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Introduction

In this paper we consider optimization problems of the form min F (V ) :

V ∈ V , (1.1) 
for functionals F , depending on the Schrödinger operator -∆ + V (x) with potential V belonging to a prescribed admissible class V of Lebesgue measurable functions on a set Ω ⊂ R d , which is typically chosen to be a bounded open set or the entire space Ω = R d . Problems of this type have been studied, for example, by Ashbaugh-Harrell [START_REF] Ashbaugh | Maximal and minimal eigenvalues and their associated nonlinear equations[END_REF], Egnell [START_REF] Egnell | Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems[END_REF], Essen [START_REF] Essen | On estimating eigenvalues of a second order linear differential operator[END_REF], Harrell [START_REF] Harrell | Hamiltonian operators with maximal eigenvalues[END_REF],

Talenti [START_REF] Talenti | Estimates for eigenvalues of Sturm-Liouville problems[END_REF] and, more recently, by Carlen-Frank-Lieb [START_REF] Carlen | Stability estimates for the lowest eigenvalue of a Schrödinger operator[END_REF]. We refer to the monography [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF], and to the references therein, for a complete list of references and as a comprehensive guide to the known results about the problem.

In our framework we include very general cost functionals, as for example the following.

Integral functionals. Given a function f ∈ L 2 (Ω) we consider the solution u V of the elliptic PDE -∆u + V u = f in Ω, u ∈ H 1 0 (Ω). The integral cost functionals we may consider are of the form

F (V ) = Ω j x, u V (x), ∇u V (x) dx,
where j is a suitable integrand that we assume convex in the gradient variable and bounded from below. One may take, for example, j(x, s, z) ≥ -a(x) -c|s| 2 , with a ∈ L 1 (Ω) and c smaller than the first Dirichlet eigenvalue of the Laplace operator -∆ in Ω. In particular, the energy E f (V ) defined by

E f (V ) = inf Ω 1 2 |∇u| 2 + 1 2 V (x)u 2 -f (x)u dx : u ∈ H 1 0 (Ω) , (1.2) 
belongs to this class since, integrating by parts its Euler-Lagrange equation, we have

E f (V ) = - 1 2 Ω f (x)u V dx, 1
which corresponds to the integral functional above with j(x, s, z) = -1 2 f (x)s.

Spectral functionals. For every admissible potential V ≥ 0 we consider the spectrum Λ(V ) of the Schrödinger operator -∆ + V (x) on H 1 0 (Ω). If Ω is bounded or has finite measure, or if the potential V satisfies some suitable integrability properties, then the operator -∆ + V (x) has compact resolvent and so its spectrum Λ(V ) is discrete:

Λ(V ) = λ 1 (V ), λ 2 (V ), . . . ,
where λ k (V ) are the eigenvalues counted with their multiplicity. The spectral cost functionals we may consider are of the form

F (V ) = Φ Λ(V ) ,
for suitable functions Φ : R N → (-∞, +∞]. For instance, taking Φ(Λ) = λ k we obtain

F (V ) = λ k (V ).
The class of admissible potentials V we consider satisfies an integrability condition, namely

V = V : Ω → [0, +∞] : V Lebesgue measurable, Ω Ψ(V ) dx ≤ 1 . (1.3)
for a suitable function Ψ : [0, +∞] → [0, +∞]. It is worth remarking that the requirement V ≥ 0 is not, in general, necessary for the well-posedness of problem (1.1), but allowing V to change sign radically changes the conduct of the problem. An instance of optimization problem for signchanging potentials can be found in the recent work [START_REF] Carlen | Stability estimates for the lowest eigenvalue of a Schrödinger operator[END_REF], where the authors study a quantitative stability for the first eigenvalue of the Schrödinger operator. The integrability constraint in (1.3) naturally appears in the following cases.

Approximation of optimal sets. In the case of spectral and energy functionals F as above, the optimization problems related to the Schrödinger operators may be linked to the classical shape optimization theory 1 for problems of the form min F (E) : E ⊂ Ω, |E| ≤ constant . Indeed, if we set V E = 0 in E and V E = +∞ outside of E, then the Schrödinger operator -∆ + V E corresponds to the Dirichlet-Laplacian on the set E. This observation suggests that, by one side, we can approach problem (1.1) by means of techniques developed in the study of more classical shape optimization problems and, on the other hand, that we can approximate the potential V E , corresponding to an optimal set E, by means of potentials that solve (1.1) under suitable constraints. We will show in Section 5 that a good approximation is given by the family of constraints Ψ(V ) = e -αV .

Ground states of semilinear equations. If the cost functional F is of energy type, as F (V ) = λ 1 (V ), then the study of the optimization problem min F (V ) : V : Ω → [0, +∞], Ω V p dx = 1 1 For an introduction to the theory of shape optimization problems we refer to the survey paper [START_REF] Buttazzo | Spectral optimization problems[END_REF] and to the books [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF], [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF] and [START_REF] Henrot | Variation et Optimisation de Formes[END_REF] naturally reduces to the one of ground states of the equation -∆ψ + |ψ| s ψ = λψ, ψ ∈ H 1 (Ω) ∩ L 2+s (Ω).

(1.4)

The case p > 0 corresponds to the superlinear case s > 0, while the case of negative exponent p < 0 corresponds to the sublinear case s < 0. Indeed, the potential V (x) = |ψ(x)| s satisfies an integrability condition inherited from the ground state ψ. In the superlinear case s > 0, we have V ∈ L p (Ω) with p = (s + 2)/s, while in the sublinear case s ∈ (-1, 0) we get Ω V -p dx < +∞ with p = -(s + 2)/s. The paper is organized as follows. In Section 2 we recall the concepts of capacitary measures and γ-convergence together with their main properties. Then we prove some preliminary results which will be exploited in the subsequent sections.

In Section 3 we prove two general results concerning the existence of optimal potentials in a bounded domain Ω ⊂ R d . In Theorem 3.1 we deal with constraints V which are bounded subsets of L p (Ω), while Theorem 3.4 deals with the case of admissible classes consisting of suitable subsets of capacitary measures.

In Section 3.1 our assumptions allow to take F (V ) = -E f (V ) and thus the optimization problem becomes the maximization of E f under the constraint Ω V p dx ≤ 1. We prove that for p ≥ 1, there exists an optimal potential for the problem max E f (V ) :

Ω V p dx ≤ 1 .
(

The existence result is sharp in the sense that for p < 1 the maximum cannot be achieved (see Remark 3.11). For the existence issue in the case of a bounded domain, we follow the ideas of Egnell [START_REF] Egnell | Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems[END_REF], summarized in [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF]Chapter 8]. The case p = 1 is particularly interesting and we show that in this case the optimal potentials are of the form

V = f M χ ω + -χ ω -,
where χ U indicates the characteristic function of the set U , f ∈ L 2 (Ω), M = u V L ∞ (Ω) , and

ω ± = {u = ±M }.
In Section 4 we deal with minimization problems of the form min F (V ) :

Ω Ψ(V ) dx ≤ 1 , (1.6) 
and we prove existence for the problem (1.1) for a large class of functionals F and of constraints Ψ, including the particular cases

Ψ(s) = s -p and Ψ(s) = e -αs .
These type of constraints are, as far as we know, new in the literature. In the case Ψ(s) = s -p the equation reduces, as already pointed out, to the sublinear case of (1.4).

In some cases the Schrödinger operator -∆ + V (x) is compact even if Ω is not bounded (see for instance [START_REF] Bucur | On the characterization of the compact embedding of Sobolev spaces[END_REF]). This allows to consider spectral optimization problems in unbounded domains as Ω = R d . We deal with this case in Section 5, where we prove that for F = E f or F = λ 1 , there exist solutions of problem (1.6) in R d , with Ψ(s) = s -p . Moreover, we characterize the optimal potential V as an explicit function of the solution u of a quasi-linear PDE of the form (1.4). Thus the qualitative properties of u immediately translate into qualitative properties for V . Thanks to this, we prove that, in the case F = E f , 1/V is compactly supported, provided f is compactly supported. In the case F = λ 1 the same holds and the optimal potential V is an (explicit) function of the optimizers of a family of Gagliardo-Nirenberg-Sobolev inequalities (see Remark 5.7).

In the final Section 6 we make some further remarks about the state of the art of spectral optimization for Schrödinger operators on unbounded domains, and we apply the results of Section 5 to get, in Theorem 6.1, the qualitative behavior of the optimal potential for F = λ 2 for problem (1.6) with Ψ(s) = s -p .

Capacitary measures and γ-convergence

For a subset E ⊂ R d its capacity is defined by

cap(E) = inf R d |∇u| 2 dx + R d u 2 dx : u ∈ H 1 (R d ), u ≥ 1 in a neighborhood of E .
If a property P (x) holds for all x ∈ Ω, except for the elements of a set E ⊂ Ω of capacity zero, we say that P (x) holds quasi-everywhere (shortly q.e.) in Ω, whereas the expression almost everywhere (shortly a.e.) refers, as usual, to the Lebesgue measure, which we often denote by

| • |. A subset A of R d is said to be quasi-open if for every ε > 0 there exists an open subset A ε of R d , with A ⊂ A ε , such that cap(A ε \ A) < ε.
Similarly, a function u : R d → R is said to be quasi-continuous (respectively quasi-lower semicontinuous) if there exists a decreasing sequence of open sets (A n ) n such that cap(A n ) → 0 and the restriction u n of u to the set A c n is continuous (respectively lower semicontinuous). It is well known (see for instance [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]) that every function u ∈ H 1 (R d ) has a quasi-continuous representative u, which is uniquely defined up to a set of capacity zero, and given by

u(x) = lim ε→0 1 |B ε (x)| Bε(x)
u(y) dy , where B ε (x) denotes the ball of radius ε centered at x. We identify the (a.e.) equivalence class u ∈ H 1 (R d ) with the (q.e.) equivalence class of quasi-continuous representatives u.

We denote by M + (R d ) the set of positive Borel measures on R d (not necessarily finite or Radon) and by M + cap (R d ) ⊂ M + (R d ) the set of capacitary measures, i.e. the measures µ ∈ M + (R d ) such that µ(E) = 0 for any set E ⊂ R d of capacity zero. We note that when µ is a capacitary measure, the integral R d |u| 2 dµ is well-defined for each u ∈ H 1 (R d ), i.e. if u 1 and u 2 are two quasi-continuous representatives of u, then

R d | u 1 | 2 dµ = R d | u 2 | 2 dµ.
For a subset Ω ⊂ R d , we define the Sobolev space H 1 0 (Ω) as

H 1 0 (Ω) = u ∈ H 1 (R d ) : u = 0 q.e. on Ω c . (2.1)
Alternatively, by using the capacitary measure I Ω defined as

I Ω (E) = 0 if cap(E \ Ω) = 0 +∞ if cap(E \ Ω) > 0 for every Borel set E ⊂ R d , (2.2) 
the Sobolev space H 1 0 (Ω) can be defined as

H 1 0 (Ω) = u ∈ H 1 (R d ) : R d |u| 2 dI Ω < +∞ .
More generally, for any capacitary measure µ ∈ M + cap (R d ), we define the space

H 1 µ = u ∈ H 1 (R d ) : R d |u| 2 dµ < +∞ ,
which is a Hilbert space when endowed with the norm u 1,µ , where

u 2 1,µ = R d |∇u| 2 dx + R d u 2 dx + R d u 2 dµ. If u / ∈ H 1 µ , then we set u 1,µ = +∞. For Ω ⊂ R d , we define M + cap (Ω) as the space of capacitary measures µ ∈ M + cap (R d ) such that µ(E) = +∞ for any set E ⊂ R d such that cap(E \ Ω) > 0. For µ ∈ M + cap (R d ), we denote with H 1 µ (Ω) the space H 1 µ∨I Ω = H 1 µ ∩ H 1 0 (Ω).
Definition 2.1. Given a metric space (X, d) and sequence of functionals J n : X → R ∪ {+∞}, we say that J n Γ-converges to the functional J : X → R ∪ {+∞}, if the following two conditions are satisfied:

(a) for every sequence x n converging in to x ∈ X, we have

J(x) ≤ lim inf n→∞ J n (x n );
(b) for every x ∈ X, there exists a sequence x n converging to x, such that

J(x) = lim n→∞ J n (x n ).
For all details and properties of Γ-convergence we refer to [START_REF] Maso | An Introduction to Γ-convergence[END_REF]; here we simply recall that, whenever J n Γ-converges to J,

min x∈X J(x) ≤ lim inf n→∞ min x∈X J n (x).
(2.3) Definition 2.2. We say that the sequence of capacitary measures µ n ∈ M + cap (Ω), γ-converges to the capacitary measure µ ∈ M + cap (Ω) if the sequence of functionals • 1,µn Γ-converges to the functional • 1,µ in L 2 (Ω), i.e. if the following two conditions are satisfied:

• for every sequence u n → u in L 2 (Ω) we have

R d |∇u| 2 dx + R d u 2 dµ ≤ lim inf n→∞ R d |∇u n | 2 dx + R d u 2 n dµ n ;
• for every u ∈ L 2 (Ω), there exists

u n → u in L 2 (Ω) such that R d |∇u| 2 dx + R d u 2 dµ = lim n→∞ R d |∇u n | 2 dx + R d u 2 n dµ n . If µ ∈ M + cap (Ω) and f ∈ L 2 (Ω) we define the functional J µ (f, •) : L 2 (Ω) → R ∪ {+∞} by J µ (f, u) = 1 2 Ω |∇u| 2 dx + 1 2 Ω u 2 dµ - Ω f u dx. (2.4) If Ω ⊂ R d is a bounded open set, µ ∈ M + cap (Ω) and f ∈ L 2 (Ω), then the functional J µ (f, •) has a unique minimizer u ∈ H 1
µ that verifies the PDE formally written as

-∆u + µu = f, u ∈ H 1 µ (Ω), (2.5) 
and whose precise meaning is given in the weak form

   Ω ∇u • ∇ϕ dx + Ω uϕ dµ = Ω f ϕ dx, ∀ϕ ∈ H 1 µ (Ω), u ∈ H 1 µ (Ω).
The resolvent operator of -∆ + µ, that is the map R µ that associates to every f ∈ L 2 (Ω) the solution u ∈ H 1 µ (Ω) ⊂ L 2 (Ω), is a compact linear operator in L 2 (Ω) and so, it has a discrete spectrum

0 < • • • ≤ Λ k ≤ • • • ≤ Λ 2 ≤ Λ 1 .
Their inverses 1/Λ k are denoted by λ k (µ) and are the eigenvalues of the operator -∆ + µ.

In the case f = 1 the solution will be denoted by w µ and when µ = I Ω we will use the notation w Ω instead of w I Ω . We also recall (see [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]) that if Ω is bounded, then the strong L 2 -convergence of the minimizers w µn to w µ is equivalent to the γ-convergence of Definition 2.2.

Remark 2.3. An important well known characterization of the γ-convergence is the following: a sequence µ n γ-converges to µ, if and only if, the sequence of resolvent operators R µn associated to -∆ + µ n , converges (in the strong convergence of linear operators on L 2 ) to the resolvent R µ of the operator -∆ + µ. A consequence of this fact is that the spectrum of the operator -∆ + µ n converges (pointwise) to the one of -∆ + µ.

Remark 2.4. The space M + cap (Ω) endowed with the γ-convergence is metrizable. If Ω is bounded, one may take d γ (µ, ν) = w µw ν L 2 . Moreover, in this case, in [START_REF] Maso | Wiener's criterion and Γ-convergence[END_REF] it is proved that the space M + cap (Ω) endowed with the metric d γ is compact.

Proposition 2.5. Let Ω ⊂ R d and let V n ∈ L 1 (Ω) be a sequence weakly converging in L 1 (Ω) to a function V . Then the capacitary measures V n dx γ-converge to V dx.
Proof. We have to prove that the solutions

u n = R Vn (1) of -∆u n + V n (x)u n = 1 u ∈ H 1 0 (Ω) weakly converge in H 1 0 (Ω) to the solution u = R V (1) of -∆u + V (x)u = 1 u ∈ H 1 0 (Ω), or equivalently that the functionals J n (u) = Ω |∇u| 2 dx + Ω V n (x)u 2 dx Γ L 2 (Ω) -converge to the functional J(u) = Ω |∇u| 2 dx + Ω V (x)u 2 dx. The Γ-liminf inequality (Definition 2.1 (a)) is immediate since, if u n → u in L 2 (Ω), we have Ω |∇u| 2 dx ≤ lim inf n→∞ Ω |∇u n | 2 dx
by the lower semicontinuity of the H 1 (Ω) norm with respect to the L 2 (Ω)-convergence, and

Ω V (x)u 2 dx ≤ lim inf n→∞ Ω V n (x)u 2 n dx
by the strong-weak lower semicontinuity theorem for integral functionals (see for instance [START_REF] Buttazzo | Semicontinuity, relaxation and integral representation in the calculus of variations[END_REF]).

Let us now prove the Γ-limsup inequality (Definition 2.1 (b)) which consists, given u ∈

H 1 0 (Ω), in constructing a sequence u n → u in L 2 (Ω) such that lim sup n→∞ Ω |∇u n | 2 dx + Ω V n (x)u 2 n dx ≤ Ω |∇u| 2 dx + Ω V (x)u 2 dx. (2.6)
For every t > 0 let u t = (u ∧ t) ∨ (-t); then, by the weak convergence of V n , for t fixed we have

lim n→∞ Ω V n (x)|u t | 2 dx = Ω V (x)|u t | 2 dx, and 
lim t→+∞ Ω V (x)|u t | 2 dx = Ω V (x)|u| 2 dx.
Then, by a diagonal argument, we can find a sequence t n → +∞ such that

lim n→∞ Ω V n (x)|u tn | 2 dx = Ω V (x)|u| 2 dx.
Taking now u n = u tn , and noticing that for every t > 0

Ω |∇u t | 2 dx ≤ Ω |∇u| 2 dx,
we obtain (2.6) and so the proof is complete.

In the case of weak* convergence of measures the statement of Proposition 2.5 is no longer true, as the following proposition shows.

Proposition 2.6. Let Ω ⊂ R d (d ≥ 2) be a bounded open set and let V, W ∈ L 1 + (Ω) be two functions such that V ≥ W . Then, there is a sequence V n ∈ L 1 + (Ω), uniformly bounded in L 1 (Ω), such that the sequence of measures V n (x) dx converges weakly* to V (x) dx and γ-converges to W (x) dx.
Proof. 2 Without loss of generality we can suppose Ω (V -W ) dx = 1. Let µ n be a sequence of probability measures on Ω weakly* converging to (V -W ) dx and such that each µ n is a finite sum of Dirac masses. For each n ∈ N consider a sequence of positive functions

V n,m ∈ L 1 (Ω) such that Ω V n,m dx = 1 and V n,m dx converges weakly* to µ n as m → ∞. Moreover, we choose V n,m as a convex combination of functions of the form |B 1/m | -1 χ B 1/m (x j ) .
We now prove that for fixed n ∈ N, (V n,m + W ) dx γ-converges, as m → ∞, to W dx or, equivalently, that the sequence w W +Vn,m converges in L 2 to w W , as m → ∞. Indeed, by the weak maximum principle, we have

w W +I Ωm,n ≤ w W +Vn,m ≤ w W ,
where Ω m,n = Ω \ ∪ j B 1/m (x j ) and I Ωm,n is as in (2.2).

the idea of this proof was suggested by Dorin Bucur

Since a point has zero capacity in R d (d ≥ 2) there exists a sequence φ m → 0 strongly in

H 1 (R d ) with φ m = 1 on B 1/m (0) and φ m = 0 outside B 1/ √ m (0). We have Ω |w W -w W +I Ωm,n | 2 dx ≤ 2 w W L ∞ Ω (w W -w W +I Ωm,n ) dx = 4 w W L ∞ E(W + I Ωm,n ) -E(W ) (2.7) ≤ 4 w W L ∞ Ω 1 2 |∇w m | 2 + 1 2 W w 2 m -w m dx - Ω 1 2 |∇w W | 2 + 1 2 W w 2 W -w W dx ,
where

w m is any function in ∈ H 1 0 (Ω m,n ). Taking w m (x) = w W (x) j (1 -φ m (x -x j )), since φ m → 0 strongly in H 1 (R d ), it is easy to see that w m → w W strongly in H 1 (Ω) and so, by (2.7), w W +I Ωm,n → w W in L 2 (Ω) as m → ∞.
Since the weak convergence of probability measures and the γ-convergence are both induced by metrics, a diagonal sequence argument brings to the conclusion. Remark 2.7. When d = 1, a result analogous to Proposition 2.5 is that any sequence (µ n ) weakly* converging to µ is also γ-converging to µ. This is an easy consequence of the compact embedding of H 1 0 (Ω) into the space of continuous functions on Ω. We note that the hypothesis V ≥ W in Proposition 2.6 is necessary. Indeed, we have the following proposition, whose proof is contained in [12, Theorem 3.1] and we report it here for the sake of completeness.

Proposition 2.8. Let µ n ∈ M + cap (Ω) be a sequence of capacitary Radon measures weakly* converging to the measure ν and γ-converging to the capacitary measure µ ∈ M + cap (Ω). Then µ ≤ ν in Ω.

Proof. We note that it is enough to show that µ(K) ≤ ν(K) whenever K ⊂⊂ Ω is a compact set. Let u be a nonnegative smooth function with compact support in Ω such that u ≤ 1 in Ω and u = 1 on K; we have

µ(K) ≤ Ω u 2 dµ ≤ lim inf n→∞ Ω u 2 dµ n = Ω u 2 dν ≤ ν ({u > 0}) .
Since u is arbitrary, we have the conclusion by the Borel regularity of ν.

3. Existence of optimal potentials in L p (Ω)

In this section we consider the optimization problem min F (V ) :

V : Ω → [0, +∞], Ω V p dx ≤ 1 , (3.1) 
where p > 0 and F (V ) is a cost functional depending on the solution of some partial differential equation on Ω. Typically, F (V ) is the minimum of some functional J V : H 1 0 (Ω) → R depending on V . A natural assumption in this case is the lower semicontinuity of the functional F with respect to the γ-convergence, that is

F (µ) ≤ lim inf n→∞ F (µ n ), whenever µ n → γ µ. (3.2) Theorem 3.1. Let F : L 1 + (Ω)
→ R be a functional, lower semicontinuous with respect to the γ-convergence, and let V be a weakly L 1 (Ω) compact set. Then the problem min {F (V ) : V ∈ V} , (3.3) admits a solution.

Proof. Let (V n ) be a minimizing sequence in V. By the compactness assumption on V, we may assume that V n tends weakly L 1 (Ω) to some V ∈ V. By Proposition 2.5, we have that V n γ-converges to V and so, by the semicontinuity of F ,

F (V ) ≤ lim inf n→∞ F (V n ),
which gives the conclusion.

Remark 3.2. Theorem 3.1 applies for instance to the integral functionals and to the spectral functionals considered in the introduction; it is not difficult to show that they are lower semicontinuous with respect to the γ-convergence.

Remark 3.3. In some special cases the solution of (3.1) can be written explicitly in terms of the solution of some partial differential equation on Ω. This is the case of the Dirichlet Energy, that we discuss in Subsection 3.1, and of the first eigenvalue of the Dirichlet Laplacian λ 1 (see [START_REF] Henrot | Minimization problems for eigenvalues of the Laplacian[END_REF]Chapter 8]).

The compactness assumption on the admissible class V for the weak L 1 (Ω) convergence in Theorem 3.1 is for instance satisfied if Ω has finite measure and V is a convex closed and bounded subset of L p (Ω), with p ≥ 1. In the case of measures an analogous result holds. 

F (µ) : µ ∈ M + cap (Ω), µ(Ω) ≤ 1 , (3.4) 
admits a solution.

Proof. Let (µ n ) be a minimizing sequence. Then, up to a subsequence µ n converges weakly* to some measure ν and γ-converges to some measure µ ∈ M + cap (Ω). By Proposition 2.8, we have that µ(Ω) ≤ ν(Ω) ≤ 1 and so, µ is a solution of (3.4).

The following example shows that the optimal solution of problem (3.4) is not, in general, a function V (x), even when the optimization criterion is the energy E f introduced in (1.2). On the other hand, an explicit form for the optimal potential V (x) will be provided in Proposition 3.9 assuming that the right-hand side f is in L 2 (Ω).

Example 3.5. Let Ω = (-1, 1) and consider the functional

F (µ) = -min 1 2 Ω |u ′ | 2 dx + 1 2 Ω u 2 dµ -u(0) : u ∈ H 1 0 (Ω) .
Then, for any µ such that µ(Ω) ≤ 1, we have

F (µ) ≥ -min 1 2 Ω |u ′ | 2 dx + 1 2 sup Ω u 2 -u(0) : u ∈ H 1 0 (Ω), u ≥ 0 . (3.5)
By a symmetrization argument, the minimizer u of the right-hand side of (3.5) is radially decreasing; moreover, u is linear on the set u < M , where M = sup u, and so it is of the form

u(x) =        M 1-α x + M 1-α , x ∈ [-1, -α], M, x ∈ [-α, α], -M 1-α x + M 1-α , x ∈ [α, 1], (3.6) 
for some α ∈ [0, 1]. A straightforward computation gives α = 0 and M = 1/3. Thus, u is also the minimizer of

F (δ 0 ) = -min 1 2 Ω |u ′ | 2 dx + 1 2 u(0) 2 -u(0) : u ∈ H 1 0 (Ω) ,
and so δ 0 is the solution of min {F (µ) : µ(Ω) ≤ 1} . 

{-E f (V ) : V ∈ V} with V = V ≥ 0, Ω V p dx ≤ 1 , (3.7) 
admits a solution, where E f (V ) is the energy functional defined in (1.2). We notice that, replacing -E f (V ) by E f (V ), makes problem (3.7) trivial, with the only solution V ≡ 0. Minimization problems for E f will be considered in Section 4 for admissible classes of the form

V = V ≥ 0, Ω V -p dx ≤ 1 .
Analogous results for F (V ) = -λ 1 (V ) were proved in [20, Theorem 8. 1) ,

V p = Ω |u p | 2p/(p-1) dx -1/p |u p | -1+(p+1)/(p-
where u p ∈ H 1 0 (Ω) ∩ L 2p/(p-1) (Ω)
is the minimizer of the functional

J p (u) := 1 2 Ω |∇u| 2 dx + 1 2 Ω |u| 2p/(p-1) dx (p-1)/p - Ω uf dx. (3.8 
)

Moreover, we have E f (V p ) = J p (u p ).
Proof. We first show that we have max

V ∈V min u∈H 1 0 (Ω) Ω 1 2 |∇u| 2 + u 2 V -uf dx ≤ min u∈H 1 0 (Ω) max V ∈V Ω 1 2 |∇u| 2 + u 2 V -uf dx, (3.9) 
where the maximums are taken over all positive functions V ∈ L p (Ω). For a fixed u ∈ H 1 0 (Ω), the maximum on the right-hand side (if finite) is achieved for a function V such that ΛpV p-1 = u 2 , where Λ is a Lagrange multiplier. By the condition Ω V p dx = 1 we obtain that the maximum is achieved for

V = Ω |u| 2p p-1 dx 1/p |u| 2 p-1 .
Substituting in (3.9), we obtain

max {E f (V ) : V ∈ V} ≤ min J p (u) : u ∈ H 1 0 (Ω) . (3.10) 
Let u n be a minimizing sequence for J p . Since inf J p ≤ 0, we can assume J p (u n ) ≤ 0 for each n ∈ N. Thus, we have

1 2 Ω |∇u n | 2 dx + 1 2 Ω |u n | 2p/(p-1) dx (p-1)/p ≤ Ω u n f dx ≤ C f L 2 (Ω) ∇u n L 2 , (3.11) 
where C is a constant depending on Ω. Thus we obtain

Ω |∇u n | 2 dx + Ω |u n | 2p/(p-1) dx (p-1)/p ≤ 4C 2 f 2 L 2 (Ω) , (3.12) 
and so, up to subsequence u n converges weakly in H 1 0 (Ω) and L 2p/(p-1) (Ω) to some u p ∈ H 1 0 (Ω)∩ L 2p/(p-1) (Ω). By the semicontinuity of the L 2 -norm of the gradient and the L 2p p-1 -norm and the fact that Ω f u n dx → Ω f u p dx, as n → ∞, we have that u p is a minimizer of J p . By the strict convexity of J p , we have that u p is unique. Moreover, by (3.11) and (3.12), J p (u p ) > -∞. Writing down the Euler-Lagrange equation for u p , we obtain

-∆u p + Ω |u p | 2p/(p-1) dx -1/p |u p | 2/(p-1) u p = f. Setting V p = Ω |u p | 2p/(p-1) dx -1/p |u p | 2/(p-1) ,
we have that Ω V p p dx = 1 and u p is the solution of

-∆u p + V p u p = f. (3.13) 
In particular, we have J p (u p ) = E p (V p ) and so V p solves (3.7). The uniqueness of V p follows by the uniqueness of u p and the equality case in the Hölder inequality

Ω u 2 V dx ≤ Ω V p dx 1/p Ω |u| 2p/(p-1) dx (p-1)/p ≤ Ω |u| 2p/(p-1) dx (p-1)/p .
When the functional F is the energy E f , the existence result holds also in the case p = 1. Before we give the proof of this fact in Proposition 3.9, we need some preliminary results. We also note that the analogous results were obtained in the case F = -λ 1 (see [START_REF] Henrot | Minimization problems for eigenvalues of the Laplacian[END_REF]Theorem 8.2.4]) and in the case F = -E f , where f is a positive function (see [START_REF] Buttazzo | Optimal measures for elliptic problems[END_REF]). Remark 3.7. Let u p be the minimizer of J p , defined in (3.8). By (3.12), we have the estimate

∇u p L 2 (Ω) + u p L 2p/(p-1) (Ω) ≤ 4C 2 f L 2 (Ω) , (3.14) 
where C is the constant from (3.11). Moreover, we have u p ∈ H 2 loc (Ω) and for each open set Ω ′ ⊂⊂ Ω, there is a constant C not depending on p such that

u p H 2 (Ω ′ ) ≤ C(f, Ω ′ ). Indeed, u p satisfies the PDE -∆u + c|u| α u = f, (3.15) 
with c > 0 and α = 2/(p -1), and standard elliptic regularity arguments (see [START_REF] Evans | Partial Differential Equations[END_REF]Section 6.3]) give that u ∈ H 2 loc (Ω). To show that u p H 2 (Ω ′ ) is bounded independently of p we apply the Nirenberg operator

∂ h k u = u(x+he k )-u(x)
h on both sides of (3.15), and multiplying by φ 2 ∂ h k u, where φ is an appropriate cut-off function which equals 1 on Ω ′ , we have

Ω φ 2 |∇∂ h k u| 2 dx + Ω ∇(∂ h k u) • ∇(φ 2 )∂ h k u dx + c(α + 1) Ω φ 2 |u| α |∂ h k u| 2 dx (3.16) = -f ∂ h k (φ 2 ∂ h k u) dx,
for all k = 1, . . . , d. Some straightforward manipulations now give

∇ 2 u 2 L 2 (Ω ′ ) ≤ d k=1 Ω φ 2 |∇∂ k u| 2 dx ≤ C(Ω ′ ) f L 2 ({φ 2 >0}) + ∇u L 2 (Ω) . (3.17) Lemma 3.8. Let Ω ⊂ R d be an open set and f ∈ L 2 (Ω). Consider the functional J 1 : L 2 (Ω) → R defined by J 1 (u) := 1 2 Ω |∇u| 2 dx + 1 2 u 2 ∞ - Ω uf dx, (3.18) 
Then, J p Γ-converges in L 2 (Ω) to J 1 , as p → 1, where J p is defined in (3.8).

Proof. Let v n ∈ L 2 (Ω) be a sequence of positive functions converging in L 2 to v ∈ L 2 (Ω) and let α n → +∞. Then, we have that

v L ∞ (Ω) ≤ lim inf n→∞ v n L αn (Ω) . (3.19) 
In fact, suppose first that v L ∞ = M < +∞ and let ω ε = {v > M -ε}, for some ε > 0. Then, we have

lim inf n→∞ v n L αn (Ω) ≥ lim n→∞ |ω ε | (1-αn)/αn ωε v n dx = |ω ε | -1 ωε v dx ≥ M -ε,
and so, letting ε → 0, we have lim inf n→∞ v n L αn (Ω) ≤ M . If v L ∞ = +∞, then setting ω k = {v > k}, for any k ≥ 1, and arguing as above, we obtain (3.19). Let u n → u in L 2 (Ω). Then, by the semicontinuity of the L 2 norm of the gradient and (3.19) and the continuity of the term Ω uf dx, we have

J 1 (u) ≤ lim inf n→∞ J pn (u n ), (3.20) 
for any decreasing sequence p n → 1. On the other hand, for any u ∈ L 2 , we have J pn (u) → J 1 (u) as n → ∞ and so, we have the conclusion.

Proposition 3.9. Let Ω ⊂ R d be a bounded open set and f ∈ L 2 (Ω). Then there is a unique solution of problem (3.7) with p = 1, given by

V 1 = 1 M χ ω + f -χ ω -f , where M = u 1 L ∞ (Ω) , ω + = {u 1 = M }, ω -= {u 1 = -M }, being u 1 ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
the unique minimizer of the functional J 1 , defined in (3.18). In particular, ω + f dxω -f dx = M , f ≥ 0 on ω + and f ≤ 0 on ω -.

Proof. For any u ∈ H 1 0 (Ω) and any V ≥ 0 with Ω V dx ≤ 1 we have

Ω u 2 V dx ≤ u 2 ∞ Ω V dx ≤ u 2 ∞ ,
where for sake of simplicity, we write • ∞ instead of • L ∞ (Ω) . Arguing as in the proof of Proposition 3.6, we obtain the inequalities

1 2 Ω |∇u| 2 dx + 1 2 Ω u 2 V dx - Ω uf dx ≤ J 1 (u), max E f (V ) : Ω V ≤ 1 ≤ min J 1 (u) : u ∈ H 1 0 (Ω) .
As in (3.11), we have that a minimizing sequence of J 1 is bounded in H 1 0 (Ω) ∩ L ∞ (Ω) and thus by semicontinuity there is a minimizer u 1 ∈ H 1 0 (Ω) ∩ L ∞ (Ω) of J 1 , which is also unique, by the strict convexity of J 1 . Let u p denotes the minimizer of J p as in Proposition 3.6. Then, by Remark 3.7, we have that the family u p is bounded in H 1 0 (Ω) and in H 2 (Ω ′ ) for each Ω ′ ⊂⊂ Ω. Then, we have that each sequence u pn has a subsequence converging weakly in L 2 (Ω) to some u ∈ H 2 loc (Ω) ∩ H 1 0 (Ω). By Lemma 3.8, we have u = u 1 and so,

u 1 ∈ H 2 loc (Ω) ∩ H 1 0 (Ω). Thus u pn → u 1 in L 2 (Ω).
Let us define M = u 1 ∞ and ω = ω + ∪ ω -. We claim that u 1 satisfies, on Ω the PDE

-∆u + χ ω f = f. (3.21)
Indeed, setting Ω t = Ω ∩ {|u| < t} for t > 0, we compute the variation of J 1 with respect to any function ϕ ∈ H 1 0 (Ω M -ε ). Namely we consider functions of the form ϕ = ψw ε where w ε is the solution of -∆w ε = 1 on Ω M -ε , and w ε = 0 on ∂Ω M -ε . Thus we obtain that -∆u 1 = f on Ω M -ε and letting ε → 0 we conclude, thanks to the Monotone Convergence Theorem, that

-∆u 1 = f on Ω M = Ω \ ω.
Moreover, since u 1 ∈ H 2 loc (Ω), we have that ∆u 1 = 0 on ω and so, we obtain (3.21). Since u 1 is the minimizer of J 1 , we have that for each ε ∈ R, J 1 ((1 + ε)u 1 ) -J 1 (u 1 ) ≥ 0. Taking the derivative of this difference at ε = 0, we obtain 

Ω |∇u 1 | 2 dx + M 2 = Ω f u 1 dx. ( 3 
M = ω + f dx - ω - f dx. (3.23) Setting V 1 := 1 M χ ω + f -χ ω -f , we have that Ω V 1 dx = 1, -∆u 1 + V 1 u 1 = f in H -1 (Ω) and J 1 (u 1 ) = 1 2 Ω |∇u 1 | 2 dx + 1 2 Ω u 2 1 V 1 dx - Ω u 1 f dx.
We are left to prove that V 1 is admissible, i.e. V 1 ≥ 0. To do this, consider w ε the energy function of the quasi-open set {u < M -ε} and let ϕ = w ε ψ where

ψ ∈ C ∞ c (R d ), ψ ≥ 0. Since ϕ ≥ 0, we get that 0 ≤ lim t→0 + J 1 (u 1 + tϕ) -J 1 (u 1 ) t = Ω ∇u 1 , ∇ϕ dx - Ω f ϕ dx.
This inequality holds for any ψ so that, integrating by parts, we obtain -∆u 1f ≥ 0 almost everywhere on {u 1 < M -ε}. In particular, since ∆u 1 = 0 almost everywhere on ω -= {u = -M }, we obtain that f ≤ 0 on ω -. Arguing in the same way, and considering test functions supported on {u 1 ≥ -M + ε}, we can prove that f ≥ 0 on ω + . This implies V 1 ≥ 0 as required.

Remark 3.10. Under some additional assumptions on Ω and f one can obtain some more precise regularity results for u 1 . In fact, in [14, Theorem A1] it was proved that if ∂Ω ∈ C 2 and if

f ∈ L ∞ (Ω) is positive, then u 1 ∈ C 1,1 (Ω).
Remark 3.11. In the case p < 1 problem (3.7) does not admit, in general, a solution, even for regular f and Ω. We give a counterexample in dimension one, which can be easily adapted to higher dimensions.

Let Ω = (0, 1), f = 1, and let x n,k = k/n for any n ∈ N and k = 1, . . . , n -1. We define the (capacitary) measures

µ n = n-1 k=1 +∞ δ x n,k ,
where δ x is the Dirac measure at the point x. Let w n be the minimizer of the functional J µn (1, •), defined in (2.4). Then w n vanishes at x n,k , for k = 1, . . . , n -1, and so we have

E(µ n ) = n min 1 2 1/n 0 |u ′ | 2 dx - 1/n 0 u dx : u ∈ H 1 0 (0, 1/n) = - C n 2 ,
where C > 0 is a constant. For any fixed n and j, let V n j be the sequence of positive functions such that

1 0 |V n j | p dx = 1, defined by V n j = C n n-1 k=1 j 1/p χ k n -1 j , k n + 1 j < n-1 k=1 I k n -1 j , k n + 1 j , (3.24) 
where C n is a constant depending on n and I is as in (2.2). By the compactness of the γconvergence, we have that, up to a subsequence, V n j dx γ-converges to some capacitary measure µ as j → ∞. On the other hand it is easy to check that n-1 k=1 I k n -1 j , k n + 1 j (x) γ-converges to µ n as j → ∞. By (3.24), we have that µ ≤ µ n . In order to show that µ = µ n it is enough to check that each nonnegative function u ∈ H 1 0 ((0, 1)), for which u 2 dµ < +∞, vanishes at x n,k for k = 1, . . . , n -1. Suppose that u(k/n) > 0. By the definition of the γ-convergence, there is a sequence

u j ∈ H 1 0 (Ω) = H 1 V n j
(Ω) such that u j → u weakly in H 1 0 (Ω) and u 2 j V n j dx ≤ C, for some constant C not depending on j ∈ N. Since u j are uniformly 1/2-Hölder continuous, we can suppose that u j ≥ ε > 0 on some interval I containing k/n. But then for j large enough

I contains [k/n -1/j, k/n + 1/j] so that C ≥ 1 0 u 2 j V n j dx ≥ k/n+1/j k/n-1/j u 2 j V n j dx ≥ 2C n ε 2 j 1/p-1 ,
which is a contradiction for p < 1. Thus, we have that µ = µ n and so V n j γ-converges to µ n as j → ∞. In particular, E(µ n ) = lim j→∞ E 1 (V n j ) and since the left-hand side converges to zero as n → ∞, we can choose a diagonal sequence V n jn such that E(V n jn ) → 0 as n → ∞. Since there is no admissible functional V such that E 1 (V ) = 0, we have the conclusion.

Existence of optimal potentials for unbounded constraints

In this section we consider the optimization problem min {F (V ) : V ∈ V} , Then, for any functional F : M + cap (Ω) → R which is increasing and lower semicontinuous with respect to the γ-convergence, the problem (4.1) has a solution.

V = V : Ω → [0, +∞] : V Lebesgue measurable, Ω Ψ(V ) dx ≤ 1 .
Proof. Let V n ∈ V be a minimizing sequence for problem (4.1). Then, v n := Ψ(V n )

1/p is a bounded sequence in L p (Ω) and so, up to a subsequence, v n converges weakly in L p (Ω) to some function v. We will prove that V := Ψ -1 (v p ) is a solution of (4.1). Clearly V ∈ V and so it remains to prove that F (V ) ≤ lim inf n F (V n ). In view of the compactness of the γ-convergence on the class M 0 (Ω) of capacitary measures (see Section 2), we can suppose that, up to a subsequence, V n γ-converges to a capacitary measure µ ∈ M 0 (Ω). We claim that the following inequalities hold true:

F (V ) ≤ F (µ) ≤ lim inf n→∞ F (V n ). (4.2)
In fact, the second inequality in (4.2) is the lower semicontinuity of F with respect to the γconvergence, while the first needs a more careful examination. By the definition of γ-convergence, we have that for any u ∈ H 1 0 (Ω), there is a sequence u n ∈ H 1 0 (Ω) which converges to u in L 2 (Ω) and is such that

Ω |∇u| 2 dx + Ω u 2 dµ = lim n→∞ Ω |∇u n | 2 dx + Ω u 2 n V n dx = lim n→∞ Ω |∇u n | 2 dx + Ω u 2 n Ψ -1 (v p n ) dx ≥ Ω |∇u| 2 dx + Ω u 2 Ψ -1 (v p ) dx = Ω |∇u| 2 dx + Ω u 2 V dx, (4.3) 
where the inequality in (4.3) is due to strong-weak lower semicontinuity of integral functionals (see for instance [START_REF] Buttazzo | Semicontinuity, relaxation and integral representation in the calculus of variations[END_REF]). Thus, for any u ∈ H 1 0 (Ω), we have

Ω u 2 dµ ≥ Ω u 2 V dx,
which gives V ≤ µ. Since F is assumed to be monotone increasing, we obtain the first inequality in (4.2) and so the conclusion.

Remark 4.2. The condition on the function Ψ in Theorem 4.1 is satisfied for instance by the following functions:

(1) Ψ(s) = s -p , for any p > 0;

(2) Ψ(s) = e -αs , for any α > 0.

4.1. Optimal potentials for the Dirichlet Energy and the first eigenvalue of the Dirichlet Laplacian. In some special cases, the solution of the optimization problem (4.1) can be computed explicitly through the solution of some PDE, as in Subsection 3.1. This occurs for instance when F = λ 1 or when F = E f , with f ∈ L 2 (Ω). We note that, by the variational formulation

λ 1 (V ) = min Ω |∇u| 2 dx + Ω u 2 V dx : u ∈ H 1 0 (Ω), Ω u 2 dx = 1 , (4.4) 
we can rewrite problem (4.1) as min min

u 2 =1 Ω |∇u| 2 dx + Ω u 2 V dx : V ≥ 0, Ω Ψ(V ) dx ≤ 1 = min u 2 =1
min

Ω |∇u| 2 dx + Ω u 2 V dx : V ≥ 0, Ω Ψ(V ) dx ≤ 1 . (4.5) 
One can compute that, if Ψ is differentiable with Ψ ′ invertible, then the second minimum in (4.5) is achieved for

V = (Ψ ′ ) -1 (Λ u u 2 ), (4.6) 
where Λ u is a constant such that Ω Ψ (Ψ ′ ) -1 (Λ u u 2 ) dx = 1. Thus, the solution of the problem on the right hand side of (4.5) is given through the solution of min

Ω |∇u| 2 dx + Ω u 2 (Ψ ′ ) -1 (Λ u u 2 ) dx : u ∈ H 1 0 (Ω), Ω u 2 dx = 1 . (4.7) 
Analogously, we obtain that the optimal potential for the Dirichlet Energy E f is given by (4.6), where this time u is a solution of min

Ω 1 2 |∇u| 2 dx + Ω 1 2 u 2 (Ψ ′ ) -1 (Λ u u 2 ) dx - Ω f u dx : u ∈ H 1 0 (Ω) . (4.8) 
Thus we obtain the following result.

Corollary 4.3. Under the assumptions of Theorem 4.1, for the functionals F = λ 1 and F = E f there exists a solution of (4.1) given by V = (Ψ ′ ) -1 (Λ u u 2 ), where u ∈ H 1 0 (Ω) is a minimizer of (4.7), in the case F = λ 1 , and of (4.8), in the case F = E f . Example 4.4. If Ψ(x) = x -p with p > 0, the optimal potentials for λ 1 and E f are given by

V = Ω |u| 2p/(p+1) dx 1/p u -2/(p+1) , (4.9) 
where u is the minimizer of (4.7) and (4.8), respectively. We also note that, in this case

Ω u 2 (Ψ ′ ) -1 (Λ u u 2 ) dx = Ω |u| 2p/(p+1) dx (1+p)/p .
Example 4.5. If Ψ(x) = e -αx with α > 0, the optimal potentials for λ 1 and E f are given by

V = 1 α log Ω u 2 dx -log u 2 , (4.10) 
where u is the minimizer of (4.7) and (4.8), respectively. We also note that, in this case

Ω u 2 (Ψ ′ ) -1 (Λ u u 2 ) dx = 1 α Ω u 2 dx Ω log u 2 dx - Ω u 2 log u 2 dx .

Optimization problems in unbounded domains

In this section we consider optimization problems for which the domain region is the entire Euclidean space R d . General existence results, in the case when the design region Ω is unbounded, are hard to achieve since most of the cost functionals are not semicontinuous with respect to the γ-convergence in these domains. For example, it is not hard to check that if µ is a capacitary measure, infinite outside the unit ball B 1 , then, for every x n → ∞, the sequence of translated measures µ n = µ(• + x n ) γ-converges to the capacitary measure

I ∅ (E) = 0, if cap(E) = 0, +∞, if cap(E) > 0.
Thus increasing and translation invariant functionals are never lower semicontinuous with respect to the γ-convergence. In some special cases, as the Dirichlet Energy or the first eigenvalue of the Dirichlet Laplacian, one can obtain existence results by a more direct methods, as those in Proposition 3.6. For a potential V ≥ 0 and a function f ∈ L q (R d ), we define the Dirichlet energy as

E f (V ) = inf R d 1 2 |∇u| 2 + 1 2 V (x)u 2 -f (x)u dx : u ∈ C ∞ c (R d ) . (5.1) 
In some cases it is convenient to work with the space .

H 1 (R d ), obtained as the closure of C ∞ c (R d ) with respect to the L 2 norm of the gradient, instead of the classical Sobolev space H 1 (R d ). We recall that if d ≥ 3, the Gagliardo-Nirenberg-Sobolev inequality

u L 2d/(d-2) ≤ C d ∇u L 2 , ∀u ∈ . H 1 (R d ), (5.2) 
holds, while in the cases d ≤ 2, we have respectively

u L ∞ ≤ r + 2 2 2/(r+2) u r/(r+2) L r u ′ 2/(r+2) L 2 , ∀r ≥ 1, ∀u ∈
.

H 1 (R);

(5.3)

u L r+2 ≤ r + 2 2 2/(r+2) u r/(r+2) L r ∇u 2/(r+2) L 2 , ∀r ≥ 1, ∀u ∈ . H 1 (R 2 ).
(5.4) 5.1. Optimal potentials in L p (R d ). In this section we consider optimization problems for the Dirichlet energy E f among potentials V ≥ 0 satisfying a constraint of the form V L p ≤ 1. We note that the results in this section hold in a generic unbounded domain Ω. Nevertheless, for sake of simplicity, we restrict our attention to the case Ω = R d .

Proposition 5.1. Let p > 1 and let q be in the interval with end-points a = 2p/(p + 1) and b = max{1, 2d/(d + 2)} (with a included for every d ≥ 1, and b included for every d = 2). Then, for every f ∈ L q (R d ), there is a unique solution of the problem

max E f (V ) : V ≥ 0, R d V p dx ≤ 1 .
(5.5)

Proof. Arguing as in Proposition 3.6, we have that for p > 1 the optimal potential V p is given by .

V p = R d |u p | 2p/(p-
H 1 (R d ) ∩ L 2p/(p-1) (R d ) .
Thus, it is enough to prove that there exists a solution of (5.7). For a minimizing sequence u n we have

1 2 R d |∇u n | 2 dx + 1 2 R d |u n | 2p/(p-1) dx (p-1)/p ≤ R d u n f dx ≤ C f L q u n L q ′ . (5.8) 
Suppose that d ≥ 3. Interpolating q ′ between 2p/(p -1) and 2d/(d -2) and using the Gagliardo-Nirenberg-Sobolev inequality (5.2), we obtain that there is a constant C, depending only on p, d and f , such that

1 2 R d |∇u n | 2 dx + 1 2 R d |u n | 2p/(p-1) dx (p-1)/p ≤ C.
Thus we can suppose that u n converges weakly in .

H 1 (R d ) and in L 2p/(p-1) (R d ) and so, the problem (5.7) has a solution. In the case d ≤ 2, the claim follows since, by using (5.3), (5.4) and interpolation, we can still estimate u n L q ′ by means of ∇u n L 2 and u n L 2p/(p-1) .

Repeating the argument of Subsection 3.1, one obtains an existence result for (5.5) in the case p = 1, too. Proposition 5.2. Let f ∈ L q (R d ), where q ∈ [1, 2d d+2 ], if d ≥ 3, and q = 1, if d = 1, 2. Then there is a unique solution V 1 of problem (5.5) with p = 1, which is given by

V 1 = f M χ ω + -χ ω -, where M = u 1 L ∞ (R d ) , ω + = {u 1 = M }, ω -= {u 1 = -M }, and u 1 is the unique minimizer of min 1 2 R d |∇u| 2 dx + 1 2 u 2 L ∞ - R d uf dx : u ∈ . H 1 (R d ) ∩ L ∞ (R d ) .
(5.9)

In particular, ω + f dxω -f dx = M , f ≥ 0 on ω + and f ≤ 0 on ω -.

We note that, when p = 1, the support of the optimal potential V 1 is contained in the support of the function f . This is not the case if p > 1, as the following example shows.

Example 5.3. Let f = χ B(0,1) and p > 1. By our previous analysis we know that there exist a solution u p for problem (5.7) and a solution V p for problem (5.5) given by (5.6). We note that u p is positive, radially decreasing and satisfies the equation

-u ′′ (r) - d -1 r u ′ (r) + Cu α = 0, r ∈ (1, +∞),
where α = 2p/(p -1) > 2 and C is a positive constant. Thus, we have that

u p (r) = kr 2/(1-α) ,
where k is an explicit constant depending on C, d and α. In particular, we have that u p is not compactly supported on R d (see Figure 1). 5.2. Optimal potentials with unbounded constraint. In this subsection we consider the problems

min E f (V ) : V ≥ 0, R d V -p dx ≤ 1 , (5.10) min λ 1 (V ) : V ≥ 0, R d V -p dx ≤ 1 , (5.11) 
for p > 0 and f ∈ L q (R d ). We will see in Proposition 5.4 that in order to have existence for (5.10) the parameter q must satisfy some constraint, depending on the value of p and on the dimension d. Namely, we need q to satisfy the following conditions

q ∈ [ 2d d + 2 , 2p p -1 ], if d ≥ 3 and p > 1, q ∈ [ 2d d + 2 , +∞], if d ≥ 3 and p ≤ 1, q ∈ (1, 2p p -1
], if d = 2 and p > 1, (5.12)

q ∈ (1, +∞], if d = 2 and p ≤ 1, q ∈ [1, 2p p -1 ], if d = 1 and p > 1, q ∈ [1, +∞], if d = 1 and p ≤ 1.
We say that q = q(p, d) ∈ [1, +∞] is admissible if it satisfy (5.12). Note that q = 2 is admissible for any d ≥ 1 and any p > 0.

Proposition 5.4. Let p > 0 and f ∈ L q (R d ), where q is admissible in the sense of (5.12). Then the minimization problem (5.10) has a solution V p given by

V p = R d |u p | 2p/(p+1) dx 1/p |u p | -2/(1+p) , (5.13) 
where u p is a minimizer of

min 1 2 R d |∇u| 2 dx + 1 2 R d |u| 2p/(p+1) dx (p+1)/p - R d uf dx : (5.14) u ∈ . H 1 (R d ), |u| 2p/(p+1) ∈ L 1 (R d ) .
Moreover, if p ≥ 1, then the functional in (5.14) is convex, its minimizer is unique and so is the solution of (5.10).

Proof. By means of (5.2), (5.3) and (5.4), and thanks to the admissibility of q, we get the existence of a solution of (5.14) through an interpolation argument similar to the one used in the proof of Proposition 5.1. The existence of an optimal potential follows by the same argument as in Subsection 4.1.

In Example 5.3, we showed that the optimal potentials for (5.5), may be supported on the whole R d . The analogous question for the problem (5.10) is whether the optimal potentials given by (5.13) have a bounded set of finiteness {V p < +∞}. In order to answer this question, it is sufficient to study the support of the solutions u p of (5.14), which solve the equation

-∆u + C p |u| -2/(p+1) u = f, (5.15) 
where C p > 0 is a constant depending on p.

Proposition 5.5. Let p > 0 and let f ∈ L q (R d ), for q > d/2, be a nonnegative function with a compact support. Then every solution u p of problem (5.14) has a compact support.

Proof. With no loss of generality we may assume that f is supported in the unit ball of R d . We first prove the result when f is radially decreasing. In this case u p is also radially decreasing and nonnegative. Let v be the function defined by v(|x|) = u p (x). Thus v satisfies the equation

   -v ′′ - d -1 r v ′ + C p v s = 0 r ∈ (1, +∞), v(1) = u p (1), (5.16) 
where s = (p -1)/(p + 1) and C p > 0 is a constant depending on p. Since v ≥ 0 and v ′ ≤ 0, we have that v is convex. Moreover, since

+∞ 1 v 2 r d-1 dr < +∞, +∞ 1 |v ′ | 2 r d-1 dr < +∞,
we have that v, v ′ and v ′′ vanish at infinity. Multiplying (5.16) by v ′ we obtain

v ′ (r) 2 2 -C p v(r) s+1 s + 1 ′ = - d -1 r v ′ (r) 2 ≤ 0.
Thus the function v ′ (r) 2 /2 -C p v(r) s+1 /(s + 1) is decreasing and vanishing at infinity and thus nonnegative. Thus we have

-v ′ (r) ≥ Cv(r) (s+1)/2 , r ∈ (1, +∞), (5.17) 
where C = 2C p /(s + 1) 1/2 . Arguing by contradiction, suppose that v is strictly positive on (1, +∞). Dividing both sides of (5.17) and integrating, we have

-v(r) (1-s)/2 ≥ Ar + B,
where A = 2C/(1s) and B is determined by the initial datum v(1). This cannot occur, since the left hand side is negative, while the right hand side goes to +∞, as r → +∞. We now prove the result for a generic compactly supported and nonnegative f ∈ L q (R d ). Since the solution u p of (5.14) is nonnegative and is a weak solution of (5.15), we have that on 

each ball B R ⊂ R d , u p ≤ u, where u ∈ H 1 (B R ) is the solution of -∆u = f in B R , u = u p on ∂B R . Since f ∈ L q (R d ) with q > d/2,
= χ B 1 , in R d
, where C p is as in (5.16). Then, the function w t (x) = t 2/(1-s) w(x/t) is a solution of the equation -∆w t + C p w s t = t 2s/(1-s) χ Bt . Since u p is bounded, there exists some t ≥ 1 large enough such that w t ≥ u p on the ball B t . Moreover, w t minimizes (5.14) with f = t 2s/(1-s) χ Bt and so w t ≥ u p on R d (otherwise w t ∧ u p would be a better competitor in (5.14) than w p ). The conclusion follows since, by the first step of the proof, w t has compact support.

The problems (5.11) and (5.10) are similar both in the questions of existence and the qualitative properties of the solutions. Moreover, u p has a compact support, hence the set {V p < +∞} is a ball of finite radius in R d .

Proof. Let us first show that the minimum in (5.19) is achieved. Let u n ∈ H 1 (R d ) be a minimizing sequence of positive functions normalized in L 2 . Note that by the Pólya-Szegö inequality we may assume that each of these functions is radially decreasing in R d and so we will use the identification u n = u n (r). In order to prove that the minimum is achieved it is enough to show that the sequence u n converges in L 2 (R d ). Indeed, since u n is a radially decreasing minimizing sequence, there exists C > 0 such that for each r > 0 we have

u n (r) 2p/(p+1) ≤ 1 |B r | Br u 2p/(p+1) n dx ≤ C r d .
Thus, for each R > 0, we obtain

B c R u 2 n dx ≤ C 1 +∞ R r -d(p+1)/p r d-1 dr = C 2 R -1/p , (5.20) 
where C 1 and C 2 do not depend on n and R. Since the sequence u n is bounded in H 1 (R d ), it converges locally in L 2 (R d ) and, by (5.20), this convergence is also strong in L 2 (R d ). Thus, we obtain the existence of a radially symmetric and decreasing solution u p of (5.19) and so, of an optimal potential V p given by (5.18). We now prove that the support of u p is a ball of finite radius. By the radial symmetry of u p we can write it in the form u p (x) = u p (|x|) = u p (r), where r = |x|. With this notation, u p satisfies the equation: , where, in the last inequality, we used the fact that u p (r) → 0, as r → ∞, and s + 1 < 2.

Integrating both sides of the above inequality, we conclude that u p has a compact support. In Figure 2 we show the case d = 1 and f = χ (-1,1) . is achieved. Indeed, for any u ∈ H 1 (R d ) and any t > 0, we define u t (x) := t d/2 u(tx). Thus, we have that u L 2 = u t L 2 , for any t > 0. Moreover, up to a rescaling, we may assume that the function g : (0, +∞) → R, defined by , where C is a constant depending on p and d. In the case u = u p , the minimum of g is achieved for t = 1 and so, we have that u p is a solution also of min 

g(t) = R d |∇u t | 2 dx + R d |u t | 2p/(p+1) dx (p+1)/p = t 2
: u ∈ H 1 (R d ), R d u 2 dx = 1 ,
and so, multiplying respectively by u + 2 and u - 2 , we obtain that λ 2 (V ) ≥ λ 1 (V + ), λ 2 (V ) ≥ λ 1 (V -), (6.4) where we have equalities, if and only if, u + 2 and u - 2 are the first eigenfunctions corresponding to λ 1 (V + ) and λ 1 (V -). Let now V + and V -be optimal potentials for λ 1 corresponding to the constraints

R d V -p + dx = R d V -p + dx, R d V -p -dx = R d V -p -dx.
By Proposition 5.6, the sets of finiteness of V + and V -are compact, hence we may assume (up to translations) that they are also disjoint. By the monotonicity of λ 1 , we have

max{λ 1 (V 1 ), λ 1 (V 2 )} ≤ max{λ 1 ( V + ), λ 1 ( V -)},
and so, we obtain λ 2 (min{V 1 , V 2 }) ≤ max{λ 1 ( V + ), λ 1 ( V -)} ≤ max{λ 1 (V + ), λ 1 (V -)} ≤ λ 2 (V ), as required. If u 2 does not change sign, then we consider V + = sup{V, ∞ {u 2 =0} } and V -= sup{V, ∞ {u 1 =0} }, where u 1 is the first eigenfunction of -∆ + V (x). Then the claim follows by the same argument as above.
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 1 where V is an admissible class of nonnegative Borel functions on the bounded open set Ω ⊂ R d and F is a cost functional on the family of capacitary measures M + cap (Ω). The admissible classes we study depend on a function Ψ : [0, +∞] → [0, +∞]
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 41 Let Ω ⊂ R d be a bounded open set and let Ψ : [0, +∞] → [0, +∞] be a function satisfying the conditions i) Ψ is strictly decreasing; ii) there exist p > 1 such that the function s → Ψ -1 (s p ) is convex.
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 1 Figure 1. The solution u p of problem (5.7), with p > 1 and f = χ B(0,1) does not have a compact support.
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  + C p u s p = λu p , where s = (p-1)/(p+1) < 1 and C p > 0 is a constant depending on p. Arguing as in Proposition 5.5, we obtain that, for r large enough,

Figure 2 .

 2 Figure 2. The solution u p of problem (5.14), with p > 1 and f = χ (-1,1) .
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 2 dx + t -d/p R d |u| 2p/(p+1) dx (p+1)/p, achieves its minimum in the interval (0, +∞) and, moreover, we have min

R d |∇u| 2

 2 dx d/(d+2p) R d |u| 2p/(p+1) dx 2(p+1)/(d+2p)

  1) dx

	where u p is the solution of the problem							
	min	1 2 R d	|∇u| 2 dx +	1 2	R d	|u| 2p/(p-1) dx	(p-1)/p	-	R d	uf dx :	(5.7)
						u ∈					
							-1/p	|u p | 2/(p-1) ,	(5.6)

  by[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Theorem 9.11] and a standard bootstrap argument on the integrability of u, we have that u is continuous on B R/2 . As a consequence, u p is locally bounded in R d . In particular, it is bounded since u p ∧ M , where M = u p L ∞ (B 1 ) , is a better competitor than u p in(5.14). Let w be a radially decreasing minimizer of (5.14) with f = χ B 1 . Thus w is a solution of the PDE -∆w + C p w s

which is just another form of (5.21).

Remark 5.8. We conclude this section with a remark about the constraint Ψ(s) = e -αs . This type of constraint may be used to approximate shape optimization problems, in which the main unknown is a domain Ω, i.e. the potential V = I Ω is the capacitary measure of Ω. To get an example of this fact we recall the problem min E f (V ) + Λ Ω e -αV dx : V ∈ B(Ω) Borel , (5.22) where Λ is a Lagrange multiplier and B(Ω) is the class of nonnegative Borel measurable functions on Ω. As before, we note that the problem (5.22) is equivalent to min

We note that if u 2 ≥ Λk, then necessarily V = 0. On the other hand, if u 2 < Λk, then by the optimality of V , we have V > 0. Finally, we get

Substituting in (5.23), we obtain the problem min

or, equivalently, min

(5.24)

Note that the second term is actually positive and so, by a standard variational argument, we have that the problem (5.24) has a solution u α ∈ H 1 0 (Ω). Moreover, on the quasi-open set u 2 > Λα, we have -∆u = f . Let J α be the functional in (5.24), i.e.

Then J α Γ-converges in L 2 (Ω), as α → 0, to the functional

6. Further remarks on the optimal potentials for spectral functionals

We recall (see [START_REF] Bucur | On the characterization of the compact embedding of Sobolev spaces[END_REF]) that the injection

) is compact whenever the potential V satisfies R d V -p dx < +∞ for some 0 < p ≤ 1. In this case the spectrum of the Schrödinger operator -∆ + V (x) is discrete and we denote by λ k (V ) its eigenvalues. The existence of an optimal potential for spectral optimization problems of the form

was proved in [START_REF] Bucur | Spectral optimization problems for potentials and measures[END_REF], for any k ∈ N and for p ∈ (0, 1). This result cannot be deduced by the direct methods used in Subsection 5.2 and is based on a combination of a concentration-compactness argument and a fine estimate on the diameter of the set of finiteness {V k < +∞} of the optimal potential V k . We note that the existence of an optimal potential in the case k > 2 and p = 1 is still an open question.

In the case k = 2 the idea from Subsection 5.2 can still be applied to prove an existence result for (6.1) and to explicitly characterize the optimal potential. We first recall that, by Proposition 5.6, there exists optimal potential V p , for λ 1 , such that the set of finiteness {V p < +∞} is a ball. Thus, we have a situation analogous to the Faber-Krahn inequality, which states that the minimum min

is achieved for the ball of measure c. We recall that, starting from (6.2), one may deduce, by a simple argument (see for instance [START_REF] Henrot | Minimization problems for eigenvalues of the Laplacian[END_REF]), the Krahn-Szegö inequality, which states that the minimum min

is achieved for a disjoint union of equal balls. In the case of potentials one can find two optimal potentials for λ 1 with disjoint sets of finiteness and then apply the argument from the proof of the Krahn-Szegö inequality. In fact, we have the following result.

Theorem 6.1. There exists an optimal potential, solution of (6.1) with k = 2 and p ∈ (0, 1]. Moreover, any optimal potential is of the form min{V 1 , V 2 }, where V 1 and V 2 are optimal potentials for λ 1 which have disjoint sets of finiteness

Proof. Given V 1 and V 2 as above, we prove that for every V :

Indeed, let u 2 be the second eigenfunction of -∆ + V (x). We first suppose that u 2 changes sign on R d and consider the functions V + = sup{V, ∞ {u 2 ≤0} } and V -= sup{V, ∞ {u 2 ≥0} } where, for any measurable A ⊂ R d , we set

We note that 1 ≥

Moreover, on the sets {u 2 > 0} and {u 2 < 0}, the following equations are satisfied: