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Generalized beams and continua.
Dynamics of reticulated structures.

Boutin C. , Hans S. and Chesnais C.

Abstract This paper deals with the dynamic behaviour of periodictdsited beams
and materials. Through the homogenization method of perididcrete media the
macro-behaviour is derived at the leading order. With aesyatic use of scaling,
the analysis is performed on the archetypical case of synoneatbraced framed
cells. Such cells can present a high contrast between shdacampression de-
formability, conversely to "massive” media. This opens gossibility of enriched
local kinematics involving phenomena of global rotatiomer deformation or inner
resonance, according to studied configuration and frequmamge.

1 Introduction

This paper deals with the macroscopic dynamic behavioureabdic reticulated
structures and materials widely encountered in mechaeitgineering. Periodic
lattices have been studied through various approachessucansfer matrix, vari-
ational approach [8], finite difference operator, cf. [18ymptotic methods of ho-
mogenization [11] initially developed for periodic medigere extended to multiple
parameters and scale changes by [5] and adapted to periedieté structures by
[3], then [9]. Those studies aim at relate the local striecaurd the global behavior.
The structural morphology of reticulated media makes thathtasic cells can
present a high contrast between shear and compressiomditity (conversely to
"massive” media). This opens the possibility of enrichezhldkinematics involving
phenomena of global rotation, inner deformation or innsprance, according to
studied configuration and frequency range. A numericatithtion of these atypical
situations is given on Fig. 1 that shows the some unusualaosagpic modes.
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Fig. 1 Examples of typi-
cal and atypical dynamic
(a) (b) (c) (d) (@) behaviours of 1D framed
structures.

The present study investigates and summarizes those ple@ad a systematic
analysis performed on the archetypical case of symmethcaoed framed cells [1],
[7]. Assuming the cell size is small compared to the wavetlerthe homogenization
of periodic discrete media leads to the macro-behaviourelgading order.

The paper is organized as follows. Section 2 gives an owsrgiethe method
and the assumptions. In section 3, several beam modelingr rahsverse vibra-
tions are established by varying the properties of the Heaine elements, and the
frequency range. Section 4 is devoted to longitudinal tibres. Section 5 focuses
on the analogy between these results and the mechanicserajead continua.

2 Discrete homogenization

The analysis of periodic beam lattices is performed in tveps{12] : first, the dis-
cretization of the balance of the structure under harmoifiations; second, the
homogenization, leading to a continuous model elaborateu the discrete de-
scription. An outline of this method is given hereatfter.

Discretization of thedynamic balance: Studied structures (Fig.2) are made of plates
behaving as Euler-Bernoulli beam in out-of-plane motiord assembled with rigid
connections. The motions of each extremity connected teah® node are identical
and define the discrete nodal kinematic variables of theesysThe discretization
consists in integrating the dynamic balance (in harmorgame) of the beams, the
unknown displacements and rotations at their extremiéiksrt as boundary condi-
tions. Forces applied by an element on its extremities améipressed as functions
of the nodal variables. The balance of each element beirgfisds it remains to ex-
press the balance of forces applied to the nodes. Thus, taadeaof the whole
structure is rigorously reduced to the balance of the nodes.
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Homogenization method : The key assumption of homogenization is that the cell
size /¢ is small compared to the characteristic sizef the vibrations of the struc-
ture. Thuse = ¢/L << 1. The existence of a macro scale is expressed by means
of macroscopic space variableThe physical variables are continuous functions of
x coinciding with the discrete variables at any node, Bgx = x,) = U (noden).
These quantities, assumed to converge whiemds to zero, are expanded in powers
of £ Ug(x) =U%(x) + £ UL(x) + €2 UZ(X) +.... Similarly, all unknowns, including
the modal frequency, are expanded in powers.ds ¢ = €L is a small increment
with respect to, the variations of the variables between neighboring nadex-
pressed using Taylor’s series; this in turn introduces tlaeroscopic derivatives.

To account properly for the local physics, the geometrical mechanical char-
acteristics of the elements are scaled according to thensmfe. As for the modal
frequency, scaling is imposed by the balance of elastic aadia forces at macro
level. This scaling insures that each mechanical effeceaggpat the same order
whatever the value is. Therefore, the same physics is kept when0, i.e. for the
homogenized model. Finally, the expansions jpower are introduced in the nodal
balances. Those relations, valid for any snzallead for eacte-order to balance
equations whose resolution defines the macroscopic gogeegjuations.

Inner quasi statism and inner dynamics: In general the scale separation requires
that, at the modal frequency of the global system, wavelengt the compression
and bending vibrations generated in each local element ach ionger than the
element length. In that case the nodal forces can be dewkiop&ylor's series
with respect tce. This situation corresponds to a quasi static state at trad szale.
Nevertheless, in higher frequency range, it may occursdahbt the compression
wavelength is much longer than the length elements whilal lesonance in bend-
ing appears. The homogenization remains possible thrduglexpansions of the
compression forces and leads to atypical descriptions iwitar dynamics. Above
this frequency range, the local resonance in both compmressid bending makes
impossible the homogenization process.

3 Studied structures

We study the vibrations of structures of heigtht= N.4,, constituted by a pile of a
large numbeN of identical unbraced frames called cells (Fig.2). The peat@rs of
horizontal elements & f) and vertical elements £ w) are: lengtl;; thicknessy;;
section ared\; inertial; = a1-3h/12 in directiones; densityp;; elastic modulug;.
The kinematic is characterized at any lendby the motions of the two nodes
in the plane ¢, &), i.e., the displacements in the two directions and thetimia
(ug, Uz, 8). These six variables can be replaced by (i) three variabkescéated to the
rigid body motion of the leveh : the mean transverse displacemetdt§)) alonge;,
V (n) alonge, and the rotatiom (n) (differential vertical nodal motion divided [Ay)
and (ii) three variables corresponding to its deformatitie:mean and differential
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Fig. 2 The class of unbraced framed structures (left) and the li@site and notations (right).

rotations of the node$)(n) and®(n), and the transverse dilatatidr{n), cf. Fig.3.
Because of the longitudinal symmetry the transverse angitladinal kinematics
respectively governed by a, 8) and ¥/, @, A) are uncoupled.

A systematic study enables to identify the family dynamikdagors by evolving
gradually the properties of the frame elements and the &ecprange.

4 Transversevibrations

The transverse vibrations can be classified in two categdfier the first category,
the horizontal elastic force balances the horizontal tedios inertia. In this situa-

tion, it can be shown that the corresponding range of frequinsuch that the cell

behaves in the quasi static range. Lower frequencies wealdl o a static descrip-
tion of the structure. Conversely, at higher frequenciesttrizontal elastic forces
cannot balance the translation inertia so that the traoslahould vanish. Then the
vibration results from the balance between the elastic nmbame and the rotation
inertia. This leads a second unusual category.

4.1 Low frequency range - Generic beam model

The possible beam-like behaviours are established byngithie properties of the
basic frame elements. The synthesis of the different maopis behaviors derived
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Fig. 3 Decoupling of trans-
verse (left) and longitudinal
(right) kinematics.

level n £

level n

according to the properties of the frame elements showsthathree mechanisms
- shear, global bending, inner bending - governs the phgsitte macroscale. Each
of them is associated to an elastic cell parameter of sg§nén sheak, in global
bendingEyl, and in inner bendingR,ly. Owing to the quasi static local state, these
parameters are deduced from the elastic properties of alsrirestatics.

The method enables to build a generic beam model involviagittee kinematic
variabledJ, a, 6 and including the three mechanisms. It is governed by theviel
ing sixth order equation :

2EwlwEwl
K

_Edl

< Aw?U"(x) +Aw?U(x) =0 (1)

U® (x) — (2BEulw + Ewl ) U@ (x)
Eqg. (1) generalizes the classical beam dynamics. In additiche common bend-
ing, it includes at the leading order shear and inner bendlisgal descriptions (as
Timoshenko, Euler-Bernoulli, Shear) can be recovered lysténg one or two of
these mechanisms. Note that for this category, the rotatenia of the section do
not appear, while the shear may governs the behavior of stestdictures.

The dominating effect(s) that drive(s) the effective bebiawf a given structure,
can be identified through a dimensional analysis performethe generic beam.
Introducing the characteristic size of vibratibrthe change of variables = x/L
transforms the governing equation (1) into:

2

Cyu*®(x) - (1+y) U@ (x) - Q2U* @) (x) + % usx)=0 (2

where, by construction, the dimensionless terms denoted*®reO(1) and using
for L the actual vibration’s sizk = % (for a clamped-free beam):

Ewl _Balw 2w o Nw?[2

k2 YTES T K

()

C evaluates the contrast between global bending and shehy; thie contrast be-
tween inner and global bendin@.andy supply identification criteria of behavior:
according to their order of magnitude with respeckte: £/L = -, equation (2)
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Fig. 4 Left: map of transverse behaviours in function of the dinemsss parametefs = P and
y = &9, Right : the three transverse mechanisms

degenerates in simplified forms. For instanc& # O(1) andy = O(€), the terms
related taCy andy disappear and the resulting model is:
2
U*(4)+QZU*(2) _ Q_ U*=0

C
that corresponds to a slender Timoshenko beam, etc. .. Boingeven behaviors
are obtained depending on the valuespfCy andy compared tE powers. A syn-
thetic representation (Fig. 4) is deduced by mapping theaiowf validity of each
behavior according to the two parameters p and g define@ by&P andy = €9

4.2 Higher frequency range - Gyration beam model

At higher frequencies the translatibhmust vanish at the leading order (when seek-
ing for a macroscopic description). A new dynamic equilibmi between elastic
momentum and rotation inertia leads to the second catedanaoroscopic trans-
verse vibrations. The corresponding atypical gyrationnb@aodel involves only
the two kinematic variableg, 6, driven by the mechanisms of opposite traction-
compression of vertical elements (global bending withcanglation ! see Fig.1-b)
and the frame shear. Because of the higher frequency dothaiopndition of local
quasi statism is not necessarily respected and thus twolmacdeobtained.

Inner quasi-statism : This situation corresponds to bending (then compression)
wavelength much longer than the elements length. The gmgeeqguation is of
the second degree whose parameters are the elastic s#ffnakeady determined
and the usual rotation inertia It reads :
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Ewl a”(x) — K a(x) +Jw?a(x) =0 (4)

It can be interpreted as the balance of the global momentimanglassical inertial
source term and an inner elastic source of momentum.

Inner dynamics : In this case the bending wavelength in the element is of the or
der of their length, meanwhile the compression wavelengthains much larger.
This enables to expand the compression forces and to demiaeeo behavior. The
governing equation of the second degree presents the saina ghomentum pa-
rameters than for local quasi statism but differs fundaignby the inertia term
and the inner elastic source of momentum, both dependingeguéncy :

Ewl a”(x) — K(w) a(x) + J(w)w’a(x) =0 (5)

The reason of these modifications lies in the non expandexg$oassociated to
the local dynamic bending that strongly depends on the &equand gives rise to
apparentinertid(w) and momentum source. This effect also appears in longilidin
vibrations and is discussed in the next section.

5 Longitudinal vibrations

The longitudinal vibrations, described by, @, A), present a lesser complexity be-
cause the main mechanism is the vertical compression. Tleeatice between the
identified models only relies in the possible presence adiimtlynamics.

Inner quasi-statism : This case leads to the classical description of beam charac-
terized by the compression modulus,2, and the lineic masa :

2EwAw V" (X) + Aw?V (x) = 0 (6)

The domain of validity of this model is derived by expressthgt the orders of
magnitude of the fundamental frequency of the whole strectdescribed by eq.6)
is much smaller than the one of the elements in bending. €aid to the following
lower bound of the number of cellsN > slender ratio of the elements. In other
words the validity of usual model requires a sufficienthglanumber of cells.

Inner dynamics : Similarly to gyration modes, the inner dynamics introduied
frequency depending apparent mass, that can be expresagticadly [4] :

2EAwV" (X) + A @)V (X) =0 /\(m)_/\w+/\fzp<wﬂ) @)

f1

Y(©) =

(8)
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, Fig. 5 Effect of the inner
@~g, resonance on the apparent

-2 dimensionless mass :
1+y(gr)) /2

The study ofA(w) (cf. Fig. 5), shows that (i\ (w) — A whenw — 0, and (ii)

N (w)| — o whenw — wy,,,,, wherew,, ., are the odd eigen modes of horizontal
elements in bending. This induces abnormal response inititéty of the wx,,,,
that results in discrete spectrum of cut-off frequencidse @omain of validity of
this model is derived by equalizing the orders of magnituti¢he fundamental
frequencies of (i) the whole structure and (ii) the eleméntsending. This leads to
bound of the number of cells by < slender ratio of the elements.

6 Analogy with micromorphic media

This section points out analogy between the several beamavimk and that of
micromorphic materials [6]. Conveniently we focus on thstfilow frequency)
mode of transverse vibration polarised in direct@gnpropagating in directios;.

6.1 From 1D to 2D structures

Consider a cell” of shear stiffnesk, inner bending stiffnessl,, and global bend-
ing stiffnessEl corresponding to the intrinsic coefficierfis= El /KIZ andy = I,/I.
From this frame, build a periodic bea# = Ne, x .%, made ofNe, frame cells re-
peated in the directioey, as in Fig.2. The transverse behaviofis driven by the
two dimensionless parameters and the actual scale ratio :

T
2Ne,

m

=8 y=8 E=o
2N,

C=p(
Build the 2D periodic structure” by Ne, lateral repetition in the transverse direction
e of Z thatis,.” = Ne, x Z = Ne, x (Ne, x .#). The properties of the”’s cell
made ofNe, x .# frames can be estimated from those%f the stiffnesses in shear
is O(Ng,K), in inner bending iO(Ne,Ely), and in global bending i@(Nngl).
Thus, the transverse behavior.&f is driven byCs andys :
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TNe,

Cs= (ZNel

1 m
PB>Ci ye=()y<vy then Csys=Cy=(5-)°By (9)

e ey
Moreover sinceZ and.”” have the same numbbk, of cells : s = £. Introducing
(ps, gs) such thaCs = € Ps andys = € 9 the relations (9) lead to:

Pps<p ; 0Os>qQ ; Ps+0s=p+q

Consequently, according to the previous results (cf. it nature of4 and.”
behaviour would be the samepf< —1, but may differ ifp > —1.

6.2 Micromorphic media

Consider now an infinite media made of the c&lland assume that - in a domain
2 restricted tdNg, x N, X .# - appropriate boundary conditions impose normally
to the directiore; a shear polarised in the directiesy The equivalent behaviour in
2 is identified by comparing the power &f= 11/(2Ng, ) with the two parameters :

2B i o= (é)zv

TiNe,

Cy = (2Ne1

Four behaviours may arrise according to the independaatratic variable(s).

Cauchy elastic continuum behaviour. This will be observed when the kinematic
involves the solely translatiod, which occurs wherlC,y, < & andCy, > 71,

These conditions require that tiegeometry follows the constraints : in the direc-
tion normal to the shear motioNe, > 7By i.e. a number of cell higher than the
intrinsic critical numbeN; = gﬁy: EIW/KI\,Zv ; in the direction of the shear motion

Ne, > (2Ne,)¥2/1/B = My, i.e. a weak slenderness aspect raticzof

Micromorphic elastic media with inner deformation. This appears when the kine-
matic involves the translatiod and the inner rotatio®, i.e., whenCyys, > € and
Cy > &1 In terms of2 geometry this requires thak, < Nc andNe, > M>

Cosserat like behaviour. The kinematic variables are the translatidnand the
rotationa. This appears whe@yy, < &€ andC, < €1 i.e. whenNg, > N¢ and
Ne, < M. In this case the cell rotation breaks the lateral peritglicinereas the pe-
riodicity in the perpendicular direction is kept. For thésason, such a phenomenon
is not be described by the usual 2D homogenization appledakic# (that would
impose the periodicity in both directions). Neverthelélss,deformation presents a
scale separation in a single direction that enables théntesd by a 1D homoge-
nization. In such a domain, the effects of global bendingsdredr are of same order.

Complex micromorphic media with inner deformation and rotation involving the
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three variablesl, a and®. This situation is obtained whey, y,; > & andCy < §71
that is for rather restricted domain geometry definedMay:< Nc andNe, < My.

To respect the scale separation, the micromorphic behe/ieith inner defor-
mation can only be reachedNt = By is significantly larger than 1.

7 Conclusion

Reticulated media present a much larger diversity of bamdkian the usual "mas-
sive” media. In particular the enriched local kinematicsaduces modes of dif-
ferent nature (as gyration modes), based on different kirejailibrium (as inner
bending modes). The atypical inner resonance effect isdesmnstrated to be pos-
sible for those reticulated structure, while they canneettep in massive beams.
The comparisons of these theoretical results with numlamocaelling are satis-
factory [7], and dynamics experiments on real regular lingd [2] also demonstrate
the reliability of this approach and its interest in engieg domain. Finally these
results may be extended to the rheology of reticulated naddesuch as foam, glass
wool, vegetal, bones ... and presents strong analogiegeitaralized continua.
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