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This paper presents a quantitative and comprehessiny of the lip movements of
a given speaker in different speech / non speentexts, with a particular focus on
silencesi(e., when no sound is produced by the speaker). iFhesato characterize
the relationship between “lip activity” and “speeattivity”, and then to use visual
speech information as a Voice Activity Detector (WA To this aim, an original
audio-visual corpus was recorded with two speakevslved in a face-to-face
spontaneous dialog, although being in separate so&ach speaker communicated
with the other using a microphone, a camera, a&sc¢tand headphones. This system
was used to capture separate audio stimuli for spelaker and to monitor each
speaker’s lip movements in synchrony with the rdedrsound. A comprehensive
analysis was carried out on the lip shapes andnlgvements corresponding to
either silence sections or non-silence sectioms §peech + non-speech audible
events). A single visual parameter, defined to attarize the lip movements, was
shown to be efficient for the detection of silers@etions. This results in a Visual
VAD (V-VAD) that can be used in any kind of enviraent noise, including
intricate and highly non-stationary noisesg, multiple and/or moving noise

sources or competing speech signals.

PACS number: 43.72.-p Speech processing and concation systems



l. INTRODUCTION

A. Context: audio-visual speech processing

Speech is a bimodal signal, both acoustic and Viseny studies have shown that the visual
modality improves the intelligibility of speech moise when switching from the “audio only”
condition to the “audio + speaker’s face” conditi@umby and Pollack, 1954; Erber, 1975;
Benoitet al, 1994; Robert-Ribest al, 1998). In parallel, McGurk and McDonald (1976)
demonstrated that humans can even integrate domjliaudio and visual speech stimuli to
perceive a “chimeric” speech stimulus. More reggnBrant and Seitz (2000) have shown
that viewing the speaker’s face also improves tteaion of speech in noise. Such results
have been confirmed by Kim and Davis (2004) anchBeinet al. (2004). More specifically,
visual information helps pertinent acoustic feasuieebe better extractecdg., “seeing to hear
better”, providing a different and complementarytribution to lip-reading (Schwaret al,
2004). Additionally, visual speech information hbsen shown to irresistibly attract
speaker’s localization (Bertelson, 1999).

Concerning the nature of visual speech informatiwny major questions have been
addressed. Firstly, the oral region including tlys land jaw seems to be the major
contributor to visual speech perception (see, &gmmerfield, 1979; Benott al, 1996).
Thomas & Jordan (2004) actually showed that thelligtbility of oral-movements display
was more or less the same as that of whole-faceements display. However, extra-oral
movements also influence identification of visuatlaaudiovisual speech, mostly due to the
strong correlation between oral and extra-oral me@s (Munhall and Vatikiotis-Bateson,
1998). Orofacial configurations can be basicallgprelaterized in terms of lip contours and
specifically by the parameters of inner lip heightner lip width and lip protrusion
(Summerfield, 1979; Abry and Boé, 1986; Bereiitl, 1992, 1996). Secondly, the question
of static vs. dynamic processing of facial confgjions has been largely discussed. Studies
using point-like displays, which remove fine spaii@ormation, showed that movement
seems to be crucial in the perceptual processimisaal speech in both noisy configurations
(Rosenblum et al., 1996) and conflicting McGurkmatii (Rosenblum and Saldana, 1996).
This led Munhall et al. (1996) to suggest thaelisrs might use the time-varying properties
of visual speech for perceptual grouping and phonsrception. Neurophysiological data
seem to confirm the specific role of the dynamiogaissing of visual speech (Calvert &
Campbell, 2003; Munhall et al., 2002). This is catigle with Summerfield (1987)’s
suggestion that one possible metric for audioviguagration is the pattern of changes over



time in articulation, considering that listenerg @ensitive to the dynamics of vocal tract
change. Thereafter, a number of studies in the ocawidual speech literature have
characterized the correlation between lower faceem@nt and the produced acoustic signal
(Yehia et al, 1998; Barker and Berthommier, 1999; Jiasigal, 2002; Bailly and Badin,
2002; Goecke and Millar, 2003).

Following these considerations on the bimodal aspespeech, an important number of
technological studies have been undertaken inabketienty years to integrate the visual
modality into speech processing systems. The goabiimprove the performance and
robustness (in noise) of different human-to-humalecommunication systems or human-
computer interfaces (HCI). Petajan (1984) was itls¢ o integrate visual speech information
in an automatic speech recognition (ASR) systermyMstudies followed, including recent
advances going towards real-life implementationbiofodal ASR (Potamianct al, 2003).
Recently, audio-visual speech processing applicati@lso concerned video indexing and
retrieval (Huanget al, 1999; lyengar and Neti, 2001), audiovisual spegghthesis and
talking heads (Yehiat al, 2000; Baillyet al, 2003; Coskt al, 2003; Gibertet al, 2005),
and audio-visual speech coding (Rao and Chen, X9@i8;, 2004). In recent years, the visual
modality has also been exploited for speech enmaaein (background) noise (Giret al,
2001; Deligneet al, 2002; Potamianost al, 2003b), and more generally for speech source
separationj.e., for the extraction of a speech signal from cawrpiixtures using several
microphones, for both linear instantaneous mixtuf@edoyeret al, 2002, 2004) and

convolutive mixtures (Wangt al, 2005; Rivett al, 2007).

B. Video characterization of silence vs. non-silence sections

Most of the time, studies addressing the charaeton of lip patterns in speech
production have been carried out in more or lesstrotbed speech production contexts
(typically “laboratory speech”: see, e.g., Abry aadé, 1986; Benoiet al, 1992; Goecke
and Millar, 2003; Jiangt al, 2002; Yehia and Vatikiotis-Bateson, 1998). Rekli poor
attention has been paid to the description andachenization of these patterns during speech
production in natural contexts, especially in spoBbus multi-speaker conversation.
Moreover, in such context, speech activite.(actual speech production by a speaker of
interest) alternates with many silence sectiaesgections where the speaker of interest does
not produce sounds, whereas other speakers magllgctio), and also with many non-
speech audible events such as murmurs, gruntshdaugspiration intakes, expirations, lip

noise, whispers, sighs, growls, moaat; (Campbell, 2007). In spite of this, even poorer



attention has been paid to lip patterns in silemcd non-speech contexts, although these
patterns may exhibit a specific behavior, to besaered in both audio-visual speech
fundamental studies and technological applications.

This paper provides an attempt to fill this gapeTRlationship between a speaker’s lip
movements and speech activity (or non-speech aaalugtion)vs. silence is investigated,
using signals from a spontaneous dialog. For tinis the recording and the study of a “real-
life” audio-visual corpus were achieved and arespnéed in this paper. This corpus consists
of two speakers recorded in a spontaneous diakogtgin (in French) during about 40
minutes. It is characterized by two propertiessthyr it is based on a very clean audio (and of
course video) recording process, since each speakérvcated in a separate room to
completely avoid cross-speaker audio interfereniceghe recordings. Communication
between the two speakers is effected using a djyedesigned equipment described in
Section Il.A. Secondly, the audiovisual materiaresorded in a lively dialog situation, in
which various creative contexts lead the two speat@have a spontaneous discussion (see
also more details in Section 1l.A). As a resulg tecorded signals include speech and silence
sections, as well as many different non-speechbéidvents such as those mentioned above.
It also contains many face expressions and movendttt or without sound production (see
the related work of Machet al. (2005)). Using this corpus, and starting from ay\va@mple
hypothesis —the lips of a given speaker should melen he/she is talking (or producing
non-speech sounds), whereas they should not mowvede less) when he/she does not utter
sounds— the distributions of static and dynamic dgrameters are provided for the two
conditions. Those distributions show how dynamp piarameters can be associated with
non-silence sections.€. speech + non-speech audible evewssyilence sections. Actually,
the correspondence is not straightforward. Indépdnovements can occur during silence
and conversely speech or non-speech oral productioroccur with still lips. However, it is
shown that a single dynamic lip parameter is mpm@priate than static parameters for this
characterization, and that temporal integratiothef dynamic parameter values can improve

the “separability” of non-silence sections. silence sections from lip information.

C. Application to automatic voice activity detection

Finally, a technological application of the studydonsidered: the possibility of using
visual information to automatically detect sounddarction and silence sections in a given
audio channel. Such an algorithm is called a Vo\otivity Detector (VAD), and it is

generally derived from audio information only. Angoather applications, it can be used to



drastically improve the performance of speech eoéaent / separation techniquegence
detection i.e. the detection of regions where the speaker @frést does not produce any
sound, is used to identify properties of the naisg@roperties of the mixture configuration.
These properties are then used to process theceairaf the speech signal of interest when
it is detected as present in the mixtufsee,e.g, Ephraim and Malah (1984), Abrard and
Deville (2003)). Various types of audio VAD haveebestudied, and they can achieve good
performance even with a low signal-to-noise ra8®R) (Le Bouquin-Jeannes and Faucon,
1995; Sohnet al, 1999; Tanyer and Ozer, 2000; Ramiedzal, 2005). However these
techniques are based on the analysis of the acosgjnal, and consequently their
performance depends strongly on the environmergendsenerally the noise has to be
considered as stationary or weakly non-statioremg/or with a given power spectral density
function (psd) or probability density function (pdiThus, when the noise is highly non-
stationary with a low SNR (a concurrent speakerefaample), the audio VAD performance
considerably decreases. In this case, visual irdbon could be very useful since it is
completely independent of the acoustic environfmdrtr instance, in a previous study, De
Cuetoet al. (2000) used a basic Visual Voice Activity Detec{9rVAD) for detecting a
speaker’s speech activity in front of a computer. fhis, either specific lip parameters or the
average luminance of the mouth picture can be (s@thgar and Neti, 2001). However,
those studies are limited to the speaker’s “intergpeak”, useful for, e.g., turn-taking
detection. The methods do not provide accurate setation of the content of a given
speaker’s sequences. More recently, Liu and Wa@@4Rproposed a visual VAD based on
Gaussian models. One Gaussian kernel was used del itiee silence/non-speech sections
and two kernels were used to model the speechossttiHowever, little information is
reported on the video processing, on the naturth@fcorpus that is used for setting and
testing the V-VAD, and even on the visual inforroatitself: it is not clear whether static or
dynamic information is used. Also, the size of éxperimental data is not compatible with
real-life applications. The V-VAD proposed in theepent paper specifically addresses these
last remarks: it is based on “real-life” audiovisdata (and it is tested using these data),
while remaining simple (given that lip shape partarge are available). Its efficiency is
demonstrated by a series of detection scores (fRc@iperating Characteristics, ROC). As
mentioned before, this V-VAD can be used in a shbesthancement system or a source
separation system (see for instance Retetl, 2007b, for a first application of V-VAD to the

speech source separation problem).



This paper is organized as follows. Section Il prés the method, beginning with a
description of the audio-visual corpus (SectioA)lincluding the recording conditions and
the definition of the video (lip) parameters usedthis study; This is followed by the
description of the audio (Section 11.B) and vid&e¢tion 11.C) processing applied to the data.
The lip dynamic parameter used for silence vs. sitamce characterization and VAD is
described in details in Section 11.D. Section ltegpents the results of the study: in Section
[ll.A, the audio content of the corpus in termssiénce vs. non-silence sections is presented.
Then, Section IlIl.B provides an analysis of thepamies of the static and dynamic lip
parameters in silence vs. non-silence sections.pEnrmance of the proposed V-VAD in
terms of ROC curves is given in Section I1l.C. SatiV is a conclusion section.

I. METHOD

A. Description of the audiovisual corpus

To describe and characterize lip movements inioglatith speech/sound production or non
production requires the acquisition of appropreteliovisual data. An original audio-visual
corpus was thus recorded and processed, consisfiry series of spontaneous dialogs
between two male French speakers (JLS and LG).bfaroa set of conversation situations
as natural as possible, several tasks were suggestbe speakers. These tasks werg,
different interactive games such as answering as da possible to a word association
problem, finding the solution of riddles, or plagitanguage games. In all these tasks, the
interaction between speakers was totally spontasebus including spontaneous turn taking,
interruptions, hesitations, and possible crossiapping between speakers. This led each of
them to alternate between natural silence sectimaisspeech sections of various sizes and
contents. The corpus also contains many differemiisk of audible and non-audible non-
speech events, such as those mentioned in theluation.

The two speakers were placed and recorded in depavams. They both had a
microphone and a micro-camera fixed on a light le¢lnThe camera focused on the lip
region to optimize the capture of labial informatid/loreover, the speakers could hear and
see each other, using headphones and a monit@nsicréront of them with real-time video
feedback. This was necessary to ensure “naturalegb conviviality” during the
conversation. Automatic time-code generators wesal dor post-processing synchronization
of all audio/video signals. Finally, these experitad settings enabled the conditions of a real
face-to-face conversation to be simulated whilerdo®rded audio signals (and of course the



video signals) were perfectly separate. lllustraiof the recording session are given in
Fig. 1.

The visual information extracted from this corpussists of the time trajectories of two
basic geometric parameters characterizing the diptauir (see Section I.A), namely inner
width |, and inner heighl, (Fig. 2). These parameters were extracted usiadGP “face
processing system” (Lallouache, 1990), which isedasn blue make-up, image thresholding
with the Chroma-Key system, and contour trackingoathms. The parameters were
extracted every 20 ms (the video sampling frequesc$0 Hz), synchronously with the
acoustic signal, which is sampled at 44.1 kHz. Thasthe following, a signaframe is
defined as a 20 ms section of acoustic signal bkegetith a pair of lip parameterk,(Iy). A
spontaneous audio-visual speech corpus for twokepgavith a total duration of 40 min was

finally obtained, representing 120,000 vectorsuafia-visual frames per speaker.

B. Audio analysis and silence / non-silence labeling

The first phase of the corpus analysis consistedhm labeling of the 20 ms-frames
(corresponding to the video sampling) as “silerraenes” or “non-silence frames” based on
the analysis of the audio signal and the dichotdefjned in the introduction: Silence frames
are defined as signal frames with no sound prodateal, and non-silence frames contain
speech and/or non-speech acoustic events. It isrtamt to note that these definitions are
given here for each speaker independently (obwouassilence frame for one speaker can be
simultaneous with a non-silence frame for the ofiperaker, since the two tracks are recorded
separately). Silence frames are mainly presentdmtvphrase boundaries that result from
conversation turn-taking, and also in more or léssg pauses within one speaker’s
“continuous” talk due to, e.g., hesitations.

The labeling into silence frames. non-silence frames was made semi-automatically
with the algorithm proposed by Ramiret al. (2004) and a manual verification. This
algorithm measures the long-term spectral divergdratween speech and environment noise
and formulates the decision rule by comparing timg{term spectral envelope to the average
noise spectrum, thus yielding a high discriminatiggision rule and minimizing the average
number of decision errors. The decision threshslddapted to the measured noise. In our
case, the environment noise was generally very lwd the results of this labeling were
almost perfect. A manual verification of the entti@pus was made and a very small number

of errors were corrected. It can be noted that whyrt silences corresponding to the time



periods preceding the release of unvoiced plosavesiot considered as silence frames, even
though they may happen to be slightly greater 2@ams. This is because of the nature of the
audio detection algorithm that considers longenaigections. Conveniently, this is coherent
with the definition and processing of the temporgkegration step that we propose in
Section II.D.

C. Video pre-processing

As mentioned before, the extracted visual infororats the time trajectory of the geometric
parameterd,, and |, characterizing the lip contour. The measures pexiby the face
processing system, although very accurate, aréntllighoisy. Since a dynamic video
parameter is calculated from the derivatives of timaporal trajectories, computed by a
difference operator which is very sensitive to moithe lip parameter trajectories have to be
filtered (smoothed). This is not a trivial task feuch signals, since labial parameter
trajectories are highly non-stationary signalswshariations in time can be followed by
drastic changes, for instance when lips are clodihgrefore, it is difficult to remove noise in
regions with slow variations while respecting theupt variations provided by natural lip
movements. In our study, a technique based onesfplimctions was used. A basic version of
this technique has been successfully used in aiquewtudy using audio-visual corpora
(Girin, 2004) and this process is refined hereoflews.

The basic principle of the spline smoothing cossistlocally fitting (noisy) data(i) with
a cubic splines(t)) defined as piecewise polynomial functions, wheseh piece is described

using a cubic polynomial. The fitting is based ba minimisation of the following criterion:

2
f= piw(j)\x(j)—s(t,-)\%(l— p)] (%j dt (1)
=

The first term is a weighted least-square errowbeh data and the spline model (the weights
are given byw(i)) and the second term stands for the smoothnes$keofesulting curve.
Balancing these two constraints is made possibleeltyng the parametgrat an appropriate
value between 0 and 1. For instanpes 0 produces a least squares straight line fih&o
data,p = 1 produces a cubic spline interpolate, and inégliate values provide a trade-off
between close fit and smoothness.

In the proposed video processing system, the radresary property of the lip movements
Is taken into account by adaptively tuning ghparameter according to the signal dynamics.



Relatively largep values must be used in time sections with highinahtvariations of the lip
parameters to closely track these variations. @nctintrary, relatively smap) values must
be used in quasi-stationary regions to adequaehove the noise. Thus the lip parameter

signalsl,, andl,, are segmented in time sections depending on tlue wd their local (sliding)

N/2
n=-N/2

varianceC(t) =1/ Nz v(t +n)® with N = 6 ((t) represents a visual parametegrdr Ip),

andt denotes the time index of 20ms-frames).

Each section is then fitted with a cubic spline sd@arametep is determined as a
function of this variance. More specifically, tlaatomatic smoothing process for each visual
parametex(t) is the following:

- Compute for each frame the local variadxs.

- Search sections of consecutive frames with aamagC(t) lower than a fixed threshol@»
defining a quasi-stationary signal section. Thelno#ther frames are considered as non-
stationary. This provides alternations of quasiistery sections and non-stationary sections
with variable lengths.

- For each sectioncompute the mean €@f(t) over the section:

4471

C == > ct )

(T; denotes the size of the sectioandt; denotes the index of the first frame of the segtion

and computgy; so that:

pmin lf ]Oglo (_‘z = j'min
p—p = p. A —p A . =
pg — wlogm (*z L. plmn/lmax _imax min lf Amin \<\ ]Oglo Cvz g ’&max

max min max min

Poa if log,, le >A

max

(3)
where the thresholds are fixed as:
std(C)j
A =log,,| —~ _=0.0001
min glO 50 pm|n

Ao =100, (BStd(C)) P, =08

Finally, the weightaw(i) of (1) are assumed to be equal to 1 for all dakas process is

applied on each parametg(t) andl,(t) to obtain the smoothed visual parameﬂ%vl(is) and

E(t) “_An illustration of the results obtained with tiiscess is given in Section I11.B.



D. A dynamic lip parameter for silence vs. non-silence characterization and
automatic silence detection

In Section I.A, we have briefly discussed the intance of the lipnovementgas opposed to
static lip shapes) for characterizing audio-vissgleech. In a preliminary work, lip
movements have been shown to be good candidategzatacterize the opposition between
silence and non-silence activity (Sodoyetr al, 2006), the lip-shape variations being
generally smaller in silence sections. TherefoodpWwing this previous work, we chose to
describe the lip shape movements with one dynaarampeter, summing the absolute values

of the two lip parameter derivatives (Sodogeal, 2006):

] (t)% @

Largex(t) values indicate significant lip movements andudtiondex non-silence frames,
while low values corresponding to small lip movemsgior no movement at all) should index

silence sections. Note that this dynamic paranetploits the complementarity between the
two lip parameters for many speech sequerntfefig. 3). Indeed, the variations ﬁf(t) may
characterize rounding movements during which ligltemay not change much; and vice
versa, the variations df(t) may characterize opening/closing movements dusihgh lip

width may not change much. For example, in Figh8,variations of the width parameter are
larger than the variations of the height paramie¢tween 278.5s and 278.8s, and the contrary
occurs between 278s and 278.2s.

However, the situation is not so simple. On the baed instantaneous largé) values
can correspond to local short lip movements innsiesectionse(g, smiles, grimacing,
funny faces or changes of the lips “rest positiohis is likely to produce silence detection
errors (silence classified as non-silence). Onotinver hand, local lip stability within speech
gestures can lead to low locdt) values providing false alarms (speech classdiedilence).
To overcome these problems(t) values are then summed over time. Therefore, the

parametep(t) is defined from the filtering of(t) as:

p(t) = h(t) Ca(t) (®)
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with h(t) being the truncated version of a first-order lpass filter defined by:

h(t) = %Z exp(_—tj (6)

r

wherer is the time constant of the filter ailds the number of integrated frames. These two
parameters must be adequately chosen so thatitdresfgnificantly decreases the influence
of isolated and accidental higtft) values in silence sections. On the other hargl fitter
should not blur small but significant movementsian-silence sections. In our study, for the
sake of simplicity, the filter length is fixed td& = 100 samples (or 2s) and several
representative values farare tested in Section I1l.B (thevalue has the role of a memory
factor over the past(t) values: the smaller, the shorter the memory).

Finally, the video-based automatic acoustic siledetection is achieved for each frame by
comparingo(t) to a thresholgy, that remains to be determined. Therefore, thelpnolcan be
formalized by the following hypotheses:

- Hg The audio frame belongs to a silence section,
- Hns The audio frame belongs to a non-silence section.

Then, the audio frame index will respect the follogvrule:

H

S

P(t) S Py
o ™
l.e., if p(t) < pi the framet is considered as silence, else it is consideretbassilence. This
test is what is here referred to as Visual Voicéy Detection (V-VAD).

[I. QUANTITATIVE ASSESSMENT

A. Audio analysis results

The audio processing described in Section Il.B basn applied to the corpus for each
speaker (JLS and LG). As mentioned before, eaghdréabout 120,000 20-ms frames per
speaker) was automatically labeled as “silence'non-silence” before a systematic manual
verification. To illustrate the diversity of therpus, Fig. 4 shows several audio sequences for
both speakers. These examples illustrate the raeal distinction between silence and non-

silence rather than speeeb. non-speech. Some audio sections with a signifieamunt of

11



energy (non-silencekg.g, Fig. 4(a) between 41.8s and 42.3s, Fig. 4(d) betwkk7s and
74.9s, or Fig. 4(e), between 26.5s and 27.1s, erespeech but rather grunts or murmurs.
Table 1 presents some quantitative results, derivech the analysis, which provide a
characterization of the corpus. The number of fratadeled as silences. non-silence is
quite close for speakers JLS and LG (51% and 58%heftotal corpus respectively). If a
“silence section” is defined as a section composkedontiguous silence frames, and if a
“non-silence section” is defined as a section casegaf contiguous non-silence frames, 691
silence sections and 695 non-silence sections l@ened for speaker JLS, and 603 silence
sections and 607 non-silence sections are obtdorespeaker LG, with respective average
time lengths of 1.73s and 1.93s for the first speald, 2.55s and 1.85s for the second one.
The corresponding standard deviations are quite {ilte section length ranges from one to
more than 2000 frames, that is 40s), illustratihg diversity of dialog situations. Fig. 5
shows the duration histograms of silence and nlema sections. In both cases, more than

90 % of the sections have a duration lower than 4 s

B. Video characterization of silence vs. non-silence

For each speaker, the labial parameligt$ andly(t) were smoothed with the pre-processing
described in section II.C. Fig. 6 shows the resaftshis process. It can be seen that the
adaptive spline filter efficiently removes the ma&&snent noise: slowly varying sections

seem correctly smoothed, whereas fast parametatigas in highly non-stationary sections

are preserved. Fig. 7 shows the distribution ofrédseilting lip parameters for both speakers,
separately for the audio silence frames and thesiience frames. First, differences between
the distributions for the two speakers can be edticThese differences are simply due to
inter-individual differences in lip shapes and ges$. Despite these differences, the two
distributions have similar shapes in the non-sietmntext (Fig. 7(a) and Fig. 7(c)). For each
speaker, the resulting organization of the labgelce is classical for speech configurations
(Benoit et al. 1992; Robert-Ribe®t al, 1998), assuming that the additional non-speech

gestures do not smear the global trends. For exam@ can distinguish closed lip shapes

(Ev(t): 0 andl](t) = 0) corresponding to bilabials in any vocalic @ rounded lip shapes
(e.g, [y], [u], at around I:V(t)z 2cm and E(t): 0.25 cm, and consonants in rounded
contexts), spread lip shapes.d, [i], at around E(t) =3.5cm andﬂ(t) =0.6 cm, and

consonants in spread contexts) and open lip sh@pgs[a], at aroundi;v(t) =3.5cm and

12



E(t): 1 cm, see also Fig. 3, and consonants in opetexisi. Notice that closed lip shapes

represent 10% of non-silence frames for both speaksee Table 1). This is a typical
example of the difficulty to associate a givendippe to a given audio class: in this specific
case, a speaker actually spoke or emitted sourttishve mouth shut (during short periods).
Now, let us consider the visual parameter distrdsuissociated with audio silence, in Fig.
7(b) and Fig. 7(d). These figures show that an mamb subset of visual parameters
corresponding to silence frames is located in aregion within the general set of speech
shapes displayed in Fig. 7(a) and Fig. 7(c). Besidmother important subset of lip
configurations is grouped around the origin, whimbrresponds to closed lips. Table 1
however shows that closed lip shapes represent2iityto 30% of the lip shapes associated
to silence frames. This is much more than the 10&fpgrtion in non-silence frames, but
quite far from the totality of silence frames. Ajther, it appears that closed lip shapes are
present in both distributions and thus cannot bstesyatically associated with a silence

frame. More generally, since most values of thdribigtion of static visual parameters
(I:v(t) ,E(t)) associated to either silence frames or non-slérammes are located in the same

region, this information is not sufficient to cheterize audio silences. non-silence. This
confirms the need for a dynamic characterizatiolipofestures.

A first illustration of this is given in Fig. 8, vidch provides the same plots as Fig. 7, but
for the derivatives of the parameters (on a lodestta a better concentration of the values).
We can see that, although still overlapping, tHense and non-silence distributions are
globally much better separated than previouslyhhe distributions for non-silence frames
being concentrated in higher parameter values fvasilence frames. Also, the differences
in the distributions between the two speakers dedne much smaller in this case than in the
static case, for both silence and non-silence feame

Fig. 9 displays the distribution (here as an histog of the dynamic parameigt) for the
entire corpus respectively for speaker JLS (lefuimm) and speaker LG (right column), and
for four values of the time constantorresponding to the summation of 1 frame (thatas
actual temporal summation), 5 frames (100ms integrg 10 frames (200ms) and 100
frames (2s). The underlying goal is to tune theperal-integration window so that the
distributions ofp(t) corresponding to the silence sections (the hiatogplotted in black in
Fig. 9) and to the non-silence sections (the hrstogplotted in white) are as separate as
possible. Each of these two distributions is groskstributed among two classes: the first
one is a peak on the left part of the figure cqroesling to no lip movement (including of
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course stable closed lips), and the second onekisrrzel on the right part of the figure
corresponding to the presence of lip movements. thiee kernels associated with silence
frames (plotted in black) and non-silence framdstigd in white) are centered on different
locations, the non-silence kernel being to thetrigihthe silence kernel. This confirms that
non-silence sections are generally associated lartfer/faster movements of the lips than
silence sections. However, the two kernels arengtyo overlapping for the 1-frame
integration, as shown by Fig. 9(a) and Fig. 9(&¢es short lip movements can occur during
audio silences. Furthermore, the distribution passociated to stable closed lips on the left
part of these figures contains a large contributibnon-silence frames, since short stable lip
shapes can occur during speech/sound activity. gftitmal temporal integration window is
required, which should provide the best separatibrihese kernels, while reducing the
proportion of no-movement values associated with-sience frames. Too large a time
constant (as in Fig. 9(d) and Fig. 9(h)), while mssfully addressing this last point, mixes
the silence and non-silence kernels too much, dothie discrimination between silence and
non-silence audio frames for moving lips. Howewbe histograms plotted in Fig. 9(c, g)
show that a suitable time summation around 5-1Mdsa(100-200 ms) can largely improve
the discrimination between silence and non-sileseetions (actually the optimal value is
likely to be closer to 5 than to 10): in this cades white portion of the peak at the origin is
quite small and the black and white kernels aretebeseparated than in the other
configurations. Notice finally that the dynamic @aueterp(t) provides less difference
between speakers than the static labial parametergjas already observed in Fig. 8. This

could be important for a future multi-speaker aqgtiion.

C. Automatic video-based silence detection

The proposed V-VAD of Section II.D was tested oa 120,000 frames of the corpus, and for
the different settings of the time integrationdrdme (instantaneous case), 5, 10, 20 and 100
frames. In each case, the results of automatincglérame detection using the V-VAD were
compared with the reference labels provided byabeustic semi-automatic identification
process presented in Section I1.B. This test has blene for each speaker.

Fig. 10 shows an example of silence detection. fiise represents the time trajectory of
the lip parameter{N(t) and E(t) (Fig. 10(a) and Fig. 10(b)), of their respectieridatives

(Fig. 10(c) and Fig. 10(d)), and of the dynamic apaeters 7¢t) and o(t) with their
corresponding detection thresholds (Fig. 10(e) &gl 10(f)), for about 7 s of signal
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produced by speaker JLS. Fig. 10(g) representsdiresponding speech waveform with the
detected and reference silence regions. This fidlwsrates the different possible relations
between visual and acoustic data: movement ofigseith non-silenced.g, from 29.7s to
30.6s) and in silence (g, just before 31.5s, or between 32s and 32.3s}mavement of the
lips in silence with opened lipe.g, from 31.2s to 31.4s) and closed lips (from 31dbs
31.9s), and non-movement in non-silence (from 3@981.1s). The V-VAD, adequately
tuned ¢ = 20), performs quite well. The silence sectiortho$ sequence has been detected.
Obviously, the V-VAD fails to avoid a false detextibetween 31s and 31.2s, but this is a
tough configuration: part of this mistakenly deegttsection is a long non-silence section
with still lip shape, corresponding to a drawlirengence ending. Moreover, the V-VAD has
shrunk the actual silence section. But on the olfard, it discards several possible false
detections in the speech section between 32.58@&\din spite of both closed lips sections
and small movements in some regions.

More general results are presented in Fig. 11 aseilRr Operating Characteristics
(ROC). These curves represent the percentage oéatasilence detection (defined as the
ratio between the number of detected silence fraandghe actual number of silence frames)
as a function of the percentage of false silendectien (defined as the ratio between the
number of non-silence frames detected as silereomes and the actual number of non-
silence frames). To obtain those curves, the tlotdsh, was varied between the minimum
and the maximum of(t) (however, when using the V-VAD, one would ggtto a fixed
value ensuring a good trade-off between hit raie fatse alarm, possibly using the ROC
curves as charts). It can be seen from those cuimnaéghe benefit of low-pass filtering the
parameterg(t) is significant. By decreasing the influence obihstable periods in actual
speech or sound production, it enables the falemca detection ratio to be decreased
significantly. Symmetrically, by decreasing thelueihce of short/small lip movements in
silence, it improves the silence detection ratibe Time integration must be set carefully.
When no time integration is performed, the fal¢ensie detection scores are moderatg,(
the point 20%-80% for speaker JLS, and 22%-80%sfmaker LG). On the contrary, too
large a time integrationzE 100 frames corresponding to 2s) dramaticallyrekses the
silence detection ratio. Finally, the ROC perforees are significantly improved with
suitable time integration. For instance, using= 5 frames (corresponding to 100 ms)

efficiently decreases the false silence detectiio without decreasing the silence detection

15



ratio: ROC scores of 12%-80% and 15%-80% are obthfar speaker JLS and speaker LG
respectively.
As a complementary result, Fig. 12 shows the RO®@esuobtained whehy(t) andlx(t)

are used in (4),e., unfiltered visual parameters, insteadﬁg@t) and E(t), to computeo(t)

with (5). In this case, lower performances are iole which confirms the importance of the
pre-processing. Moreover, the role of integratisnmore important in this case because it
also reduces the influence of the measurement noseing from the lip parameters
extraction system. This explains that the diffeeehetween the results of Fig. 11 and Fig. 12
is particularly important if no integration is penned €.g, 37%-80% in the no-integration
case compared to 17%-80% with adequate integrafidm® results with temporal integration
are quite close with or without pre-processingdpeaker JLS, although they are better with
the pre-processing than without the pre-procesiingpeaker LG. This seems to be due to

greater measurement noise for this last speaker.

V. CONCLUSION

This paper had two objectives. The first one waddscribe the recording and processing of
an audiovisual corpus in natural interaction sitreg. The second objective was to use this
corpus to characterize the visual information pdedi by a speaker’s lips during the different
dialog phases, with a particular focus on silereigns. An automatic simple and efficient
Visual Voice Activity Detector was derived from shanalysis.

Regarding the first objective, let us recall tha¢ orpus contains about 40 min of
signal, providing a rich set of audiovisual data fwo speakers in a realistic situation of
spontaneous dialog (in French). This corpus isaddd to fundamental studies in speech and
language sciences, as well as to the assessmeanidmf-visual speech processing systems.
The design of such a corpus is not a straightfawask. It requires specific recording
equipment and protocol. In addition, as was poimedin this paper, the pre-processing of
the video data is not trivial (although it can lasiy implemented after adequate settings).
This corpus can be downloaded free of charge frétm/lwww.icp.inpg.fr, assuming it is
used for scientific / non-profit purposes.

Regarding the second objective, the results shaivttie instantaneous lip shapes in
silence and non-silence frames are largely ovemgppConsequently, such straightforward
information cannot be efficiently used for silence non-silence automatic classification of

speech sequences. In contrast, lip movements eandpradequate information: A single
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dynamical parameter processed with suitable temhpotegration and threshold has been
shown to be appropriate for efficient silengs. on silence) detection. The detection scores
have shown that the resulting Visual VAD (actuadlyvisual silence detector) can be
exploitable in real speech processing applicatiikes enhancement, source separation or
recognition in noise, withe.g, a 12% false alarm rates. an 80% hit rate. It is of primary
importance to remember that these performance s@re completely independent of the
acoustic environment, a property that is not ersbgeclassical acoustic VAD. Note finally
that, in the perspective of a “real world” implerntetion, the blue make-up used for labial
information extraction is not a limitation of theoposed method. In a recent study (Aubrey
et al, 2007), it has been shown that the dynamic inféiongrovided by (6) is equivalent (in
terms of detection scores) to the information paedi by a retina model applied on raw black
and white images of the lip region, with naturpsklij.e., without make-up).

Further investigations will be conducted to inceedise V-VAD performance. They
could incorporate an adaptive decision threshdtth¢pinto account the image quality and/or
the inter-speaker variability. Another perspeciivéo use both video and audio information
together to increase the detection performanckeretaking a decision from a fusion of the
decisions provided independently by audio and vidéarmation, or using both sources of
information to feed a single decision process. Mnmld lead to the design of an Audio-
Visual VAD, which seems to us an important outcdorduture developments in audiovisual
speech processing systems. The visual VAD thabbkas presented in this study provides a

good basis for such development.
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ENDNOTES

1. Note that this explains why all throughout ttegr we consider the distinction between
silence sectionandnon-silence section@ncluding speech and non-speech audible events),
rather than the distinction between speech andsperch (including silence and non-speech
audible events). Accordingly, the teNMoice Activityis to be understood as covering speech
and non-speech audible events (while vaneetivity would correspond to silence). The term

VAD is a usual denomination in the speech proced#ierature.

2. Yet a dependence can be found by considering Litmbard effect” (Lombard, 1911,

Lane and Tranel, 1971): The speaker may increas@dni articulatory efforts (and thus
modify the speech characteristics) to improve comgation efficiency in noise. This does
not reduce the interest of the visual speech in&bion (on the contrary, the movements of

the visible articulators may be exaggerated by tirabard effect).

3. The authors prefer to classify between speedman-speech sections rather than between
silence and non-silence sections as we do, eveh séems less appropriate for use in

enhancement/separation applications.

4. Actually, it is not applied in regions where tharameters are equal to zero, or more
specifically, the zero value in those regions i$ madified, since (i) the zero signal is not
noisy, and (i) this avoids unwanted oscillations @vershoots of the spline-filtered

parameters after fast lip closing or before fgstlpening regions. In practice, implementing

this precaution is a trivial task.
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TABLE

JLS LG
Number ofsilence sections 695 603
Mean duration 1,73s 2,55s
Standard deviation of duration 2,13s 3,49s
Minimum duration 0,02s 0,04s
Maximum duration 22,98s 41,98s
Number ofnon-silence sections 691 607
Mean duration 1,93s 1,85s
Standard deviation of duration 2,08s 1,85s
Minimum duration 0,02s 0,02s
Maximum duration 16,7s 12,8s
N Total number of frames 119996 119996
Ns Number of silence frames 61373 (51%\)f 69162 (58% oN)
Nhs  Number of non-silence frames 58623 (499%pf 50834 (42% oN)
N,  Number of frames WitH—;v(t) and I-;(t) null 22658 (19% oN) 26249  (22% oN)
Number of non-silence frames with
Ny Ev (t)an dE (t) null 5915 (10% ON.g 4908  (10% ofNng
Number of silence frames with
N,s 16743 (27% ofNy) 21341  (31% oy

i;v(t) andE (t) null

TABLE I. Characteristics of the audio-visual corgarscessed in this study. The frame size is 20Tie.data in
this table are derived from the semi-automatic aypdocess of Ramirezt al. (2004), with manual verification.
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FIGURE CAPTIONS

FIG. 1. lllustrations of the audio-visual corpusarling session. The two speakers are in
separate rooms. A specially-designed equipmentsésl dor the real-time transmission of

audio and video signals between the speakers, lhasube recording of these signals.
FIG. 2. The lip parameters used in this study: tidipeheight () and inner lip widthl(,).

FIG. 3. Example of lip parameter trajectories: Jtamer width parameter, (middle) inner

height parameter, (bottom) corresponding acougjitas

FIG. 4. Examples of sounds present in the spontenepeech corpus. (a) and (b): typical
hesitation sound in French (“euh”, a long;[included in the sequence in (b)); (c): sound of

“Mmmm..."”; (d): snap of the lips before speech; (egpiration intake; (f): laugh.

FIG. 5. Histograms of the time length (in secorwiqop) silence sections, and (bottom) non-

silence sections, for speaker LG.

FIG. 6. A lip width parameter trajectory filteredtiwthe adaptive spline technique. Top: raw
parameter; bottom: smoothed parameter. The sloadying sections are efficiently smoothed

while the abrupt changes are preserved.

FIG. 7. Distribution of the visual parameters fbe ttwo speakers JLS (top: (a) and (b)) and
LG (bottom: (c) and (d)) and for the non-silencanies (left: (a) and (c)) and silence frames

(right: (b) and (d)).

FIG. 8. Distribution of the (absolute values of)tkderivatives of the lip parameters (on a log

scale:gh = Ioglo% ) for the two speakers JLS (top: (a) and (b)) acd L

~ al
and J, =log, %
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(bottom: (c) and (d)) and for the non-silence franfeft: (a) and (c)) and silence frames

(right: (b) and (d)).

FIG. 9. Distribution of logy(p(t)) for the two speakers JLS (left column) and LG Hrig
column) and for different configurations of the érmtegration. Note that the valpé) = 0

(no movement) has been arbitrarily fixed t6*¥6r visualization of the origin.

FIG. 10. Silence detection on a sequence of therded corpus. (a) and (b): Static lip
parametersﬁv(t) and E(t); (c) and (d): Their derivatives (absolute valug®) and (f):
Instantaneous detection parametgt) and integrated detection parametgt) (for 7 = 20
frames = 400 ms), on a log-scale; the dotted asstiethlines are respectively the threshold
for 7(t) and forp(t); (g): Acoustic signal with silence reference (@dine), frames detected as

silence usingft) (dotted line), and frames detected as silenaggy%t) (dashed line).

FIG. 11. ROC silence detection curves for the tweakers JLS (left) and LG (right). For
each speaker, five integration durations of theialiparametep(t) are used: No integration
(dotted line), 100 msr(= 5, solid line), 200 msr(= 10, dash-dot line), 400 ms¥£ 20, dashed

line) and 2 s{= 100, small dashed line).

FIG. 12. ROC silence detection curves for the tweakers JLS (left) and LG (right). Here,
the visual parametei(t) has been computed (using (5)) with unfiltered ppsameter$, and
lw in (4). For each speaker, five integration duraiof the visual parametgft) are used: No
integration (dotted line), 100 mg € 5, solid line), 200 mszr(= 10, dash-dot line), 400 ms

(7= 20, dashed line) and 2 55 100, small dashed line).
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