Samy Skander Bahoura 
email: samybahoura@yahoo.fr
  
Samy Skander Bahoura 
  
ON THE MASS OF THE EXTERIOR BLOW-UP POINTS

research documents, whether they are published or not. The documents may come  

On the mass of the exterior blow-up points.

INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary.

We consider the following problem on Ω ⊂ R 2 :

(P ) -∆u i = V i e ui in Ω ⊂ R 2 , u i = 0 in ∂Ω.
We assume that, Ω e ui dy ≤ C, and,

0 ≤ V i ≤ b < +∞
The previous equation is called, the Prescribed Scalar Curvature equation, in relation with conformal change of metrics. The function V i is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem. Equations of this type were studied by many authors, see [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF][START_REF] Chen | A priori Estimates for solutions to Nonlinear Elliptic Equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF][START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF][START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Zhang | Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Wolansky | Note on blow-up limits for solutions of ∆u + Ke u = 0 in two dimensions[END_REF]. We can see in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], different results for the solutions of those type of equations with or without boundaries conditions and, with minimal conditions on V , for example we suppose V i ≥ 0 and V i ∈ L p (Ω) or V i e ui ∈ L p (Ω) with p ∈ [1, +∞].

Among other results, we can see in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], the following important Theorem, Theorem A (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 < a ≤ V i ≤ b < +∞, then, for all compact set K of Ω, sup

K u i ≤ c = c(a, b, m, K, Ω) if inf Ω u i ≥ m.
A simple consequence of this theorem is that, if we assume u i = 0 on ∂Ω then, the sequence (u i ) i is locally uniformly bounded. We can find in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e ui , precisely, we have in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]:

Theorem B (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 ≤ V i ≤ b < +∞, and, Ω e ui dy ≤ C, then, for all compact set K of Ω, sup

K u i ≤ c = c(b, C, K, Ω).
If, we assume V with more regularity, we can have another type of estimates, sup + inf. It was proved, by Shafrir, see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
We can see in [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], an explicit value of C a b = a b . In his proof, Shafrir has used the Stokes formula and an isoperimetric inequality, see [START_REF] Bandle | Isoperimetric inequalities and Applications[END_REF]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (V i ) i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see Brézis-Li-Shafrir [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. This result was extended for Hölderian sequences (V i ) i by Chen-Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Also, we can see in [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], an extension of the Brezis-Li-Shafrir to compact Riemann surface without boundary. We can see in [START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF] explicit form, (8πm, m ∈ N * exactly), for the numbers in front of the Dirac masses, when the solutions blowup. Here, the notion of isolated blow-up point is used. Also, we can see in [START_REF] Zhang | Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities[END_REF] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

We have in [START_REF] Wolansky | Note on blow-up limits for solutions of ∆u + Ke u = 0 in two dimensions[END_REF]:

Theorem C (Wolansky.G. [START_REF] Wolansky | Note on blow-up limits for solutions of ∆u + Ke u = 0 in two dimensions[END_REF]). If (u i ) and (V i ) are two sequences of functions solutions of the problem (P ) without the boundary condition, with,

0 ≤ V i ≤ b < +∞, ||∇V i || L ∞ (Ω) ≤ C 1 , Ω e ui dy ≤ C 2 ,

and,

sup ∂Ω u i -inf ∂Ω u i ≤ C 3 ,
the last condition replace the boundary condition. We assume that (iii) holds in the theorem 3 of [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], then, in the sense of the distributions:

V i e ui → m j=0 8πδ xj .
in other words, we have:

α j = 8π, j = 0 . . . m,
in (iii) of the theorem 3 of [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF].

To understand the notations, it is interessant to take a look to a previous prints on arXiv, see [START_REF] Bahoura | About Brezis-Merle problem with holderian condition: the case of 1 or 2 blow-up points[END_REF] and [START_REF] Bahoura | About Brezis-Merle problem with holderian condition: the case of 3 blow-up points[END_REF].

Our main results are: Theorem 1. Assume that, V i is uniformly s-holderian with 1/2 < s ≤ 1, and that :

max Ω u i → +∞.

Then, each exterior blow-up point is simple.

There are m blow-ups points on the boundary (perhaps the same) such that:

B(x j i ,δ j i ǫ ′ ) V i (x j i + δ j i y)e ui → 8π.
and,

Ω V i e ui → Ω V e u + m j=1 8πδ xj .
and, Theorem 2. Assume that, V i is uniformly s-holderian with 1/2 < s ≤ 1, and,

B1 (0) 
V i e ui dy ≤ 40π -ǫ, ǫ > 0, then we have:

sup

Ω u i ≤ c = c(b, C, A, s, Ω).
where A is the holderian constant of V i .

PROOF OF THE RESULT:

Proof of the theorem 1:

Let's consider the following function on the ball of center 0 and radius 1/2; And let us consider ǫ > 0

v i (y) = u i (x i + δ i y) + 2 log δ i , y ∈ B(0, 1/2)
This function is solution of the following equation:

-∆v i = V i (x i + δ i y)e vi , y ∈ B(0, 1/2)
The function v i satisfy the following inequality (without loss of generality):

sup ∂B(0,1/4) v i -inf ∂B(0,1/4) v i ≤ C,
Let us consider the following functions:

-∆v i 0 = 0 in B(0, 1/4) v i 0 = u i (x i + δ i y) on ∂B(0, 1/4)
. By the elliptic estimates we have:

v i 0 ∈ C 2 ( B(0, 1/4)). We can write: -∆(v i -v i 0 ) = V i (x i + δ i y)e v i 0 e vi-v i 0 = K 1 K 2 e vi-v i 0 ,
With this notations, we have:

||∇(v i -v i 0 )|| L q (B(0,ǫ)) ≤ C q . v i -v i 0 → G in W 1,
q 0 , And, because, for ǫ > 0 small enough:

||∇G|| L q (B(0,ǫ)) ≤ ǫ ′ << 1,
We have, for ǫ > 0 small enough:

||∇(v i -v i 0 )|| L q (B(0,ǫ)) ≤ 2ǫ ′ << 1. and, ||∇v i || L q (B(0,ǫ)) ≤ 3ǫ ′ << 1. Set, u = v i -v i 0 , z 1 = 0, Then, -∆u = K 1 K 2 e u , in B(0, 1/4),
and,

osc(u) = 0.
We use Woalnsky's theorem, see [START_REF] Wolansky | Note on blow-up limits for solutions of ∆u + Ke u = 0 in two dimensions[END_REF]. In fact K 2 is a C 1 function uniformly bounded and K 1 is s-holderian with 1/2 < s ≤ 1. Because we take the logarithm in K, the part which contain K 2 have similar proof as in this paper we use the Stokes formula. Only the case of K 1 s-holderian is difficult. For this and without loss of generality, we can assume the

K = K 1 = V i (x i + δ i y).
We set:

∆ũ = ∆v i = ρ = -Ke ũ = -K 1 e vi
Let us consider the following term of Wolansky computations:

B ǫ div((z -z 1 )ρ) log K + ∂B ǫ (< (z -z 1 )|ν > ρ) log K,
First, we write:

B ǫ div((z -z 1 )ρ) log K = 2 B ǫ ρ log K + B ǫ < (z -z 1 )|∇ρ) log K
which we can write as:

- B ǫ div((z-z 1 )ρ) log K = 2 B ǫ K log Ke u + B ǫ < (z-z 1 )|∇u > K log Ke u + B ǫ < (z-z 1 )|(∇K) log K > e u ,
We can write:

∇(K(log K) -K) = (∇K)(log K)
Thus, and by integration by part we have:

B ǫ < (z -z 1 )|(∇K) log K > e u = B ǫ < (z -z 1 )|(∇(K log K -K)) > e u = = ∂B ǫ < (z-z 1 )|ν > (K log K-K)e u -2 B ǫ (K log K-K)e u - B ǫ < (z-z 1 )|∇u > (K log K-K)e u Thus, -( B ǫ div((z -z 1 )ρ) log K + ∂B ǫ (< (z -z 1 )|ν > ρ) log K) = = - ∂B ǫ < (z -z 1 )|ν > Ke u + B ǫ < (z -z 1 )|∇u > Ke u + 2 B ǫ Ke u
But, we can write the following,

B ǫ < (z-z 1 )|∇u > Ke u = B ǫ < (z-z 1 )|∇u > (K-K(z 1 ))e u +K(z 1 ) B ǫ < (z-z 1 )|∇u > e u ,
and, after integration by parts:

K(z 1 ) B ǫ < (z -z 1 )|∇u > e u = K(z 1 ) ∂B ǫ < (z -z 1 )|ν > e u -2K(z 1 ) B ǫ e u ,
Finaly, we have, for the Wolansky term:

B ǫ div((z -z 1 )ρ) log K + ∂B ǫ (< (z -z 1 )|ν > ρ) log K = = B ǫ < (z -z 1 )|∇u > (K -K(z 1 ))e u + 2 B ǫ (K -K(z 1 ))e u + + ∂B ǫ < (z -z 1 )|ν > (K(z 1 ) -K)e u
But, we have soon that if K is s-holderian with 1 ≥ s > 1/2, around each exteriror blow-up we have, the following estimate:

B ǫ < (z -z 1 )|∇u > (K -K(z 1 ))e u = = B(0,ǫ) < (y -z 1 )|∇v i > (V i (x i + δ i y) -V i (x i ))e vi dy = = B(xi,δiǫ) < (x -x i )|∇u i > (V i (x) -V i (x i ))e ui dy = o(1)M ǫ = o(1) B(xi,δiǫ) V i e ui = o(1) B ǫ Ke u , Thus, B ǫ div((z -z 1 )ρ) log K + ∂B ǫ (< (z -z 1 )|ν > ρ) log K = o(1)M ǫ = o(1) B ǫ

Ke u

We argue by contradiction and we suppose that we have around the exterior blow-up point 2 or 3 blow-up points, for example. We prove, as in a previous paper, that, the last quantity tends to 0. But according to Wolansky paper, see [START_REF] Wolansky | Note on blow-up limits for solutions of ∆u + Ke u = 0 in two dimensions[END_REF]:

B ǫ V i (x i + δ i y)e vi → 8π.
Around each exterior blow-up points, there is one blow-up point. Consider the following quantity:

B i = B(xi,δiǫ) < (x -x i )|∇u i > (V i (x) -V i (x i ))e ui dy.
Suppose that, we have m > 0 interior blow-up points. Consider the blow-up point t k i and the associed set Ω k defined as the set of the points nearest t k i we use step by step triangles which are nearest x i and we take the mediatrices of those triangles.

Ω k = {x ∈ B(x i , δ i ǫ), |x -t k i | ≤ |x -t j i |, j = k}, we write: B i = m k=1 Ω k < (x -x i )|∇u i > (V i (x) -V i (x i ))e ui dy.
We set,

B k i = Ω k < (x -x i )|∇u i > (V i (x) -V i (x i ))e ui dy,
We divide this integral in 4 integrals:

B k i = Ω k < (x-t k i )|∇u i > (V i (x)-V i (x i ))e ui dy+ Ω k < (t k i -x i )|∇u i > (V i (x)-V i (x i ))e ui dy = = Ω k < (x-t k i )|∇u i > (V i (x)-V i (t k i ))e ui dy+ Ω k < (x-t k i )|∇u i > (V i (t k i )-V i (x i ))e ui dy+ + Ω k < (t k i -x i )|∇u i > (V i (x)-V i (t k i ))e ui dy+ Ω k < (t k i -x i )|∇u i > (V i (t k i )-V i (x i ))e ui dy,
We set:

A 1 = Ω k < (x -t k i )|∇u i > (V i (x) -V i (t k i ))e ui dy, A 2 = Ω k < (x -t k i )|∇u i > (V i (t k i ) -V i (x i
))e ui dy,

A 3 = Ω k < (t k i -x i )|∇u i > (V i (x) -V i (t k i ))e ui dy, A 4 = Ω k < (t k i -x i )|∇u i > (V i (t k i ) -V i (x i ))e ui dy.
For A 1 and A 2 we use the fact that in Ω k we have:

u i (x) + 2 log |x -t k i | ≤ C, to conclude that for 0 < s ≤ 1: A 1 = A 2 = o(1),
we have integrals of the form:

A ′ 1 = Ω k |∇u i |e (1/2-s/2)ui dy = o(1),
and,

A ′ 2 = Ω k |∇u i |e (1/2-s/4
)ui dy = o(1).

For A 3 we use the previous fact and the sup + inf inequality to conclude that for 1/2 < s ≤ 1:

A 3 = o(1)
because we have an integral of the form:

A ′ 3 = Ω k |∇u i |e (3/4-s/2)ui dy = o(1).
For A 4 we use integration by part to have:

A 4 = ∂Ω k < (t k i -x i )|ν > (V i (t k i ) -V i (x i ))e ui dy.
But, the boundary of Ω k is the union of parts of mediatrices of segments linked to t k i . Let's consider a point t j i linked to t k i and denote D i,j,k the mediatrice of the segment (t j i , t k i ), which is in the boundary of Ω k . Note that this mediatrice is in the boundary of Ω j and the same decompostion for Ω j gives us the following term:

A ′ 4 = - D i,j,k < (t j i -x i )|ν > (V i (t j i ) -V i (x i ))e ui dy.
Thus, we have to estimate the sum of the 2 following terms:

A 5 = D i,j,k < (t k i -x i )|ν > (V i (t k i ) -V i (x i ))e ui dy.
and,

A 6 = A ′ 4 = - D i,j,k < (t j i -x i )|ν > (V i (t j i ) -V i (x i ))e ui dy.
We can write them as follows:

A 5 = D i,j,k < (x-x i )|ν > (V i (t k i )-V i (x i ))e ui dy+ D i,j,k < (t k i -x)|ν > (V i (t k i )-V i (x i ))e ui dy.
and,

A 6 = - D i,j,k < (x-x i )|ν > (V i (t j i )-V i (x i
))e ui dy-

D i,j,k < (t j i -x)|ν > (V i (t j i )-V i (x i ))e ui dy.
We can write:

D i,j,k < (x-x i )|ν > (V i (t k i )-V i (x i
))e ui dy-

D i,j,k < (x-x i )|ν > (V i (t j i )-V i (x i ))e ui dy = = D i,j,k < (x -x i )|ν > (V i (t k i ) -V i (x j i ))e ui dy = o(1), for 1/2 < s ≤ 1.
Because, we do integration on the mediatrice of (t j i , t k i ), |x -t j i | = |x -t k i |, and:

|V i (t k i ) -V i (x j i )| ≤ 2A|x -t k i | s u i (x) + 2 log |x -t k i | ≤ C, and, |x -x i | ≤ δ i ǫ,
To estimate the integral of the following term: e (3/4-s/2)ui ≤ Cr (-3/2+s) , which is intgrable and tends to 0, for 1/2 < s ≤ 1, because we are on the ball B(x i , δ i ǫ). In other part, for the term:

D i,j,k < (t k i -x)|ν > (V i (t k i )-V i (x i ))e ui dy - D i,j,k < (t j i -x)|ν > (V i (t j i )-V i (x i ))e ui dy.
We use the fact that, on D i,j,k :

|x -t j i | = |x -t k i |, u i (x) + 2 log |x -t k i | ≤ C, |V i (t k i ) -V i (x i )| ≤ 2A|x i -t k i | s ≤ δ s i , and, |V i (t j i ) -V i (x i )| ≤ 2A|x i -t j i | s ≤ δ s i ,
To estimate the integral of the following term: e (1/2-s/4)ui ≤ Cr (-1+s/2) , which is intgrable and tends to 0, because we are on the ball B(x i , δ i ǫ).

Thus,

B i = o(1), Proof of the theorem 2:
Next, we use the formulation of the case of three blow-up points, see [START_REF] Bahoura | About Brezis-Merle problem with holderian condition: the case of 3 blow-up points[END_REF]. Because the blowups points are simple, we can consider the following function:

v i (θ) = u i (x i + r i θ) -u i (x i ),
where r i is such that:

r i = e -ui(xi)/2 , B ǫ V i (x i + δ i y)e vi → 8π. u i (x i + r i θ) = Ω G(x i + r i θ, y)V i (y)e ui(y) dx = = Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy + B(xi,2δiǫ ′ ) G(x i + r i θ, y)V i e ui(y) dy = We write, y = x i + r i θ, with | θ| ≤ 2 δ i r i ǫ ′ , u i (x i + r i θ) = B(0,2 δ i r i ǫ ′ ) 1 2π log |1 -(x i + r i θ)(x i + r i θ)| r i |θ -θ| V i e ui(y) r 2 i dy+ + Ω-B(xi,2δiǫ ′ ) G(x i + r i θ, y)V i e ui(y) dy u i (x i ) = Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy + B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy
Hence,

u i (x i ) = B(0,2 δ i r i ǫ ′ ) 1 2π log |1 -xi (x i + r i θ)| r i | θ| V i e ui(y) r 2 i dy+ + Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy
We look to the difference,

v i (θ) = u i (x i + r i θ) -u i (x i ) = B(0,2 δ i r i ǫ ′ ) 1 2π log | θ| |θ -θ| V i e ui(y) r 2 i dy + h 1 + h 2 ,
where,

h 1 (θ) = Ω-B(xi,2δiǫ ′ ) G(x i + r i θ, y)V i e ui(y) dy - Ω-B(xi,2δiǫ ′ )
G(x i , y)V i e ui(y) dy, and, y) dy.

h 2 (θ) = B(0,2δiǫ ′ ) 1 2π log |1 -(x i + r i θ)y| |1 -xi y| V i e ui(
Remark that, h 1 and h 2 are two harmonic functions, uniformly bounded.

According to the maximum principle, the harmonic function G(x i +r i θ, .) on Ω-B(x i , 2δ i ǫ ′ ) take its maximum on the boundary of B(x i , 2δ i ǫ ′ ), we can compute this maximum:

G(x i +r i θ, y i ) = 1 2π log |1 -(x i + r i θ)y i | |x i + r i θ -y i | ≃ 1 2π log (|1 + |x i |)δ i -δ i (3ǫ ′ + o(1))| δ i ǫ ′ ≤ C ǫ ′ < +∞ with y i = x i + 2δ i θ i ǫ ′ , |θ i | = 1, and |r i θ| ≤ δ i ǫ ′ .
We can remark, for |θ| ≤ δ i ǫ ′ r i , that v i is such that:

v i = h 1 + h 2 + B(0,2 δ i r i ǫ ′ ) 1 2π log | θ| |θ -θ|
V i e ui(y) r 2 i dy,

v i = h 1 + h 2 + B(0,2 δ i r i ǫ ′ ) 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ,
with h 1 and h 2 , the two uniformly bounded harmonic functions.

Remark: In the case of 2 or 3 or 4 blow-up points, and if we consider the half ball, we have supplemntary terms, around the 2 other blow-up terms. Note that the Green function of the half ball is quasi-similar to the one of the unit ball and our computations are the same if we consider the half ball.

By the asymptotic estimates of Cheng-Lin, we can see that, we have the following uniform estimates at infinity. We have, after considering the half ball and its Green function, the following estimates:

∀ ǫ > 0, ǫ ′ > 0 ∃ k ǫ,ǫ ′ ∈ R + , i ǫ,ǫ ′ ∈ N and C ǫ,ǫ ′ > 0, such that, for i ≥ i ǫ,ǫ ′ and k ǫ,ǫ ′ ≤ |θ| ≤ δ i ǫ ′ r i , (-4 -ǫ) log |θ| -C ǫ,ǫ ′ ≤ v i (θ) ≤ (-4 + ǫ) log |θ| + C ǫ,ǫ ′ , and, ∂ j v i ≃ ∂ j u 0 (θ) ± ǫ |θ| + C r i δ i 2 |θ| + m × r i δ i + + m k=2 C 1 r i d(x i , x k i ) ,
In the case, we have:

d(x i , x k i ) δ i → +∞ for k = 2 . . . m,
We have after using the previous term of the Pohozaev identity, for 1/2 < s ≤ 1:

o(1) = J ′ i = m ′ + m k=1 C k o(1), 0 = lim ǫ ′ lim ǫ lim i J ′ i = m ′ , which contradict the fact that m ′ > 0. here, J i = B i = B(xi,δiǫ ′ ) < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy.
We use the previous formulation around each blow-up point. If, for x j i , we have:

d(x j i , x k i ) δ j i → +∞ for k = j, k = 1 . . . m,
We use the previous formulation around this blow-up point. We consider the following quantity:

J j i = B j i = B(x j i ,δ j i ǫ ′ ) < x i,j 1 |∇(u i -u) > (V i -V i (x j i ))e ui dy.
with,

x i,j 1 = (δ j i , 0), In this case, we set:

v j i (θ) = u i (x j i + r j i θ) -u i (x j i )
, where r j i is such that:

r j i = e -ui(x j i )/2 , B(x j i ,δ j i ǫ ′ ) V i (x j i + δ j i y)e vi → 8π.
We have, after considering the half ball and its Green function, the following estimates: If, for x j i , we have:

∀ ǫ > 0, ǫ ′ > 0 ∃ k ǫ,ǫ ′ ∈ R + , i ǫ,ǫ ′ ∈ N and C ǫ,ǫ ′ > 0,
d(x j i , x k i ) δ j i ≤ C j,k for some k = k j = j, 1 ≤ k ≤ m,
All the distances d(x j i , x k i ) are comparable with some δ j i . This means that we can use the Pohozaev identity directly. We can do this for example, for 4 blow-ups points.

We have many cases: Case 1: the blow-up points are "equivalents", it seems that we have the same radius for the blow-up points.

Case 2: 3 points are "equivalents" and another blow-up point linked to the 3 blow-up points. We apply the Pohozaev identity directly with central point which link the 3 blow-up to the last.

Case 3: 2 pair of blow-up points separated. Case 3.1: the 2 pair are linked: we apply the Pohozaev identity. Case 3.2: the two pair are separated. It is the case of two separated blow-up points, see [START_REF] Bahoura | About Brezis-Merle problem with holderian condition: the case of 1 or 2 blow-up points[END_REF] ACKNOWLEDGEMENT.
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  such that, for i ≥ i ǫ,ǫ ′ and k ǫ,ǫ ′ -ǫ) log |θ| -C ǫ,ǫ ′ ≤ v j i (θ) ≤ (-4 + ǫ) log |θ| + C ǫ,ǫ ′ , and, ∂ k v j i ≃ ∂ k u j 0 (θ)We have after using the previous term of the Pohozaev identity, for 1/2 < s ≤ 1:o(1) = J j i = B j i = m ′ + = m ′ ,which contradict the fact that m ′ > 0.