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Abstract

This paper deals with the computation of the histogram of tensor

images, that is, images where at each pixel is given a n × n positive

definite symmetric matrix, SPD(n). An approach based on orthogo-

nal series density estimation is introduced, which is particularly useful

for the case of measures based on Riemannian metrics. By considering

SPD(n) as the space of the covariance matrices of multivariate gaussian

distributions, we obtain the corresponding density estimation for the

measure of both the Fisher metric and the Wasserstein metric. Exper-

imental results on the application of such histogram estimation to DTI

image segmentation, texture segmentation and texture recognition are

included.

Keywords: image histogram, density estimation, volume measure of

Riemannian metrics, symmetric-positive-definite matrices

1 Introduction

The histogram computation of a scalar image consists in counting the num-

ber of pixels at each different intensity value. This extremely simple ap-

proximation to the univariate density distribution of image intensities is

one of the most important image processing tools to address problems such

as contrast enhancement (by histogram linear stretching or using advanced
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approaches [15]), image segmentation (by 1D clustering), texture process-

ing [13], image retrieval [5], etc. As digital images underlay a quantization

step, a more reliable estimation of the image distribution requires techniques

such as the classical Parzen window method or a variational approach as

the recently proposed in [10]. Computation of histogram of a color image

involves in addition the choice of the color space and an appropriate dis-

cretization of the colors in the image into a number of bins.

In this paper we are interested in the computation of the histogram of a

tensor image, that is, an image where at pixel we have a value in SPD(n):

the space of n× n positive definite symmetric matrices. Recently there has

been growing interest on processing methods of such images in the computer

vision community [6]. As far as we know, the construction of histogram

in SPD(n)-valued images has not been previously addressed. It can be

noted that if a normal law density on tensors is assumed, the estimation of

the density involves only the computation of the mean tensor as well as a

covariance matrix [9, 11]. In our case, we do not assume that the histogram

lays in any specific density family. Straightforward approach based on a

discretization of SPD(n) into bins, followed by a counting of the tensors

belonging to each bin, leads to a histogram estimation which suffers from

various problems. A better solution involves the use of the Parzen window

technique. We adopt here an alternative approach based on orthogonal

series density estimation. An important property of this approach is that

it depends on geometry only through the volume element, and not on the

geodesic distances. The rest of the paper is organized as follows. The

precise definition of image histogram adopted in this paper is given in Section

2. Section 3 introduces the notion of orthogonal series density estimation,

including the measure change. A brief remind on SPD(n) space, followed by

a discussion on the various measures of SPD(n) are given in Section 4. In

particular, by considering SPD(n) as the space of the covariance matrices

of multivariate gaussian distribution, we obtain the corresponding density

estimation for the measure of the Fisher metric and the Wasserstein metric.

Section 5 summarizes the framework for estimating the histograms of tensor

valued images and some experimental results on the application of such

histogram estimation to DTI image segmentation, texture segmentation and

texture recognition. Conclusions in Section 6 end the paper.

2 Image histogram

In this section we set the theoretical link and notation between images and

probabilities. We assimilate the notion of image histogram and the notion
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of density estimation. Let us consider an image I as the map:

We have for instance V = R for grey-scale images or V = Rn for multi-

spectral images; Ω is the support space of pixels/voxels, typically a subset

of R2 or R3 such as a rectangle or a parallelepiped. In the case of tensor

images, which is the case addressed in this paper, V ⊆ SPD(n).

We endow Ω with a measure P that reflects its geometry: as the spatial

distances are usually evaluated using Euclidean distance, this measure is

typically the Lebesgue measure. Indeed the prior importance of an area is

often proportional to its Lebesgue measure. After rescaling the measure, the

map I can be seen as a random variable. The law of the random variable I

contains a synthetic information of the image. Thus, one might be interested

in the study of this law. We have access to a finite number of evaluation of

I in points p ∈ Ω called pixels. Each I(p) is an evaluation of the random

variable I. The set {I(p), p a pixel } is a set of draws of I. We will assume

that the set of pixel is uniformly distributed according to the probability

P . Formally, if φ : Ω → R is a continuous function, 1
N

∑
p φ(p) →

∫
φdP

when the number of pixel N tends to infinity. If they are not uniformly

distributed, we have to take their distribution into account to estimate the

law of I. This for instance the case for point cloud images [4].

The study of law of I is made through this set of draws. We assume

that a measure µ is given on the space V . Furthermore, we make the strong

assumption that the law of I has a density with respect to µ. The problem

now is to estimate this density from the sample set {I(p), p a pixel }. The

classical way to proceed is to cut the space V into regular bins and to count

the number of draws in each bin. The precision of the estimation depends

on the measure of the bins, and on the number of draws. However under

some particular circumstances it might be impossible to get such a cutting

of the space V in regular bins of same measure. This is often the case is

µ is not the Lebesgue measure. If the measures of the bins are not equal,

problems appear when the set of draws is not large enough. Let us consider

for instance two adjacent bins b1 and b2 with µ(b1) much bigger than µ(b2).

If a draw falls in b2, the obtained density will be much higher than if the

draw had fallen in b1. This example shows that a small variation in the

draw can induce important variations on the values taken by the estimated

density.

3 Orthogonal series density estimation

Let us assume that V is a compact subset of Rn, with the measure µ. The

measure µ defines a scalar product on the set L2(µ) of square integrable
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functions given by 〈f, g〉 =
∫
fgdµ. Let us also assume that {ei} is a Hilbert

basis of the functions from V to R, for the previous scalar product. The

density of I against the measure µ, denoted fI , can be studied through its

expression in this generator system. Indeed we have

fI =

∞∑
i=−∞

〈fI , ei〉ei,

where

〈fI , ei〉 =

∫
fIeidµ = E (ei(I)) .

Thus 〈fI , ei〉 can easily be approximated by an estimation of the expectation,

i.e.,

E (ei(I)) ≈ 1

n

n∑
j=1

ei (I(pj))

where n is the number of pixels of image I. We have then

fI ≈
∞∑

i=−∞

 1

n

n∑
j=1

ei (I(pj))

 ei,
or in the case of a finite number of basis functions:

fI ≈
N∑

i=−N

 1

n

n∑
j=1

ei (I(pj))

 ei = f̂I . (1)

Thus we consider f̂I as an estimate of the density fI from the I(pj). We

note that using this method, if the {ei} are continuous functions then the

estimation is continuous according to the I(pj). This was not the case using

the cutting in bins described previously.

The estimation can be easily adapted to a new measure µ′ if it has a

density fµ′ with respect to µ. The new density f ′I becomes

f ′I =
fI
fµ′

(2)

Relationship (2) can be easily obtained using the new orthonormal basis

system
{
ei/
√
fµ′
}

instead of {ei}. Indeed we have∫
ei√
fµ′

ej√
fµ′

dµ′ =

∫
eiejdµ.
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Hence, the new system is orthonormal for µ′ and consequently, we have

f̂ ′I =

N∑
i=−N

 1

n

n∑
j=1

ei (I(pj))√
fµ′

 ei√
fµ′

=

∑N
i=−N

[
1
n

∑n
j=1 ei (I(pj))

]
ei

fµ′
=

f̂I
fµ′

. (3)

This property will prove very useful for our work. A deeper presentation

of density estimation using orthogonal series can be found in [3].

4 The space SPD(n) and its parametrization

A differentiable manifold is a topological space where the local neighbour-

hood of each point looks like a vector space. In each point of a manifold

we can associate a tangent space composed of tangent vectors to all smooth

curves going through the considered point. One can introduce a notion of

distance on a manifold by defining a scalar product on each tangent space.

If the different scalar product are compatible, that is to say vary smoothly

between tangent space, it is possible to define a notion of length of a curve

on the manifold. Such a m anifold is called a Riemannian manifold.

We will set here a few notations and describe the structure of the space

SPD(n). Let M(n) represents the space of n×n square matrices and GL(n)

the subset of M(n) of invertible matrices. By Sym(n), one denotes the space

of symmetric matrices. Let A be a matrix in Sym(n). A is positive semi-

definite if ∀x ∈ Rn, xtAx ≥ 0 where xt denotes the transpose of x. The set

of such matrices A forms a close convex cone whose interior is called the set

of symmetric positive definite matrices and is noted SPD(n). If A is in the

interior of the cone then we have xtAx > 0. A complete description of the

SPD(n) space can be found in [2]. Equipped with different scalar products,

SPD(n) can be seen as a Riemannian manifold.

4.1 Two parametrisations of SPD(n)

In order to compute the histogram of an image valued in SPD(n) matrices,

one needs to set the parametrization framework of this space. Indeed there

are many different ways to study SPD(n) matrices. The SPD(n) matrices

can be seen at first as a subset included in the space M(n). However, this

framework is not adapted to histogram computation for the following reason.

The random variable I is valued in SPD(n) only. Now, as a vector subspace,

the space SPD(n) has a null measure according to the Lebesgue measure of
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matrices. Thus the random variable I cannot have a density against the

Lebesgue measure of matrices M(n).

A way to overcome this problem is to study the SPD(n) space as a

subset of the Sym(n) matrices. In that case the space SPD(n) has a non

null measure according to the Lebesgue measure of Sym(n). Each matrix

can be expressed in the canonical basis of symmetrical matrices, coordinates

forms what we will call parametrization 1.

A second approach involves decomposing SPD(n) matrices over rotations

and eigenvalues. A symmetrical matrix can be diagonalized in an orthonor-

mal basis. Then each SPD(n) matrix can be represented by its eigenvalues

and a rotation matrix. Using any angular representation of the rotation

matrix, the SPD(n) matrix can be represented by a set of eigenvalues and a

set of angles. This representation forms a convex subset of non null measure

of R
n(n+1)

2 . We will call this parametrization 2.

Now comes the question of the reference measure µ used to compute the

histogram. To each parametrization of the SPD(n) space in R
n(n+1)

2 is asso-

ciated a Lebesgue measure. One must be aware that the Lebesgue measure

of each parametrization is different. Thus, given two different parametriza-

tions, the computation of histograms against their Lebesgue measure will

give different results. Besides Lebesgue measures, other measures can be

computed from the two main Riemannian metrics on SPD(n): the Fisher

metric and the Wasserstein metric. Indeed any Riemannian metric gives

place to a volume measure.

We explain now a key property of the parametrization 2. Given any

measure on SPD(n) which is invariant by the action of the rotation, i.e.,

(M,R) 7→ RMRt, the measure is a product between a measure on the

eigenvalues and a the Haar measure of the rotation. Indeed, for all such

measures on parametrization 2, it enables us to separate the study of the

eigenvalues and the rotations. This result can be found in [18], but a for the

convenience of the reader, a simple proof is given in Appendix B.

As we explained previously, the change of coordinates between both

parametrizations induces a change in volume measure. The modification

of the density of the volume measure is expressed by the Jacobian of the

change of coordinates [8]:

φ : R
n(n+1)

2 → SPD(n)

(λ1, · · · , λn, θ1, · · · , θn(n−1)
2

) 7→ Rθ

λ1 0 · · ·
0 · · ·
· · · λn

Rtθ

where {λi} are the n positive eigenvalues ordered in increasing ordering and
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{θj} are the n(n− 1)/2 angles which parametrize the rotation matrix Rθ.

Let us write µLebes1 the Lebesgue measure of the parametrization 1 of

SPD(n) and µLebes2 the Lebesgue measure of parametrization 2. The com-

putation of the Jacobian of the coordinate change gives the following rela-

tion [8]:

dµLebes1
dµLebes2

=

 ∏
1≤i<j≤n

|λi − λj |

hHaar(θ1, ..., θn(n−1)
2

) (4)

where hHaar(θ1, ..., θn(n−1)
2

) is the density of the Haar measure on rotation

in the parametrization θj . In the following it will be denoted by hHaar.

4.2 Measure for the Fisher and the Wasserstein metrics

We are interested now in the expression of the density of the volume measure

of the Fisher metric and the Wasserstein metric in both parametrizations.

The Fisher metric on SPD(n) is the metric induced by the geometry of

information [1]. This metric is invariant under the following action of Gl(n)

on SPD(n), i.e.,

a : Gl(n)× SPD(n)→ SPD(n)

(G,M) 7→ GMGt

The Wasserstein metric is another well known metric on SPD(n) induced by

the optimal transport of centered Gaussian laws [17]. Given a Riemannian

metric, the density of the volume measure is given by
√
det(G), where G is

the matrix of the metric [11]. Given two symmetric matrices U, V ∈ Sym(n)

and a matrix W ∈ SPD(n), the scalar product between U and V at the

W matrix, take respectively the following forms for the Fisher [12] and the

Wasserstein [17] metric:

〈U, V 〉FisherW = tr
(
W−

1
2UW−1VW−

1
2

)
,

〈U, V 〉Wasserstein
W = tr (UWV ) .

From these scalar products we can compute the matrices of the metrics

GFisher
W and GWasserstein

W . Then if we express G in the canonical base of

symmetric matrices we have:√
det(GFisher

W ) = α

√ ∏
1≤i≤n

1

λn+1
i

,

√
det(GWasserstein

W ) = α

√ ∏
1≤i≤n

λi
∏

1≤i<j≤n
(λi + λj),
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where {λi} are the eigenvalues of W and α is a multiplicative constant

which depends on the dimensionality of the space, i.e α = 1

2
n(n−1)

2

. These

expressions represent the densities of the Fisher and Wasserstein measures

with respect to the Lebesgue measure of symmetric matrices µLebes1 .

Using the expression (4) of the density of the Lebesgue measure of sym-

metric matrices against the Lebesgue measure of the parametrisation 2, we

obtain the expressions of the density of the Fisher and Wasserstein measures

against the Lebesgue measure of the µLebes2 , given respectively by:

dµFisher
dµLebes2

= α

∏
1≤i<j≤n |λi − λj |√∏

1≤i≤n λ
n+1
i

hHaar, (5)

dµWasserstein

dµLebes2
= α

√ ∏
1≤i≤n

λi
∏

1≤i<j≤n
(λi + λj)

 ∏
1≤i<j≤n

|λi − λj |

hHaar.

(6)

Despite the fact that we did not find the expression (5) in the literature,

this formula might already be known. However, we believe that the case

of the density of Wasserstein measure against the Lebesgue has not been

previously published elsewhere. Detailed derivations are given in Appendix

A.

5 Experimental results on tensor image histograms

Given a tensor image I : Ω → SPD(n), we perform one of the previous

changes of coordinates for each pixel value, that is to say we represent

each matrix in one of the parametrizations. The Fourier basis associated

with each parametrization forms an orthonormal system with respect to the

Lebesgue measure. According to methodology from Section 3, density es-

timate f̂I can be evaluated against this basis. The choice of the Fourier

basis gives place to an efficient estimation of the image density against the

Lebesgue measure of the parametrisation 2 associated to decoupling eigen-

values and rotation angles. We obtain then the histogram of the tensor

image according to the Lebesgue measure of the parametrisation 2, i.e.,

f̂I;µLebes2
. As explained in Section 3, it is possible to adapt the histogram

to any other measure that has a density against the Lebesgue measure by

the expression (3). For instance, the histogram estimate according to the

Fisher metric measure is obtained by means of (5) by

f̂I;µFisher
= f̂I;µLebes2

dµFisher
dµLebes2

.
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Obviously, after choosing the family of the orthogonal functions of the

basis, we need to fix the number of components. For the experiments of this

paper we have used the basis:{
e−i(x) =

√
2 sin(iπx); e0(x) = 1; ei(x) =

√
2 cos(iπx); i = 1, · · · , N

}
We now present applications of histogram construction for tensor images.

All what follows is achieved according to the framework described previously.

For computational reasons the applications on SPD(n) are here limited to

low dimensions, namely n = 2 for structure tensors from 2D texture images,

and n = 3 for diffusion tensor images (DTI).

(a) (b)

(c) (b)

Figure 1: Image (a) is an example of structure tensor image I. (b),(c),(d)

represent respectively the densities of µLebes1 ,µFisher and µWasserstein with

respect to µLebes2 as a function of the eigenvalues.

5.1 Image segmentation

The first application consists in segmenting tensor images using their his-

tograms. We first compute the complement histogram of the SPD(n) image

and then apply a watershed transform [16] on the histogram. We note that
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the histogram can be view as a n(n + 1)/2-dimensional grey-level image

and the corresponding watershed transformation will provide a partition of

I({Ω} in connected sets Ai: I(Ω) = ∪Ai. In particular, each class i is as-

sociated to a regional maximum of the histogram. The segmentation of the

image is obtained by assigning a class i to each pixel according to its class

on the segmented histogram: Ω = ∪I−1(Ai)
We consider 2D grey-scale texture segmentation using the classical struc-

ture tensor representation [7]. More precisely, given an image composed of

different textures, we calculate the structure tensor at each pixel, using a

window size that we expect, makes the structure tensor as constant as pos-

sible on each texture class of the image. At this point, we have an image

where each pixel is a point of SPD(2), parametrized by two eigenvalues and

one angle. Then the 3D histogram is computed with respect to one the

considered metrics. Fig. 1 shows an example of structure tensor image and

its histograms using different measures µLebes2 , µFisher and µWasserstein. We

note that for visualization purposes we have only considered the histogram

of the two eigenvalues. It should be also remarked that the contribution

concerning the angle by measure hHaar is independent of the metric.

(a) (b)

Figure 2: Image texture segmentation by watershed partitioning of structure

tensor histogram using Wasserstein metric: (a) original image; (b) segmen-

tation.

Fig. 3 shows the segmentation obtained for a synthetic texture image.

As expected, homogenous texture areas are well separated, but the “texture

contours” introduce additional texture classes. In particular, this exam-

ple corresponds to the result for the Wasserstein metric, similar ones are

obtained for the other measures. Results given in Fig. 3 correspond to a

more complex texture with a comparison of two metrics. From our experi-

ments, we cannot conclude if one of the metrics is better than another for

the purpose of texture segmentation. In addition, the obtained segmenta-
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tion depends also on the regularization window from the structure tensor

computation.

(a) (b) (c)

Figure 3: Image texture segmentation by watershed partitioning of structure

tensor histogram: (a) original image; (b) segmentation using metric µLebes2 ;

(c) segmentation using metric µWasserstein.

The second case study deals with the segmentation of DTI images, thus

I(Ω) ⊆ SPD(n), a 6-dimensional manifold where each matrix is represented

by three eigenvalues and three angles. We can apply the same method as

the one we used for tensor structure segmentation. An example of DTI

segmentation is shown in Fig. 4. We have compared the various metrics.

We have observed for instance that for a global segmentation of the brain

into its main areas, the best segmentation results are obtained using only

the dominant eigenvalue with respect to its Lebesgue measure, see Fig. 4(b).

For this example, we have compared also the performance of segmentation

using a histogram obtained by discretization into bins and counting, see

Fig. 4(c). As we can observe, this histogram includes an important number

of peaks which produces a strong over segmentation into many classes.

5.2 Texture recognition

In our last application, we use the structure tensor histogram in order to per-

form texture recognition. We based ourselves on the Brodatz database [14]

that contains 111 texture images. Each image of the database has been

vertically cut into two equal parts. This way, we built a test set and ref-

erence set. For each image of the test and the reference set, we computed

the histogram of structure tensor. Structure tensor images are computed

for different size s of averaging window. For each histogram of the test set,

we perform a comparison with all the histograms of the reference set, and

select the closest one. The matching is correct if the selected histogram

corresponds to the other other half of the image in the reference set.
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(a)

(b)

(c)

(d)

Figure 4: DTI segmentation by watershed partitioning of its histogram: (a)

original image; (b) fractional anisotropy; (c) segmentation using a histogram

obtained by discretization into bins and counting; (d) segmentation using

orthogonal series-based histogram.

The histogram based on bins gives interesting results in term of per-

formance of classification. However, results are significantly different when

using parametrisation 1 or parametrization 2. Indeed the size and the shape

of the bins are totally different in the two parametrizations, and we obtain

two different estimations of the density. Thus we based the experiment on

orthogonal series. The comparison between histograms can be achieved ac-

cording to several norms. Despite the fact that the L2 norm might no be

the best measure between histograms, it presents a serious advantage in our

case. Let ci denote 〈f, ei〉. An approximation of the L2 norm can be obtained

directly from the coefficients ĉi = 1
n

∑n
j=1 ei(I(pj)) without performing any

discretization of the density f . Let c1i and c2i be respectively the coefficient

associated with the densities fI1 and fI2 . The L2 norm between these two
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(a)

µWasserstein µLebes1 µLebes2 µFisher
s = 3 39 72 90 89

s = 11 67 78 85 88

s = 21 72 78 78 80

s = 41 71 72 67 72

(b)

Table 1: (a) Three examples from the Brodatz texture dataset. (b) Accuracy

(in percentage) of texture recognition in Brodatz database using structure

tensor histogram with respect to various measures. Parameter s denotes the

size of the window used in structure tensor estimation.

densities can be approximated by

‖fI1 − fI2‖2L2
≈

N∑
i=−N

(
cI1i − c

I2
i

)2
.

Other norms or divergences requires a preliminary discretization. Results

of Brodatz texture recognition are summarized in Table 1. A possible con-

clusion from this comparison is the stability of relevant results for Fisher

metric against the size parameter of the structure tensor.

6 Conclusion

We started to explore different methods to address the construction of his-

tograms for tensor images. The standard way to build histograms using

bins has the advantage of a low computational cost. However, as previously

explained, and as different applications show, this method might not always

be the most adapted, mainly due to the irregularity induced by the size of

the bins. Orthogonal series proved to be an interesting alternative. The

choice of the parametrization has also been addressed. Both parametriza-

tion 1 and parametrization 2 can be chosen to study histograms. However,

parametrization 2 has the following important property : a measure on

SPD(n) invariant by the action of rotation RMRt is a product measure

between a measure on eigenvalues and a measure on angles. On the other

hand, the choice of the orthogonal basis still remains fully open. We chose

to use Fourier basis of the different parametrization due to their simplicity.

However, other basis might be more adapted to the different measures, in
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terms of regularity. Good candidates are for instance the eigenfunctions of

the Laplacian operator associated to the different metrics.
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A Density of Fisher and Wasserstein volume mea-

sure

Let us start by considering

〈U, V 〉fisherW = tr(W−
1
2UW−1VW−

1
2 )

〈U, V 〉Wasserstein
W = tr(UWV )

Let Ei,j be the canonical basis of M(n). Let E
′
i,i = Ei,i and E

′
i,j =

Ei,j+Ej,i√
2

if i < j The set of matrices E
′
i,j ,i ≤ j, forms a basis of the symmetric

matrices. This basis is orthonormal for the Euclidean scalar product on

matrices. We can notice that for any rotation R the basis formed by the

RE′i,jR
−1 is also orthogonal for the Euclidean scalar product.

Let GW be the matrix of the metric at a given W = RDR−1, expressed in

an orthonormal basis for the euclidean scalar product. The positive number√
det(GW ) represents the volume measure associated to the metric G with

respect to the volume measure associated to the euclidean scalar product.
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We are interested in the calculation of
√
det(GW ) for the Fisher and the

Wasserstein metrics.

Let us start with the Fisher metric. We have

〈RE′i,iR−1, RE′j,jR−1〉fisherW =
δi,j
λ2i
,

and for i 6= j and k 6= l:

〈RE′i,jR−1, RE′k,lR−1〉fisherW =
δi,kδj,l
2λiλj

,

finally for j 6= k:

〈RE′i,iR−1, RE′j,kR−1〉fisherW = 0,

We can now write the matrixGFisherW in the basis formed by theRE′i,jR
−1.

GFisherW =



1
λ21

0 .

0 .

. 1
λ2n

1
2λiλj


The expression of the volume measure is then obtained as√

det(GFisherW ) =
1

2
n(n−1)

2

√∏
i

1

λn+1
i

The proceeding is similar for the Wasserstein metric.

〈RE′i,iR−1, RE′j,jR−1〉Wasserstein
W = λi,

and for i 6= j and k 6= l we have:

〈RE′i,jR−1, RE′k,lR−1〉Wasserstein
W =

λi + λj
2

,

finally for j 6= k:

〈RE′i,iR−1, RE′j,kR−1〉Wasserstein
W = 0

Then we can write:
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GWasserstein
W =



λ1 0 .

0 .

. λn

λi+λj
2


finally we obtain√

det(GWasserstein
W ) =

1

2
n(n−1)

2

√∏
i

λi
∏
i<j

(λi + λj)

B A measure on SPD(n) invariant under the action

of rotations is a product between a measure on

eigenvalues and the Haar measure of rotations

Let us set the context. We are working on the space of positive definite

matrices which have distinct eigenvalues. We will call this space E. The

rotation matrices (O+) induce a group action on E:

O+ × E 7−→ E

(R,M) 7−→ RMRt

For every matrixM of E, there existR ∈ O+ such thatRMRt =

λ1 0 0

0 λ2 0

0 0 λ3

,

and as such, we will note the space of diagonal matrices with positive strictly

increasing eigenvalues as E/O+. Furthermore, the following map

φ : E/O+ ×O+ → E

(

λ1 0 0

0 λ2 0

0 0 λ3

 , R) 7−→ R

λ1 0 0

0 λ2 0

0 0 λ3

RT

is a diffeomorphism. For a matrix M in E we denote ME/O+ and MO+ the

elements of E/O+ and O+ such that

M = MO+ME/O+MT
O+

.
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We seek to show that any measure µ (with a density with respect to the

Lebesgue measure) on E invariant by the action of O+ can be written as

a product measure on E/O+ × O+, where the measure on O+ is the Haar

measure µO+ (the unique measure on O+ that is invariant by translations).

Consider a measurable subset A of E/O+ and let µA be the measure on

O+ defined by

µA(B) =

∫
E
1A(ME/O+)1B(MO+)dµ(M)

We are going now show that this measure on O+ is translation invariant,

and consequently a multiple of the Haar measure on O+.

µA(RBRT ) =

∫
E
1A(ME/O+)1RBRT (MO+)dµ(M)

=

∫
E
1A(ME/O+)1B(RTMO+R)dµ(M)

=

∫
E
1A((RTMR)E/O+)1B((RTMR)O+)dµ(M),

by the invariance of µ, we obtain

µA(RBRT ) =

∫
E
1A(ME/O+)1B(MO+)dµ(M)

= µA(B)

Therefore, there exists λ(A) ∈ R such that µA = λ(A)µO+ . If A,B are

in E/O+ ×O+, then

µ(φ(A×B)) =

∫
E
1A(ME/O+)1B(MO+)dµ(M)

= µA(B)

= λ(A)µO+(B).

Furthermore, it is easy to see that A 7→ λ(A) is a measure on E/O+.

Since the sets A×B generate the sets of measurable subsets of E/O+×O+

(according to Dynkin’s Theorem), the image of µ by φ is the product of the

two measures λ and µO+ on A and B respectively.

It is also worth noting that λ has a density with respect to the Lebesgue

measure.
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