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This paper presents a quantitative and comprehensive study of the lip movements of 

a given speaker in different speech / non speech contexts, with a particular focus on 

silences (i.e., when no sound is produced by the speaker). The aim is to characterize 

the relationship between “lip activity” and “speech activity”, and then to use visual 

speech information as a Voice Activity Detector (VAD). To this aim, an original 

audio-visual corpus was recorded with two speakers involved in a face-to-face 

spontaneous dialog, although being in separate rooms. Each speaker communicated 

with the other using a microphone, a camera, a screen, and headphones. This system 

was used to capture separate audio stimuli for each speaker and to monitor each 

speaker’s lip movements in synchrony with the recorded sound. A comprehensive 

analysis was carried out on the lip shapes and lip movements corresponding to 

either silence sections or non-silence sections (i.e. speech + non-speech audible 

events). A single visual parameter, defined to characterize the lip movements, was 

shown to be efficient for the detection of silence sections. This results in a Visual 

VAD (V-VAD) that can be used in any kind of environment noise, including 

intricate and highly non-stationary noises, e.g., multiple and/or moving noise 

sources or competing speech signals. 

 

PACS number: 43.72.-p Speech processing and communication systems 
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I. INTRODUCTION 

A. Context: audio-visual speech processing 

Speech is a bimodal signal, both acoustic and visual. Many studies have shown that the visual 

modality improves the intelligibility of speech in noise when switching from the “audio only” 

condition to the “audio + speaker’s face” condition (Sumby and Pollack, 1954; Erber, 1975; 

Benoît et al., 1994; Robert-Ribes et al., 1998). In parallel, McGurk and McDonald (1976) 

demonstrated that humans can even integrate conflicting audio and visual speech stimuli to 

perceive a “chimeric” speech stimulus. More recently, Grant and Seitz (2000) have shown 

that viewing the speaker’s face also improves the detection of speech in noise. Such results 

have been confirmed by Kim and Davis (2004) and Bernstein et al. (2004). More specifically, 

visual information helps pertinent acoustic features to be better extracted, i.e., “seeing to hear 

better”, providing a different and complementary contribution to lip-reading (Schwartz et al., 

2004). Additionally, visual speech information has been shown to irresistibly attract 

speaker’s localization (Bertelson, 1999).  

Concerning the nature of visual speech information, two major questions have been 

addressed. Firstly, the oral region including the lips and jaw seems to be the major 

contributor to visual speech perception (see, e.g., Summerfield, 1979; Benoît et al., 1996). 

Thomas & Jordan (2004) actually showed that the intelligibility of oral-movements display 

was more or less the same as that of whole-face movements display. However, extra-oral 

movements also influence identification of visual and audiovisual speech, mostly due to the 

strong correlation between oral and extra-oral movements (Munhall and Vatikiotis-Bateson, 

1998). Orofacial configurations can be basically characterized in terms of lip contours and 

specifically by the parameters of inner lip height, inner lip width and lip protrusion 

(Summerfield, 1979; Abry and Boë, 1986; Benoît et al., 1992, 1996). Secondly, the question 

of static vs. dynamic processing of facial configurations has been largely discussed. Studies 

using point-like displays, which remove fine spatial information, showed that movement 

seems to be crucial in the perceptual processing of visual speech in both noisy configurations 

(Rosenblum et al., 1996) and conflicting McGurk stimuli (Rosenblum and Saldana, 1996). 

This led Munhall et al. (1996) to suggest that listeners might use the time-varying properties 

of visual speech for perceptual grouping and phonetic perception. Neurophysiological data 

seem to confirm the specific role of the dynamic processing of visual speech (Calvert & 

Campbell, 2003; Munhall et al., 2002). This is compatible with Summerfield (1987)’s 

suggestion that one possible metric for audiovisual integration is the pattern of changes over 
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time in articulation, considering that listeners are sensitive to the dynamics of vocal tract 

change. Thereafter, a number of studies in the audio-visual speech literature have 

characterized the correlation between lower face movement and the produced acoustic signal 

(Yehia et al., 1998; Barker and Berthommier, 1999; Jiang et al., 2002; Bailly and Badin, 

2002; Goecke and Millar, 2003).  

Following these considerations on the bimodal aspect of speech, an important number of 

technological studies have been undertaken in the last twenty years to integrate the visual 

modality into speech processing systems. The goal is to improve the performance and 

robustness (in noise) of different human-to-human telecommunication systems or human-

computer interfaces (HCI). Petajan (1984) was the first to integrate visual speech information 

in an automatic speech recognition (ASR) system. Many studies followed, including recent 

advances going towards real-life implementations of bimodal ASR (Potamianos et al., 2003). 

Recently, audio-visual speech processing applications also concerned video indexing and 

retrieval (Huang et al., 1999; Iyengar and Neti, 2001), audiovisual speech synthesis and 

talking heads (Yehia et al., 2000; Bailly et al., 2003; Cosi et al., 2003; Gibert et al., 2005), 

and audio-visual speech coding (Rao and Chen, 1996; Girin, 2004). In recent years, the visual 

modality has also been exploited for speech enhancement in (background) noise (Girin et al., 

2001; Deligne et al., 2002; Potamianos et al., 2003b), and more generally for speech source 

separation, i.e., for the extraction of a speech signal from complex mixtures using several 

microphones, for both linear instantaneous mixtures (Sodoyer et al., 2002, 2004) and 

convolutive mixtures (Wang et al., 2005; Rivet et al., 2007). 

B. Video characterization of silence vs. non-silence sections  

Most of the time, studies addressing the characterization of lip patterns in speech 

production have been carried out in more or less controlled speech production contexts 

(typically “laboratory speech”: see, e.g., Abry and Boë, 1986; Benoît et al., 1992; Goecke 

and Millar, 2003; Jiang et al., 2002; Yehia and Vatikiotis-Bateson, 1998). Relatively poor 

attention has been paid to the description and characterization of these patterns during speech 

production in natural contexts, especially in spontaneous multi-speaker conversation. 

Moreover, in such context, speech activity (i.e. actual speech production by a speaker of 

interest) alternates with many silence sections (i.e. sections where the speaker of interest does 

not produce sounds, whereas other speakers may actually do), and also with many non-

speech audible events such as murmurs, grunts, laughs, respiration intakes, expirations, lip 

noise, whispers, sighs, growls, moans, etc (Campbell, 2007). In spite of this, even poorer 
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attention has been paid to lip patterns in silence and non-speech contexts, although these 

patterns may exhibit a specific behavior, to be considered in both audio-visual speech 

fundamental studies and technological applications.  

This paper provides an attempt to fill this gap. The relationship between a speaker’s lip 

movements and speech activity (or non-speech oral production) vs. silence is investigated, 

using signals from a spontaneous dialog. For this aim, the recording and the study of a “real-

life” audio-visual corpus were achieved and are presented in this paper. This corpus consists 

of two speakers recorded in a spontaneous dialog situation (in French) during about 40 

minutes. It is characterized by two properties. Firstly, it is based on a very clean audio (and of 

course video) recording process, since each speaker is located in a separate room to 

completely avoid cross-speaker audio interferences in the recordings. Communication 

between the two speakers is effected using a specially-designed equipment described in 

Section II.A. Secondly, the audiovisual material is recorded in a lively dialog situation, in 

which various creative contexts lead the two speakers to have a spontaneous discussion (see 

also more details in Section II.A). As a result, the recorded signals include speech and silence 

sections, as well as many different non-speech audible events such as those mentioned above. 

It also contains many face expressions and movements with or without sound production (see 

the related work of Macho et al. (2005)). Using this corpus, and starting from a very simple 

hypothesis –the lips of a given speaker should move when he/she is talking (or producing 

non-speech sounds), whereas they should not move (or move less) when he/she does not utter 

sounds– the distributions of static and dynamic lip parameters are provided for the two 

conditions. Those distributions show how dynamic lip parameters can be associated with 

non-silence sections (i.e. speech + non-speech audible events) vs. silence sections. Actually, 

the correspondence is not straightforward. Indeed, lip movements can occur during silence 

and conversely speech or non-speech oral production can occur with still lips. However, it is 

shown that a single dynamic lip parameter is more appropriate than static parameters for this 

characterization, and that temporal integration of the dynamic parameter values can improve 

the “separability” of non-silence sections vs. silence sections from lip information.  

C. Application to automatic voice activity detection 

Finally, a technological application of the study is considered: the possibility of using 

visual information to automatically detect sound production and silence sections in a given 

audio channel. Such an algorithm is called a Voice Activity Detector (VAD), and it is 

generally derived from audio information only. Among other applications, it can be used to 
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drastically improve the performance of speech enhancement / separation techniques: silence 

detection, i.e. the detection of regions where the speaker of interest does not produce any 

sound, is used to identify properties of the noise or properties of the mixture configuration. 

These properties are then used to process the extraction of the speech signal of interest when 

it is detected as present in the mixture1 (see, e.g., Ephraïm and Malah (1984), Abrard and 

Deville (2003)). Various types of audio VAD have been studied, and they can achieve good 

performance even with a low signal-to-noise ratio (SNR) (Le Bouquin-Jeannès and Faucon, 

1995; Sohn, et al., 1999; Tanyer and Ozer, 2000; Ramírez et al., 2005). However these 

techniques are based on the analysis of the acoustic signal, and consequently their 

performance depends strongly on the environment noise. Generally the noise has to be 

considered as stationary or weakly non-stationary, and/or with a given power spectral density 

function (psd) or probability density function (pdf). Thus, when the noise is highly non-

stationary with a low SNR (a concurrent speaker for example), the audio VAD performance 

considerably decreases. In this case, visual information could be very useful since it is 

completely independent of the acoustic environment2. For instance, in a previous study, De 

Cueto et al. (2000) used a basic Visual Voice Activity Detector (V-VAD) for detecting a 

speaker’s speech activity in front of a computer. For this, either specific lip parameters or the 

average luminance of the mouth picture can be used (Iyengar and Neti, 2001). However, 

those studies are limited to the speaker’s “intent-to-speak”, useful for, e.g., turn-taking 

detection. The methods do not provide accurate segmentation of the content of a given 

speaker’s sequences. More recently, Liu and Wang (2004) proposed a visual VAD based on 

Gaussian models. One Gaussian kernel was used to model the silence/non-speech sections 

and two kernels were used to model the speech sections3. However, little information is 

reported on the video processing, on the nature of the corpus that is used for setting and 

testing the V-VAD, and even on the visual information itself: it is not clear whether static or 

dynamic information is used. Also, the size of the experimental data is not compatible with 

real-life applications. The V-VAD proposed in the present paper specifically addresses these 

last remarks: it is based on “real-life” audiovisual data (and it is tested using these data), 

while remaining simple (given that lip shape parameters are available). Its efficiency is 

demonstrated by a series of detection scores (Receiver Operating Characteristics, ROC). As 

mentioned before, this V-VAD can be used in a speech enhancement system or a source 

separation system (see for instance Rivet et al., 2007b, for a first application of V-VAD to the 

speech source separation problem).  
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This paper is organized as follows. Section II presents the method, beginning with a 

description of the audio-visual corpus (Section II.A) including the recording conditions and 

the definition of the video (lip) parameters used in this study; This is followed by the 

description of the audio (Section II.B) and video (Section II.C) processing applied to the data. 

The lip dynamic parameter used for silence vs. non-silence characterization and VAD is 

described in details in Section II.D. Section III presents the results of the study: in Section 

III.A, the audio content of the corpus in terms of silence vs. non-silence sections is presented. 

Then, Section III.B provides an analysis of the properties of the static and dynamic lip 

parameters in silence vs. non-silence sections. The performance of the proposed V-VAD in 

terms of ROC curves is given in Section III.C. Section IV is a conclusion section.  

 

II. METHOD 

A. Description of the audiovisual corpus 

To describe and characterize lip movements in relation with speech/sound production or non 

production requires the acquisition of appropriate audiovisual data. An original audio-visual 

corpus was thus recorded and processed, consisting of a series of spontaneous dialogs 

between two male French speakers (JLS and LG). To obtain a set of conversation situations 

as natural as possible, several tasks were suggested to the speakers. These tasks were, e.g., 

different interactive games such as answering as fast as possible to a word association 

problem, finding the solution of riddles, or playing language games. In all these tasks, the 

interaction between speakers was totally spontaneous, thus including spontaneous turn taking, 

interruptions, hesitations, and possible cross-overlapping between speakers. This led each of 

them to alternate between natural silence sections and speech sections of various sizes and 

contents. The corpus also contains many different kinds of audible and non-audible non-

speech events, such as those mentioned in the introduction. 

The two speakers were placed and recorded in separate rooms. They both had a 

microphone and a micro-camera fixed on a light helmet. The camera focused on the lip 

region to optimize the capture of labial information. Moreover, the speakers could hear and 

see each other, using headphones and a monitor screen in front of them with real-time video 

feedback. This was necessary to ensure “naturalness and conviviality” during the 

conversation. Automatic time-code generators were used for post-processing synchronization 

of all audio/video signals. Finally, these experimental settings enabled the conditions of a real 

face-to-face conversation to be simulated while the recorded audio signals (and of course the 
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video signals) were perfectly separate. Illustrations of the recording session are given in 

Fig. 1. 

The visual information extracted from this corpus consists of the time trajectories of two 

basic geometric parameters characterizing the lip contour (see Section I.A), namely inner 

width lw and inner height lh (Fig. 2). These parameters were extracted using the ICP “face 

processing system” (Lallouache, 1990), which is based on blue make-up, image thresholding 

with the Chroma-Key system, and contour tracking algorithms. The parameters were 

extracted every 20 ms (the video sampling frequency is 50 Hz), synchronously with the 

acoustic signal, which is sampled at 44.1 kHz. Thus, in the following, a signal frame is 

defined as a 20 ms section of acoustic signal together with a pair of lip parameters (lw, lh). A 

spontaneous audio-visual speech corpus for two speakers with a total duration of 40 min was 

finally obtained, representing 120,000 vectors of audio-visual frames per speaker. 

 

B. Audio analysis and silence / non-silence labeling 

The first phase of the corpus analysis consisted in the labeling of the 20 ms-frames 

(corresponding to the video sampling) as “silence frames” or “non-silence frames” based on 

the analysis of the audio signal and the dichotomy defined in the introduction: Silence frames 

are defined as signal frames with no sound produced at all, and non-silence frames contain 

speech and/or non-speech acoustic events. It is important to note that these definitions are 

given here for each speaker independently (obviously, a silence frame for one speaker can be 

simultaneous with a non-silence frame for the other speaker, since the two tracks are recorded 

separately). Silence frames are mainly present between phrase boundaries that result from 

conversation turn-taking, and also in more or less long pauses within one speaker’s 

“continuous” talk due to, e.g., hesitations.  

 The labeling into silence frames vs. non-silence frames was made semi-automatically 

with the algorithm proposed by Ramirez et al. (2004) and a manual verification. This 

algorithm measures the long-term spectral divergence between speech and environment noise 

and formulates the decision rule by comparing the long-term spectral envelope to the average 

noise spectrum, thus yielding a high discriminating decision rule and minimizing the average 

number of decision errors. The decision threshold is adapted to the measured noise. In our 

case, the environment noise was generally very low, and the results of this labeling were 

almost perfect. A manual verification of the entire corpus was made and a very small number 

of errors were corrected. It can be noted that very short silences corresponding to the time 
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periods preceding the release of unvoiced plosives are not considered as silence frames, even 

though they may happen to be slightly greater than 20 ms. This is because of the nature of the 

audio detection algorithm that considers longer signal sections. Conveniently, this is coherent 

with the definition and processing of the temporal integration step that we propose in 

Section II.D. 

 

C. Video pre-processing 

As mentioned before, the extracted visual information is the time trajectory of the geometric 

parameters lw and lh characterizing the lip contour. The measures provided by the face 

processing system, although very accurate, are slightly noisy. Since a dynamic video 

parameter is calculated from the derivatives of the temporal trajectories, computed by a 

difference operator which is very sensitive to noise, the lip parameter trajectories have to be 

filtered (smoothed). This is not a trivial task for such signals, since labial parameter 

trajectories are highly non-stationary signals: slow variations in time can be followed by 

drastic changes, for instance when lips are closing. Therefore, it is difficult to remove noise in 

regions with slow variations while respecting the abrupt variations provided by natural lip 

movements. In our study, a technique based on spline functions was used. A basic version of 

this technique has been successfully used in a previous study using audio-visual corpora 

(Girin, 2004) and this process is refined here as follows. 

The basic principle of the spline smoothing consists in locally fitting (noisy) data x(i) with 

a cubic spline s(ti) defined as piecewise polynomial functions, where each piece is described 

using a cubic polynomial. The fitting is based on the minimisation of the following criterion: 

 ( )∫∑ 
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The first term is a weighted least-square error between data and the spline model (the weights 

are given by w(i)) and the second term stands for the smoothness of the resulting curve. 

Balancing these two constraints is made possible by setting the parameter p at an appropriate 

value between 0 and 1. For instance, p = 0 produces a least squares straight line fit to the 

data, p = 1 produces a cubic spline interpolate, and intermediate values provide a trade-off 

between close fit and smoothness.  

In the proposed video processing system, the non-stationary property of the lip movements 

is taken into account by adaptively tuning the p parameter according to the signal dynamics. 
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Relatively large p values must be used in time sections with high natural variations of the lip 

parameters to closely track these variations. On the contrary, relatively small p values must 

be used in quasi-stationary regions to adequately remove the noise. Thus the lip parameter 

signals lw and lh are segmented in time sections depending on the value of their local (sliding) 

variance ∑ −=
+= 2/

2/

2)(/1)(
N

Nn
ntvNtC  with N = 6 (v(t) represents a visual parameter (lw or lh), 

and t denotes the time index of 20ms-frames). 

Each section is then fitted with a cubic spline whose parameter p is determined as a 

function of this variance. More specifically, this automatic smoothing process for each visual 

parameter v(t) is the following: 

- Compute for each frame the local variance C(t). 

- Search sections of consecutive frames with a variance C(t) lower than a fixed threshold Cmin 

defining a quasi-stationary signal section. Then all other frames are considered as non-

stationary. This provides alternations of quasi-stationary sections and non-stationary sections 

with variable lengths.  

- For each section i compute the mean of C(t) over the section: 
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(Ti denotes the size of the section i and ti denotes the index of the first frame of the section) 

and compute pi so that: 
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where the thresholds are fixed as: 
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Finally, the weights w(i) of (1) are assumed to be equal to 1 for all data. This process is 

applied on each parameter lw(t) and lh(t) to obtain the smoothed visual parameters )(
~

tlw  and 

)(
~

tlh
4. An illustration of the results obtained with this process is given in Section III.B. 
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D. A dynamic lip parameter for silence vs. non-silence characterization and 
automatic silence detection 

In Section I.A, we have briefly discussed the importance of the lip movements (as opposed to 

static lip shapes) for characterizing audio-visual speech. In a preliminary work, lip 

movements have been shown to be good candidates to characterize the opposition between 

silence and non-silence activity (Sodoyer et al., 2006), the lip-shape variations being 

generally smaller in silence sections. Therefore, following this previous work, we chose to 

describe the lip shape movements with one dynamic parameter, summing the absolute values 

of the two lip parameter derivatives (Sodoyer et al., 2006): 

 

 
t

tl

t

tl
t hw

∂
∂+

∂
∂= )(

~
)(

~
)(π  (4) 

 

Large π(t) values indicate significant lip movements and should index non-silence frames, 

while low values corresponding to small lip movements (or no movement at all) should index 

silence sections. Note that this dynamic parameter exploits the complementarity between the 

two lip parameters for many speech sequences (cf. Fig. 3). Indeed, the variations of )(
~

tlw  may 

characterize rounding movements during which lip height may not change much; and vice 

versa, the variations of )(
~

tlh  may characterize opening/closing movements during which lip 

width may not change much. For example, in Fig. 3, the variations of the width parameter are 

larger than the variations of the height parameter between 278.5s and 278.8s, and the contrary 

occurs between 278s and 278.2s.  

However, the situation is not so simple. On the one hand instantaneous large π(t) values 

can correspond to local short lip movements in silence sections (e.g., smiles, grimacing, 

funny faces or changes of the lips “rest position”). This is likely to produce silence detection 

errors (silence classified as non-silence). On the other hand, local lip stability within speech 

gestures can lead to low local π(t) values providing false alarms (speech classified as silence). 

To overcome these problems, π(t) values are then summed over time. Therefore, the 

parameter ρ(t) is defined from the filtering of π(t) as: 

 

 )()()( ttht πρ ∗=  (5) 
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with h(t) being the truncated version of a first-order low-pass filter defined by:  
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where τ is the time constant of the filter and T is the number of integrated frames. These two 

parameters must be adequately chosen so that the filter significantly decreases the influence 

of isolated and accidental high π(t) values in silence sections. On the other hand, the filter 

should not blur small but significant movements in non-silence sections. In our study, for the 

sake of simplicity, the filter length is fixed to T = 100 samples (or 2s) and several 

representative values for τ are tested in Section III.B (the τ value has the role of a memory 

factor over the past π(t) values: the smaller τ, the shorter the memory).  

Finally, the video-based automatic acoustic silence detection is achieved for each frame by 

comparing ρ(t) to a threshold ρth that remains to be determined. Therefore, the problem can be 

formalized by the following hypotheses: 

- Hs: The audio frame belongs to a silence section, 

- Hns: The audio frame belongs to a non-silence section. 

Then, the audio frame index will respect the following rule: 

  (7) 

i.e., if ρ(t) < ρth the frame t is considered as silence, else it is considered as non-silence. This 

test is what is here referred to as Visual Voice Activity Detection (V-VAD). 

 

III. QUANTITATIVE ASSESSMENT 

A. Audio analysis results 

The audio processing described in Section II.B has been applied to the corpus for each 

speaker (JLS and LG). As mentioned before, each frame (about 120,000 20-ms frames per 

speaker) was automatically labeled as “silence” or “non-silence” before a systematic manual 

verification. To illustrate the diversity of the corpus, Fig. 4 shows several audio sequences for 

both speakers. These examples illustrate the need for a distinction between silence and non-

silence rather than speech vs. non-speech. Some audio sections with a significant amount of 
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energy (non-silence), e.g., Fig. 4(a) between 41.8s and 42.3s, Fig. 4(d) between 74.7s and 

74.9s, or Fig. 4(e), between 26.5s and 27.1s, are not speech but rather grunts or murmurs. 

Table 1 presents some quantitative results, derived from the analysis, which provide a 

characterization of the corpus. The number of frames labeled as silence vs. non-silence is 

quite close for speakers JLS and LG (51% and 58% of the total corpus respectively). If a 

“silence section” is defined as a section composed of contiguous silence frames, and if a 

“non-silence section” is defined as a section composed of contiguous non-silence frames, 691 

silence sections and 695 non-silence sections are obtained for speaker JLS, and 603 silence 

sections and 607 non-silence sections are obtained for speaker LG, with respective average 

time lengths of 1.73s and 1.93s for the first speaker and, 2.55s and 1.85s for the second one. 

The corresponding standard deviations are quite high (the section length ranges from one to 

more than 2000 frames, that is 40s), illustrating the diversity of dialog situations. Fig. 5 

shows the duration histograms of silence and non-silence sections. In both cases, more than 

90 % of the sections have a duration lower than 4 s. 

 

B. Video characterization of silence vs. non-silence 

For each speaker, the labial parameters lw(t) and lh(t) were smoothed with the pre-processing 

described in section II.C. Fig. 6 shows the results of this process. It can be seen that the 

adaptive spline filter efficiently removes the measurement noise: slowly varying sections 

seem correctly smoothed, whereas fast parameter variations in highly non-stationary sections 

are preserved. Fig. 7 shows the distribution of the resulting lip parameters for both speakers, 

separately for the audio silence frames and the non-silence frames. First, differences between 

the distributions for the two speakers can be noticed. These differences are simply due to 

inter-individual differences in lip shapes and gestures. Despite these differences, the two 

distributions have similar shapes in the non-silence context (Fig. 7(a) and Fig. 7(c)). For each 

speaker, the resulting organization of the labial space is classical for speech configurations 

(Benoît et al. 1992; Robert-Ribes et al., 1998), assuming that the additional non-speech 

gestures do not smear the global trends. For example, we can distinguish closed lip shapes 

( )(
~

tlw = 0 and )(
~

tlh = 0) corresponding to bilabials in any vocalic context, rounded lip shapes 

(e.g., [y], [u], at around )(
~

tlw = 2 cm and )(
~

tlh = 0.25 cm, and consonants in rounded 

contexts), spread lip shapes (e.g., [i], at around )(
~

tlh = 3.5 cm and )(
~

tlh = 0.6 cm, and 

consonants in spread contexts) and open lip shapes (e.g., [a], at around )(
~

tlw  = 3.5 cm and 
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)(
~

tlh = 1 cm, see also Fig. 3, and consonants in open contexts). Notice that closed lip shapes 

represent 10% of non-silence frames for both speakers (see Table 1). This is a typical 

example of the difficulty to associate a given lip shape to a given audio class: in this specific 

case, a speaker actually spoke or emitted sounds with his mouth shut (during short periods). 

Now, let us consider the visual parameter distribution associated with audio silence, in Fig. 

7(b) and Fig. 7(d). These figures show that an important subset of visual parameters 

corresponding to silence frames is located in a sub-region within the general set of speech 

shapes displayed in Fig. 7(a) and Fig. 7(c). Besides, another important subset of lip 

configurations is grouped around the origin, which corresponds to closed lips. Table 1 

however shows that closed lip shapes represent only 27% to 30% of the lip shapes associated 

to silence frames. This is much more than the 10% proportion in non-silence frames, but 

quite far from the totality of silence frames. Altogether, it appears that closed lip shapes are 

present in both distributions and thus cannot be systematically associated with a silence 

frame. More generally, since most values of the distribution of static visual parameters 

( )(
~

tlw , )(
~

tlh ) associated to either silence frames or non-silence frames are located in the same 

region, this information is not sufficient to characterize audio silence vs. non-silence. This 

confirms the need for a dynamic characterization of lip gestures.  

A first illustration of this is given in Fig. 8, which provides the same plots as Fig. 7, but 

for the derivatives of the parameters (on a log scale for a better concentration of the values). 

We can see that, although still overlapping, the silence and non-silence distributions are 

globally much better separated than previously, with the distributions for non-silence frames 

being concentrated in higher parameter values than for silence frames. Also, the differences 

in the distributions between the two speakers seem to be much smaller in this case than in the 

static case, for both silence and non-silence frames. 

Fig. 9 displays the distribution (here as an histogram) of the dynamic parameter ρ(t) for the 

entire corpus respectively for speaker JLS (left column) and speaker LG (right column), and 

for four values of the time constant τ corresponding to the summation of 1 frame (that is no 

actual temporal summation), 5 frames (100ms integration), 10 frames (200ms) and 100 

frames (2s). The underlying goal is to tune the temporal-integration window so that the 

distributions of ρ(t) corresponding to the silence sections (the histogram plotted in black in 

Fig. 9) and to the non-silence sections (the histogram plotted in white) are as separate as 

possible. Each of these two distributions is grossly distributed among two classes: the first 

one is a peak on the left part of the figure corresponding to no lip movement (including of 
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course stable closed lips), and the second one is a kernel on the right part of the figure 

corresponding to the presence of lip movements. The two kernels associated with silence 

frames (plotted in black) and non-silence frames (plotted in white) are centered on different 

locations, the non-silence kernel being to the right of the silence kernel. This confirms that 

non-silence sections are generally associated with larger/faster movements of the lips than 

silence sections. However, the two kernels are strongly overlapping for the 1-frame 

integration, as shown by Fig. 9(a) and Fig. 9(e), since short lip movements can occur during 

audio silences. Furthermore, the distribution peak associated to stable closed lips on the left 

part of these figures contains a large contribution of non-silence frames, since short stable lip 

shapes can occur during speech/sound activity. An optimal temporal integration window is 

required, which should provide the best separation of these kernels, while reducing the 

proportion of no-movement values associated with non-silence frames. Too large a time 

constant (as in Fig. 9(d) and Fig. 9(h)), while successfully addressing this last point, mixes 

the silence and non-silence kernels too much, losing the discrimination between silence and 

non-silence audio frames for moving lips. However, the histograms plotted in Fig. 9(c, g) 

show that a suitable time summation around 5-10 frames (100-200 ms) can largely improve 

the discrimination between silence and non-silence sections (actually the optimal value is 

likely to be closer to 5 than to 10): in this case, the white portion of the peak at the origin is 

quite small and the black and white kernels are better separated than in the other 

configurations. Notice finally that the dynamic parameter ρ(t) provides less difference 

between speakers than the static labial parameters, as was already observed in Fig. 8. This 

could be important for a future multi-speaker application.  

 

C. Automatic video-based silence detection 

The proposed V-VAD of Section II.D was tested on the 120,000 frames of the corpus, and for 

the different settings of the time integrations: 1 frame (instantaneous case), 5, 10, 20 and 100 

frames. In each case, the results of automatic silence frame detection using the V-VAD were 

compared with the reference labels provided by the acoustic semi-automatic identification 

process presented in Section II.B. This test has been done for each speaker.  

Fig. 10 shows an example of silence detection. This figure represents the time trajectory of 

the lip parameters )(
~

tlw  and )(
~

tlh  (Fig. 10(a) and Fig. 10(b)), of their respective derivatives 

(Fig. 10(c) and Fig. 10(d)), and of the dynamic parameters π(t) and ρ(t) with their 

corresponding detection thresholds (Fig. 10(e) and Fig. 10(f)), for about 7 s of signal 
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produced by speaker JLS. Fig. 10(g) represents the corresponding speech waveform with the 

detected and reference silence regions. This figure illustrates the different possible relations 

between visual and acoustic data: movement of the lips in non-silence (e.g., from 29.7s to 

30.6s) and in silence (e.g., just before 31.5s, or between 32s and 32.3s), non-movement of the 

lips in silence with opened lips (e.g., from 31.2s to 31.4s) and closed lips (from 31.5s to 

31.9s), and non-movement in non-silence (from 30.9s to 31.1s). The V-VAD, adequately 

tuned (τ = 20), performs quite well. The silence section of this sequence has been detected. 

Obviously, the V-VAD fails to avoid a false detection between 31s and 31.2s, but this is a 

tough configuration: part of this mistakenly detected section is a long non-silence section 

with still lip shape, corresponding to a drawling sentence ending. Moreover, the V-VAD has 

shrunk the actual silence section. But on the other hand, it discards several possible false 

detections in the speech section between 32.5s and 36s, in spite of both closed lips sections 

and small movements in some regions. 

More general results are presented in Fig. 11 as Receiver Operating Characteristics 

(ROC). These curves represent the percentage of correct silence detection (defined as the 

ratio between the number of detected silence frames and the actual number of silence frames) 

as a function of the percentage of false silence detection (defined as the ratio between the 

number of non-silence frames detected as silence frames and the actual number of non-

silence frames). To obtain those curves, the threshold ρth was varied between the minimum 

and the maximum of ρ(t) (however, when using the V-VAD, one would set ρth to a fixed 

value ensuring a good trade-off between hit rate and false alarm, possibly using the ROC 

curves as charts). It can be seen from those curves that the benefit of low-pass filtering the 

parameter ρ(t) is significant. By decreasing the influence of short stable periods in actual 

speech or sound production, it enables the false silence detection ratio to be decreased 

significantly. Symmetrically, by decreasing the influence of short/small lip movements in 

silence, it improves the silence detection ratio. The time integration must be set carefully. 

When no time integration is performed, the false silence detection scores are moderate (e.g., 

the point 20%-80% for speaker JLS, and 22%-80% for speaker LG). On the contrary, too 

large a time integration (τ = 100 frames corresponding to 2s) dramatically decreases the 

silence detection ratio. Finally, the ROC performances are significantly improved with 

suitable time integration. For instance, using τ = 5 frames (corresponding to 100 ms) 

efficiently decreases the false silence detection ratio without decreasing the silence detection 
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ratio: ROC scores of 12%-80% and 15%-80% are obtained for speaker JLS and speaker LG 

respectively.  

As a complementary result, Fig. 12 shows the ROC curves obtained when lw(t) and lh(t) 

are used in (4), i.e., unfiltered visual parameters, instead of )(
~

tlw  and )(
~

tlh , to compute ρ(t) 

with (5). In this case, lower performances are obtained, which confirms the importance of the 

pre-processing. Moreover, the role of integration is more important in this case because it 

also reduces the influence of the measurement noise coming from the lip parameters 

extraction system. This explains that the difference between the results of Fig. 11 and Fig. 12 

is particularly important if no integration is performed (e.g., 37%-80% in the no-integration 

case compared to 17%-80% with adequate integration). The results with temporal integration 

are quite close with or without pre-processing for speaker JLS, although they are better with 

the pre-processing than without the pre-processing for speaker LG. This seems to be due to 

greater measurement noise for this last speaker. 

 

IV. CONCLUSION 

This paper had two objectives. The first one was to describe the recording and processing of 

an audiovisual corpus in natural interaction situations. The second objective was to use this 

corpus to characterize the visual information provided by a speaker’s lips during the different 

dialog phases, with a particular focus on silence sections. An automatic simple and efficient 

Visual Voice Activity Detector was derived from this analysis. 

Regarding the first objective, let us recall that the corpus contains about 40 min of 

signal, providing a rich set of audiovisual data for two speakers in a realistic situation of 

spontaneous dialog (in French). This corpus is dedicated to fundamental studies in speech and 

language sciences, as well as to the assessment of audio-visual speech processing systems. 

The design of such a corpus is not a straightforward task. It requires specific recording 

equipment and protocol. In addition, as was pointed out in this paper, the pre-processing of 

the video data is not trivial (although it can be easily implemented after adequate settings). 

This corpus can be downloaded free of charge from http://www.icp.inpg.fr, assuming it is 

used for scientific / non-profit purposes.  

Regarding the second objective, the results show that the instantaneous lip shapes in 

silence and non-silence frames are largely overlapping. Consequently, such straightforward 

information cannot be efficiently used for silence vs. non-silence automatic classification of 

speech sequences. In contrast, lip movements can provide adequate information: A single 
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dynamical parameter processed with suitable temporal integration and threshold has been 

shown to be appropriate for efficient silence (vs. non silence) detection. The detection scores 

have shown that the resulting Visual VAD (actually a visual silence detector) can be 

exploitable in real speech processing applications like enhancement, source separation or 

recognition in noise, with, e.g., a 12% false alarm rate vs. an 80% hit rate. It is of primary 

importance to remember that these performance scores are completely independent of the 

acoustic environment, a property that is not ensured by classical acoustic VAD. Note finally 

that, in the perspective of a “real world” implementation, the blue make-up used for labial 

information extraction is not a limitation of the proposed method. In a recent study (Aubrey 

et al., 2007), it has been shown that the dynamic information provided by (6) is equivalent (in 

terms of detection scores) to the information provided by a retina model applied on raw black 

and white images of the lip region, with natural lips (i.e., without make-up).  

Further investigations will be conducted to increase the V-VAD performance. They 

could incorporate an adaptive decision threshold taking into account the image quality and/or 

the inter-speaker variability. Another perspective is to use both video and audio information 

together to increase the detection performance, either taking a decision from a fusion of the 

decisions provided independently by audio and video information, or using both sources of 

information to feed a single decision process. This would lead to the design of an Audio-

Visual VAD, which seems to us an important outcome for future developments in audiovisual 

speech processing systems. The visual VAD that has been presented in this study provides a 

good basis for such development. 
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ENDNOTES 

 
1. Note that this explains why all throughout the paper we consider the distinction between 

silence sections and non-silence sections (including speech and non-speech audible events), 

rather than the distinction between speech and non-speech (including silence and non-speech 

audible events). Accordingly, the term Voice Activity is to be understood as covering speech 

and non-speech audible events (while voice inactivity would correspond to silence). The term 

VAD is a usual denomination in the speech processing literature. 

 

2. Yet a dependence can be found by considering “the Lombard effect” (Lombard, 1911; 

Lane and Tranel, 1971): The speaker may increase his/her articulatory efforts (and thus 

modify the speech characteristics) to improve communication efficiency in noise. This does 

not reduce the interest of the visual speech information (on the contrary, the movements of 

the visible articulators may be exaggerated by the Lombard effect). 

 

3. The authors prefer to classify between speech and non-speech sections rather than between 

silence and non-silence sections as we do, even if it seems less appropriate for use in 

enhancement/separation applications. 

 

4. Actually, it is not applied in regions where the parameters are equal to zero, or more 

specifically, the zero value in those regions is not modified, since (i) the zero signal is not 

noisy, and (ii) this avoids unwanted oscillations or overshoots of the spline-filtered 

parameters after fast lip closing or before fast lip opening regions. In practice, implementing 

this precaution is a trivial task. 
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TABLE 

 

  JLS LG 

Number of silence sections  695 603 

 Mean duration 1,73s 2,55s 

 Standard deviation of duration 2,13s 3,49s 

 Minimum duration 0,02s 0,04s 

 Maximum duration 22,98s 41,98s 

Number of non-silence sections  691 607 

 Mean duration 1,93s 1,85s 

 Standard deviation of duration 2,08s 1,85s 

 Minimum duration 0,02s 0,02s 

 Maximum duration 16,7s 12,8s 

N Total number of frames  119996 119996 

Ns  Number of silence frames 61373 (51% of N) 69162 (58% of N) 

Nns  Number of non-silence frames  58623 (49% of N) 50834 (42% of N) 

Nz  Number of frames with )(
~

tlw and )(
~

tlh null 22658 (19% of N) 26249 (22% of N) 

Nzns 
 Number of non-silence frames with 

)(
~

tlw and )(
~

tlh null 
5915 (10% of Nns) 4908 (10% of Nns) 

Nzs 
 Number of silence frames with 

)(
~

tlw and )(
~

tlh null 
16743 (27% of Ns) 21341 (31% of Ns) 

TABLE I. Characteristics of the audio-visual corpus processed in this study. The frame size is 20 ms. The data in 
this table are derived from the semi-automatic audio process of Ramirez et al. (2004), with manual verification. 
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FIGURE CAPTIONS 
 
 
FIG. 1. Illustrations of the audio-visual corpus recording session. The two speakers are in 

separate rooms. A specially-designed equipment is used for the real-time transmission of 

audio and video signals between the speakers, as well as the recording of these signals. 

FIG. 2. The lip parameters used in this study: inner lip height (lh) and inner lip width (lw). 

FIG. 3. Example of lip parameter trajectories: (top) inner width parameter, (middle) inner 

height parameter, (bottom) corresponding acoustic signal. 

FIG. 4. Examples of sounds present in the spontaneous speech corpus. (a) and (b): typical 

hesitation sound in French (“euh”, a long [∅∅∅∅]; included in the sequence in (b)); (c): sound of 

“Mmmm…”; (d): snap of the lips before speech; (e): respiration intake; (f): laugh. 

FIG. 5. Histograms of the time length (in seconds) of (top) silence sections, and (bottom) non-

silence sections, for speaker LG.  

FIG. 6. A lip width parameter trajectory filtered with the adaptive spline technique. Top: raw 

parameter; bottom: smoothed parameter. The slowly varying sections are efficiently smoothed 

while the abrupt changes are preserved. 

FIG. 7. Distribution of the visual parameters for the two speakers JLS (top: (a) and (b)) and 

LG (bottom: (c) and (d)) and for the non-silence frames (left: (a) and (c)) and silence frames 

(right: (b) and (d)). 

FIG. 8. Distribution of the (absolute values of the) derivatives of the lip parameters (on a log 

scale: 
t

lh
h ∂

∂=
~

log
~

10δ  and 
t

lw
w ∂

∂=
~

log
~

10δ ) for the two speakers JLS (top: (a) and (b)) and LG 
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(bottom: (c) and (d)) and for the non-silence frames (left: (a) and (c)) and silence frames 

(right: (b) and (d)). 

FIG. 9. Distribution of log10(ρ(t)) for the two speakers JLS (left column) and LG (right 

column) and for different configurations of the time integration. Note that the value ρ(t) = 0 

(no movement) has been arbitrarily fixed to 10-4 for visualization of the origin. 

FIG. 10. Silence detection on a sequence of the recorded corpus. (a) and (b): Static lip 

parameters )(
~

tlw  and )(
~

tlh ; (c) and (d): Their derivatives (absolute values); (e) and (f): 

Instantaneous detection parameter π(t) and integrated detection parameter ρ(t) (for τ = 20 

frames = 400 ms), on a log-scale; the dotted and dashed lines are respectively the threshold 

for π(t) and for ρ(t); (g): Acoustic signal with silence reference (solid line), frames detected as 

silence using π(t) (dotted line), and frames detected as silence using ρ(t) (dashed line). 

FIG. 11. ROC silence detection curves for the two speakers JLS (left) and LG (right). For 

each speaker, five integration durations of the visual parameter ρ(t) are used: No integration 

(dotted line), 100 ms (τ = 5, solid line), 200 ms (τ = 10, dash-dot line), 400 ms (τ = 20, dashed 

line) and 2 s (τ = 100, small dashed line). 

FIG. 12. ROC silence detection curves for the two speakers JLS (left) and LG (right). Here, 

the visual parameter ρ(t) has been computed (using (5)) with unfiltered lips parameters lh and 

lw in (4). For each speaker, five integration durations of the visual parameter ρ(t) are used: No 

integration (dotted line), 100 ms (τ = 5, solid line), 200 ms (τ = 10, dash-dot line), 400 ms 

(τ = 20, dashed line) and 2 s (τ = 100, small dashed line). 


