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ON A CLASS OF WEIGHTED GAUSS-TYPE

ISOPERIMETRIC INEQUALITIES AND APPLICATIONS TO

SYMMETRIZATION

MICHELE MARINI AND BERARDO RUFFINI

Abstract. We solve a class of weighted isoperimetric problems of the
form

min

{
∫

∂E

we
V
dx :

∫

E

e
V
dx = constant

}

where w and V are suitable functions on R
N . As a consequence, we prove

a comparison result for the solutions of degenerate elliptic equations.

1. Introduction

In the celebrated paper [9], G. Talenti established several comparison re-
sults between the solutions of the Poisson equation with Dirichlet boundary
condition (with suitable data f and E):

(1.1) −∆u = f in E, u = 0 on ∂E

and the solutions of the corresponding problem where f and E are replaced
by their spherical rearrangements (see [8, Chapter 3] for the definition and
main properties of spherical rearrangement). Precisely, he proves that if we
denote by v the solution of the problem with symmetrized data, then the
rearrangement u∗ of the (unique) solution u of (1.1) is pointwisely bounded
by v. Moreover he shows that the Lq norm of ∇u is bounded, as well, by the
Lq norm of ∇v, for q ∈ (0, 2]. The proof of these facts basically relies on two
ingredients: the Hardy-Littlewood-Sobolev inequality and the isoperimetric
inequality (see [1] and [8] for comprehensive accounts on the subjects).

Later on, following such a scheme, many other works have been devel-
oped to prove analogous comparison results related to the solutions of PDEs
involving different kind of operators, see for instance [2, 3, 6, 7] and the
references therein. A recurring idea in these works is, roughly speaking, the
following. The operator considered is usually linked to a sort of weighted
perimeter. Thus initially it is necessary to solve a corresponding isoperimet-
ric problem; then the desired comparison results can be obtained following
the ideas contained in [9].
For example in [3] the authors consider a class of weighted perimeters of the
form

Pw(E) =

∫

∂E
w(|x|) dHd−1(x),
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where E is a Lipschitz set and w : R → [0,∞) a non-negative function,
and prove, under suitable convexity assumptions on the weight w, that the
ball centred at the origin is the unique solution of the mixed isoperimetric
problem

min{Pw(E) : |E| = constant}

where | · | denotes the d-dimensional Lebesgue measure. As a consequence
they prove comparison results, analogous to those considered by Talenti in
[9], for the solutions of

−div(w2∇u) = f in E, u = 0 on ∂E.

Recently in [4], L. Brasco, G. De Philippis and the second author proved a
quantitative version of the weighted isoperimetric inequality considered in
[2]. Their proof is achieved by means of a sort of calibration technique. One
advantage of this technique is that it is adaptable to other kind of problems,
as that of considering other kind of functions in the weighted perimeter (e.g.
Wulff-type weights, see [5]), or that of considering different measured spaces,
as R

d provided with the Gauss measure.
In this paper we consider degenerate elliptic equations with Dirichlet bound-
ary condition of the form

(1.2) −div(w2 eV ∇u) = f eV in E, u = 0 on ∂E

where w and V are two given functions, and we aim to prove analogous
comparison results as those in [9]. The particular form in which is written
the measure eV is due to the later applications, whose main examples are
Gauss-type measures, that is V (x) = −c|x|2. Bearing in mind this instance,
we consider a class of mixed isoperimetric problems of the form

min

{

PweV (E) :

∫

E
eV = constant

}

and prove, by means of a calibration technique reminiscent of that developed
in [4], that the solutions, under suitable assumptions on V and w, are half-
spaces, see Proposition 3.1. Then, using a suitable concept of decreasing
rearrangement related to the measures considered, we prove, in the Main
Theorem in section 4, some comparison results between the solutions of
(1.2) and the solutions of the same equation with rearranged data.

2. Preliminaries on rearrangement inequalities

In this section we introduce the main definitions and properties about the
concept of symmetrization and rearrangement we shall make use of.
Let µ be a finite Radon measure on R

d, a right rearrangement with respect
to µ is defined, for any Borel set A, as

R
µ
A = {(x1, x

′) ∈ R× R
d−1 : x1 > tA},

where tA = inf
{

t : µ(A) = µ({(x1, x
′) ∈ R× R

d−1 : x1 > t})
}

. Notice that
if dµ = fdx, for some positive and measurable function f , then the value
of t is uniquely determined. Given a non-negative Borel function f : Rd →
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[0,+∞), we call right increasing rearrangement of f the function f∗µ given
by

f∗µ(x) =

∫ +∞

0
χRµ

{f>t}
(x) dt

where χA is the characteristic function of the set A. As an aside we notice
that the right increasing rearrangement of the characteristic function of a
Borel set A coincides with the characteristic function of Rµ

A. Clearly f∗µ is
non-negative, increasing with respect to the first variable x1, and constant
on the sets {(x1, x

′) ∈ R × R
d−1 : x1 = t}, for t ∈ R. Moreover f and f∗µ

share the same distribution function:

µf (t) := µ({f > t}) = µ({f∗µ > t}) = µf∗µ(t).

We furthermore define f⋆µ : R+ → R
+ as the smallest decreasing function

satisfying f⋆µ(µf (t)) ≥ t; in other words

f⋆µ(s) = inf{t > 0 : µf (t) < s}.

It is useful to bear in mind that {s : f⋆µ(s) > t} = [0, µf (t)] so that by the
Layer-Cake Representation Theorem (see for instance [8]) we have

(2.3)

∫ µ({x1>t})

0
f⋆µ(s) ds =

∫ ∞

t
µf (s) ds =

∫

{x1>t}
f∗µ(x) dx.

We conclude this section by proving the Hardy-Littlewood rearrangement
inequality related to the right symmetrization.

Lemma 2.1 (Hardy-Littlewood rearrangement inequality). Let f and g be
non-negative Borel functions from R

d to R. Then for any non-negative Borel
measure µ we have

∫

Rd

f g dµ ≤

∫

Rd

f∗µg∗µdµ.

Proof. We have
∫

Rd

f g dµ =

∫

Rd

∫ ∞

0

∫ ∞

0
χ{f>t}(x)χ{g>s}(x) dt ds dµ(x)

=

∫ ∞

0

∫ ∞

0

∫

Rd

χ{f>t}∩{g>s}(x) dµ(x) dt ds

=

∫ ∞

0

∫ ∞

0
µ({f > t} ∩ {g > s}) dt ds

≤

∫ ∞

0

∫ ∞

0
min(µ({f > t}), µ({g > s})) dt ds

=

∫ ∞

0

∫ ∞

0
min(µ({f∗µ > t}), µ({g∗µ > s})) dt ds

=

∫ ∞

0

∫ ∞

0
µ({f∗µ > t} ∩ {g∗µ > s}) dt ds =

∫

Rd

f∗µ g∗µ dµ

where we used the fact that {f∗µ > t} and {g∗µ > s} are hyper-spaces of
the form {(x1, x

′) ∈ R× R
d−1 : x1 > r} for some r ∈ R and so

min(µ({f∗µ > t}), µ({g∗µ > s})) = µ({f∗µ > t} ∩ {g∗µ > s}).

�
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Remark. Setting g = χA in Lemma 2.1 and thanks to (2.3) we get

(2.4)

∫

A
f dx ≤

∫

Rµ
A

f∗µ(x) dx =

∫ µ(A)

0
f⋆µ(s) ds.

3. A class of weighted isoperimetric inequalities

Given a measurable function V : Rd → R we denote by µ[V ] the absolutely
continuous measure whose density equals eV , that is, for any measurable set
E ⊂ R

d

µ[V ](E) =

∫

E
eV (x)dx;

in what follows with the scope of simplifying the notation, and if there is
no risk of confusion, we will drop the dependence of V , writing µ instead of
µ[V ]. Moreover we will often adopt the notation x = (x1, x

′) ∈ R × R
d−1

and denote by RA instead of R
µ[V ]
A the right rearrangement of A with respect

to the measure µ[V ]. Given a Borel weight function w : R → [0,+∞] we
define, for any open set A with Lipschitz boundary, the following concept of
weighted perimeter:

Pw,V (A) =

∫

∂A
w(x1)e

V (x)dHd−1(x).

In the following proposition we show that, under suitable conditions on w

and V , the half-spaces of the form {(x1, x
′) : x1 > t} are the only minimizers

of the weighted perimeter among the sets of fixed volume with respect to the
measure µ[V ].

Proposition 3.1. Let A ⊂ R
d be a Lipschitz set. Suppose that w : R → R

+

and V : Rd → R are C1-regular functions satisfying the following assump-
tions.

(i) µ(A), Pw,V (A), µ(RA) and Pw,V (RA) are finite quantities;

(ii) the function ∂1V (x) depends only on x1 and g(x) := −w′(x1) −
w(x1)∂1V (x) is a decreasing function on the real line.

Then
Pw,V (A) ≥ Pw,V (RA).

Proof. Let e1 = (1, 0, . . . , 0) ∈ R
d and consider the vector field −e1w(x1)e

V (x).
Its divergence is given by

div(−e1w(x1)e
V (x)) = (−w′(x1)− w(x1)∂1V (x))eV (x) = g(x)eV (x).

By an application of the Divergence Theorem we have

(3.5)

∫

A
g(x)dµ(x) =

∫

A
div(−e1w(x1)e

V (x))dx

=

∫

∂A
w(x1)e

V (x)〈νA(x),−e1〉dH
d−1(x)

≤

∫

∂A
w(x1)e

V (x)dHd−1(x) = Pw,V (A),

where νA(x) is the outer unit normal to ∂A at x. Let tA be a real number such
that the right half-space RA = {(x1, x

′) : x1 ≥ tA} satisfies µ(RA) = µ(A).
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Then, since the outer normal of RA is the constant vector field −e1, the
inequality in (3.5) turns into an equality if we replace A with RA. Hence,
by condition (i), we get

Pw,V (A)− Pw,V (RA) ≥

∫

A
g(x)dµ(x) −

∫

RA

g(x)dµ(x).

Since, by definition, µ(A) = µ(RA) again by condition (i) we obtain µ(A \
RA) = µ(RA \ A). Thus
∫

A
g(x)dµ(x)−

∫

RA

g(x)dµ(x) =

∫

A\RA

g(x)dµ(x) −

∫

RA\A
g(x)dµ(x)

=

∫

A\RA

(g(x) − g(tAe1))dµ(x)−

∫

RA\A
(g(x)− g(tAe1))dµ(x).

Since every x ∈ A \ RA (respectively x ∈ RA \ A) satisfies 〈x, e1〉 < tA
(respectively 〈x, e1〉 > tA), by condition (ii) we deduce

Pw,V (A)− Pw,V (RA) ≥

∫

A\RA

|g(x) − g(tAe1)|dµ(x) +

∫

RA\A
|g(x) − g(tAe1)|dµ(x)

=

∫

A∆RA

|g(x) − g(tAe1)|dµ ≥ 0,

where A∆RA = (A \ RA) ∪ (RA \ A) stands for the symmetric difference
between A and RA. This concludes the proof. �

Condition (ii) in Proposition 3.1 is satisfied by functions of the form

V (x1, x
′) = V1(x1) + V2(x

′),

where V1 ∈ C2(R) and, together with the weight w ≥ 0 respect the ordinary
differential inequality

(3.6) w′′ + V ′′
1 w + V ′

1w
′ ≥ 0.

To get non-trivial instances of functions which fulfil inequality (3.6) together
with the integrability property (i) of Proposition 3.1 it is worth restricting
our attention to the half-space

Ω = {(x1, x
′) ∈ R× R

d−1 : x1 > 0}.

In this case we get as an immediate corollary of Proposition 3.1 that the
solution of the problem

(3.7) min

{

Pw,V (A) : χA ∈ L1(Ω, weV ), ∂A Lipschitz,

∫

A
eV = c

}

is given by Rc = {x1 ≥ tc} where tc is such that
∫

Rc
eV = c. We remark,

moreover, that the requirement for the sets of having Lipschitz boundary in
(3.7) can be easily removed by means of an approximation argument, that
is, Rc is the unique minimizer of

(3.8) min

{

Pw,V (A) : χA ∈ L1(Ω, weV ),

∫

A
eV = c

}

.

A class of examples of particular interest is given by V (x) = −c|x|2 for
c > 0, that is eV dx corresponds to the (rescaled) Gauss measure. In this
case instances of functions w which satisfy the hypotheses of Proposition
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3.1 are given by w(t) = t−α with α ≥ 1 or w(t) = e−t. We recall that, as
pointed out in the Introduction, similar problems are studied, for instance,
in [6] where it is considered the case w(t) = tk, with k > 0.

4. Main result

In this section we define dµ = eV dx, RE = {x1 > tE} where tE ∈ R is
such that µ(RE) = µ(E) and f∗ = f∗µ the right-symmetrized of a function
f with respect to µ.

Main Theorem. Suppose that the set E ⊂ Ω = {(x1, x
′) : x1 > 0} and the

functions w : [0,+∞] → [0,+∞] and V : Rd → R satisfy the hypotheses of
Proposition 3.1. Consider the two problems

(4.9)

{

−div(w2 eV ∇u) = f eV in E

u = 0 on ∂E

and

(4.10)

{

−div(w2 eV ∇v) = f∗eV in RE

v = 0 on ∂RE

where f ∈ L2(Ω, µ). Then the problem (4.10) has as solution the one variable
function v(z) given by

(4.11) v((z, z′)) = v(z) =

∫ µ(RE)

µ({x1≥z})

1

h2(s)

(
∫ s

0
f∗(ξ) dξ

)

ds,

where

(4.12) h(m) = w(Φ−1(m))

∫

Rd−1

µ(Φ−1(m), x′) dx′,

being Φ(t) = µ({x1 > t}). Moreover, for any solution u of the problem (4.9),
we have

(4.13) u∗(x) ≤ v∗(x),

and, for any q ∈ (0, 2],

(4.14)

∫

E
|∇u|qwq dµ ≤

∫

RE

|∇v|qwq dµ

Proof. Let us suppose for the moment that the function v given in (4.11) is a
solution for the problem (4.10). To prove (4.13) and (4.14) we start noticing
that for every test function φ(x) we have

(4.15)

∫

Ω
〈∇u,∇φ〉w2 dµ =

∫

Ω
f φ dµ;

if we set

φh(x) =







sign (u) if |u(x)| > t+ h
u(x)−tsign u(x)

h if |u(x)| ∈ [t, t+ h)
0 if |u(x)| < t,

where 0 ≤ t < ess sup|u| and h > 0, then (4.15) turns into

1

h

∫

{|u|∈[t,t+h)}
〈∇u,∇u〉w2 dµ =

1

h

∫

{|u|∈[t,t+h)}
f (u−t

u

|u|
)dµ+

∫

{|u|>t+h}
f sign (u) dµ.
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Taking the limit for h → 0, we get

(4.16) −
d

dt

∫

{|u|>t}
|∇u|2w2 dµ =

∫

{|u|>t}
f dµ.

Let us analyze the left-hand side of equation (4.16). We claim that it holds
true the following inequality:

(4.17) −
d

dt

∫

{|u|>t}
|∇u|2w2 dµ ≥

(

− d
dt

∫

{|u|>t} |∇u|w dµ
)2

−µ′
u(t)

,

where µu(t) is the distribution function of u introduced in the first section.
Indeed thanks to the Co-Area Formula and the Hölder inequality we get

−
d

dt

∫

{|u|>t}
|∇u|w dµ =

∫

{|u|=t}
w dµ =

∫

{|u|=t}

|∇u|1/2

|∇u|1/2
w dµ

≤

(

∫

{|u|=t}
|∇u|w2 dµ

)1/2(
∫

{|u|=t}

1

|∇u|
dµ

)1/2

=

(

−
d

dt

∫

u>t
|∇u|2w2 dµ

)1/2
(

∫

{|u|=t}

1

|∇u|
dµ

)1/2

,

and

−µ′
u(t) = −

d

dt

∫

{|u|>t}
eV

|∇u|

|∇u|
=

∫

{|u|=t}

eV

|∇u|
.

Thus (4.17) follows. Thanks to Proposition 3.1 and (3.8) we have
(4.18)

−
d

dt

∫

{|u|>t}
|∇u|w dµ =

∫

{|u|=t}
w dµ = Pµ({|u| > t}) ≥ Pµ({u

∗ > t}).

Let us define

(4.19) Φ(t) = µ({x1 > t}).

We recall that the weight function w is constant on the boundary of the
super level sets of u∗, then the perimeter of {u∗ > t} can be written as

Pµ({u
∗ > t}) = w(τ)

∫

Rd−1

µ(τ, x′) dx′.

Moreover τ ∈ R satisfies µu∗(t) = Φ(τ) that is τ = Φ−1(µu∗(t)) (notice that
Φ is a strictly decreasing function and thus invertible) so that we can write
the previous formula as
(4.20)

Pµ({u
∗ > t}) = w(Φ−1(µu∗(t)))

∫

Rd−1

µ(Φ−1(µu∗(t)), x′) dx′ := h(µu∗(t)).

Plugging (4.18) in (4.17), and recalling (4.20) we get that

(4.21) −
d

dt

∫

{|u|>t}
|∇u|2w2 dµ ≥

h(µu∗(t))2

−µ′
u∗(t)

.
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We pass now to estimate the right-hand side of (4.16): equation (2.4) with
A = {|u| > t} turns into

(4.22)

∫

{|u|>t}
f dµ ≤

∫

{|u∗|>t}
f∗ dµ =

∫ µu∗(t)

0
f⋆(s) ds.

Combining (4.22) and (4.21) we get

(4.23)

(

∫ µu∗(t)
0 f⋆(s) ds

)

µ′
u∗(t)

h2(µu∗(t))
≤ −1.

Reasoning analogously for the function v, we easily see that, since v is con-
stant on every set {x1 = t} and since v = v∗, (4.23) holds for v as an equality.
Consider now the real function

F (r) =

∫ r
0 f(s) ds

h(r)2
,

and let G be a primitive of F . Since F ≥ 0, we have that G is increasing.
Moreover by our previous analysis we have that

F (µu∗(t))µ′
u∗(t) ≤ −1 = F (µv(t))µ

′
v(t)

so that G(µu∗(t)) ≤ G(µv(t)). This implies that µu∗(t) ≤ µv(t) for any t and
so that u∗ ≤ v∗, since u∗ and v depends only on x1 and are increasing .

We pass now to the proof of (4.14). Using the Co-Area Formula and the
Hölder inequality and reasoning as before we obtain, for 0 < q ≤ 2,

−
d

dt

∫

{|u|>t}
|∇u|qwq dµ =

∫

{|u|=t}
(|∇u|

q
2wq)|∇u|

q
2
−1 dµ

≤

(

∫

{|u|=t}
|∇u|w2 dµ

)q/2(
∫

{|u|=t}
|∇u|−1 dµ

)1−q/2

=

(

−
d

dt

∫

{|u|>t}
|∇u|2w2 dµ

)q/2

(−µ′
u(t))

1−q/2.

Recalling (4.16) and (4.22) we have

−
d

dt

∫

{|u|>t}
|∇u|2w2 dµ ≤

∫ µu∗(t)

0
f∗(s) ds,

thus

(4.24) −
d

dt

∫

{|u|>t}
|∇u|qwq dµ ≤

(

∫ µu∗(t)

0
f⋆(s) ds

)q/2

(−µ′
u(t))

1−q/2.

Combining (4.24) and (4.23) we finally get

−
d

dt

∫

{|u|>t}
|∇u|qwq dµ ≤ (−µ′

u∗(t))

(

h(µu∗(t))−1

∫ µu∗ (t)

0
f⋆(s) ds

)q

.

By integrating on both side between 0 and +∞, we get
∫

E
|∇u|qwq dµ ≤

∫ ∞

0
(−µ′

u∗(t))

(

h(µu∗(t))−1

∫ µu∗ (t)

0
f⋆(s) ds

)q

dt.
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We perform the change of variables r = µu∗(t), so that the above equation
turns into

∫

E
|∇u|qwq dµ ≤

∫ µ(E)

0

(

h(r)−1

∫ r

0
f⋆(s) ds

)q

dr.

By a straightforward inspection of those steps we notice that v satisfies

∫

RE

|∇v|qwq dµ =

∫ ∞

0
(−µ′

v(t))

(

h(µv(t))
−1

∫ µv(t)

0
f⋆(s) ds

)q

dt;

By performing the change of variables r = µv(t) we find

∫

RE

|∇v|qwq dµ =

∫ µ(RE)

0

(

h(r)−1

∫ r

0
f⋆(s) ds

)q

dr.

Since µ(E) = µ(RE) we get the desired result.
We are left to prove that the function v given by (4.11) is a solution of

problem (4.10). We start by noticing that equation (4.23) suggests how to
derive (4.11): indeed, as we pointed out, any solution v of (4.10) such that
v = v∗ satisfies

∫ µv(t)
0 f⋆(s) ds

h2(µv(t))
µ′
v(t) = −1.

By integrating both sides between 0 and r we obtain

∫ r

0

∫ µv(t)
0 f⋆(s) ds

h2(µv(t))
µ′
v(t) dt = −r.

so that, by performing the change of variables m = µv(t), we get

∫ µ(RE)

µv(r)

∫m
0 f⋆(s) ds

h2(m)
dm = r

which is equivalent to

v(z, z′) =

∫ µ(RE)

µ{x1>z}

∫m
0 f⋆(s) ds

h2(m)
dm,

that is (4.11). Notice that v is strictly decreasing and belongs to C
1,1
loc (RE).

Indeed, recalling (4.12) one can explicitly compute

∇v(z, z′) = e1
∂v

∂z
(z, z′) = −e1

∫ µ{x1>z}
0 f⋆(s) ds

w2(z)
∫

Rd−1 eV (z,x′) dx′
,

where e1 = (1, 0, . . . , 0) ∈ R
d. Since f⋆ is a decreasing and locally integrable

function, then f⋆ ∈ L∞
loc(R); thus, being z 7→ µ({x1 > z}) C1-regular,

we get that
∫ µ{x1>z}
0 f⋆(s) ds is a locally Lipschitz function. Moreover the

denominator is locally Lipschitz as well, and locally bounded away from
zero. Hence we have that ∇v is locally Lipschitz. Thus, recalling that ∂1V

depends only on the first variable x1 it is possible to explicitly compute the
divergence of w2∇veV and check that it satisfies (4.10). This concludes the
proof of the theorem. �
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