
HAL Id: hal-00941128
https://hal.science/hal-00941128v1

Submitted on 12 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Data Model for Algorithmic Multiple Criteria
Decision Analysis

Olivier Cailloux, Tommi Tervonen, Boris Verhaegen, François Picalausa

To cite this version:
Olivier Cailloux, Tommi Tervonen, Boris Verhaegen, François Picalausa. A Data Model for Algorith-
mic Multiple Criteria Decision Analysis. Annals of Operations Research, 2014, 217 (1), pp.77 - 94.
�10.1007/s10479-014-1562-1�. �hal-00941128�

https://hal.science/hal-00941128v1
https://hal.archives-ouvertes.fr


Noname manuscript No.

(will be inserted by the editor)

A Data Model for Algorithmic Multiple Criteria Decision

Analysis

Olivier Cailloux · Tommi Tervonen · Boris

Verhaegen · François Picalausa

Received: date / Accepted: date

Abstract Various software tools implementing Multiple Criteria Decision Anal-
ysis (MCDA) methods have appeared over the last decades. Although MCDA
methods share common features, most of the implementing software have been
developed independently from scratch. Majority of the tools have a proprietary
storage format and exchanging data among software is cumbersome. Common
data exchange standard would be useful for an analyst wanting to apply differ-
ent methods on the same problem. The Decision Deck project has proposed to
build components implementing MCDA methods in a reusable and interchange-
able manner. A key element in this scheme is the XMCDA standard, a proposal
that aims to standardize an XML encoding of common structures appearing in
MCDA models, such as criteria and performance evaluations. Although XMCDA
allows to present most data structures for MCDA models, it almost completely
lacks data integrity checks. In this paper we present a new comprehensive data
model for MCDA problems, implemented as an XML schema. The data model
includes types that are sufficient to represent multi-attribute value/utility models,
ELECTRE III/TRI models, and their stochastic (SMAA) extensions, and AHP.
We also discuss use of the data model in algorithmic MCDA.
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1 Introduction

The research in Multiple Criteria Decision Analysis (MCDA) has produced a large
amount of methods to support decision making processes (Figueira et al 2005;
Hwang and Yoon 1981; Keeney and Raiffa 1976). Applicability of the methods has
been shown in reported real-life applications (Wallenius et al 2008), but most of
them have been one-off decisions in disciplines where models can be constructed
and calculated manually or with a general purpose software. The limited applica-
tion of MCDA in new disciplines can be due to difficulty of integrating existing
MCDA software with rest of the decision support technology (Tervonen 2014).

Various practical studies have proposed software frameworks for MCDA or
Decision Support Systems (DSSs) implementing MCDA methods (Fedorowicz and
Williams 1986; Gauthier and Néel 1996; Georgopoulou et al 1998; Jiménez et al
2006; Jármai 1989; Martin and Fuerst 1984; Minch and Sanders 1986; Natividade-
Jesus et al 2007; Spengler et al 1998; van Valkenhoef et al 2013; Zopounidis and
Doumpos 2000). However, these have been developed for specific problem types
and/or methods, and aimed towards the end user. Furthermore, they lack a data
interchange standard that could be used for sharing models over users and software.
Theoretical interest has been shown for gathering several MCDA methods in a
common software framework; already Teghem et al (1989) analyzed several MCDA
methods and studied the properties they satisfy. These were used for deriving a
decision tree to choose the most appropriate method. Similarly, Hong and Vogel
(1991) proposed a taxonomy of several MCDA methods and considered chaining
compatible decision rules. However, neither of these works considered the sharing of
input models over different MCDA methods and/or implementations. Considering
the diversity of the needs an MCDA end user can face, it is hardly conceivable a
single team of researchers could produce a software general enough to satisfy all
of them. Therefore it should be made possible that different software tools would
allow data exchange in a standard manner.

An appropriate data model for MCDA would allow evaluating results of differ-
ent MCDA methods with similar inputs. This would be useful in an educational
setting and it could also enable easier integration of MCDA methods in industrial
applications. The approach of defining a common data interchange standard has
proven succesful in the data mining community, who have defined the Predictive
Model Markup Language (PMML) (Guazzelli et al 2009) as a means to encode pre-
dictive and data mining models in a vendor-independent way, thereby facilitating
interoperability of software developed for the domain. Similarly, the OS standard
has been proposed for representing mathematical programs together with a frame-
work for their distributed computing (Fourer et al 2009, 2010a,b). Initial steps for
uniform data structures in MCDA have already been taken in the XMCDA stan-
dard (cf. www.decision-deck.org/xmcda).

PMML, OS and XMCDA allow encoding models in their corresponding do-
mains, and therefore they all enable data sharing among various software tools.
Unlike PMML and OS, XMCDA defines a single XML schema that can contain
an arbitrary number of possibly unrelated elements. For example, a valid XMCDA
instance could have a set of alternatives and a set of weights, or a performance
table. Every implementation that allows XMCDA input has to use this universal
schema. However, most MCDA methods have conceptually different input models.
These differences in the inputs cannot be specified using XMCDA.

www.decision-deck.org/xmcda
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Moreover, instead of considering only complete models to be used as input to
software tools, as in PMML and OS, the XMCDA standard aims to enable algo-

rithmic MCDA: the design of computational components performing independent
computational steps used in one or multiple MCDA methods. Algorithmic MCDA
considers the decision support methods as workflows composed of sequential and
parallel executable components. Such workflows can be managed e.g. with the
diviz software (see Bigaret and Meyer 2012, or http://www.diviz.org). However,
the components need to communicate through an interface, for which XMCDA
is currently used. As different input types are not differenciated in the XMCDA
schema, the middleware is unable to match outputs from one component to in-
put to the next component in the workflow. Flow composition is thus non-trivial
as the user has to know which component inputs and outputs can be connected.
Such type-safe flow composition cannot in general be enables solely by designing
a new data standard: the components themselves need input and output schemas
defined with types of the data model. A mechanism need to be provided to enable
this; only then can middleware detect incompatibilities in order to help the user
in building correct workflow instances.

To overcome the shortcomings of XMCDA, this paper proposes a new core data
model for MCDA data and results specification. The main idea of our proposal is
that the data model contains only a small set of entities for modeling the main con-
cepts (alternatives, attributes, criteria, relations) recurring in most MCDA meth-
ods, and that these concepts are grouped in sets to allow easy data interchange
among components in algorithmic MCDA. We develop a model implemented as
an XML schema and discuss its use in algorithmic computation of MCDA meth-
ods. Our data model does not provide representations for every data type used
in all currently existing MCDA methods. Instead, it allows component developers
to define the required inputs and outputs using a subset of the standard types,
which enables both precise input and output specifications and interoperability of
the components. The developed data model aims at enabling (i) easier exchange of
data across different software packages, and (ii) decomposition of MCDA methods
in smaller, individually executed components that communicate with interfaces
defined through the data model. Our emphasis is on multi-attribute value/utility
theory, ELECTRE-III/TRI methods, their stochastic extensions SMAA-2/TRI
(Lahdelma and Salminen 2001; Lahdelma et al 1998; Tervonen et al 2009), and
AHP. With this scope we cover two preference structures applied in majority of
MCDA applications (Wallenius et al 2008): utility/value theory and outranking,
all three problem statements: choice, ranking, and sorting (Roy 1996), and most
methods currently used in practical applications (Wallenius et al 2008).

2 Context

Most MCDA methods have the same base context. A set of decision alternatives
A are evaluated on a set of attributes Z. The performance of alternative a ∈ A

on attribute z ∈ Z is given by a performance function gz : A ⇒ Xz, where Xz is
the evaluation scale bound to attribute z. The performances can be categorical,
e.g. Xz = {“Bad”, “Medium”, “Good”}, or numerical, with Xz being a subset of
R. Performances can be imprecise and modeled using, for example, an interval in
R or a Gaussian distribution. MCDA methods also need a way to represent the

http://www.diviz.org
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preferences of the Decision Maker (DM). To achieve this, a set of criteria I, each
corresponding to one attribute, is defined and preference information is attached
to each i ∈ I. Most methods also include preference information that expresses
relative importance of the criteria through weights. Usually MCDA methods are
presented using only the concept of a criterion, but distinguishing criteria from at-
tributes allows for clearer separation of performances and preference information.
The former are mostly objective measurements whereas the latter model subjec-
tive views regarding outcome preferability, trade-offs or risk. Furthermore, clear
separation of attributes and criteria allows to distinguish several preference model
instances for a single attribute. This can be useful in a multiple DM context or if
multiple ways to represent the DM preferences are needed.

In Utility Theory (UT) each criterion i, corresponding to an attribute z, is
associated with a utility function ui : Xz → [0, 1]. For an evaluation xi ∈ Xz,
ui(xz) is the DM’s utility for performance xz according to criterion i. In the multi-
attribute additive utility model each criterion is also associated with a weight
wi. This permits to compute the overall utility u(a) of an alternative a using the
values given by the partial utility functions ui, i ∈ I, and the associated weights
wi, i ∈ I. Once each alternative is associated with an overall utility, they can be
rank-ordered. Note that not all UT models associate each criterion with a single
weight, e.g. multilinear models include additional weights for sets of criteria. Value
functions in value theory are different from utility functions in utility theory in
that they do not quantify DM attitudes towards risk, but with respect to data
modeling the two are equal. For this reason, in what follows, we use the term
“utility” to refer uniformly to both utility and value (-functions, -theory).

In Outranking Theory (OT), including Electre (Roy 1991) and Promethee
(Brans et al 1984) family of methods, criteria are associated with threshold pa-
rameters. Depending on the method, two or three types of threshold parameters
are usually considered: preference, indifference, and possibly veto thresholds. Each
criterion i ∈ I is associated with preference functions of pre-defined shapes, de-
pending on the threshold values. Similarly to UT, these methods also include cri-
teria weights to quantify their relative importances. Electre preference functions,
and most Promethee preference functions, may be defined using solely the three
threshold parameters included in our data model (Cailloux 2010).

3 Data model

In this section, we present a data model appropriate for a set of common MCDA
concepts. For each MCDA concept (such as an alternative or a performance table),
we first present a UML diagram. This shows the attribute values that can be associ-
ated with the entity, and its relations to other entities. The XML schema specifica-
tions corresponding to all diagrams and the complete schema of the data model can
be downloaded at http://github.com/tommite/pubs-code/tree/master/mcdadm-aor.
Diagrams throughout this paper use UML 2.0 notation: the entities (Section 3) as
class diagrams, the sample instantiations (Section 4) as object diagrams, and the
method flow (Section 4) as a component diagram. All inheritance is implemented
as “extension” in the XML schema, and therefore we omit the stereotype from the
diagrams.

http://github.com/tommite/pubs-code/tree/master/mcdadm-aor
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Fig. 1 Data model keyed entities: alternatives, attributes, categories and criteria.

Listing 1 A schema “example” with one attribute and one criterion. The header and names-
pace declarations have been omitted.

<xs:schema>
<xs : e l ement name="example">

<xs:complexType>
<xs : s equence>

<xs : e l ement name=" a t t r i b u t e " type=" x3 :a t t r ibuteType " />
<xs : e l ement name=" c r i t e r i o n " type=" x 3 : c r i t e r i o n T y p e " />

</ xs : s equence>
</ xs:complexType>

</ xs : e l ement>
</ xs:schema>

Listing 2 An instance of “example” where criterion c1 references attribute a1. The header
and namespace declarations have been omitted, as well as the type of the criterion (criteria
hierarchy are defined later in the text).

<example>
<a t t r i b u t e>

<id>a1</ id>
</ a t t r i b u t e>
<c r i t e r i o n>

<id>c1</ id>
<a t t r i b u t e r e f="a1" />

</ c r i t e r i o n>
</example>

The most important entities of our data model are the four keyed ones: al-
ternative, attribute, criterion and category. A keyed entity has an identifier that
serves both as its name and as a unique identifier to refer to. We use inheritance
with keyed entities to avoid duplication of other types described later on. Keyed
entities are displayed in Figure 1.

Listing 1 provides an example XML schema that uses these entities: the ex-
ample contains one attribute and a single criterion. This schema can be used for
unambiguously defining such hypothetical models, and the developer of a MCDA
software tool could define the accepted input models trough this schema. One
such model is provided in Listing 2: there is a criterion c1, attribute a1, and c1 is
explicitly referring to a1.

Our data model defines various measurement types, presented in Figure 2, to
encode both performance and relation values. We use inheritance with measure-
ments to enable uniform encoding of imprecise inputs in Stochastic Multicrite-
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Fig. 2 Data model measurements.

ria Acceptability Analysis (SMAA) models (Tervonen and Figueira 2008). Many
MCDA methods allow some model parameters to be imprecise or uncertain, and
often these are represented as discrete or continuous probability distributions.
Discrete uncertain outcomes can be encoded as imprecise nominal measurements,
and continuous ones with intervals or Gaussian measurements. Note that the data
model does not include more distributions or other ways to represent imprecise
measurement, as even the most common distributions are quite numerous and to
avoid bloating the model a non-trivial inclusion choice would have to be made.
XML extension mechanisms allow users of our schema to define additional mea-
surement types in external namespaces.

Any two keyed entities can be related with a measurement as a valued pair, e.g.
alternative “car1” can have value 120.0 regarding attribute “speed”, representing
its max speed, or alternative “car1” can have a binary value true for alternative
“car2”, representing a holistic preference statement car1 ≻ car2. As XML inher-
itance does not allow generic types, the valued pair is repeated for each type of
measurement, allowing to specify exactly what type of value the relation has to re-
fer to. We refer to a valued pair with a measurement of type M using the notation
<M>ValuedPair. ValuedPair refers to a <M>ValuedPair with measurement type
ExactMeasurement. NominalValuedPair refers to a <M>ValuedPair with mea-
surement type NominalMeasurement. Sets of valued pairs form valued relations,
that represent a relation between two sets of objects (e.g. performances of a set of
alternatives on a set of attributes). Keyed entities can also have a value connected
to themselves only, which is represented as a valued entity (e.g. a criterion and a
weight). Valued pairs, relations and entities are presented in Figure 3.

Associating two keyed entity types within a valued pair instead of more specific
keyed entity types (such as alternative) loses type safety. A practical solution to
this issue is to constrain references to strongly typed sets of keyed entities with
XPath expressions and XML Schema keys. Listing 3 shows an example of such
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Fig. 3 Data model valued entity, pair and relation. Note that <M> represents a measurement
type, and in the XML schema implementation the enclosing type is repeated for each sub-type
of measurement (Exact, Interval, ...), as well as one for the abstract measurement type.

Listing 3 An XML schema with path constraints.

<element name="exampleOne">
<complexType>

<sequence>
<element name=" a l t e r n a t i v e S e t " type=" x3 : a l t e rna t i v eSe tType " />
<element name=" a t t r i b u t e S e t " type=" x3 :a t t r ibuteSetType " />
<element name="performanceTable " type=" x3:valuedRelat ionType " />

</ sequence>
</complexType>

<key name=" a l t e rnat iveKey ">

<s e l e c t o r xpath=" a l t e r n a t i v e S e t / a l t e r n a t i v e " />
< f i e l d xpath=" id " />

</key>
<key name=" attr ibuteKey ">

<s e l e c t o r xpath=" a t t r i b u t e S e t / a t t r i b u t e " />
< f i e l d xpath=" id " />

</key>
<key r e f name="performanceTableAlternat iveKeyRef " r e f e r=" x3e : a l t e rna t i v eKey ">

<s e l e c t o r xpath="performanceTable / va luedPair / from" />
< f i e l d xpath="@ref" />

</ key r e f>
<key r e f name="performanceTableAttr ibuteKeyRef " r e f e r=" x3e :a t t r ibuteKey ">

<s e l e c t o r xpath="performanceTable / va luedPair / to " />
< f i e l d xpath="@ref" />

</ key r e f>
</ element>

a schema defining a set of alternatives, a set of attributes, a set of valued pairs,
and path constraints making sure the valued pairs refer to an alternative and an
attribute. With no path constraints the schema would also validate if the valued
pairs referred to e.g. two alternatives.

In order to increase readability and reduce verbosity of the encoding, the mea-
surement is defined as optional in a binary relation: a missing measurement value



8 Olivier Cailloux et al.

Listing 4 An XML data file with a set of alternatives and a binary relation. The header and
namespace declarations have been omitted. Assuming the binary relation is non reflexive and
supposed to be defined on the whole set of alternatives, it may be deduced that the pairs
(a1, a3) and (a2, a1) are not part of the relation.

<exampleTwo>
<a l t e r n a t i v e S e t>

<a l t e r n a t i v e>
<id>a1</ id>

</ a l t e r n a t i v e>
<a l t e r n a t i v e>

<id>a2</ id>
</ a l t e r n a t i v e>
<a l t e r n a t i v e>

<id>a3</ id>
</ a l t e r n a t i v e>

</ a l t e r n a t i v e S e t>

<r e l a t i o n>
<valuedPair>

<from r e f="a1" />
<to r e f="a2" />

</ va luedPair>
<valuedPair>

<from r e f="a2" />
<to r e f="a3" />

</ va luedPair>
<valuedPair>

<from r e f="a3" />
<to r e f="a1" />

</ valuedPair>
<valuedPair>

<from r e f="a3" />
<to r e f="a2" />

</ valuedPair>
</ r e l a t i o n>

</exampleTwo>

is considered to be true. Also, when the binary relation is supposed to be defined
on some known set, for example, in the case of a binary relation to be defined on
a set of alternatives given as input, missing valued pairs are considered to have a
false value. With these rules the binary relations can be represented more natu-
rally as only the pairs that are part of the relation have to be included. Listing 4
shows an example encoding of a binary relation. The binary relations may also be
used to represent assignments in a sorting problem by using a relation on a set of
alternatives and a set of categories. Path constraints may be used to ensure that
an alternative is assigned to exactly one category if crisp assignments are required.

The data model criteria contain preference information related to measure-
ments for a certain attribute. For example, if an attribute is top speed, we still
need a criterion to represent the preference direction either implicitly with a utility
criterion containing an increasing function, or explicitly with a directed criterion.
Including meaningful names for the criteria allows to distinguish different param-
eterizations of the same preference model and to treat the criteria uniformly with
other keyed entities. The data model criteria are presented in Figure 4. We do not
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Fig. 4 Data model criteria.

Fig. 5 Data model nominal to cardinal attribute conversion.

distinguish between cardinal and nominal attributes. However, if alternatives eval-
uated with nominal measurements (represented by categories) are to be used with
a criterion expecting cardinal measurements, a mapping of the nominal measure-
ments to cardinal ones is necessary, as well as relating the new measurements with
another attribute. The type used for this is presented in Figure 5. The mapping
is defined thanks to valued entities associating values to categories.

We support three classical shapes for encoding partial utility functions ui.
Affine linear functions of the form ui(x) = ax + b need only the slope and offset
parameters. A piecewise linear function may be defined using at least a pair of
two-dimensional points. Exponential functions ui(x) = 1 − e−ax require only a
single parameter. Figure 6 shows these three types.

The data model contains set versions of most concepts: AlternativeSet, Cate-
gorySet, AttributeSet, CriterionSet which may contain any type of criterion, Out-
rankingCriterionSet which contains only outranking criteria, and similarly for the
other criteria types, and ValuedEntitySet. Note that sets of valued pairs are valued
relations. A summary of the data model is included in Appendix A.
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Fig. 6 Data model functions.

Fig. 7 Evaluation of car1 performances. The attributes of car1Speed and car1Color are actu-
ally references to the corresponding entities, that are omitted for brevity.

4 Model application

In this section we present application of the model in two parts. First we illustrate
with various use cases the encoding of attribute performance measurements and
related preference structures, and afterwards how the data model can be used in
algorithmic MCDA to connect multiple components within a workflow representing
a complete method.

4.1 Preference and measurement encoding

Let us consider a multi-criteria problem of choosing between two cars, car1 and
car2. There are two relevant attributes for this decision, speed and color. Car1 has
speed 140 and color “Blue”, car2 has speed 120 and color “Red”. The performance
evaluations of car1 are presented in Figure 7 in terms of the data model. The choice
between the two cars depends on the DM preferences that are elicited considering a
certain preference model. Let us illustrate instantiation of the data model for utility
theory (UT) and outranking theory (OT) models by considering the following use
cases (we refer to “user” as the one encoding the model).

UC1: UT with nominal categories. The user wants to encode a utility function from
the set of colors to the range [0, 1]. Assume that the DM considers blue color to
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Fig. 8 Sample preference evaluation of UC1 (utility theory with nominal categories).

Fig. 9 Sample preference evaluation of UC2 (utility theory with direct encoding).

be associated with the maximal utility (value 1) and red color with the minimal
one (value 0). This is presented in Figure 8. The NominalUtilityCriterion is
connected to the Attribute named Color to indicate that this criterion contains
preference informations relating to that attribute. The NominalUtilityCriterion
entity contains two valued entities. The first one links category Blue to the
ExactMeasurement value one. The second one links category Red to value
zero.

UC2: UT, direct encoding. The user does not care of (or does not know) the exact
color of each car, but she knows the utility of each car’s color. She wants to en-
code directly the utility function from the set of alternatives to the range [0, 1]
with no encoding of the color attribute. Note that this use case appears natu-
rally when a proxy attribute is difficult to find (e.g. the beauty of a landscape,
or the comfort of a car). The use case is presented in Figure 9.

UC3: OT, with recoding. Assume the colors of each car are known, as displayed in
Figure 10. The user wants to recode the colors (e.g. blue=3, red=10). To do
this, she wants to encode the recoding function (i.e. the association between
some set of possible colors and some set of numbers). Figure 11 presents the
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Fig. 10 Sample performance evaluation of UC3 (outranking theory with recoding). The cars
are evaluated with a nominal attribute.

Fig. 11 Sample recoding function for UC3 (outranking theory with recoding).

NominalToCardinal entity required for the recoding: two valued entities are
used. The first one indicates that the category Blue maps to value 3 and the
second one indicates that the category Red maps to value 10. Observe that
this information together with the nominal performances defines a new at-
tribute with cardinal performances. In algorithmic MCDA such conversions
can be implemented as components taking as input the nominal performances
and the recoding function represented by the NominalToCardinal entity, and
outputting a new Attribute (here, named CardinalColor) with corresponding
cardinal performances. This connects to the next use case.

UC4: OT, with recoding and thresholds. The user wants to recode the colors (e.g.
green=1, blue=3, red=10), and on top of that to define an outranking criterion
quantifying the preference structure with thresholds. Figure 12 presents this
case. Observe that an OutrankingCriterion is supposed to be linked with an
Attribute that is associated with cardinal evaluations, otherwise its threshold
values are not interpretable. Thus, for this use case, the user should encode
the cars’ measurements as cardinal values instead of nominal ones. This can be
done for example by using the output of the component defined in the previous
use case.

UC5: UT, with cardinal performances. The user wants to code a utility function
directly on the range of values of the car speeds using a linear utility function



A Data Model for Algorithmic Multiple Criteria Decision Analysis 13

Fig. 12 Sample preference evaluation of UC4 (outranking theory with recoding). The car
evaluations have been recoded to a cardinal attribute (see Figures 10 and 11), which permits
to define thresholds.

Fig. 13 Sample preference evaluation of UC5 (utility theory with direct ratings).

Fig. 14 Sample preference evaluation of UC6 (holistic preference statement).

with utility 0 at speed ≤ 110 and 1 at speed ≥ 160. This is illustrated in
Figure 13.

UC6: UT or OT, with holistic evaluations. The user wants to provide holistic infor-
mation car1 ≻ car2, that can subsequently be used to infer a set of preference
models compatible with the information, for example as in the UTA family of
methods (Greco et al 2008). For this case only the binary valued pair needs to
be encoded as shown in Figure 14.
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Encoding performance/preference information given as matrix of relative impor-
tances in methods such as AHP is trivial, as the valued relation can represent such
information completely. We omit the presentation of these use cases for brevity.

4.2 Algorithmic MCDA

Algorithmic MCDA refers to composing the methods (workflows) from indepen-
dent components communicating through strictly defined interfaces. Such com-
ponents can be implemented as e.g. webservices. Workflow composition becomes
considerably easier if there is only a small amount of different types available. For
this purpose our XML implementation of the data model contains set versions of
concepts presented in Section 3, such as AlternativeSet or AttributeSet. Although
it is simple in XML to define such sets by using sequences, defining these types
in the XML implementation of the data model permits to easily check for type
compatibility when using the output of one component as an input to another
component.

Let us now describe an example of composing an Electre III outranking relation
computation using multiple components. The complete workflow is presented in
Figure 15. Electre III, like most other outranking methods, consist of discrete steps
of concordance computation, discordance computation, aggregation of the results
into an outranking relation, and an exploitation of the outranking relation (Roy
1991). The top component in Figure 15 computes the concordance valued relation.
It requires a set of alternatives, a set of attributes, alternative performances on the
given attributes, a set of criteria (one per attribute), criteria weights, and prefer-
ence and indifference thresholds for each criterion. Therefore, the criteria used as
input are outranking criteria. The component output is a valued relation, where
the from and to attributes refer to alternatives given as input. This concordance
valued relation may then be sent to a component called cut relation, which also
takes as input a majority threshold parameter represented as an exact measure-
ment, and cuts the valued relation into a binary one. Observe that this component
is not specific to Electre and may hence be useful in other contexts as well.

The discordance component requires as input a set of alternatives, a set of
attributes, performances for every alternative and attribute, and a set of criteria
corresponding to the attributes. Each of the criteria may have an associated veto
threshold. In Electre III, it is allowed to have criteria with no veto values defined
on them, in which case the veto condition will never apply for that particular
criterion. The discordance component computes a set of relations represented as
valued relations, one for each criterion. To represent this, no ready made types
exist in our data model, and a new type needs to be defined. However, it is easy
to re-use existing types in the data model to define DiscordanceRelation elements
to contain a sequence of pairs of criteria and valued relations. Finally, the binary
concordance relation and valued discordance relations are sent to an outranking
component that aggregates them and outputs an outranking relation in form of a
binary relation.
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Fig. 15 Electre flow with four components: concordance computation, fuzzy-to-crisp relation
cut, discordance computation, and outranking relation computation.

5 Discussion

Although most MCDA methods share common elements such as alternatives, at-
tributes and criteria, many also include method-specific concepts, and representing
each of these in a standard data model would be pointless. The data model we
propose in this paper contains the entities needed to represent data most com-
monly encountered in MCDA. This permits to have a reasonable size data model
while enabling strong data typing. Because the inputs and outputs of different
MCDA methods vary, each MCDA component should define its own input and
output XML schemas. For example, the required input for electre concordance
component is similar to the input required for electre discordance component, but
not identical. The XML schemas may include elements having types defined in
our data model, other standard types, or ad hoc types. For example, a compo-
nent which outputs mathematical programs should reuse the adequate type to
represent mathematical programs defined by the OS standard (Fourer et al 2009).
When no standard exists, for example due to the concept being specific to a new
family of MCDA methods, a developer may define her own type. A separate XML
namespace should be used to ensure that this new type has its own identity. Note
that it is possible for the developer to share the newly defined type with other
component developers working on similar methods.

As the data model enables strongly typed component interfaces, some types
are not compatible even though subsets of their possible values have equal math-
ematical values. We suggest to use data converters in such cases. For example, an
interval or an affine linear function can be represented in a particular case as an
exact value. Should an ExactValue be used instead of an AffineLinear, as it does
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not inherit from AffineLinear, a data converter is required for transforming the
ExactValue to an equivalent AffineLinear entity (i.e. one having the x coefficient
zero). Similar technique is used in the rapidminer software.

Note that some of the types could be decomposed in looser coupled entities,
e.g. outranking criteria could have the thresholds as separate types attached to
the criterion entities. Such approach would allow for better decoupling and to
define more data integrity constraints in component input schemas. However, the
workflow design effort grows with the amount of decoupled types, and for this
reason we have chosen to include the thresholds with the outranking criteria as
optional attributes, and likewise functions within utility criteria.

The components of algorithmic MCDA could be implemented as web services
and subsequently made available through a central registry (e.g. of the Decision
Deck consortium). This would permit to create software that uses the components
published as web services. The definition of standard types would make connecting
components in a type safe manner trivial, for example to compose MCDA work-
flows in the diviz software, because it is easy to detect potential compatibility
between the output of a component and the input of another one simply by look-
ing at the types of the corresponding elements in the component XML schemas.
Furthermore, our data model enables data interchange between different software
and, for example, easy use of computational libraries of JSMAA (Tervonen 2014)
and J-MCDA (Cailloux 2010) in more domain-specific analysis software such as
ADDIS (van Valkenhoef et al 2013), that applies MCDA as the last component in
a workflow of analyzing benefits and risks of medical treatments.
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Appendix A: Data model1

1 This representation omits the measurement hierarchy (displayed in Figure 2) and set types.
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