool is seen to change from semi circular (Fig. 6.a) to a more triangular pool 

(Fig.6.d) i.e., the pool as seen from the front is narrowed in width. Weld points realized according 

to the schematics of the Figure 6 supplement these results from video observations. As the length of 

the arc into the coating increases, the molten pool is seen to become narrower, but more elongated 

opposite to the welding direction. These observations suggest that higher electric resistance of the 

coating tends to repulse the arc towards the bare plate side. By extension, in ATIG welding, where 



arc continuously moves in the flux coating, the pool would be equally elongated as the back of the 

pool becomes uncovered by earlier passage of the arc. Arc tends to move to points where the 

resistance is lowest as further suggested by observations reported in Figure 8. Here, flux is applied 

only one side of the joint and arc tends to deviate towards the bare side. Observation of cross 

sections reveals comparatively higher penetration on the bare side, which in first instance may look 

contrary to the fact that ATIG penetrations are better than TIG at equivalent process parameters.  In 

fact as the arc moves towards the bare side (Fig. 7.b) more heat is generated in the bare side and this 

possibly contributes to higher penetrations. Nevertheless, surface tension variations (lower on silica 

side) over the pool would also generate Marangoni flow away to the non-coated side. This heat 

transfer would generate wider and deeper pool on the non-coated side 

 

 

 

Fig.4 Effect of coating thickness (silica) on 

penetration, 304L steel [6]  

Fig.5 Evolution of D/W ratio with welding current with and 

without silica coatings [7] 

 

Arc deviation away from flux is an important indicator of how its inherent tendency to choose 

the least resistive path may be implemented to increase its power density or constriction. In case of 

FBTIG developed by Sire et al. [7], a non-coated space around the joint, as in Figure 1.b, is 

managed such that the arc remains confined to this zone. Figure 9 suggests that a free surface in 

between the flux coatings gives equally well weld penetrations. A closer look of the etched sections 

further shows narrower heat affected zones with FBTIG (see Fig 9.b). Results reported by Ruckert 

[6] on the effect of coating thickness on weld penetration in ATIG and FBTIG showed that the 

latter is much more immune to coating thickness. In ATIG, before the arc stabilizes to create a 

conducting channel by fusion of the non-conducting coating, a large part of the energy is consumed 

just to create that conducting passage. Hence, the coating thickness becomes an important variable 

of the ATIG process. In FBTIG, this passage is pre generated and so the process performance is less 

sensitive to coating thickness. 

 

 
 Fig.6. Still video captures with different arc positions (a 

to d) and schematic representation of weld pool (e to g) [7] 

Fig.7.Weld points as observed at different 

penetrations into flux coating [7] 

�



   
��������	
�� �������"	���� �
!���
����
� �������"	���� �
!���
����
�

Fig.8. Effect of flux application on one side of the joint: Symmetric arc TIG (a), Arc deviation towards bare side, 

(b) and etched weld cross sections. Note higher penetrations on bare side [5] 

 

FBTIG or flux bounded TIG. FBTIG is just another variant of activated TIG and seemingly 

more suited for manual application of flux coatings as more immune to coating thickness. Further in 

ATIG, it’s pretty difficult to keep the flux out of the joint. Figure 9 shows on an Al 1050 plate, that 

FBTIG in AC mode gives very deep penetrations with SiO2 coating. In fact, because of the inherent 

aluminum oxide layer, DC TIG welding is inappropriate with argon shielding gas. With AC TIG, 

usually at nominal currents indicated for Figure 9 are very small. Besides current and welding 

speed, the gap in between the coatings on the two sides of the joint is an important process 

parameter. As this gap increases, the difference between TIG and FBTIG decreases as anticipated. 

Arc becomes less constrained as the gap between the coating increases [8]. Figure 10 shows that 

with FBTIG, arc is highly constrained with high intensity channel and the weld pool is depressed. 

The arc penetrates in to the joint and all this contributes to increased weld penetrations. 

 

 
Fig.9. Comparative of weld pool penetrations on etched cross sections in ATIG(a) and FBTIG (b) configurations; 

304 Steel, 150 A, 15 cm/min [7] 
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Fig.10 (a) Narrowing of bead with FBTIG, significant increase in penetration with FBTIG, 175 A, 15 cm/min on 

Al 1050 [8] 
 

 (a)  (b) 
Fig.11 Stills of arc -AC TIG (a) and FBTIG (b), 150 A, 4mm gap between coatings [8] 

 

 



Conclusions 

Fluxes based on fluorides for Titanium and oxides (mostly silica) for plain carbon steels, stainless 

steels and aluminum have been tested in ATIG and FBTIG and mechanisms that contribute to 

enhanced weld penetrations are examined. In ATIG, a continuous flux coating, 15mm wide is 

applied around the joint, whereas in FBTIG, an uncovered strip, 2 to 4 mm wide, and centered 

around the joint is managed. Fluxes are non-conducting in solid state and become conducting in 

liquid phase.  This implies that in ATIG, arc needs to first melt the flux. Vaporized flux would 

modify electronic current density. Afterwards, ATIG arc operates on the created bare zone still 

surrounded by a non-melted flux coating. At this stage, difference between ATIG and FBTIG 

processes nearly vanishes. From energy considerations, FBTIG is more efficient as arc energy does 

not have to undercover the flux coating to pave way for a conducting channel on the metal surface. 

When the width of the uncovered zone in FBTIG is increased, arc becomes freer and weld 

penetrations are reduced to that of TIG process. The prerequisite of the creation of a conducting 

channel in flux coating implies that the coating thickness would become a critical parameter as 

identified here. Whatever the flux initial disposition, the video stills underline constricted highly 

intense arcs in ATIG and FBTIG configurations along with depressions in the weld pool. That alone 

is propitious for enhanced weld penetrations. All flux coatings tested here under are shown to 

produce improved weld penetrations when a defocused laser beam is used to simulate weld pool 

formation. This, along with asymmetric bead on plate weld profiles on specimens with coatings 

confined to one side of the ATIG arc, suggest a contribution from surface tension driven Marangoni 

type flow in the weld pool. However, the contribution from arc constriction and surface tension 

gradient driven flows has not been quantified. Further investigations are needed to elucidate some 

aspects described in this paper. 
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