
HAL Id: hal-00941153
https://hal.science/hal-00941153

Submitted on 3 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Beams and Continua. Dynamics of
Reticulated Structures

Claude Boutin, Stéphane Hans, Céline Chesnais

To cite this version:
Claude Boutin, Stéphane Hans, Céline Chesnais. Generalized Beams and Continua. Dynamics of
Reticulated Structures. Mechanics of Generalized Continua, Springer New York, pp.131-141, 2010,
Advances in Mechanics and Mathematics Volume 21. �hal-00941153�

https://hal.science/hal-00941153
https://hal.archives-ouvertes.fr


Generalized beams and continua.
Dynamics of reticulated structures.

Boutin C. , Hans S. and Chesnais C.

Abstract This paper deals with the dynamic behaviour of periodic reticulated beams
and materials. Through the homogenization method of periodic discrete media the
macro-behaviour is derived at the leading order. With a systematic use of scaling,
the analysis is performed on the archetypical case of symmetric unbraced framed
cells. Such cells can present a high contrast between shear and compression de-
formability, conversely to ”massive” media. This opens thepossibility of enriched
local kinematics involving phenomena of global rotation, inner deformation or inner
resonance, according to studied configuration and frequency range.

1 Introduction

This paper deals with the macroscopic dynamic behaviour of periodic reticulated
structures and materials widely encountered in mechanicalengineering. Periodic
lattices have been studied through various approaches suchas transfer matrix, vari-
ational approach [8], finite difference operator, cf. [10].Asymptotic methods of ho-
mogenization [11] initially developed for periodic media,were extended to multiple
parameters and scale changes by [5] and adapted to periodic discrete structures by
[3], then [9]. Those studies aim at relate the local structure and the global behavior.

The structural morphology of reticulated media makes that the basic cells can
present a high contrast between shear and compression deformability (conversely to
”massive” media). This opens the possibility of enriched local kinematics involving
phenomena of global rotation, inner deformation or inner resonance, according to
studied configuration and frequency range. A numerical illustration of these atypical
situations is given on Fig. 1 that shows the some unusual macroscopic modes.
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Fig. 1 Examples of typi-
cal and atypical dynamic
behaviours of 1D framed
structures.

The present study investigates and summarizes those phenomena by a systematic
analysis performed on the archetypical case of symmetric unbraced framed cells [1],
[7]. Assuming the cell size is small compared to the wavelength, the homogenization
of periodic discrete media leads to the macro-behaviour at the leading order.

The paper is organized as follows. Section 2 gives an overview of the method
and the assumptions. In section 3, several beam modeling under transverse vibra-
tions are established by varying the properties of the basicframe elements, and the
frequency range. Section 4 is devoted to longitudinal vibrations. Section 5 focuses
on the analogy between these results and the mechanics of generalized continua.

2 Discrete homogenization

The analysis of periodic beam lattices is performed in two steps [12] : first, the dis-
cretization of the balance of the structure under harmonic vibrations; second, the
homogenization, leading to a continuous model elaborated from the discrete de-
scription. An outline of this method is given hereafter.

Discretization of the dynamic balance : Studied structures (Fig.2) are made of plates
behaving as Euler-Bernoulli beam in out-of-plane motion, and assembled with rigid
connections. The motions of each extremity connected to thesame node are identical
and define the discrete nodal kinematic variables of the system. The discretization
consists in integrating the dynamic balance (in harmonic regime) of the beams, the
unknown displacements and rotations at their extremities taken as boundary condi-
tions. Forces applied by an element on its extremities are then expressed as functions
of the nodal variables. The balance of each element being satisfied, it remains to ex-
press the balance of forces applied to the nodes. Thus, the balance of the whole
structure is rigorously reduced to the balance of the nodes.
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Homogenization method : The key assumption of homogenization is that the cell
sizeℓ is small compared to the characteristic sizeL of the vibrations of the struc-
ture. Thusε = ℓ/L << 1. The existence of a macro scale is expressed by means
of macroscopic space variablex. The physical variables are continuous functions of
x coinciding with the discrete variables at any node, e.g.Uε(x = xn) = U(node n).
These quantities, assumed to converge whenε tends to zero, are expanded in powers
of ε: Uε(x) = U0(x)+ ε U1(x)+ ε2 U2(x)+ . . .. Similarly, all unknowns, including
the modal frequency, are expanded in powers ofε. As ℓ = εL is a small increment
with respect tox, the variations of the variables between neighboring nodesare ex-
pressed using Taylor’s series; this in turn introduces the macroscopic derivatives.

To account properly for the local physics, the geometrical and mechanical char-
acteristics of the elements are scaled according to the powers ofε. As for the modal
frequency, scaling is imposed by the balance of elastic and inertia forces at macro
level. This scaling insures that each mechanical effect appears at the same order
whatever theε value is. Therefore, the same physics is kept whenε → 0, i.e. for the
homogenized model. Finally, the expansions inε power are introduced in the nodal
balances. Those relations, valid for any smallε, lead for eachε-order to balance
equations whose resolution defines the macroscopic governing equations.

Inner quasi statism and inner dynamics : In general the scale separation requires
that, at the modal frequency of the global system, wavelengths of the compression
and bending vibrations generated in each local element are much longer than the
element length. In that case the nodal forces can be developed in Taylor’s series
with respect toε. This situation corresponds to a quasi static state at the local scale.
Nevertheless, in higher frequency range, it may occurs thatonly the compression
wavelength is much longer than the length elements while local resonance in bend-
ing appears. The homogenization remains possible through the expansions of the
compression forces and leads to atypical descriptions withinner dynamics. Above
this frequency range, the local resonance in both compression and bending makes
impossible the homogenization process.

3 Studied structures

We study the vibrations of structures of heightH = N.ℓw constituted by a pile of a
large numberN of identical unbraced frames called cells (Fig.2). The parameters of
horizontal elements (i = f ) and vertical elements (i = w) are: lengthℓi; thicknessai;
section areaAi; inertiaIi = a3

i h/12 in directione3; densityρi; elastic modulusEi.
The kinematic is characterized at any leveln by the motions of the two nodes

in the plane (e1, e2), i.e., the displacements in the two directions and the rotation
(u1,u2,θ ). These six variables can be replaced by (i) three variables associated to the
rigid body motion of the leveln : the mean transverse displacements,U(n) alonge1,
V (n) alonge2 and the rotationα(n) (differential vertical nodal motion divided byℓp)
and (ii) three variables corresponding to its deformation :the mean and differential
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Fig. 2 The class of unbraced framed structures (left) and the basicframe and notations (right).

rotations of the nodes,θ (n) andΦ(n), and the transverse dilatation∆(n), cf. Fig.3.
Because of the longitudinal symmetry the transverse and longitudinal kinematics
respectively governed by (U,α,θ ) and (V,Φ,∆ ) are uncoupled.

A systematic study enables to identify the family dynamic behaviors by evolving
gradually the properties of the frame elements and the frequency range.

4 Transverse vibrations

The transverse vibrations can be classified in two categories. For the first category,
the horizontal elastic force balances the horizontal translation inertia. In this situa-
tion, it can be shown that the corresponding range of frequency is such that the cell
behaves in the quasi static range. Lower frequencies would lead to a static descrip-
tion of the structure. Conversely, at higher frequencies the horizontal elastic forces
cannot balance the translation inertia so that the translation should vanish. Then the
vibration results from the balance between the elastic momentum and the rotation
inertia. This leads a second unusual category.

4.1 Low frequency range - Generic beam model

The possible beam-like behaviours are established by varying the properties of the
basic frame elements. The synthesis of the different macroscopic behaviors derived



Generalized beams and continua. Dynamics of reticulated structures. 5

Fig. 3 Decoupling of trans-
verse (left) and longitudinal
(right) kinematics.

according to the properties of the frame elements shows thatonly three mechanisms
- shear, global bending, inner bending - governs the physicsat the macroscale. Each
of them is associated to an elastic cell parameter of stiffness : in shearK, in global
bendingEwI, and in inner bending 2EwIw. Owing to the quasi static local state, these
parameters are deduced from the elastic properties of elements in statics.

The method enables to build a generic beam model involving the three kinematic
variablesU , α, θ and including the three mechanisms. It is governed by the follow-
ing sixth order equation :

2EwIwEwI
K

U (6)(x)− (2EwIw + EwI)U (4)(x)− EwI
K

Λω2U ′′(x)+Λω2U(x) = 0 (1)

Eq. (1) generalizes the classical beam dynamics. In addition to the common bend-
ing, it includes at the leading order shear and inner bending. Usual descriptions (as
Timoshenko, Euler-Bernoulli, Shear) can be recovered by vanishing one or two of
these mechanisms. Note that for this category, the rotationinertia of the section do
not appear, while the shear may governs the behavior of slender structures.

The dominating effect(s) that drive(s) the effective behavior of a given structure,
can be identified through a dimensional analysis performed on the generic beam.
Introducing the characteristic size of vibrationL the change of variablesx = x/L
transforms the governing equation (1) into:

C γ U∗(6)(x)− (1+ γ) U∗(4)(x)−Ω2 U∗(2)(x)+
Ω2

C
U∗(x) = 0 (2)

where, by construction, the dimensionless terms denoted bya * areO(1) and using
for L the actual vibration’s sizẽL = 2H

π (for a clamped-free beam):

C =
EwI

KL̃2
γ =

2EwIw

EwI
=

2Iw

I
Ω2 =

Λω2L̃2

K
(3)

C evaluates the contrast between global bending and shear, and γ the contrast be-
tween inner and global bending.C andγ supply identification criteria of behavior:
according to their order of magnitude with respect toε̃ = ℓ/L̃ = π

2N , equation (2)
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Fig. 4 Left: map of transverse behaviours in function of the dimensionless parametersC = ε̃ p and
γ = ε̃q. Right : the three transverse mechanisms

degenerates in simplified forms. For instance, ifC = O(1) andγ = O(ε̃), the terms
related toCγ andγ disappear and the resulting model is:

U∗(4) + Ω2 U∗(2)− Ω2

C
U∗ = 0

that corresponds to a slender Timoshenko beam, etc. . . Doingso, seven behaviors
are obtained depending on the value ofC, Cγ andγ compared tõε powers. A syn-
thetic representation (Fig. 4) is deduced by mapping the domain of validity of each
behavior according to the two parameters p and q defined by:C = ε̃ p andγ = ε̃q

4.2 Higher frequency range - Gyration beam model

At higher frequencies the translationU must vanish at the leading order (when seek-
ing for a macroscopic description). A new dynamic equilibrium between elastic
momentum and rotation inertia leads to the second category of macroscopic trans-
verse vibrations. The corresponding atypical gyration beam model involves only
the two kinematic variablesα, θ , driven by the mechanisms of opposite traction-
compression of vertical elements (global bending without translation ! see Fig.1-b)
and the frame shear. Because of the higher frequency domain,the condition of local
quasi statism is not necessarily respected and thus two models are obtained.

Inner quasi-statism : This situation corresponds to bending (then compression)
wavelength much longer than the elements length. The governing equation is of
the second degree whose parameters are the elastic stiffnesses already determined
and the usual rotation inertiaJ. It reads :
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EwI α ′′(x)−K α(x)+ Jω2α(x) = 0 (4)

It can be interpreted as the balance of the global momentum with a classical inertial
source term and an inner elastic source of momentum.

Inner dynamics : In this case the bending wavelength in the element is of the or-
der of their length, meanwhile the compression wavelength remains much larger.
This enables to expand the compression forces and to derive amacro behavior. The
governing equation of the second degree presents the same global momentum pa-
rameters than for local quasi statism but differs fundamentally by the inertia term
and the inner elastic source of momentum, both depending on frequency :

EwI α ′′(x)−K(ω) α(x)+ J(ω)ω2α(x) = 0 (5)

The reason of these modifications lies in the non expanded forces associated to
the local dynamic bending that strongly depends on the frequency and gives rise to
apparent inertiaJ(ω) and momentum source. This effect also appears in longitudinal
vibrations and is discussed in the next section.

5 Longitudinal vibrations

The longitudinal vibrations, described by (V,Φ,∆ ), present a lesser complexity be-
cause the main mechanism is the vertical compression. The difference between the
identified models only relies in the possible presence of inner dynamics.

Inner quasi-statism : This case leads to the classical description of beam charac-
terized by the compression modulus 2EwAw and the lineic massΛ :

2EwAw V ′′(x)+Λω2V (x) = 0 (6)

The domain of validity of this model is derived by expressingthat the orders of
magnitude of the fundamental frequency of the whole structure (described by eq.6)
is much smaller than the one of the elements in bending. This leads to the following
lower bound of the number of cells :N ≥ slender ratio of the elements. In other
words the validity of usual model requires a sufficiently large number of cells.

Inner dynamics : Similarly to gyration modes, the inner dynamics introduces an
frequency depending apparent mass, that can be expressed analytically [4] :

2EwAw V ′′(x)+Λ(ω)ω2V (x) = 0 ; Λ(ω) = Λw +Λ f ψ
(

ω
ω f1

)

(7)

ψ(ω̃) =
8 sin(3π

4

√
ω̃)sh(3π

4

√
ω̃)

3π
√

ω̃
(

sin(3π
4

√
ω̃)ch(3π

4

√
ω̃))+ sh(3π

4

√
ω̃)cos(3π

4

√
ω̃)

) (8)
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Fig. 5 Effect of the inner
resonance on the apparent
dimensionless mass :
(

1+ψ( ω
ω f 1

)
)

/2

The study ofΛ(ω) (cf. Fig. 5), shows that (i)Λ(ω) → Λ whenω → 0, and (ii)
|Λ(ω)| → ∞ whenω → ω f2k+1, whereω f2k+1 are the odd eigen modes of horizontal
elements in bending. This induces abnormal response in the vicinity of the ω f2k+1

that results in discrete spectrum of cut-off frequencies. The domain of validity of
this model is derived by equalizing the orders of magnitude of the fundamental
frequencies of (i) the whole structure and (ii) the elementsin bending. This leads to
bound of the number of cells byN ≤ slender ratio of the elements.

6 Analogy with micromorphic media

This section points out analogy between the several beam behaviors and that of
micromorphic materials [6]. Conveniently we focus on the first (low frequency)
mode of transverse vibration polarised in directione2, propagating in directione1.

6.1 From 1D to 2D structures

Consider a cellF of shear stiffnessK, inner bending stiffnessEIw and global bend-
ing stiffnessEI corresponding to the intrinsic coefficientsβ = EI/Kl2

w andγ = Iw/I.
From this frame, build a periodic beamB = Ne1 ×F , made ofNe1 frame cells re-
peated in the directione1, as in Fig.2. The transverse behavior ofB is driven by the
two dimensionless parameters and the actual scale ratio :

C = β (
π

2Ne1

)2 = ε̃ p ; γ = ε̃q ; ε̃ =
π

2Ne1

Build the 2D periodic structureS byNe2 lateral repetition in the transverse direction
e2 of B that is,S = Ne2 ×B = Ne1 × (Ne2 ×F ). The properties of theS ’s cell
made ofNe2 ×F frames can be estimated from those ofF : the stiffnesses in shear
is O(Ne2K), in inner bending isO(Ne2EIw), and in global bending isO(N3

e2
EI).

Thus, the transverse behavior ofS is driven byCS andγS :
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CS = (
πNe2

2Ne1

)2β > C ; γS = (
1

Ne2

)2γ < γ then CSγS = Cγ = (
π

2Ne1

)2β γ (9)

Moreover sinceB andS have the same numberNe1 of cells : ε̃S = ε̃. Introducing
(pS,qS) such thatCS = ε̃ pS andγS = ε̃ qS the relations (9) lead to:

pS < p ; qS > q ; pS + qS = p + q

Consequently, according to the previous results (cf. Fig4), the nature ofB andS

behaviour would be the same ifp ≤−1, but may differ ifp > −1.

6.2 Micromorphic media

Consider now an infinite media made of the cellF and assume that - in a domain
D restricted toNe1 ×Ne2 ×F - appropriate boundary conditions impose normally
to the directione1 a shear polarised in the directione2. The equivalent behaviour in
D is identified by comparing the power ofε̃ = π/(2Ne1) with the two parameters :

CD = (
πNe2

2Ne1

)2β ; γD = (
1

Ne2

)2γ

Four behaviours may arrise according to the independant kinematic variable(s).

Cauchy elastic continuum behaviour. This will be observed when the kinematic
involves the solely translationU , which occurs whenCD γD ≤ ε̃ andCD ≥ ε̃−1.
These conditions require that theD geometry follows the constraints : in the direc-
tion normal to the shear motionNe1 ≥ π

2 β γ i.e. a number of cell higher than the
intrinsic critical numberNc = π

2 β γ = EIw/Kl2
w ; in the direction of the shear motion

Ne2 ≥ ( 2
π Ne1)

3/2/
√

β = M2, i.e. a weak slenderness aspect ratio ofD .

Micromorphic elastic media with inner deformation. This appears when the kine-
matic involves the translationU and the inner rotationθ , i.e., whenCDγD ≥ ε̃ and
CD ≥ ε̃−1. In terms ofD geometry this requires thatNe1 ≤ Nc andNe2 ≥ M2

Cosserat like behaviour. The kinematic variables are the translationU and the
rotationα. This appears whenCD γD ≤ ε̃ andCD ≤ ε̃−1 i.e. whenNe1 ≥ Nc and
Ne2 ≤ M2. In this case the cell rotation breaks the lateral periodicity, whereas the pe-
riodicity in the perpendicular direction is kept. For this reason, such a phenomenon
is not be described by the usual 2D homogenization applied the basicF (that would
impose the periodicity in both directions). Nevertheless,the deformation presents a
scale separation in a single direction that enables the treatment by a 1D homoge-
nization. In such a domain, the effects of global bending andshear are of same order.

Complex micromorphic media with inner deformation and rotation involving the
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three variablesU , α andθ . This situation is obtained whenCD γD ≥ ε̃ andCD ≤ ε̃−1

that is for rather restricted domain geometry defined by:Ne1 ≤ Nc andNe2 ≤ M2.
To respect the scale separation, the micromorphic behaviours with inner defor-

mation can only be reached ifNc = π
2 β γ is significantly larger than 1.

7 Conclusion

Reticulated media present a much larger diversity of behavior than the usual ”mas-
sive” media. In particular the enriched local kinematics introduces modes of dif-
ferent nature (as gyration modes), based on different kind of equilibrium (as inner
bending modes). The atypical inner resonance effect is alsodemonstrated to be pos-
sible for those reticulated structure, while they cannot develop in massive beams.

The comparisons of these theoretical results with numerical modelling are satis-
factory [7], and dynamics experiments on real regular buildings [2] also demonstrate
the reliability of this approach and its interest in engineering domain. Finally these
results may be extended to the rheology of reticulated materials such as foam, glass
wool, vegetal, bones . . . and presents strong analogies withgeneralized continua.
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