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SCM and the principles identified by HPM. It is shown that
two values of dynamic permeability can be conjectured, both
being different from that given by the cell model. The inter-
pretation of these results is covered in Sec. IV. First, a com-
parison with numerical modeling demonstrates the reliability
of the estimates for granular media made of periodic arrays
of identical spheres. Then, bounds of dynamic permeability
are established for packing of polydisperse spheres.

II. DERIVATION OF DYNAMIC PERMEABILITY BY
PERIODIC HOMOGENIZATION

A. Basic principles of periodic homogenization

The macroscopic representation of heterogeneous media
makes sense only if there is a scale separation. This implies
that17

• the material is regular enough to be described by a repre-
sentative volume �this is mathematically expressed by as-
suming a periodic material made of identical cells � of
size� and

• the physical variables driving the phenomenon—for flow
in porous media, the pressure at the leading order—varies
according to a size L larger than l.

To describe the variations at the well distinct lengths L
and l, two spatial variables are introduced, x for the macro-
scopic variations and y for the microscopic variations, x and
y being related by the scale ratio,

� = l/L � 1, y = �−1x .

The small parameter � suggests seeking for any unknown u
�scalar, vector, etc.� in the form of asymptotic expansions in
powers of �. As the material periodicity and the scale sepa-
ration induce the same periodicity for the physical quantities,
all the terms are �-periodic according to the variable y,

u�x,y� = �
0

�

�iui�x,y� with ui�x,y� �-periodic in y .

�1�

The process of periodic homogenization consists in introduc-
ing the expansions in the two-variable rescaled equations
that govern the physics at the local scale �i.e., equations
where powers of � are used for expressing the order of mag-
nitude of the dimensionless numbers and where the common
spatial derivative is transformed into �−1�y +�x�, then identi-
fying the terms of the same power in �, and finally solving
the boundary value problems obtained in series.

B. Dynamic permeability

The derivation of the dynamic Darcy law from HPM
was established by Levy18 and Auriault.5 The main results
that will be used in the following are now recalled. For brief-
ness, they are presented in the case of a rigid porous media

saturated by an incompressible fluid. It is known that the
same derivations apply in the case of elastic skeleton and
compressible fluid.5 Consider a porous media �Fig. 1� of po-
rosity �, saturated by a fluid of viscosity � and density �,
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submitted to small harmonic perturbations of frequency f
=� /2	. In the pores, the pressure variations p, fluid velocity
v �D�v� is the strain rate tensor� is driven by the following
linearized equations, in which the term e+i�t is omitted.

• In the pores � f, the incompressibility �Eq. �2��, the viscous
behavior �Eq. �3��, and the Navier–Stokes equation �mo-
mentum balance� �Eq. �4�� are written,

� · v = 0, �2�

� = − pI + 2�D�v� , �3�

� · � = − �p + � · �2�D�v�� = i��v . �4�

• On the fluid-solid interface 
, the adherence condition is
written as

v/
 = 0 . �5�

In these equations �, �·, and � stand for the gradient, the
divergence, and the Laplacian operators, respectively, and
I is the unit tensor.

1. Dimensional analysis and rescaling

The physics of the flow has to be precisely stated. The
dynamic Darcy regime is reached when the pressure gradi-
ent, viscous forces, and inertial forces are all of the same
order of magnitude, i.e., when

O��p� = O�� · �2�D�v��� = O�i��v� . �6�

The pores’ geometry and the adherence condition enforce the
velocity to vary at the pore scale. Therefore a macroscopic
description is only possible if the pressure varies at a larger
scale. This suggests expressing the pressure and the velocity
as the products of reference pressure and velocity �subscript
r�, with dimensionless pressure and velocity �subscript *�.

These latter depend on both dimensionless variables x /L
=x* and x / l=y*, with y=�−1x,

r r

(a) (b)

l

� �s

�f

�s

�f

FIG. 1. �a� Macroscopic porous medium. �b� Periodic cell � of porous
media. � f and �s are, respectively, the volume of the fluid and solid. 
 is
the fluid-solid interface inside �. 
 f and 
s are the fluid and solid interfaces
at the boundary of �. �=� f /� is the porosity.
p�x� = p p*�x*�, v�x� = v v*�y*�

with p* = O�1�; v* = O�1� . �7�

Thus, we have
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O��p� = pr/L, O�� · �2�D�v��� = �vr/l2,

O�i��v� = ��vr,

so that with Eq. �6�, the viscous layer and the pore size are of
the same order, i.e., ��v�= ��� / �i����=O�l�. Therefore, in a
dimensionless form where all the terms are of the same or-
der, the Navier–Stokes equation that properly accounts for
the physics of the flow reads

−
pr

L
�x*�p*�x*�� +

2�vr

l2 �y* · �Dy*�v*�y*���

= i��vrv*�y*� ,

which may be rewritten, in terms of physical variables and
derivatives, as follows:

− �x�p�x�� + �y · �2�Dy�v�x��� = i��v�x� ,

and changed into x-derivatives �y · �2�Dy�=�2�x · �2�Dx�, so
that the viscous term in the Navier–Stokes equation �and thus
in the stress� is rescaled by the factor �2. This leads Eqs. �3�
and �4� to be modified to

− �p + �2 � · �2�D�v�� = i��v , �8�

� = − pI + �22�D�v� . �9�

2. Treatment by homogenization

Homogenization is applied to Eqs. �2�, �5�, �8�, and �9�.
First, momentum balance �Eq. �8�� at the order �−1 reduces to
−�yp

0=0, giving, as expected, a constant pressure in the
pores,

p0�x,y� = P�x� .

Then, the velocity v0 and pressure p1 are derived from equa-
tions �8−0 ,2−−1 ,5−�0�,

Sv
0�

− �yp
1 − �xP − i��v0 + �y · �2�Dy�v0�� = 0,

�y · v0 = 0,

v/

0 = 0,

v0 and p1 are � − periodic.
	

This set of equations defines the linear dynamic permeability
problem where �xP acts as a forcing term. Consequently the
solution has the form �Auriault5�

�v0�x,y� = − ki�xiP, p1�x,y� = �i · �xiP + p1̂�x� , �10�

where �−ki /� ,�i� are the three velocities and pressure distri-
butions corresponding to the unit pressure gradient in the
three directions, �xP=ei. They are complex and depend on
the local spatial variables and frequency through the dimen-

sionless variable y /�. Finally macroscopic mass balance is
derived from the compatibility condition, which must be sat-
isfied by the local mass balance. By integrating �2−�0� over
the pore volume, we get
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�f

��y · v1 + �x · v0�d� = 0.

From the divergence theorem, the periodicity, and the adher-
ence condition �5−�1� on 
, the first term vanishes. Then,
inverting y-integration and x-differentiation, we have

�x · � 1

�



�f

v0d�� = �x · V = 0,

where V is the Darcy velocity. The macroscopic description
reads

�x · V = 0, V = −
1

�
K�xP ,

K =
1

�



�f

ei
� kid� = KR + iKI, �11�

where KR and KI are the real and imaginary parts of the
complex dynamic permeability tensor K. The inverse form
of the macroscopic description is written as

�H · V = − �xP, H = K−1 = HR + iHI.

The features of the tensor H derived by HPM12 are written
below in the isotropic case, i.e., when H=HI �and K=H−1�.

• In the quasistatic regime �low frequency�, i.e., when l /�
→0, viscous effects dominate the inertia. Consequently,
we have

H��� 
1

K
+

i��

�

�0

�
, �12�

where K is the intrinsic permeability and �0 is the low
frequency tortuosity.

• At high frequencies, i.e., when l /�→�, inertial effects
dominate, and viscous effects are confined to a viscous
layer, giving

�

i��
H����  ���1 +�M

2

�c

i�
� , �13�

where �� is the tortuosity, M is a shape factor, and �c is
the critical frequency delimiting the low and high fre-
quency domains. This latter, which is obtained by equaliz-
ing viscous and inertial effects of the macroscopic flow, is
written as

�c =
��

K���

.

Following Johnson et al.,3 ��M /2���c / i�� may also be
expressed as 2� /�, where � is the characteristic viscous
length.

The dimensionless terms K /K and H�� / �i�����
=HK�c /� depend only on the dimensionless frequency

� /�c. Note that the complex dynamic density defined by

�d���i�V = − �xP �14�

is related to H��� by �d���=���H / i��.
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3. Variational formulation and energy consistency

The variational formulation equivalent to the set Sv
0 is

derived5 by taking the scalar product of the momentum bal-
ance with any field w belonging to the vector space W de-
fined as

W = �w/ w �-periodic, w/
 = 0, � · w = 0� .

After integrating over the pore and denoting the average over
the representative volume ���−1��f

−d� by ���, one obtains

− ��yp
1 · w� + ��y · �2�Dy�v0�� · w� − i���v0 · w�

= �xP · �w� .

From the divergence theorem, the first term may be trans-
formed as

− ��yp
1 · w� = �p1�y · w� −

1

�



��f

p1w · nds = 0

because of the zero divergence, the adherence, and the peri-
odicity of w. Similarly, from the divergence theorem, we get

��y · �2�Dy�v0�� · w� = − 2��Dy�v0�:Dy�w��

+
1

�



��f

�2�Dy�v0�n� · wds .

The surface integral vanishes because of the adherence and
periodicity. Thus, this results in

∀w � W ,

2��Dy�v0�:Dy�w�� + i���v0 · w� = − �xP · �w� . �15�

Taking w=v0 as a field test �the overbar stands for conjugate�
gives the following identity:

2��Dy�v0�:Dy�v0�� + i���v0 · v0� = − �xP · �v0�

=
1

�
�xP · K̄ · �xP = �V · H · V̄ . �16�

The above relation demonstrates consistency of viscous and
kinetic energies between the microscopic �right hand side�
and macroscopic �left hand side� descriptions. Applied to
fields ki and k j, relation �15� enables proof of the symmetry
and positiveness of H and K, which read in the isotropic
case5 as

KR � 0, KI � 0 and HR � 0, HI � 0.

The real and imaginary parts of K /� �or �H� correspond to
the viscous dissipation and the effective kinetic power pro-
duced by a cycle under a unit macroscopic pressure gradient
in the direction ei �or a unit macroscopic flow in the same
direction�. Concerning the variation of H versus frequency, it
may also be demonstrated �see Appendix A� that with a time
dependence e+i�t,

dHR d�HI/��

d�

� 0 and
d�

� 0. �17�

Reformulated in terms of dynamic density �Eq. �14��, these
inequalities become
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d�d
R

d�
� 0 and

d���d
I �

d�
� 0. �18�

C. Links between the microscopic to macroscopic
descriptions

The quantities appearing in the macroscopic description
are related to the following local quantities:

• The macroscopic velocity, V, is the average of the local
velocity.

• The Darcy pressure P is the stress of zero order in the
pores. Because of the periodicity, the stresses of higher
order are self-equilibrated on the boundary of the cell, i.e.,




f

�1nds = 0.

• The permeability tensor K expresses the energy consis-
tency: the viscous dissipation and the kinetic powers de-
veloped within the representative cell and in the same vol-
ume of the equivalent Darcy media are identical.

In the next section, the information gathered from HPM
is introduced in a self-consistent approach.

III. SELF-CONSISTENT ASSESSMENT OF DYNAMIC
PERMEABILITY

The self-consistent approach enables a conjecture of the
effective coefficients of heterogeneous media.19 The method
consists in

• assuming the nature of the macroscopic behavior and con-
sidering a generic inclusion representative of the local
physics in the medium,

• solving the basic problem in the inclusion submitted to a
homogeneous macroscopic forcing term and expressing
the energy equivalence between the inclusion and the
equivalent medium, and

• deducing from this relation the macroscopic coefficients.

The SCM was applied to the static intrinsic permeability
of fibrous9 and granular materials10. Tarnow11 and Umnova
et al.15 used a similar philosophy but introduced a condition
of vanishing vorticity at the cell boundary as an alternative to
energy consistency.

A. Problem definition

Following the HPM results, the behavior of the equiva-
lent macroscopic medium complies with the dynamic Darcy
law described by Eq. �52�. For convenience, the analysis is
presented for isotropic media �the same reasoning also ap-
plies for the principal values of a macroscopic anisotropic
media�. The idea is to fit the inclusion with the same volume

of equivalent media—whose K is to be determined—when
both are subjected to a uniform forcing pressure gradient G
of amplitude G and direction E �capital letters are used for
the Darcy medium variables�,
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�P = G = GE so that V = −
K

�
GE .

As for the generic inclusion I �of volume �I and sur-
face ��I�, the simplest way to account for the connection of
the fluid, the pore size, and the porosity is to consider a solid
rigid sphere of radius Ri=�R �0���1� and volume �s,
surrounded by a concentric spherical shell filled by the fluid
whose external radius is R and whose volume is � f =�I
−�s, so that the porosity �=1−�3 �Fig. 2�. Because of the
spherical symmetry and the privileged direction introduced
by the pressure gradient, the spherical coordinates �r ,� ,��
oriented as described in Fig. 2 will be used ��=0 corresponds
to er=ez=E�.

The Navier–Stokes equation in the fluid shell, �R�r
�R, expressed with a single spatial variable, reads �lower-
case letters are used for the variables of the fluid in the in-
clusion� as

− �p −
1

�2�v + ���v� = 0 , �19�

� · v = 0, �20�

p = 	 + r · G , �21�

where � is the complex number �=�� / i�� and r=rer. Note
that the total pressure p is decomposed into the pressure
induced by the macroscopic uniform gradient, r ·G, and an
additional pressure 	. When adding the adherence condition
on the solid, i.e., v��R�=0, the equations governing the fluid
within the inclusion are identical to those derived by HPM,
except for the periodicity �see II B 2�.

1. General expression of the fields p and v

To satisfy spatial isotropy, the fields in the inclusion
must be isotropic functions of both position vector and forc-

Ωf

R

Ωs
βR

Darcy medium

r

θ

O

M

ex

ey

ez

ϕ

er

∇P G ez

∂ΩI

FIG. 2. The generic fluid-solid spherical inclusion I of volume �i, boundary
��I, and the associated spherical system of coordinates. Solid sphere: radius
Ri=�R and volume �s. Concentric spherical shell filled by the viscous
Newtonian fluid: external radius R and volume � f =�I−�s. �=� f /�I=1
−�3 is the porosity.
ing vector, namely, �r ,G�. According the tensor theory,20 the
pressure p and the velocity v are written as

p = Fp�r · r,G · G,r · G� ,
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�v = rFr�r · r,G · G,r · G� + GFG�r · r,G · G,r · G� ,

where Fp, Fr, and FG are any functions of the three scalar
r ·r, G ·G, and r ·G. In the present case, the solution depends
linearly on G. Consequently, the general form of the solution
can be specified more precisely through three independent
functions of r,

p = �r · G�h1�r�, �v = r�r · G�f1�r� + Gg1�r� .

Following Howells,21 these equations may be transformed
conveniently into

p = G · �h�r�, �v = G · �� � �f�r� + g�r�I� . �22�

The functions f , g, and h have to be determined now to
satisfy the Navier–Stokes equation and the incompressibility.
Taking the divergence of Eq. �19� and using the incompress-
ibility condition, we get �p=0. Using Eq. �22�, this relation
yields �here and in the following, the derivative d /dr is de-
noted by a prime ��

��G · �h� = G · er��h�� = 0.

Thus, introducing the constants c0, c1, and c2, we have

�h = c0 and h�r� = c0
r2

6
− c1

1

r
+ c2. �23�

Later on, the constant c2 of no physical meaning is set to
zero. Using Eq. �22�, the incompressibility reads

� · �G · �� � �f + gI�� = G · ���f + g�

= G · er��f + g�� = 0.

Consequently, we have

g = − �f + a0 and

� � �f + gI = � � �f − �fI + a0I .

Noting that ���r2�−��r2�I=−4I, the constant a0 can be set
to zero by including a term −�a0 /4�r2 into f . Consequently, v
is expressed from a single potential function f ,

�v = G · �� � �f − I�f� . �24�

Now, inserting expression �24� of v in the Navier–Stokes
equation leads to

0 = − � · �G · �h� −
1

�2G · �� � �f − I�f�

+ ��G · �� � �f − I�f��

= G · �− I�h + �� � �− I���− h + �� −
1

�2� f�� .

�25�

Therefore, using Eq. �23� and denoting A=−h+ ��−1 /�2�f ,
we obtain

G · �− c0I + �� � �− I��A�
= G · �− I�c0 +
�rA���

r
� + r � r

�A�/r��
r

� = 0.

This last equation implies that
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�A�/r��
r

= 0 and
�rA���

r
= − c0,

whose integration gives �since any constant may be incorpo-
rated into h without any other change�

A = − h + �� −
1

�2� f = − c0
r2

4
.

Finally, from the expression for h given by Eq. �23�, f satis-
fies the Helmohltz equation �associated with viscous waves�
with the following forcing terms:

�� −
1

�2� f = − c0
r2

12
− c1

1

r
.

The solution is the sum of particular solutions and spherical
wave functions that introduce two additional constants c and
c�,

f = �2�c0� r2

12
+

�2

2
� + c1

1

r
+ �2�c

er/�

r/�
+ c�

e−r/�

− r/��� . �26�

To summarize, the general expressions of the pressure p
and the velocity v are given by the set of Eqs. �22�–�24� and
�26� that involve four constants. The next step is to define
appropriate boundary conditions for the identification of the
constants and the dynamic permeability.

2. Boundary conditions

The following expressions for the velocity and the shear
stress in the direction normal to the surface are useful for
writing the boundary conditions:

�v = G���f − I�f� = G · �f�/r − �f� + er�G · r��f�/r��,

�27�

�vr = �G · er��f�/r − �f + r�f�/r��� = − 2�f�/r��G · er� ,

�28�

�v� = �G · e���f�/r − �f� = − �f�/r + f���G · e�� , �29�

2�D�v� · er = − G · f� + er�G · er��f� + 4�f�/r��� , �30�

2�Drr = − 4�f�/r���G · er� , �31�

2�Dr� = − f��G · e�� , �32�

� curl �v� = − �G � r�
��f��

r
. �33�

a. Conditions for the velocity. At the fluid-solid interface
�r=�R�, the adherence condition v��R�=0 gives, by com-

bining Eqs. �28� and �29�,

− 2
f���R�

�R
= 0, �34�
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−
2

3
�f��R� = 0. �35�

Moreover, the average velocity within the inclusion I is
equal to the velocity in the equivalent Darcy medium. Thus
we have

V =
1

�I



�f

vd� =
1

�



��I

r�v · er�ds + 0

= − 2
f��R�

R

G

�
= −

K

�
G .

Therefore, we get

− 2
f��R�

R
+ K = 0. �36�

From Eq. �28�, this equation also means that the normal ve-
locities in the fluid and in the equivalent Darcy medium are
identical at any point on the inclusion boundary, i.e., vr�R�
=Vr�R�.

b. Condition for the stress at the inclusion boundary.
The momentum balance in the fluid is not expressed by the
Darcy law, and since the viscous stresses are transferred to
the skeleton of the porous media it is not possible to impose
a priori the pressure nor the stress at the boundary. However,
it is physically justified to transpose the result proven by
HPM to the present situation: on the boundary of the inclu-
sion the drag force exerted by the corrective stresses
�c—i.e., the difference between the stress in the fluid inclu-
sion and the pressure in the equivalent Darcy medium—
equals zero. This means that the inclusion equilibrium is sat-
isfied on average by the stress of zero order. This leads to



��I

�cnds = 0 with �c = − �p − P�I + 2�D�v� .

�37�

Introducing the pressure expressions and the shear stress
components, then integrating, gives

0 = 

��I

�G · r��− h� + 1�er

+ �− G · f� + er�G · er��f� − 4�f�/r���� · erds

=
4	R2

3
G�− h� + R + f� − 4�f�/r�� − 3f��

=
4	R2

3
G�− h� + R − 2��f��� .

Thus the equation expressing the overall equilibrium reads

− h��R� + R − 2��f���R� = 0. �38�

c. Micro-macro energy consistency. It remains to express

the energy equivalence between the inclusion and the same
volume of the equivalent Darcy medium. According to Eq.
�16� derived by HPM, the conservation of energy throughout
upscaling is written as
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�f

�2�Dy�v�:Dy�v̄� + i��v · v̄�d� = − �P · 

�f

v̄d� .

�39�

Now, following the same reasoning as in Sec. II B 3, taking
the scalar product of the momentum balance equation �Eq.
�19�� with the field v̄, and integrating over the pores’ volume,
we obtain



�f

�2�D�v�:D�v̄� + i��v · v̄�d�

= 

��I

�− per + 2�D�v�er� · v̄ds .

By comparison with the previous equality, the following re-
lation must be fulfilled:



��I

�− per + 2�D�v�er� · v̄ds = − �P · 

�f

v̄d� .

Note that the right hand side term may be changed into

− �P · 

�f

v̄d� = − �P · 

��I

r�v̄ · er�ds

= − 

��I

P�v̄ · er�ds ,

so that combined with the overall equilibrium condition �Eq.

�37�� and multiplied by the conjugate of the mean velocity V̄,
the energy equivalence takes the form



��I

��P − p�er + 2�D�v� · er� · �v̄ − V̄�ds = 0.

And since the normal velocities are identical on ��I, see Eq.
�36�, one obtains



��I

2�Dr��v̄� − V̄��ds = 0.

According to the field expressions, one gets two possibilities
on the boundary �r=R�:

• The shear stress Dr� vanishes uniformly, and therefore,

f��R� = 0. �40�

In that case, on the inclusion boundary, the stress in the nor-
mal direction in the fluid equals the pressure in the equiva-
lent Darcy medium, i.e., ��R� ·er= P�R�er.
• The tangential velocities are equal, i.e., v�=V�, giving,

− 2
3�f�R� + K = 0. �41�

In that case the velocities in the fluid and in the equivalent
Darcy medium are identical on the inclusion boundary,
i.e., v�R�=V�R�. It can also be derived that Drr�R�=0.
To summarize, two alternative sets of five conditions are
obtained �Eqs. �34�–�36�, �38�, and �40� or Eqs. �34�–�36�,
�38�, and �41��. Four of them are common to both sets, i.e.,
the two conditions related to the adherence condition, the
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condition expressing the identity between the normal mi-
crovelocity and the Darcy flow, and the averaged or overall
equilibrium condition. The remaining equation is derived
from the energy equivalence. Thus two possibilities are con-
sistent:

• The shear stress vanishes, and the stress vector at the
boundary of the fluid inclusion matches the pressure in the
Darcy medium, which corresponds to the assumption made
by Berdichevsky and Cai.9 This will be called the pressure
approach �denoted as P-� in the following. The tangential
microvelocity is not continuous with the tangential Darcy
flow.

• The microvelocity matches the Darcy flow, and neither the
pressure nor the stress vector at the boundary of the fluid
inclusion matches the pressure in the equivalent media.
This will be called the flow approach �denoted as V-�.

d. Remark about the “zero vorticity assumption.” The
assumption used by Tarnow11 and Umnova et al.15 of van-
ishing vorticity at the boundary of the cell �denoted hereafter
as C-estimate� does not arise from the SCM and thus trans-
gresses the energy consistency. Despite this drawback, con-
siderations on the kinematics of the flow at the boundary of
identical cells argue in favor of the zero vorticity assumption.
Indeed, the level of vorticity is the highest in the narrow gaps
between particles but vanishes when the velocity reaches its
maximum at the middle of the gap, i.e., at the boundary of
the cell. According to Eq. �33�, this assumption leads to

��f���R� = 0. �42�

Moreover, combined with overall equilibrium �Eq. �38��, one
obtains

− h��R� + R = 0,

meaning that �i� the pressure �not the stress� at the boundary
of the fluid equals the pressure in the Darcy medium and �ii�
the dissipated energy due to v−V on the surface is neglected.
The P- and C-assumptions may be expected to give more
reliable results because, referring to the HPM approach, the
P- and C-boundary conditions are correct up to the first or-
der, which is not the case for the V-boundary conditions. In
the following, the three approaches are investigated.

B. Resolution and estimates

Expressions �23�–�26� for functions h and f are intro-
duced in the two possible sets of five conditions. This leads
to two linear systems whose resolution allows the determi-
nation in both cases of the five parameters �c0, c1, c, c�, and
K�.

1. Pressure approach: Fields vp=�p and pp

Writing the complex number x=R /�, with �=�� / i��,

the linear system �Eqs. �34�, �35�, �40�, �36�, and �38�� reads

c
e�x

�x
+ c�

e−�x

− �x
+ 0 +

c0

2
+ 0 = 0,
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c
1

�x
�1 −

1

�x
� e�x

�x
− c�

1

�x
�1 +

1

�x
� e−�x

− �x
−

c1

��R�3 +
c0

6

+ 0 = 0,

c��1 +
6

x2��x − 1� − 2� ex

x
− c���1 +

6

x2��x + 1�

+ 2� e−x

− x
−

6c1

R3 + 0 + 0 = 0,

− c
1

x
�1 −

1

x
� ex

x
+ c�

1

x
�1 +

1

x
� e−x

− x
−

c1

2R3 −
c0

6
+ 0 =

1

2
,

3c1

R3 + 0 −
Kp

�2 = 0.

The analytical solution leads to the following permeability
P-estimate, denoted as Kp:

Kp =
�2

1 − 3/x2Cp
, Cp =

Ap + Bp tanh�x�� − 1��/x
ap + bp tanh�x�� − 1��/x

, �43�

where

Ap = �3 + ��x�2��1 + x2/6� − 3��1 + x2/2� ,

Bp = �3 + ��x�2��1 + x2/2� − 3�x2�1 + x2/6� ,

ap = �3 + ��x�2�/3 − 3� − �1 + x2/6�2/�

+
4

cosh�x�� − 1��
,

bp = �3 + ��x�2� − �x2 − �1 + x2/2�2/� .

The reciprocal of Kp, Hp, takes the form

Hp =
1

�2�1 −
3

x2Cp� .

In addition, from the coefficients c, c�, c0, and c1 �not de-
tailed here�, which are solutions of the system of equations
�Eqs. �34�, �35�, �40�, �36�, and �38��, one builds the velocity
field vp=�p. This field is the exact solution for the flow
through the fluid shell under the imposed pressure conditions
at the external boundary �r=R�: �n=−Pn, with �P=ez.

2. Flow approach: Fields vv=�v and pv

For this approach, the set of equations �Eqs. �34�, �35�,
�41�, �36�, and �38�� to be solved is

c
e�x

�x
+ c�

e−�x

− �x
+ 0 +

c0

2
+ 0 = 0,

c
1

�x
�1 −

1

�x
� e�x

�x
− c�

1

�x
�1 +

1

�x
� e−�x

− �x
−

c1

��R�3 +
c0

6

+ 0 = 0,

c
ex

x
+ c�

e−x

− x
+ 0 +

c0

2
+

3Kv

2�2 = 0,
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− c
1

x
�1 −

1

x
� ex

x
+ c�

1

x
�1 +

1

x
� e−x

− x
−

c1

2R3 −
c0

6
+ 0 =

1

2
,

3c1

R3 + 0 −
Kv

�2 = 0.

The analytical solution reads

Kv =
�2

1 − 3/x2Cv
, Cv =

Av + Bv tanh�x�� − 1��/x
av + bv tanh�x�� − 1��/x

, �44�

where

Av = �3 + ��x�2� − 3��1 + x2/3� ,

Bv = �3 + ��x�2��1 + x2/3� − 3�x2,

av = − 2�� + 1/�� +
4

cosh�x�� − 1��
,

bv = �3 + ��x�2�2/3 − �1 + x2/3�2/� .

The reciprocal of Kv, Hv, takes the form

Hv =
1

�2�1 −
3

x2Cv� .

The coefficients c, c�, c0, and c1 �not detailed here�,
which are solutions of the system of Eqs. �34�, �35�, �41�,
�36�, and �38�, defines the velocity field vv=�v. The field
�v�Hv is the exact solution for the flow through the fluid
shell under the imposed unit flow condition at the external
boundary �r=R�: �v�Hv=−ez.

It is worth noting that embedded in a medium of perme-
ability Kp �or Kv�, the inclusion I�� ,R� is almost neutral in
the sense that its presence modifies neither the average den-
sity of dissipated and kinetic powers nor the field in the
Darcy medium and that the condition of stress �or the flow�
continuity is satisfied.

3. Zero vorticity approach: C-estimate

Similarly, the resolution of the set of Eqs. �34�, �35�,
�42�, �36�, and �38� leads to the following Kc-estimate:

Kc = 2�2�1 −
1

1 − Ac
�, Ac =

�1 − �3�
3

+
�2

x2

1 − 1/� + �x2 − 1/��tanh��� − 1�x�/x
1 + tanh��� − 1�x�/x

. �45�

This expression differs from that given by Umnova et al.15

�in this latter case, it seems that the porosity � is missing in
the right hand of expression �12� of D�.

4. Comments

a. Low frequency. Expanding the dynamic permeability
at low frequency gives a behavior in conformity to Eq. �12�

whose coefficients correspond to the intrinsic permeability
and the added mass effect �0 of the Darcy medium P- or
V-consistent with the inclusion I�� ,R�. The intrinsic perme-
abilities are
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of th
Kp =
1

3
�− 1 +

2 + 3�5

��3 + �5��R2, �46�

Kv =
1

18
�4

1 − �

�
− 5

�1 − �2�2

1 − �5 �R2, �47�

where R=�−1Ri. These values coincide with those estab-
lished for permanent flow in Boutin.10 Concerning the
C-estimate, the static permeability is written as

Kc =
2

45
�5 − 9� + 5�3 − �6

�
�R2. �48�

Figure 3�a� shows the dependence of the three dimensionless
estimates on the porosity �=1−�3. This figure underlines
the tremendous effect of the porosity on the intrinsic perme-
ability, while the ratio Kp /Kv varies from 1 �dilute solid
concentration, i.e., large porosity� to 4 �dense solid concen-
tration, i.e., small porosity�. We note that the ratio Kp /Kc

reaches a maximum of about 1.3 when ��3 /4.
The analytical expressions for the low frequency tortu-

osity, which depends on � only, are rather complicated and
not presented here. Figure 3�b� shows the dependence of the
three tortuosities, �0p

, �0v
, and �0c

, on the porosity �. The
values lie in a narrow range �1;9 /5�; moreover �0p

/�0v
�1

and �0p
/�0c

�1.
b. High frequency. The high frequency behavior derived

by expanding the dynamic permeabilities complies with Eq.
�13�. It provides the added mass effect �� �or tortuosity� and
the form factor M. For the tortuosity, the P-, V- and
C-estimates lead to the same value,

��p,v,c = 1 + �3/2 =
3 − �

2
� �0v � �0c � �0p.
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FIG. 3. �Color online� Low frequency parameters. �a� Dependence of dimens
line�, and Kc /Ri

2 �C-estimate, dashed line� on the porosity. �b� Dependence
The reason for this coincidence lies in the fact that at high
frequencies, the viscous effects are much smaller than the
inertia. Thus, the tortuosity �� may be derived from a perfect
fluid flow, where the interface conditions involve only the
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radial component v ·n, so that the three approaches give the
same results.

This latter is identical to a thermal problem19 where the
inverse of i�� plays the role of thermal conductivity �the
solid can be considered of infinite density, i.e., of zero ther-
mal conductivity�. Transposing Hashin’s results in terms of
tortuosity leads to the above result. Figure 4�a� shows the
dependence of the high frequency tortuosity ��p,v,c on the
porosity.

Using the low and high frequency limits, the P-, V-, and
C-equivalent media present different critical frequencies.

�ci =
��

Ki���

, i = p,v,c .

Finally, the form factors are written as

Mp = 2� 9�2

2�2�2 �Kp

��R2 , Mv = 2�9��2 + �6�
2�2 �2 �Kv

��R2 ,

Mc = 2� 9�3

2�2�2 �Kc

��R2 . �49�

In terms of characteristic viscous length, one obtains

�p

Ri
=

�c

Ri
=

4�

9�1 − ��
�� =

2��3 − ��
9�1 − ��

, �v =
�p

1 + �4 ,

Figure 4�b� shows the dependence of form factors Mp, Mv,
and Mc on the porosity. These coefficients vary from 0 at
high porosity to 2 /3 at low porosity, and 1�Mp /Mv�2.

c. Whole frequency range. The dependencies of Kp, Kv,
and Kc and Hp, Hv, and Hc on the dimensionless frequency
�� /�cp� are presented in Figs. 5 and 6, respectively, for a
porosity �=1 /3. Figure 5 shows that three estimates comply

1
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0 0.2 0.4 0.6 0.8 1

φ(b)

α
0

ss estimates Kp /Ri
2 �P-estimate, continuous line�, Kv /Ri

2 �V-estimate, mixed
e low frequency tortuosities �0p, �0v, and �0c on the porosity.
with properties �12� and �13� of the dynamic permeability.
Figure 6 shows the dependence of the real and imaginary
parts of the dimensionless estimates on � /�c. Figure 6 high-
lights the following inequalities:
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KpHp
R��/�cp� � KvHv

R��/�cv� ,

��

��
Hp

I ��/�cp� �
��

��
Hv

I ��/�cv� .

The dimensionless curves present the same main qualitative
features and, according to the theoretical result �Eq. �17��,
HR increases monotonically versus frequency and HI /� de-
creases.

Differences �related to the P-, V-, and C-approaches and
to the porosity� are noticeable, quantitatively, for the viscous
effect at high frequencies and the added mass at low frequen-
cies. The difference in the critical frequencies of both ap-
proaches makes the discrepancy magnified for the dimen-
sional coefficients.

To conclude, the three estimates present the same quali-
tative features. The C-estimate lie between the P-estimate
and the V-estimate in the whole porosity range and predict a
similar behavior as the P-estimate.

d. Comparison with the models of Johnson et al. and
Pride et al.. The formula giving the frequency dependencies
of the dynamic permeability, proposed by Johnson et al.3 and
Pride et al.,22 require to be applied the knowledge of K, M,
and �� �and �0 with the correction of Pride et al.�. This
limitation is overcome in our approach since the microstruc-
ture knowledge is sufficient to assess analytically the dy-
namic permeability in the whole frequency range. Thus K,
M, ��, and �0 are also analytically derived. As mentioned
above, Kp, Kv, and Kc follow the general features of any
parameter K��� at low and high frequencies. The formula of
Johnson et al. is elaborated to match three aspects of the two
asymptotic behaviors �i.e., low and high frequency dissipa-
tion and high frequency inertia�. Thus, provided that the val-
ues of �K ,M ,��� obtained in the present paper are used, the
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FIG. 4. �Color online� High frequency parameters. �a� Dependence of high
�continuous line�, Mv �mixed line�, and Mc �dashed line� on the porosity.
formula of Johnson et al. would naturally give correct ap-
proximations of Kp, Kv, and Kc if one only focuses on three
aspects of the low and high frequency asymptotic behaviors.
This will be also the case for the four aspects of the
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asymptotic behavior when using the formula of Pride et al.
Note also that the expressions of Kp, Kv, and Kc are issued
the solution of physical problems, and therefore they are
causal functions by construction. If this is also the case for
the formula of Johnson et al., it remains an open question for
the formula of Pride et al.

IV. FROM SOLID-FLUID INCLUSION TO POROUS
MEDIA

The determination of the equivalent parameter usually
constitutes the ultimate step of a self-consistent approach.
The obtained value is assumed to be the effective coefficient
of heterogeneous media characterized by inclusions I. The
present case requires a more detailed attention since

• different values that seem physically acceptable have been
obtained,

• conversely to other physical problems �elasticity, conduc-
tivity, etc.�, the real part of K depends on the size of the
inclusion �in addition to the usual dependence on the con-
centration of the constituents�, and

• the local physics that mixes dissipative process and kinetic
energy involves an internal intrinsic length �the viscous
layer thickness�.

Below is discussed how these results apply by examin-
ing first the reliability of the estimates for the periodic array
of solid spheres and, second, by establishing bounds for
polydisperse sphere packing.

A. Dynamic permeability of periodic arrays of solid
overlapping and nonoverlapping spheres

A usual exploitation of the SCM estimates is to consider

0
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1
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φ(b)

M

ency tortuosities ��p,v,c on the porosity. �b� Dependence of form factors Mp
that they provide a reasonable assessment of the macroscopic
properties of sphere packing presenting the same fluid-solid
concentration as the generic inclusion. This assumption re-
sults from a geometrical approximation that leads to compare
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the periodic cell to the spherical inclusion. The objective of
this section is to check how far the analytical estimates agree
with finite element numerical results obtained by solving
boundary value problems arising from the homogenization
process on the representative elementary volume �REV� of
simple cubic �sc�, body-centered cubic �bcc�, and face-
centered cubic �fcc� arrays of nonoverlapping and overlap-
ping spheres with the same radius Ri. These periodic lattices
of spheres are ranging from dilute systems with isolated
spheres and highly concentrated consolidated media. Let us
remark that the transition between nonoverlapping and over-
lapping spheres occurs when the porosity values are equal to
0.47, 0.32, and 0.26 for the sc, bcc, and fcc microstructures,
respectively. Due to the symmetry properties of each micro-
structure, finite simulations have been performed on 1 /16 of
the total REV. Figure 7 shows typical meshes used to per-
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FIG. 5. �Color online� Dynamic permeability estimates Kp, Kv, and Kc v
permeability Kp, �b� modulus normalized by Kp, �c� imaginary part normal
permeability induces a shift between the P-, V-, and C-curves correspondin
form finite element simulations. Figure 8 underlines the
influence of the ratio � /�c on the microscopic velocity field
deduced from numerical simulations in a sc array of non-
overlapping spheres ��=0.3�. We can observe that by in-
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creasing � /�c, inertial effects dominate and viscous effects
are confined to a thin viscous layer around the spheres.

a. Low frequency. At low frequencies, the static perme-
ability and the low frequency tortuosity are obtained by solv-
ing the boundary value Sv

0 �Sec. II B 2� when �=0 for a
given macroscopic pressure gradient �xP. The microscopic
velocity field v0, solution of Sv

0, is in the form

v0�x,y� = −
1

�
k · �xP , �50�

where k is a second order tensor. The static permeability
tensor is defined as

K�� = 0� =
1 
 kd� = ��k� . �51�
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he shift in critical frequencies.
� �f

From relations �12�, �16�, and �50�, it can be shown that the
low frequency tortuosity tensor �0 is written as
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here
�0 = �k · k���k� · �k��−1. �52�

The symmetry properties of the microstructures under con-
sideration imply that the tensors in such porous media are
isotropic. Thus K��=0�=KI and �0=�0I. Figures 9�a� and
9�b� present the dependence with the porosity of the static
dimensionless permeability K /Ri

2 and the low frequency tor-
tuosity �0 for sc, bcc, and fcc microstructures.

On both figures, self-consistent estimates �P-estimate,
V-estimate, and C-estimate� are also reported. Figure 9�a�
shows that the computed dimensionless static permeabilities
mainly depend on the porosity. They slightly depend on the
arrangement of spheres when the porosity is smaller than 0.4.
As expected, the permeability of the periodic arrays is closer
to P- and C-estimates than to the V-estimate. P- and
C-estimates appear as accurate analytical approximations up
to the maximum packing concentration. Because of the weak
dependence on the sphere arrangement �conversely to the
case of fibrous media, Berdichevsky and Cai9�, these esti-
mates should also be relevant for media with uniform grain

1

10

10 2 10 1 100 101 102 103

(a) ω/ωc

KH
R

FIG. 6. �Color online� Dynamic estimates Hp �continuous line�, Hv �mixed
KpHp

R /�, KvHv
R /�, and KcHc

R /� on the dimensionless frequency � /�c, w
��Hv

I / ����, and ��Hc
I���� on � /�c.
FIG. 7. Typical meshes of ��a� and �d�� sc, ��b� and �e�� bcc, and ��c� and �f��
fcc arrays �1 /16 of the total REV� used to perform finite element simula-
tions. �a�–�c� �=0.7. �b�–�d� �=0.3.
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distribution. Beyond, as explained by Chapman and
Higdon,14 the geometry of the flow path changes signifi-
cantly, so that the discrepancies increase. Figure 9�b� shows
that the low frequency tortuosity �0 for the sc, bcc, and fcc
microstructures mainly track the P- and C-estimates when
the porosity is larger than 0.6. When the porosity is lower
than 0.6, P-, V-, and C-approximations underestimate nu-
merical values.

b. High frequency. Figure 10 depicts the dependence of
the high frequency tortuosity �� and the form factor M on
the porosity. In this figure, numerical results for the sc, bcc,
and fcc microstructures are compared with the different esti-
mates. Once again, a good agreement of P- and C-estimates
with numerical results is observed when the porosity is larger
than 0.6. When the porosity is lower than 0.6, P-, V-, and
C-approximations underestimate numerical values, specially
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FIG. 8. �Color online� Influence of the ratio � /�c on the microscopic ve-
locity field in a sc array of nonoverlapping spheres ��=0.3�: �a� � /�c=0,
�b� � /�c=1, �c� � /�c=10, and �d� � /�c=100.
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when the porosity is very small. The form factor M of the
three periodic microstructures presents a maximum for po-
rosity corresponding to the maximum packing.

c. Whole frequency range. Figures 11 and 12 present the
dependence of the dimensionless real and imaginary parts of
H with the dimensionless frequency � /�c on porosities
equal to 0.7 and 0.3, respectively. Once again, when the po-
rosity is large, Fig. 11 shows that P- and C-estimates mainly
track numerical results of the bcc and fcc microstructures in
the whole dimensionless frequency range. When the porosity
is small, the discrepancy with estimates are more significant
in the whole frequency range.

In conclusion, considering a periodic array of overlap-
ping and nonoverlapping spheres, the three estimates are
quite good qualitatively. Quantitatively, the C- and
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FIG. 9. �Color online� Dependence of the dimensionless permeability and the
and self-consistent estimates: P-estimate �continuous line�, V-estimate �mixe
results of sc, bcc, and fcc microstructures, respectively.
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FIG. 10. �Color online� Dependence of the high frequency tortuosity and the c
self-consistent estimates: P-estimate �continuous line�, V-estimate �mixed line�,
results of sc, bcc, and fcc microstructures, respectively.
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P-estimates are more accurate in the whole frequency range.
This accuracy is fairly good for the four parameters �K, �0,
��, and M� when the porosity is larger than 0.5. For a lower
porosity, discrepancy up to a factor of around 2 may be ob-
served.

B. Bounds of dynamic permeability for polydisperse
sphere packing

Consider granular media constituted by spherical fixed
inclusions I��J ,RJ� of volume �J filling all the space, whose

REV �Fig. 13� is denoted as �̂= �I��J ,RJ� �index J relates
to inclusion J and exponent * relates to the media�,
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, ���,
�̂ = � IJ��J,RJ�, ��̂� = �
J

�J.

In statics, the P- and V-solutions enable us to set bounds to
the intrinsic permeability K*24. For the effective conduction,
i.e., the tortuosity �

�
*, Hashin and Shtrikman10 proved that

the SCM estimates are exact values for any arrangement of
inclusions of the same solid concentration I�� ,RJ�, filling
the whole space. Using an energetic approach, these results
are extended to the real and imaginary parts of the dynamic
permeability in the whole frequency range.

a. Complex power function. Assume that the medium
undergoes a unit macroscopic pressure gradient �P=ez cor-
responding to a macroscopic homogeneous flux V
=−�K* /��ez. Among the local fields in the fluid that fulfill
the Navier–Stokes equation, the incompressibility, and the

1

10

10 2 10 1 100 101 102 103

(a) ���c

K
�
R

FIG. 11. �Color online� Comparison between numerical results and dimens
�continuous line�, V-estimate �mixed line�, and C-estimate �dashed line�. ���
respectively.

1
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10 2 10 1 100 101 102 103

K
H
R

(a) �/�c
FIG. 12. �Color online� Comparison between numerical results and dimensionle
�continuous line�, V-estimate �mixed line�, and C-estimate �dashed line�. ���, ���,
respectively.
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adherence condition, let us distinguish �� � stands here for the
jump through the inclusion boundary� the following.

• “stress-continuous” velocity field vp such that on any in-
clusion boundary, ��pn�=0,

• velocity-continuous fields vv such that on any inclusion
boundary, �vv�=0, and

• the exact solution, v*, which is the only field whose stress
and velocity are continuous.

Introduce for any stress- and velocity-continuous fields
defined on the whole inclusions of the REV the following
complex power function E:

1
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1.4

1.6

10 2 10 1 100 101 102 103

(b) ���c

�
�
�
I
�
( �
�
)

s estimates Hp, Hv, and Hc vs � /�c when the porosity �=0.7: P-estimate
and ��� correspond to numerical results of sc, bcc, and fcc microstructures,
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(b) �/�c
ss estimates Hp, Hv, and Hc vs � /�c when the porosity �=0.3: P-estimate
and ��� correspond to numerical results of sc, bcc, and fcc microstructures,
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˜

2E�vp,vv� = �
J
�2�


�fJ

D�vp − vv�:D�vp − vv�d�

+ i��

�fJ

�vp − vv� · �vp − vv�d�� . �53�

By construction, the real and imaginary parts of E are posi-
tive, and their minima �zero� are reached when vp=vv=v*.
Developing E gives

2E�vp,vv� = �
J
�


�fJ

�2�D�vp�:D�vp� + i��vp · vp�d�

+ 

�fJ

�2�D�vv�:D�vv� + i��vv · vv�d�

− 

�fJ

�2�D�vp�:D�vv� + i��vp · vv�d�

− 

�fJ

�2�D�vp�:D�vv� + i��vp · vv�d�� .

Integrating by part and using the properties of the fields
�� ·vv=0; � ·�p=0�, the two last integrals may be trans-
formed into surface integrals, so that

2E�vp,vv� = 2E�vp,0� + 2E�0,vv�

− �
J



��J

���p · n� · v̄v + ��̄p · n� · vv�ds .

�54�

b. Bound of the real part of K*. A stress-continuous field
vp can be built by partitioning the media inclusion by inclu-
sion, and setting in each IJ, ṽp=�pJ, where �p was defined

FIG. 13. REV of granular media constituted by spherical fixed inclusions
I��J ,RJ� of volume �J filling all the space.
in Sec. III B 1. Consequently, the condition �̃p ·n= P ·n is
satisfied on the boundary of each inclusion. Now, choose for
velocity-continuous field vv the solution v*. Then it comes
successively:
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�i� By construction of the fields �pJ �see Eq. �39��,



�fJ

�2�Dy��pJ�:Dy��pJ� + i���pJ · �pJ�d�

= − �P · 

�fJ

�pJd� = �J
KpJ

�
,

so that

2E�ṽp,0� = �
J

�J
KpJ

�
. �55�

�ii� Because of the energy consistency of the dynamic
permeability K* �see Eq. �16��,

2E�0,v*� = �
J



��J

�2�Dy�v*�:Dy�v*� + i��v* · v*�

= − �̂�xP · v* = �̂
K*

�
. �56�

�iii� Finally, using the continuity of the stress induced by
�pJ on ��J with the macroscopic pressure,

− �
J



��J

���̃p · n� · v̄* + ��̃p
¯ · n� · v*�ds

= �
J



��J

�Pn · v̄* + P̄n · v*�ds

= �
J



�fJ

��Pv̄* + �P̄ · v*�ds

= �̂��P · V̄ + �P̄ · V� = − 2�̂
K*R

�
. �57�

Reporting Eqs. �55�–�57� into Eq. �54� yields

2E�ṽp,v*� = �
J
��J

KpJ

�
+ �J

K*

�
� − 2�̂

K*R

m

= �̂��
J

�J

�̂

KpJ

�
−

K*

� � ,

and from the positiveness of the real part of E�ṽp ,v*� one
deduces the inequality, giving an upper bound of K*R,

��
J

�J

�̂
Kp,J

R − K*R� � 0.

c. Bound of the imaginary part of K*. Similarly, choos-
ing vv= iv* leads us to consider 2E�ṽp , iv*�. Observing that
E�0 , iv*�=E�0 ,v*� and that

− �
J



��J

���̃p · n� · iv* + ��̃p · n� · iv*�ds
= �̂��P · iV + �P̄ · iV� = + 2i�̂
K*I

�
,

we obtain
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2E�ṽp,iv*� = �
J
��J

KpJ

�
+ �J

K*

�
� + 2i�̂K*I

= �̂��
J

�J

�̂

KpJ

�
+

K*

� � . �58�

Expressing the positiveness of the imaginary part of
E�ṽp , iv*� �recall that K*I�0�,

��
J

�J

�̂
�KpJ

I � − �K*I�� � 0,

which yields to upper bounds of �K*I�.
d. Bound of the imaginary parts of K* and H*. A similar

approach based on field �vJ leads to upper bounds of H*R

and H*I �see Appendix B�. Finally, the bounds valid in the
whole frequency range read

KR* � �
J

�J

�̂
KpJ

R , �KI*� � �
J

�J

�̂
�KpJ

I � ,

HR* � �
J

�J

�̂
HvJ

R , HI* � �
J

�J

�̂
HvJ

I .

These bounds are valid for any random or periodic spatial
distribution of inclusions. In the low and high frequency lim-
its, these general bounds give

��
J

�J

�̂

1

KvJ
�−1

� K* � �
J

�J

�̂
KpJ,

�0
*

�*
� �

J

�J

�̂

�0vJ

�J
,

��
J

�J

�̂

�J

a�J
�−1

�
�

�
*

�*
� �

J

�J

�̂

��J

�J
.

Note that if all the inclusions present the same porosity ��J

=�*�, the upper and lower bounds are identical for the tor-
tuosity at high frequency, so that the estimates provide the
exact value ��

�
* =��J�, in agreement with Hashin’s result.

V. CONCLUSION

This study provides three analytical expressions of the
dynamic permeability of granular media and emphasizes the
physical assumption sustaining these results. Theses esti-
mates follow the physical requirements in the whole fre-
quency range and the whole porosity range. Among the two
estimates energetically consistent, the P-estimate gives a
good qualitative approximation of numerical results com-
puted by the finite element method for periodic arrays �sc,
bcc, and fcc� of overlapping and nonoverlapping spheres.

Quantitatively, when ��0.5, the agreement is excellent and
is still reasonable otherwise. Although the zero vorticity as-
sumption is not energetically consistent, the associated esti-
mate leads to a value very close to the consistent P-estimate
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�and even more accurate as for periodic arrays of spheres�.
The P- and V-estimate enable us to bound the dynamic per-
meability of polydisperse sphere packing.

Meanwhile the spherical fluid-solid inclusion is an ex-
tremely simple and regular 3D pore geometry, these results
underline the great sensitivity of the macroscopic parameters
to the morphology of the medium. Nevertheless such a ge-
ometry is not sufficient to capture all the complexities of the
flow in actual geometry, such as that of overlapping spheres.
For this reason, the present estimates may apply to porous
media whose pores are sufficiently regular �for instance,
granular media made of polyhedron packing instead of
sphere packing� but should be used cautiously otherwise.

It is worth mentioning that the rigorous physical analysis
performed with the HPM plays a determining role in estab-
lishing these estimates. In the problem under scrutiny, other
results would have been obtained if, instead of the dynamic
Darcy law, a macroscopic Brinkman law was assumed—
which actually occurs for a very dilute array of
particles25—or a macroscopic viscoelastic behavior, which
actually occurs for fluid of very high viscosity.26 Note finally
that the obtained results may easily be extended to linear
viscoelastic saturating fluids.

APPENDIX A: VARIATION OF REAL AND IMAGINARY
PARTS OF H VERSUS FREQUENCY

The leading idea to establish the variations of H �as-
sumed to be isotropic, or in a given principal direction� is to
calculate the virtual crossed energies of a particular velocity
field—solution at a given frequency—under a particular ve-
locity field—solution at another frequency—and recipro-
cally. For this purpose, let us introduce the field solutions u
and u� corresponding to unit real mean velocity at the fre-
quency � �respectively ���, i.e.,

�u� = �u�� = e, �e� = 1, arg e = 0.

The associated forcing pressure gradients are −�He and
−�H�e, and the corresponding variational formulation �Eq.
�15�� reads, for u �and similarly for u�, ��, H�=H�����,

∀w � W ,

2��Dy�u�:Dy�w�� + i���u · w� = + �He�w� . �A1�

Choose now in the �-variational formulation �or ���, the
field test w=H�u� �or w=Hu�. One obtains

2��Dy�u�:Dy�u���H� + i���u · u��H� = �HH�,

2��Dy�u��:Dy�u��H + i����u� · u�H = �HH�.

Subtracting these two expressions yields to the following
identity, valid for any frequency � and ��:
2��Dy�u�:Dy�u����H� − H� + i��u · u����H� − ��H� = 0.

Taking � close to ��, one deduces
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2��Dy�u�:Dy�u��
dH

d�
+ i��u · u��2d�H/��

d�
= 0. �A2�

However, choosing w=u in the �-variational formulation
gives

2��Dy�u�:Dy�u�� + i��u · u�� = �H . �A3�

Then from Eqs. �60� and �61�, we get

dH

d�
=

i�

�
�u · u�, �2d�H/��

d�
= − 2�Dy�u�:Dy�u�� ,

and coming back to the real and imaginary parts,

2
dHR

d�
=

i�

�
��u + ū� · �u − ū�� ,

2i�2d�HI/��
d�

= − 2��Dy�u� + Dy�ū��:�Dy�u� − Dy�ū��� .

In order to establish the sign of these derivatives, we use
w=u− ū as a field test in the natural and conjugate
�-variational formulations. One obtains

2��Dy�u�:�Dy�u� − Dy�ū��� + i���u · �u − ū�� = 0,

2��Dy�ū�:�Dy�u� − Dy�ū��� − i���ū · �u − ū�� = 0,

which yields the following by summing and subtracting:

i����u + ū� · �u − ū�� = 8���Dy�u��I:�Dy�u��I� ,

���Dy�u� + Dy�ū��:�Dy�u� − Dy�ū��� = 8i����uI�2� .

In the left hand side terms, the squares of the imaginary parts
are positive, and therefore,

dHR

d�
� 0,

d�HI/��
d�

� 0,

which proves the monotonic increases in the viscous part
with the frequency and, conversely, the monotonic decrease
in tortuosity �or added mass� in the whole frequency range.

APPENDIX B: BOUNDS OF REAL AND IMAGINARY
PARTS OF H*

We assume now in �̂ a macroscopic flux V=−ez, which
corresponds to the macroscopic pressure gradient �P
=�H*ez and the exact flow v*H*. A velocity-continuous
field ṽv is built by setting in each IJ, ṽv=�vJHvJ, where �v
is defined in Sec. III B 2.

Let us calculate 2E�v*H* , ṽv�. On the boundary of each

inclusion, vṽ ·n=v, and v*H* is chosen as the stress-
continuous field,

− �
J



��J

��H*�* · n� · ṽv + �H*�* · n� · ṽv�ds

= − �
 ��H*�* · n� · V̄ + �H*�* · n� · V�ds

J ��f

= �
J



��f

�Pn · V̄ + P̄n · V�ds
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= �̂��P · V̄ + �P̄ · V� = − 2�̂H*R.

Then, from �i� the above equality, �ii� Eq. �16� applied to
v*H*, and �iii� Eq. �39� applied to �vJHvJ, we get,

2E�v*H*,vṽ� = �
J

��JH* + �J�HvJHvJ�KvJ� − 2�̂H*R

= �̂��
J

�J

�̂
HvJ − H*� .

Furthermore, one may also establish

2E�− iv*H*, ṽv� = �
J

��JH* + �J�HvJHvJ�KvJ�

− 2�̂iH*I = �̂��
J

�J

�̂
HvJ + H*� .

The positiveness of the real part of E�v*H* ,vṽ� and of the

imaginary part of E�−iv*H* ,vṽ� gives

H*R � �
J

�J

�̂
HvJ

R , H*I � �
J

�J

�̂
HvJ

I .
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