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Phenotypically structured equations arise in population biology to describe the interaction of species with their environment that brings the nutrients. This interaction usually leads to selection of the fittest individuals. Models used in this area are highly nonlinear, and the question of long term behaviour is usually not solved. However, there is a particular class of models for which convergence to an Evolutionary Stable Distribution is proved, namely when the quasi-static assumption is made. This means that the environment, and thus the nutrient supply, reacts immediately to the population dynamics. One possible proof is based on a Total Variation bound for the appropriate quantity.

We extend this proof to several cases where the nutrient is regenerated with delay. A simple example is the chemostat with a rendering factor, then our result does not use any smallness assumption. For a more general setting, we can treat the case with a fast reaction of nutrient supply to the population dynamics.

Introduction

In population biology, long-term behaviour for phenotypically structured models is a difficult question related to interaction with environmental conditions, selection of fittest trait and lack of dissipation principles. The competitive exclusion principle is a famous general result, and states that, with a single type of 'niche' or substrate, a single trait is selected.

A typical example where this can be proved rigorously, is the chemostat model

∂ ∂t n(t, x) = n -R 0 + a(x)η x, S(t) , x ∈ R d , t ≥ 0, (1) 
d dt S(t) + R 0 S(t) = R 0 S 0 -nη x, S(t) dx. (2) 
The first equations describes the population density n(t, x) of individuals which at time t have the trait x. The substrate, whose concentration is denoted by S, is used with a trait-dependent uptake coefficient η(x, S) and a rendering factor a(x). The renewal of the reactor, with fresh nutrient S 0 , occurs with the rate R 0 . The simplest situation is when there is a unique Evolutionary Stable Distribution (ESD in short, a term coined in [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF]) which concentrates in a single Dirac mass. That means there is a unique trait x, associated with a nutrient concentration S > 0, characterized by max x a(x)η(x, S) = R 0 = a(x)η(x, S).

(

) 3 
The first equality allows to compute a unique S, assuming η is increasing with S. And the second equality gives x. Then, it is known when a ≡ 1, see [START_REF] Perthame | Transport equations in biology[END_REF], that the competitive exclusion principle can be expressed as

n(t, x) -→ t→∞ ρδ(x -x), (4) 
and we extend this result here. However, we do not know general assumptions on η n , η S which would lead to a similar result for the more general chemostat model

∂ ∂t n = n -R 0 + η n (x, S) , d dt S + R 0 S = R 0 S 0 -S nη S (x, S) dx.
A general method is to use a Lyapunov functional (entropy) but this requires a particular structure on the system, [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF][START_REF] Champagnat | Convergence to equilibrium in competitive lotkavolterra equations and chemostat systems[END_REF][START_REF] Mirrahimi | Direct competition results from strong competition for limited resource[END_REF]. The laws for nutrient delivery and consumption may differ for other models [START_REF] Sterner | Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[END_REF][START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF], but similar questions still arise. A 'generic' mathematical model, which contains (1)-(2) as a particular case, can be written as

∂ t n(t, x) = n R x, S(t) , x ∈ R d , t ≥ 0, (5) 
β d dt S(t) = Q S(t), ρ(t) , (6) 
ρ(t) := n(t, x) dx. (7) 
Here R(x, S) denotes a generic trait-dependent birth-death rate, S is still the nutrient concentration and ρ(t) a measure of the pressure exerted by the total population for nutrient consumption with rate Q. The parameter β, which obviously could be included in Q is used here for a simple mathematical purpose. It gives a time scale which, in the limit β = 0, just gives 0 = Q S(t), ρ(t) . Under suitable assumptions, this equation can be inverted in S = q(ρ). In this case, the long term selection of the ESD, (4), is known to hold [START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF][START_REF] Azmy | Rate distributions and survival of the fittest: a formulation on the space of measures[END_REF].

Our aim is to prove the same convergence result to an ESD, (4), when β is small. Section 3 is devoted to prove the result and a precise statement is given in the Theorem 3.1. In order to make the proof more intuitive, we begin with the simpler case of the chemostat system (1)-(2); this is developed in Section 2.

The chemostat with rendering factor

The model of the chemostat with a rendering factor is defined by the system (1)-( 2). We complete it with initial data n 0 (x), S 0 that satisfy

0 < S 0 ≤ S 0 , n 0 (x) > 0 ∀x ∈ R d , n 0 ∈ L 1 (R d ). ( 8 
)
We recall that the notation

ρ(t) = R d n(t, x)dx.
In order to analyze the long term behaviour, we need assumptions on the problem parameters and coefficients. Namely, we need to ensure first non-extinction which follows from the assumptions

η(x, S 0 ) > R 0 , η(x, 0) = 0, ∀x ∈ R d . (9) 
Next, it is intuitive to assume that, the more nutrient available, the higher the growth rate

0 < K η ≤ η S (x, S) ≤ K η , ∀x ∈ R d , ∀S ∈ (0, S 0 ). (10) 
For the rendering factor, based on a biological interpretation, it is usually assumed that a(x) ≤ 1 but here we only use that for some constants a m , a M > 0

0 < a m < a(x) ≤ a M . (11) 
Then, we have the following generalization of the case a ≡ 1 which is treated in [START_REF] Perthame | Transport equations in biology[END_REF].

Theorem 2.1 With assumptions (8)- [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], there are constants ρ m , ρ M , such that

0 < ρ m < ρ(t) ≤ ρ M , 0 < S(t) ≤ S 0 .
Assuming also (3), as t → ∞,

S(t) → S, ρ(t) → ρ > 0, n(t, x) ⇀ ρδ(x -x).
Proof. 1st

Step. A conserved quantity. For future use, we define

u(t) = n(t, x) a(x) dx + S(t) -S 0 , J := d dt n(t, x) a(x) dx. (12) 
Dividing equation ( 1) by a, integrating and adding equation ( 2), we obtain

d dt u(t) + R 0 u(t) = 0. It follows that u(t) = u(0)e -R 0 t , d dt u(t) = -R 0 u(0)e -R 0 t = J + dS dt . ( 13 
)
The a priori bounds follow easily. Because n > 0, we find S ≤ S 0 and because η(x, 0) = 0 from assumption (9), we find S > 0. For an upper bound on ρ, we use that u(t) is bounded and assumption [START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF]. We find

ρ(t) a M ≤ n(t, x) a(x) dx ≤ max u(t) + S 0 .
The lower bound ρ m can be derived in the same way, using a m .

2nd

Step. BV Estimates of n(t,x) a(x) dx. Then, we can apply the argument in [START_REF] Perthame | Transport equations in biology[END_REF] which we recall now. Using the definition of J in ( 12), we have, using [START_REF] Perthame | Transport equations in biology[END_REF],

d dt J = n a -R 0 + a(x)η(x, S(t)) 2 dx + dS dt nη S (x, S(t)) dx ≥ dS dt nη S (x, S(t)) dx = -R 0 u(0)e -R 0 t -J nη S dx.
We define the negative part of J by J -= max(0, -J). Then, we obtain

d dt J -+ J -nη S dx ≤ R 0 |u(0)|ρ M K η e -R 0 t , d dt J -+ ρ m K η J -≤ R 0 |u(0)|ρ M K η e -R 0 t .
This proves that J -(t) ≤ J -(0)e -νt with ν = min(R 0 , ρ m K η ). Therefore J -∈ L 1 (0, ∞), and because J is bounded, we obtain that J ∈ L 1 (0, ∞). Therefore, J has bounded variations and lim t→∞ n(t,x) a(x) dx exists. Because u(t) converges to 0, we conclude that S(t) has a limit

S(t) -→ t→∞ S ∞ . 3rd
Step. The limits. At this stage we can identify S ∞ . This is done with the usual arguments in the field [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF]. From the equation ( 1), and the bounds on ρ, we immediately conclude that the growth rate should vanish on the long term, that is written max x [R 0a(x)η(x, S ∞ )] = 0. By monotony in S of η, this tells us that S ∞ = S and that n(t, x) concentrates as a Dirac mass at the point x where this maximum is achieved. This identifies completely the limits. From the limit of S(t) and u(t), we know that n(t,x) a(x) dx converges to S 0 -S. And from the concentration at x, we conclude that ρ(t) = n(t, x)dx converges to a(x)(S 0 -S).

The Theorem 2.1 is proved.

The general setting

In the general setting of the system ( 5)-( 7), the same proof does not apply per se. This is because we do not dispose of a quantity, as u(t) in the previous proof, which is easy to control and brings us back to the quasi-steady state where S is a function of ρ. For this reason, we need a smallness condition which is well expressed in terms of β. With this condition, we can build a quantity which belongs to BV (0, ∞), as J(t) in the previous proof.

Assumptions and main result

We complete the system ( 5)-( 7) with initial conditions S 0 , n 0 , which are compatible with some invariant region of interest

S m < S 0 < S 0 , n 0 (x) > 0, ∀x ∈ R d , n 0 ∈ L 1 (R d ), (14) 
(see the definition of S m and S 0 in the assumptions below, this assumption for S 0 is made to simplify the statements and can be seen as a generalization of those for the chemostat in Section 2).

Next, for the Lipschitz continuous functions R and Q, we assume that there are constants S 0 > 0,

K Q > 0... such that Q(0, ρ) > 0, Q(S 0 , ρ) ≤ 0, ∀ρ ≥ 0, Q S (S, ρ) ≤ -K Q , Q ρ (S, ρ) ≤ -K Q , ( 15 
) 0 < K 1 ≤ R S (x, S) ≤ K 1 , (16) 
sup

0≤S≤S 0 R(•, S) W 2,∞ (R d ) ≤ K 2 . ( 17 
)
Note that from assumption [START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF], we directly obtain the bounds

n(t, x) > 0, 0 < S(t) ≤ S 0 . (18) 
With these assumptions, the smallness condition on β can be written as

min 0 ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 |Q S | |Q ρ | ≥ 4β max 0 ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 K 1 ρ M |Q S | (19) 
(see the definition of ρ M , S m below, which only depends on the assumptions above). where the value S m < S 0 is defined by Q(S m , ρ M ) = 0 and this exists thanks to the assumption [START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF].

Assuming also (19), ρ 2 (t) has bounded total variation. Consequently, there are limits

0 ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 S(t)-→ S, ρ(t)-→ρ, as t → ∞, and 
Q(ρ, S) = 0, R(x, S) ≤ 0 ∀x ∈ R d .
As for the chemostat, the solution can go extinct, that means ρ = 0. When ρ > 0, from the usual methodology developed in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF], we can also conclude that

0 = max x R(x, S).
And, the population density n(t) concentrates on the maximum points of R(•, S). For instance, with the additional assumption that there is a single x ∈ R d such that

R(x, S) = 0 = max x R(x, S), (20) 
we have, in the sense of measures, n(t, x) -→ ρδ(x -x), that is a monomorphic population in the language of adaptive dynamics [START_REF] Diekmann | A beginner's guide to adaptive dynamics[END_REF][START_REF] Cressman | Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics[END_REF][START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF]. The end of this section is devoted to prove Theorem 3.1. This requires to adapt the method introduced in [13, 2, 14] which is to prove that ρ(t) has a bounded Total Variation. This method works well in the quasi-static case, that is β = 0. The adaptation is not as direct as one could think in view of Section 2.

An upper bound for ρ

This step is not as simple as usual. Integrating the equation ( 5) with respect to x, yields that

d dt ρ ≤ ρ(K 2 + K 1 S), d dt ln ρ ≤ K 2 + K 1 S 0 .
Because, from our assumptions on Q, there are constants such that Q(S, ρ) ≤ -K 3 ρ + K 4 , adding equation ( 6) we obtain the inequality

d dt (ln ρ + βS) ≤ K 2 + K 1 S 0 + K 4 -K 3 ρ ≤ K 2 + K 1 S 0 + K 4 - K 3 e βS 0 e ln ρ+βS .
Therefore, for C 2 the root in ln ρ + βS of the right hand side, we have the bound

ln ρ ≤ ln ρ + βS ≤ max(ln ρ 0 + βS 0 , C 2 ).
This directly gives an upper bound ρ M for ρ(t).

From this upper bound, we obtain the lower bound on S(t) because

β d dt S(t) = Q S(t), ρ(t) ≥ Q S(t), ρ M
and it is enough to use again [START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF] and the condition on the initial data (14).

BV estimates

Our next goal is to find a quantity which converges as t → ∞. This step is crucial and we introduce a new idea which allows us to conclude.

1st step. Equations on J := Ṡ and P := ρ. With these definitions, from equations ( 5) and ( 6), we can write

P = nR dx, βJ = Q. ( 21 
)
With the definitions

0 < K 1 ρ(t) ≤ α(t) := nR S dx ≤ K 1 ρ M , γ(t) := nR 2 dx, (22) 
differentiating both equations on n and S, we obtain

Ṗ = J nR S dx + n t R dx = α(t)J + γ(t), (23) 
β J = Q S J + Q ρ P. ( 24 
)
2nd step. Bound on a linear combination of P and J. Now we consider a linear combination of P and J, where µ(t) is a function to be determined later. We write

d dt (P + βµJ) = αJ + β μJ + µ(Q S J + Q ρ P ) + γ = µQ ρ (P + βµJ) + (β μ -βQ ρ µ 2 + µQ S + α)J + γ. ( 25 
)
We choose a function µ(t) such that the second parenthesis in the above equation is zero. In other words, µ(t) solves the differential equation

β μ = -β|Q ρ |µ 2 + µ|Q S | -α. ( 26 
)
Because the solution might blow-up to -∞ in finite time, we first check that we can find a solution µ(t) > 0 of (26) for all times. To do so, we notice that the zeroes of -β|Q ρ |µ 2 + µ|Q S |α are

µ ± (t) := 1 2β|Q ρ | |Q S | ± Q 2 S -4αβ|Q ρ | .
With assumptions ( 15) and ( 19), both zeros are real positive.

We are going to find two constants 0 < µ m < µ M such that, choosing initially µ m < µ(0) < µ M , then we have for all times

0 < µ m ≤ µ(t) ≤ µ M := 1 β max ρ m ≤ ρ ≤ ρ M , S m ≤ S ≤ S 0 |Q S | |Q ρ | , (27) 
and µ m defined by the condition

max t µ -(t) ≤ µ m := min t µ + (t). (28) 
We first show how to enforce the inequality (28). We use that, for 0 ≤ x ≤ 1, the concavity inequality holds:

√ 1 -x ≥ 1 -x, and compute µ -(t) ≤ 2 α(t) |Q S | ≤ 2 K 1 ρ M |Q S | , µ + (t) ≥ |Q S | β|Q ρ | 1 -2 αβ|Q ρ | |Q S | 2 ≥ |Q S | β|Q ρ | -2 K 1 ρ M |Q S | .
The condition ( 19) is enough to obtain the inequality (28).

The lower bound in (27), is because the condition (28) imposes µ m ∈ (µ -(t), µ + (t)) and thus

β|Q ρ |µ 2 m + µ m |Q S | -α ≥ 0 for all t ≥ 0.
For the upper bound in (27), we use the inequality √ 1x ≤ 1 -x 2 and we obtain

µ + < |Q S | 2β|Q ρ | 2 -2αβ |Q ρ | |Q S | 2 ≤ |Q S | β|Q ρ | ≤ µ M .
With this choice of µ(t) and coming back to equation (25), we arrive to

d dt (P + βµJ) ≥ -µ |Q ρ | (P + βµJ),
and we conclude that

P (t) + βµ(t)J(t) -≤ P (0) + βµ(0)J(0) -e -K Q µmt , ∀t ≥ 0. ( 29 
)
3rd step. L 1 -bound on P . From the above inequality, we wish to prove that P (t) is integrable on the half-line. Adding α P βµ to (23), we find the ODE

d dt P + α P βµ = α J + P βµ + γ ≥ -α J + P βµ - .
Taking negative parts, we obtain the inequality

d dt P -+ α P - βµ ≤ α J + P βµ - ,
and, because P is bounded, for some constant

C ∞ 0 α(t)P -(t)dt ≤ C.
With the lower bound on α in (22), we conclude that

K 1 ρ d dt ρ - dx = K 1 2 d dt ρ 2 - dx ≤ C 2 .
and because ρ(t) is bounded, we finally find that d dt ρ 2 is bounded in L 1 (0, ∞), therefore ρ 2 has a limit for t → ∞ and ρ has a limit ρ 4th step. Conclusion. Since ρ(t) has a long term limit ρ, the stability assumption for Q, more precisely Q S < 0 in [START_REF] Smith | The theory of the chemostat: dynamics of microbial competition[END_REF], shows S(t) also has a limit S and Q(ρ, S) = 0. As usual, [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Desvillettes | On mutation-selection dynamics for continuous structured populations[END_REF], we can conclude that R(x, S) ≤ 0 for all x. Otherwise n(t, x) would have an exponential growth for x in an open set, which would imply exponential growth for large times, a contradiction with the upper bound on ρ(t). This gives the statements of the Theorem 3.1.

Numerical considerations

For β large, we could expect that the system could become unstable and that solutions can be periodic. This is the case for inhibitory integrate-and-fire models, these are pdes describing neural networks, with strong relaxation properties to a steady state. It is well-known, see [START_REF] Brunel | Fast global oscillations in networks of integrate-and-fire neurons with low firing rates[END_REF] for instance, that delays can generate a spontaneous activity i.e. periodic solutions. However, we did not observe such a behaviour in numerical simulations we conducted. This is confirmed by the stability analysis of a simplified equation.

The numerics have been performed in Matlab with parameters as follows. As initial data we use S(t = 0) = 5 and n(t = 0) = C mass e -200(x-0.5) 2 where C mass is chosen such that the initial mass in the computational domain is equal to 5. We set R := 20(-0.6 + 0.2S -(x -.5) 2 ) and Q(ρ, S) := 8.5 -(0.5 + ρ)S. The equation is solved by an implicit-explicit finite-difference method on grid consisting of 1000 points (time step dt = 4 • 10 -4 ). The plot shows oscillations of ρ(t) and I(t). Moreover, numerically it seems that ∞ 0 | ρ| dt is bounded. where

v = Q J , A = 0 -α 1 -1 , b = nR 2 dx 0 . (31) 
For β small A has real eigenvalues whereas for β large, it has complex eigenvalues. Therefore our method cannot work for β large. One direction to extend the result would be to work directly on the system (23)-( 21).

Perspectives and open questions

We have proved long term convergence to an ESD for a general model of a chemostat where the nurient delivery does not react immediately to the population dynamics. Our proof extends the proof based on Total Variation bounds developed in [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] and uses a fast (but not infinite) nutrient production measured by the small parameter β.

Surprisingly, the proof does not seem to give directly uniform TV bounds for β ≈ 0. It does not seem to be possible with this approach to prove uniform bounds for the full range β ∈ [0, β 0 ] for some small β 0 , which could be a first step to prove uniform convergence of S(t) for t ∈ [0, ∞] as β → 0.

There are several related problems which, usually, can be approached with the same method. One of them is the rare mutations/long term behaviour described by the following extension of ( 5)-( 7)

       ε∂ t n ε (t, x) -ε 2 ∆n ε = n ε R(x, S ε (t)),
x ∈ R d , t ≥ 0, εβ d dt S ε (t) = Q S ε (t), ρ ε (t) , ρ ε (t) := n ε (t, x) dx, which can be treated using the constrained Hamilton-Jacobi approach [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Barles | Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF], provided some strong compactness is proved as e.g. TV bounds which are uniform in ε.

From the modelling side, the TV bounds giving long term behaviour is not known in several examples of chemostat systems. An example is the quasi-stationary case with general uptake rate and rendering factor, ∂ t n = nR(x, S), S + η(x, S)n(x) dx = S 0 .

Theorem 3 . 1

 31 With assumptions (14)-(17), there is a constant ρ M such that ρ(t) ≤ ρ M , and S m ≤ S(t),
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 31 Figure 3.1: Dynamics of ρ ( ) and I (----).
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