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ON THE MASS OF THE EXTERIOR BLOW-UP POINTS.

SAMY SKANDER BAHOURA

ABSTRACT. We consider the following problem on open set Ω of R2:

{

−∆ui = Vie
ui in Ω ⊂ R

2,

ui = 0 in ∂Ω.

We assume that :

∫

Ω

euidy ≤ C,

and,

0 ≤ Vi ≤ b < +∞

On the other hand, if we assume that Vi s−holderian with 1/2 < s ≤ 1, then, each exterior

blow-up point is simple. As application, we have a compactness result for the case when:

∫

Ω

Vie
uidy ≤ 40π − ǫ, ǫ > 0

1. INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂11 + ∂22 on open set Ω of R2 with a smooth boundary.

We consider the following problem on Ω ⊂ R
2:

(P )

{

−∆ui = Vie
ui in Ω ⊂ R

2,

ui = 0 in ∂Ω.

We assume that,

∫

Ω

euidy ≤ C,

and,

0 ≤ Vi ≤ b < +∞

The previous equation is called, the Prescribed Scalar Curvature equation, in relation with

conformal change of metrics. The function Vi is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of this type were studied by many authors, see [5-8, 10-15]. We can see in [5],

different results for the solutions of those type of equations with or without boundaries conditions

and, with minimal conditions on V , for example we suppose Vi ≥ 0 and Vi ∈ Lp(Ω) or Vie
ui ∈

Lp(Ω) with p ∈ [1,+∞].
Among other results, we can see in [5], the following important Theorem,

Theorem A (Brezis-Merle [5]).If (ui)i and (Vi)i are two sequences of functions relatively to

the previous problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact set K of Ω,

sup
K

ui ≤ c = c(a, b,m,K,Ω) if inf
Ω

ui ≥ m.

A simple consequence of this theorem is that, if we assume ui = 0 on ∂Ω then, the sequence

(ui)i is locally uniformly bounded. We can find in [5] an interior estimate if we assume a = 0,

but we need an assumption on the integral of eui , precisely, we have in [5]:
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Theorem B (Brezis-Merle [5]).If (ui)i and (Vi)i are two sequences of functions relatively to

the previous problem (P ) with, 0 ≤ Vi ≤ b < +∞, and,

∫

Ω

euidy ≤ C,

then, for all compact set K of Ω,

sup
K

ui ≤ c = c(b, C,K,Ω).

If, we assume V with more regularity, we can have another type of estimates, sup+ inf . It

was proved, by Shafrir, see [13], that, if (ui)i, (Vi)i are two sequences of functions solutions of

the previous equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then

we have the following interior estimate:

C
(a

b

)

sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

We can see in [7], an explicit value of C
(a

b

)

=

√

a

b
. In his proof, Shafrir has used the Stokes

formula and an isoperimetric inequality, see [3]. For Chen-Lin, they have used the blow-up

analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (Vi)i uniformly Lipschitzian withA the Lipschitz constant, then, C(a/b) =
1 and c = c(a, b, A,K,Ω), see Brézis-Li-Shafrir [4]. This result was extended for Hölderian

sequences (Vi)i by Chen-Lin, see [7]. Also, we can see in [10], an extension of the Brezis-

Li-Shafrir to compact Riemann surface without boundary. We can see in [11] explicit form,

(8πm,m ∈ N
∗ exactly), for the numbers in front of the Dirac masses, when the solutions blow-

up. Here, the notion of isolated blow-up point is used. Also, we can see in [14] refined estimates

near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

We have in [15]:

Theorem C (Wolansky.G.[15]). If (ui) and (Vi) are two sequences of functions solutions of

the problem (P ) without the boundary condition, with,

0 ≤ Vi ≤ b < +∞,

||∇Vi||L∞(Ω) ≤ C1,

∫

Ω

euidy ≤ C2,

and,

sup
∂Ω

ui − inf
∂Ω

ui ≤ C3,

the last condition replace the boundary condition.

We assume that (iii) holds in the theorem 3 of [5], then, in the sense of the distributions:

Vie
ui →

m
∑

j=0

8πδxj
.

in other words, we have:

αj = 8π, j = 0 . . .m,

in (iii) of the theorem 3 of [5].

To understand the notations, it is interessant to take a look to a previous prints on arXiv, see

[1] and [2].

Our main results are:
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Theorem 1. Assume that, Vi is uniformly s−holderian with 1/2 < s ≤ 1, and that :

max
Ω

ui → +∞.

Then, each exterior blow-up point is simple.

There are m blow-ups points on the boundary (perhaps the same) such that:

∫

B(xj
i ,δ

j
i ǫ

′)

Vi(x
j
i + δji y)e

ui → 8π.

and,

∫

Ω

Vie
ui →

∫

Ω

V eu +

m
∑

j=1

8πδxj
.

and,

Theorem 2. Assume that, Vi is uniformly s−holderian with 1/2 < s ≤ 1, and,

∫

B1(0)

Vie
uidy ≤ 40π − ǫ, ǫ > 0,

then we have:

sup
Ω

ui ≤ c = c(b, C,A, s,Ω).

where A is the holderian constant of Vi.

2. PROOF OF THE RESULT:

Proof of the theorem 1:

Let’s consider the following function on the ball of center 0 and radius 1/2; And let us consider

ǫ > 0

vi(y) = ui(xi + δiy) + 2 log δi, y ∈ B(0, 1/2)

This function is solution of the following equation:

−∆vi = Vi(xi + δiy)e
vi , y ∈ B(0, 1/2)

The function vi satisfy the following inequality (without loss of generality):

sup
∂B(0,1/4)

vi − inf
∂B(0,1/4)

vi ≤ C,

Let us consider the following functions:

{

−∆vi0 = 0 in B(0, 1/4)

vi0 = ui(xi + δiy) on ∂B(0, 1/4).

By the elliptic estimates we have:

vi0 ∈ C2(B̄(0, 1/4)).

We can write:

−∆(vi − vi0) = Vi(xi + δiy)e
vi
0evi−vi

0 = K1K2e
vi−vi

0 ,

With this notations, we have:

||∇(vi − vi0)||Lq(B(0,ǫ)) ≤ Cq.

vi − vi0 → G in W 1,q
0 ,

And, because, for ǫ > 0 small enough:
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||∇G||Lq(B(0,ǫ)) ≤ ǫ′ << 1,

We have, for ǫ > 0 small enough:

||∇(vi − vi0)||Lq(B(0,ǫ)) ≤ 2ǫ′ << 1.

and,

||∇vi||Lq(B(0,ǫ)) ≤ 3ǫ′ << 1.

Set,

u = vi − vi0, z1 = 0,

Then,

−∆u = K1K2e
u, in B(0, 1/4),

and,

osc(u) = 0.

We use Woalnsky’s theorem, see [15]. In fact K2 is a C1 function uniformly bounded and K1

is s-holderian with 1/2 < s ≤ 1. Because we take the logarithm in K , the part which contain K2

have similar proof as in this paper we use the Stokes formula. Only the case of K1 s-holderian

is difficult. For this and without loss of generality, we can assume the K = K1 = Vi(xi + δiy).
We set:

∆ũ = ∆vi = ρ = −Keũ = −K1e
vi

Let us consider the following term of Wolansky computations:

∫

Bǫ

div((z − z1)ρ) logK +

∫

∂Bǫ

(< (z − z1)|ν > ρ) logK,

First, we write:

∫

Bǫ

div((z − z1)ρ) logK = 2

∫

Bǫ

ρ logK +

∫

Bǫ

< (z − z1)|∇ρ) logK

which we can write as:

−

∫

Bǫ

div((z−z1)ρ) logK = 2

∫

Bǫ

K logKeu+

∫

Bǫ

< (z−z1)|∇u > K logKeu+

∫

Bǫ

< (z−z1)|(∇K) logK > eu,

We can write:

∇(K(logK)−K) = (∇K)(logK)

Thus, and by integration by part we have:

∫

Bǫ

< (z − z1)|(∇K) logK > eu =

∫

Bǫ

< (z − z1)|(∇(K logK −K)) > eu =

=

∫

∂Bǫ

< (z−z1)|ν > (K logK−K)eu−2

∫

Bǫ

(K logK−K)eu−

∫

Bǫ

< (z−z1)|∇u > (K logK−K)eu

Thus,

−(

∫

Bǫ

div((z − z1)ρ) logK +

∫

∂Bǫ

(< (z − z1)|ν > ρ) logK) =

= −

∫

∂Bǫ

< (z − z1)|ν > Keu +

∫

Bǫ

< (z − z1)|∇u > Keu + 2

∫

Bǫ

Keu

But, we can write the following,
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∫

Bǫ

< (z−z1)|∇u > Keu =

∫

Bǫ

< (z−z1)|∇u > (K−K(z1))e
u+K(z1)

∫

Bǫ

< (z−z1)|∇u > eu,

and, after integration by parts:

K(z1)

∫

Bǫ

< (z − z1)|∇u > eu = K(z1)

∫

∂Bǫ

< (z − z1)|ν > eu − 2K(z1)

∫

Bǫ

eu,

Finaly, we have, for the Wolansky term:

∫

Bǫ

div((z − z1)ρ) logK +

∫

∂Bǫ

(< (z − z1)|ν > ρ) logK =

=

∫

Bǫ

< (z − z1)|∇u > (K −K(z1))e
u +

(

2

∫

Bǫ

(K −K(z1))e
u

)

+

+

(
∫

∂Bǫ

< (z − z1)|ν > (K(z1)−K)eu
)

But, we have soon that if K is s−holderian with 1 ≥ s > 1/2, around each exteriror blow-up

we have, the following estimate:

∫

Bǫ

< (z − z1)|∇u > (K −K(z1))e
u =

=

∫

B(0,ǫ)

< (y − z1)|∇vi > (Vi(xi + δiy)− Vi(xi))e
vidy =

=

∫

B(xi,δiǫ)

< (x− xi)|∇ui > (Vi(x) − Vi(xi))e
uidy = o(1)Mǫ

= o(1)

∫

B(xi,δiǫ)

Vie
ui = o(1)

∫

Bǫ

Keu,

Thus,

∫

Bǫ

div((z − z1)ρ) logK +

∫

∂Bǫ

(< (z − z1)|ν > ρ) logK = o(1)Mǫ = o(1)

∫

Bǫ

Keu

We argue by contradiction and we suppose that we have around the exterior blow-up point 2

or 3 blow-up points, for example. We prove, as in a previous paper, that, the last quantity tends

to 0. But according to Wolansky paper, see [15]:

∫

Bǫ

Vi(xi + δiy)e
vi → 8π.

Around each exterior blow-up points, there is one blow-up point.

Consider the following quantity:

Bi =

∫

B(xi,δiǫ)

< (x− xi)|∇ui > (Vi(x) − Vi(xi))e
uidy.

Suppose that, we have m > 0 interior blow-up points. Consider the blow-up point tki and the

associed set Ωk defined as the set of the points nearest tki we use step by step triangles which are

nearest xi and we take the mediatrices of those triangles.

Ωk = {x ∈ B(xi, δiǫ), |x− tki | ≤ |x− tji |, j 6= k},

we write:

Bi =

m
∑

k=1

∫

Ωk

< (x− xi)|∇ui > (Vi(x)− Vi(xi))e
uidy.

We set,

Bk
i =

∫

Ωk

< (x− xi)|∇ui > (Vi(x) − Vi(xi))e
uidy,
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We divide this integral in 4 integrals:

Bk
i =

∫

Ωk

< (x−tki )|∇ui > (Vi(x)−Vi(xi))e
uidy+

∫

Ωk

< (tki−xi)|∇ui > (Vi(x)−Vi(xi))e
uidy =

=

∫

Ωk

< (x−tki )|∇ui > (Vi(x)−Vi(t
k
i ))e

uidy+

∫

Ωk

< (x−tki )|∇ui > (Vi(t
k
i )−Vi(xi))e

uidy+

+

∫

Ωk

< (tki−xi)|∇ui > (Vi(x)−Vi(t
k
i ))e

uidy+

∫

Ωk

< (tki−xi)|∇ui > (Vi(t
k
i )−Vi(xi))e

uidy,

We set:

A1 =

∫

Ωk

< (x − tki )|∇ui > (Vi(x) − Vi(t
k
i ))e

uidy,

A2 =

∫

Ωk

< (x− tki )|∇ui > (Vi(t
k
i )− Vi(xi))e

uidy,

A3 =

∫

Ωk

< (tki − xi)|∇ui > (Vi(x)− Vi(t
k
i ))e

uidy,

A4 =

∫

Ωk

< (tki − xi)|∇ui > (Vi(t
k
i )− Vi(xi))e

uidy.

For A1 and A2 we use the fact that in Ωk we have:

ui(x) + 2 log |x− tki | ≤ C,

to conclude that for 0 < s ≤ 1:

A1 = A2 = o(1),

we have integrals of the form:

A′
1 =

∫

Ωk

|∇ui|e
(1/2−s/2)uidy = o(1),

and,

A′
2 =

∫

Ωk

|∇ui|e
(1/2−s/4)uidy = o(1).

For A3 we use the previous fact and the sup+ inf inequality to conclude that for 1/2 < s ≤ 1:

A3 = o(1)

because we have an integral of the form:

A′
3 =

∫

Ωk

|∇ui|e
(3/4−s/2)uidy = o(1).

For A4 we use integration by part to have:

A4 =

∫

∂Ωk

< (tki − xi)|ν > (Vi(t
k
i )− Vi(xi))e

uidy.

But, the boundary of Ωk is the union of parts of mediatrices of segments linked to tki . Let’s

consider a point tji linked to tki and denote Di,j,k the mediatrice of the segment (tji , t
k
i ), which

is in the boundary of Ωk. Note that this mediatrice is in the boundary of Ωj and the same

decompostion for Ωj gives us the following term:

A′
4 = −

∫

Di,j,k

< (tji − xi)|ν > (Vi(t
j
i )− Vi(xi))e

uidy.

Thus, we have to estimate the sum of the 2 following terms:
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A5 =

∫

Di,j,k

< (tki − xi)|ν > (Vi(t
k
i )− Vi(xi))e

uidy.

and,

A6 = A′
4 = −

∫

Di,j,k

< (tji − xi)|ν > (Vi(t
j
i )− Vi(xi))e

uidy.

We can write them as follows:

A5 =

∫

Di,j,k

< (x−xi)|ν > (Vi(t
k
i )−Vi(xi))e

uidy+

∫

Di,j,k

< (tki−x)|ν > (Vi(t
k
i )−Vi(xi))e

uidy.

and,

A6 = −

∫

Di,j,k

< (x−xi)|ν > (Vi(t
j
i )−Vi(xi))e

uidy−

∫

Di,j,k

< (tji−x)|ν > (Vi(t
j
i )−Vi(xi))e

uidy.

We can write:

∫

Di,j,k

< (x−xi)|ν > (Vi(t
k
i )−Vi(xi))e

uidy−

∫

Di,j,k

< (x−xi)|ν > (Vi(t
j
i )−Vi(xi))e

uidy =

=

∫

Di,j,k

< (x − xi)|ν > (Vi(t
k
i )− Vi(x

j
i ))e

uidy = o(1),

for 1/2 < s ≤ 1. Because, we do integration on the mediatrice of (tji , t
k
i ), |x− tji | = |x− tki |,

and:

|Vi(t
k
i )− Vi(x

j
i )| ≤ 2A|x− tki |

s

ui(x) + 2 log |x− tki | ≤ C,

and,

|x− xi| ≤ δiǫ,

To estimate the integral of the following term:

e(3/4−s/2)ui ≤ Cr(−3/2+s),

which is intgrable and tends to 0, for 1/2 < s ≤ 1, because we are on the ball B(xi, δiǫ).
In other part, for the term:

∫

Di,j,k

< (tki −x)|ν > (Vi(t
k
i )−Vi(xi))e

uidy−

∫

Di,j,k

< (tji −x)|ν > (Vi(t
j
i )−Vi(xi))e

uidy.

We use the fact that, on Di,j,k:

|x− tji | = |x− tki |,

ui(x) + 2 log |x− tki | ≤ C,

|Vi(t
k
i )− Vi(xi)| ≤ 2A|xi − tki |

s ≤ δsi ,

and,

|Vi(t
j
i )− Vi(xi)| ≤ 2A|xi − tji |

s ≤ δsi ,

To estimate the integral of the following term:

e(1/2−s/4)ui ≤ Cr(−1+s/2),

which is intgrable and tends to 0, because we are on the ball B(xi, δiǫ).
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Thus,

Bi = o(1),

Proof of the theorem 2:

Next, we use the formulation of the case of three blow-up points, see [2]. Because the blow-

ups points are simple, we can consider the following function:

vi(θ) = ui(xi + riθ)− ui(xi),

where ri is such that:

ri = e−ui(xi)/2,

∫

Bǫ

Vi(xi + δiy)e
vi → 8π.

ui(xi + riθ) =

∫

Ω

G(xi + riθ, y)Vi(y)e
ui(y)dx =

=

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy +

∫

B(xi,2δiǫ′)

G(xi + riθ, y)Vie
ui(y)dy =

We write, y = xi + riθ̃, with |θ̃| ≤ 2
δi
ri
ǫ′,

ui(xi + riθ) =

∫

B(0,2
δi
ri

ǫ′)

1

2π
log

|1− (x̄i + riθ̄)(xi + riθ̃)|

ri|θ − θ̃|
Vie

ui(y)r2i dy+

+

∫

Ω−B(xi,2δiǫ′)

G(xi + riθ, y)Vie
ui(y)dy

ui(xi) =

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy +

∫

B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy

Hence,

ui(xi) =

∫

B(0,2
δi
ri

ǫ′)

1

2π
log

|1− x̄i(xi + riθ̃)|

ri|θ̃|
Vie

ui(y)r2i dy+

+

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy

We look to the difference,

vi(θ) = ui(xi + riθ)− ui(xi) =

∫

B(0,2
δi
ri

ǫ′)

1

2π
log

|θ̃|

|θ − θ̃|
Vie

ui(y)r2i dy + h1 + h2,

where,

h1(θ) =

∫

Ω−B(xi,2δiǫ′)

G(xi + riθ, y)Vie
ui(y)dy −

∫

Ω−B(xi,2δiǫ′)

G(xi, y)Vie
ui(y)dy,

and,

h2(θ) =

∫

B(0,2δiǫ′)

1

2π
log

|1− (x̄i + riθ̄)y|

|1− x̄iy|
Vie

ui(y)dy.

Remark that, h1 and h2 are two harmonic functions, uniformly bounded.

According to the maximum principle, the harmonic functionG(xi+riθ, .) on Ω−B(xi, 2δiǫ
′)

take its maximum on the boundary of B(xi, 2δiǫ
′), we can compute this maximum:

G(xi+riθ, yi) =
1

2π
log

|1− (x̄i + riθ̄)yi|

|xi + riθ − yi|
≃

1

2π
log

(|1 + |xi|)δi − δi(3ǫ
′ + o(1))|

δiǫ′
≤ Cǫ′ < +∞
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with yi = xi + 2δiθiǫ
′, |θi| = 1, and |riθ| ≤ δiǫ

′.

We can remark, for |θ| ≤
δiǫ

′

ri
, that vi is such that:

vi = h1 + h2 +

∫

B(0,2
δi
ri

ǫ′)

1

2π
log

|θ̃|

|θ − θ̃|
Vie

ui(y)r2i dy,

vi = h1 + h2 +

∫

B(0,2
δi
ri

ǫ′)

1

2π
log

|θ̃|

|θ − θ̃|
Vi(xi + riθ̃)e

vi(θ̃)dθ̃,

with h1 and h2, the two uniformly bounded harmonic functions.

Remark: In the case of 2 or 3 or 4 blow-up points, and if we consider the half ball, we have

supplemntary terms, around the 2 other blow-up terms. Note that the Green function of the half

ball is quasi-similar to the one of the unit ball and our computations are the same if we consider

the half ball.

By the asymptotic estimates of Cheng-Lin, we can see that, we have the following uniform

estimates at infinity. We have, after considering the half ball and its Green function, the following

estimates:

∀ ǫ > 0, ǫ′ > 0 ∃ kǫ,ǫ′ ∈ R+, iǫ,ǫ′ ∈ N and Cǫ,ǫ′ > 0, such that, for i ≥ iǫ,ǫ′ and kǫ,ǫ′ ≤

|θ| ≤
δiǫ

′

ri
,

(−4− ǫ) log |θ| − Cǫ,ǫ′ ≤ vi(θ) ≤ (−4 + ǫ) log |θ|+ Cǫ,ǫ′ ,

and,

∂jvi ≃ ∂ju0(θ)±
ǫ

|θ|
+ C

(

ri
δi

)2

|θ|+m×

(

ri
δi

)

+

+

m
∑

k=2

C1

(

ri

d(xi, xk
i )

)

,

In the case, we have:

d(xi, x
k
i )

δi
→ +∞ for k = 2 . . .m,

We have after using the previous term of the Pohozaev identity, for 1/2 < s ≤ 1:

o(1) = J ′
i = m′ +

m
∑

k=1

Cko(1),

0 = lim
ǫ′

lim
ǫ

lim
i
J ′
i = m′,

which contradict the fact that m′ > 0.

here,

Ji = Bi =

∫

B(xi,δiǫ′)

< xi
1|∇(ui − u) > (Vi − Vi(xi))e

uidy.

We use the previous formulation around each blow-up point.

If, for xj
i , we have:

d(xj
i , x

k
i )

δji
→ +∞ for k 6= j, k = 1 . . .m,

We use the previous formulation around this blow-up point. We consider the following quan-

tity:

Jj
i = Bj

i =

∫

B(xj
i ,δ

j
i ǫ

′)

< xi,j
1 |∇(ui − u) > (Vi − Vi(x

j
i ))e

uidy.

with,
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xi,j
1 = (δji , 0),

In this case, we set:

vji (θ) = ui(x
j
i + rji θ)− ui(x

j
i ),

where rji is such that:

rji = e−ui(x
j
i )/2,

∫

B(xj
i ,δ

j
i ǫ

′)

Vi(x
j
i + δji y)e

vi → 8π.

We have, after considering the half ball and its Green function, the following estimates:

∀ ǫ > 0, ǫ′ > 0 ∃ kǫ,ǫ′ ∈ R+, iǫ,ǫ′ ∈ N and Cǫ,ǫ′ > 0, such that, for i ≥ iǫ,ǫ′ and kǫ,ǫ′ ≤

|θ| ≤
δji ǫ

′

rji
,

(−4− ǫ) log |θ| − Cǫ,ǫ′ ≤ vji (θ) ≤ (−4 + ǫ) log |θ|+ Cǫ,ǫ′ ,

and,

∂kv
j
i ≃ ∂ku

j
0(θ) ±

ǫ

|θ|
+ C

(

rji
δji

)2

|θ|+m×

(

rji
δji

)

+

+

m
∑

l 6=j

C1

(

rji
d(xj

i , x
l
i)

)

,

We have after using the previous term of the Pohozaev identity, for 1/2 < s ≤ 1:

o(1) = Jj
i = Bj

i = m′ +

m
∑

l 6=j

Clo(1),

0 = lim
ǫ′

lim
ǫ

lim
i
Jj
i = m′,

which contradict the fact that m′ > 0.

If, for xj
i , we have:

d(xj
i , x

k
i )

δji
≤ Cj,k for some k = kj 6= j, 1 ≤ k ≤ m,

All the distances d(xj
i , x

k
i ) are comparable with some δji . This means that we can use the

Pohozaev identity directly. We can do this for example, for 4 blow-ups points.

We have many cases:

Case 1: the blow-up points are ”equivalents”, it seems that we have the same radius for the

blow-up points.

Case 2: 3 points are ”equivalents” and another blow-up point linked to the 3 blow-up points.

We apply the Pohozaev identity directly with central point which link the 3 blow-up to the last.

Case 3: 2 pair of blow-up points separated.

Case 3.1: the 2 pair are linked: we apply the Pohozaev identity.

Case 3.2: the two pair are separated. It is the case of two separated blow-up points, see [1]
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