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Abstract. Networks of Timed Automata (NTA) and Time Petri Nets (TPNs) are well-established

formalisms used to model, analyze and control industrial real-time systems. The underlying theories

are usually developed in different scientific communities and both formalisms have distinct strong

points: for instance, conciseness for TPNs and a more flexible notion of urgency for NTA. The

objective of the paper is to introduce a new model allowing the joint use of both TPNs and NTA

for the modeling of timed systems. We call it Clock Transition System (CTS). This new model

incorporates the advantages of the structure of Petri nets, while introducing explicitly the concept of

clocks. Transitions in the network can be guarded by an expression on the clocks and reset a subset

of them as in timed automata. The urgency is introduced by a separate description of invariants. We

show that CTS allow to express TPNs (even when unbounded) and NTA. For those two classical

models, we identify subclasses of CTSs equivalent by isomorphism of their operational semantics

and provide (syntactic) translations. The classical state-space computation developed for NTA and

then adapted to TPNs can easily be defined for general CTSs. Armed with these merits, the CTS

model seems a good candidate to serve as an intermediate theoretical and practical model to factor

out the upcoming developments in the TPNs and the NTA scientific communities.
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1. Introduction

Mastering the development of correct distributed real-time systems remains a priority in light of the clear

scientific issues that have to be overcome. One necessary line to follow, in our opinion, is the use of

mathematically based models.

Low Level timed models. In [11], the authors introduce the abstract notion of timed transition systems

allowing to give the formal semantics of a real-time system as a set of timed execution sequences. They

incorporate time into classical transition systems by assuming that all discrete transitions happen instan-

taneously while real time constraints restrict the times at which discrete transition may occur. Timed

transition systems (TTS) are defined in [15] as a basic semantical model for real-time systems which is a

labelled transition system with two type of labels: atomics actions and delay actions (i.e. positive reals)

representing discrete and continuous changes of real-time systems.

To avoid delay actions, the authors of [2, 3] advocate an alternative proposal, namely, to designate

certain program variables as clock variables. It leads to higher level of specification, explicitly referring

to clocks, which are just another kind of system variables. Thus, in [10], labeled transition systems

are extended with clocks and both discrete or dense time domains are considered. Similarly, in [14], a

computational model is proposed for real-time systems called Clocked Transition Systems. This model

represents time by a set of timers (clocks) which increase whenever time progresses, but can be set to

arbitrary values by system (program) transitions. A Clocked Transition System is also equipped with

discrete variables of any type. Assertions associated with transitions allow the updates of variables, and

assertions over system variables specify a global restriction of time progress.

TPNs and TA. For the class of critical systems that we aim at, in which the specification of permis-

sible behaviors requires a description of fine temporal constraints, and for which verification must be

performed by efficient tools, the scientific community has notably focused for many years on two timed

models: Time Petri nets (TPNs for short) [19, 5] and timed automata (TA for short) or networks of timed

automata (NTA for short) [1], and their different extensions. These models extend with time respec-

tively Petri nets and finite automata. An overview of the theoretical known results about the relationships

among these models is provided in [20].

Each class of models has distinct strong points. TPNs are particularly well-suited for having a com-

pact representation of concurrent behaviors with causal dependencies induced by complex synchroniza-

tions between activities. The time constraints are described on transitions by intervals of firing.

Timed automata better clarify how time should change. This model is equipped with a set of tem-

poral variables (clocks) used to form expressions guarding transitions. Transitions may reset clocks.

Urgency is expressed by defining invariants on states, forcing the progress when possible. The introduc-

tion of concurrency is achieved by synchronously connecting a set of components. We believe it would

be interesting to allow a hybrid modeling, in which some aspects could be described with NTA (once

decomposition is decided) and others with TPNs (e.g. when there is a complex parallel control flow).

To achieve this, the idea is to blend these models into a more general formalism for which the existing

analysis methods could still be used as implemented currently in TINA [6] and UPPAAL [16].

Our contribution. A whole set of theories, methods and tools of analysis has been separately devel-

oped for TPNs and NTA. Yet we know that these models are very close, but nevertheless have subtle

differences that have until now prevented an actual factorization of research and development of associ-

ated technologies and their joint use in the modeling phase. The objective of the paper is to introduce

a new model, Clock Transition Systems (CTSs), bridging this gap. This new model incorporates the
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advantages of the structure of Petri nets, while introducing explicitly the concept of clocks. Transitions

in the network can be guarded by an expression on the clocks and reset a subset of them as in timed

automata. Urgency is introduced by a separate description of invariants. We show that CTS allow to

express TPNs (even when unbounded) and NTA. For those two classical models, we identify subclasses

of CTSs equivalent by isomorphism of their operational semantics and provide (syntactic) translations.

The classical state-space computation developed for NTA and then adapted to TPNs can easily be de-

fined for general CTSs. Armed with these merits, the CTS model seems a good candidate to serve as an

intermediate theoretical and practical model to factor out the upcoming developments in the TPNs and

the NTA scientific communities.

Outline of the paper. We first introduce in Section 2 the Clock Transition System model giving its

syntax and its operational sequential semantics as usual. We then show in Sections 2.2 and 2.3 how

TPNs and NTA can be easily represented by a Clock Transition System. Finally, Section 4 discusses the

model and the techniques for its analysis.

2. Definitions

2.1. Basic Notations and Definitions

N is the set of natural numbers and Z is the set of integers. B = {true, false} is the set of booleans. For

a finite set E, we denote its size by |E| and by 2E the set of all its subsets. For any two sets E and F ,

we denote by EF the set of mappings from F into E.

Let R (resp. Q) be the set of real (resp. rational) numbers. R≥0 (resp. Q≥0 is the set of non-negative

real (resp. rational) numbers. Let X be a finite set of clocks. A valuation v of X is a mapping from X

into R≥0. We denote by 0 the null valuation such that ∀x ∈ X,0(x) = 0. For a valuation v and R ⊆ X ,

we write v[R← 0] the valuation such that ∀x ∈ R, v[R← 0](x) = 0 and ∀x 6∈ R, v[R← 0](x) = v(x).
Finally, for d ∈ R≥0, v + d is the valuation such that ∀x ∈ X, (v + d)(x) = v(x) + d. Similarly a

valuation on a set of integer variables V is a mapping from V to N.

We denote by C(X) the set of constraints generated by the grammar φ ::= true|x ≤ k|x < k|¬φ|φ∧
φ, where x is a clock in X , k ∈ Q≥0, ¬ is the logical negation and ∧ is the logical conjunction. We

denote by B(X) the subset of C(X) without the use of negation. We say that a valuation v satisfies a

simple constraint γ if the expression obtained by replacing all clocks x by their valuation v(x) logically

evaluates to true. We then write v |= γ.

For two finite sets A and B, F(A,B) denotes the set of computable functions from A to B.

Definition 2.1. (Timed Transition System)

A timed transition system (TTS) over the alphabet A is a tuple S = (Q, q0, A,→) where Q is a set of

states, q0 ∈ Q is the initial state, A is a finite set of actions disjoint from R≥0,→⊆ Q× (A∪R≥0)×Q

is a set of edges. If (q, e, q′) ∈−→, we also write q
e
−→ q′. Moreover, TTS should satisfy the classical

time-related conditions where d, d′ ∈ R≥0: i) time determinism: (q
d
−→ q′) ∧ (q

d
−→ q′′) ⇒ (q′ = q′′),

ii) time additivity: (q
d
−→ q′) ∧ (q′

d′
−→ q′′) ⇒ (q

d+d′
−−−→ q′′), iii) null delay: ∀q : q

0
−→ q, and iv) time

continuity: (q
d
−→ q′)⇒ (∀d′ ≤ d, ∃q′′, q

d′
−→ q′′).

Let S = (Q, q0, A,→) be a TTS. Let→∗ be the reflexive and transitive closure of→. We denote by

Reach(q0) = {q ∈ Q|q0 →
∗ q} the set of reachable states in S.
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Definition 2.2. (Isomorphism)

Let S1 = (Q1, q01 , A,→1) and S2 = (Q2, q02 , A,→2) be two TTSs. S1 and S2 are isomorphic (we write

S1
∼= S2) whenever there is a bijection f : Reach(q01) → Reach(q02) such that ∀q, ∀q′ ∈ Reach(q01)

we have: q
a∈A
−−−→1 q

′ iff f(q)
a
−→2 f(q

′) and q
d∈R≥0

−−−−→1 q
′ iff f(q)

d
−→2 f(q

′).

Definition 2.3. (Equivalence up to isomorphism)

Let A and A′ be two models whose semantics are expressed as TTSs SA and SA′ . A and A′ are equiva-

lent up to isomorphism, which we denote by A ∼= A′, iff SA ∼= SA′ .

2.2. Time Petri Nets

Definition 2.4. (Petri Net)

A (labeled) Petri Net N is a tuple 〈P, T,Pre,Post, m0, A, λ〉 such that: P is a finite non-empty set of

places; T is a finite non-empty set of transitions; Pre : P × T → N is the backward incidence function;

Post : P × T → N is the forward incidence function; m0 : P → N is the initial marking of the net; A

is finite non-empty alphabet; λ : T → A is a labeling function of the transitions.

A marking of N is an application from P to N. Let m be a marking of N . Then, for any place

p ∈ P , we say that p contains m(p) tokens. For any transition t we denote by •t the set of places p such

that Pre(p, t) 6= 0 and by t• the set of places p such that Post(p, t) 6= 0.

A transition t ∈ T is said to be enabled by the marking m if ∀p ∈ •t,m(p) ≥ Pre(p, t). This is

denoted by t ∈ en(m). The operational semantics of the Petri Net N = 〈P, T,Pre,Post,m0〉 is defined

by the transition system SN = (N|P |,m0, A,→) such that: m
a
−→ m′ iff there exists t ∈ en(m) such that

λ(t) = a and ∀p ∈ P,m′(p) = m(p)− Pre(p, t) + Post(p, t).

We then say that m′ is obtained from m by firing the enabled transition t.

Petri nets can be extended with timing information in many ways. We focus here on Time Petri

Nets [19] in which time intervals are attached to transitions, defining the durations during which they

will be enabled.

We note I the set of rational intervals {x ∈ R|a ∼1 x ∼2 b, a ∈ Q≥0, b ∈ Q≥0,∼1,∼2∈ {<,≤
}} ∪ {x ∈ Q|a ∼ x < +∞, a ∈ Q≥0,∼∈ {<,≤}}. For any interval I , we denote by I↓ the smallest

left-closed interval with lower bound 0 that contains I .

Definition 2.5. (Time Petri Net)

A time Petri net (TPN) is a tuple T = 〈N , Is〉 where N = 〈P, T,Pre,Post,m0, A, λ〉 is a Petri Net and

Is : T → I assigns a static time interval to each transition.

For each transition t there is an associated clock xt. We consider valuations on the set of clocks

{xt|t ∈ T} and we will slightly abuse the notations by writing v(t) instead of v(xt).

Let m be a marking of the net and t a transition in en(m). Let m′ be the marking obtained from m

by firing t. Let m′′ be the intermediate marking defined by ∀p,m′′(p) = m(p)− Pre(p, t). A transition

t′ is newly enabled by the firing of t from m, and we note t ∈ new(m, t) if t′ ∈ en(m′) \ en(m′′) ∪ {t}

The operational semantics of the TPN T = 〈N , Is〉 is defined by the time transition system ST =
(NP ×RT

≥0, (m0,0), A,→) such that:
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• (m, v)
a∈A
−−−→ (m′, v′) iff ∃t ∈ en(m) s.t.:























λ(t) = a,

∀p ∈ P,m′(p) = m(p)− Pre(p, t) + Post(p, t),

v(t) ∈ Is(t),

v′ = v[new(m, t)← 0],

• (m, v)
d∈R≥0

−−−−→ (m, v + d) iff ∀t′ ∈ en(m), ∀0 < d′ ≤ d, (v + d′)(t′) ∈ I
↓
s (t′).

T is said to be k-bounded if for any (m, v) reachable from (m0,0) in ST , we have ∀p ∈ P,m(p) ≤
k. T is said to be bounded if there exists k such that T is k-bounded.

2.3. Networks of Timed Automata

Timed Automata [1] are used to model systems which combine discrete and continuous evolutions.

Definition 2.6. (Timed Automaton)

A Timed Automaton (TA) is a tuple A = 〈L, ℓ0, E,A, λ,X,Guard,Resets, Inv〉 where: L is a finite

non-empty set of locations; ℓ0 ∈ L is the initial location; E ⊆ L × L is a finite set of directed edges;

A is finite non-empty alphabet; λ : E → A is the edge labelling function; Xis a finite set of positive

real-valued clocks; Guard : E → C(X) gives a guard for each edge; Resets : E → 2X gives a set of

clocks to reset for each edge; Inv : L→ B(X) defines a set of invariants;

Definition 2.7. (Semantics of TA)

The semantics of a timed automaton A = 〈L, ℓ0, E,A, λ,X,Guard,Resets, Inv〉 is a timed transition

system SA = (Q, q0, A,→) with Q = L × (R≤0)
X , q0 = (l0,0) is the initial state and→ consists of

the discrete and continuous transition relations:

• (l, v)
a∈A
−−−→ (l′, v′) iff ∃e = (l, l′) ∈ E such that:























λ(e) = a,

v |= Guard(e),

v′ = v[Resets(e)← 0],

v′ |= Inv(l′)

• (l, v)
d∈R≥0

−−−−→ (l, v + d) iff ∀d′ 0 < d′ ≤ d, v + d′ |= Inv(l)

A run of a timed automaton A is a path in SA starting in q0.

It is convenient to describe a system as a parallel composition of timed automata. To this end, we use

the classical composition notion based on a synchronization function à la Arnold-Nivat.

Definition 2.8. (Networks of Timed Automata)

LetA1, . . . ,An be n timed automata withAi = 〈Li, ℓ0i , Ei, A, λi, X,Guardi,Resetsi, Invi〉. A synchro-

nization function f is a partial function from (A ∪ {•})n to A where • is a special symbol used when an

automaton is not involved in a step of the global system. A Network of Timed Automata (A1| . . . |An)f
is the parallel composition of the Ai’s w.r.t. f .



1006 C. Jard, D. Lime, O.H. Roux / Clock Transition Systems

The configurations of (A1| . . . |An)f are pairs (~l, v) with ~l = (l1, . . . , ln) ∈ L1 × . . . × Ln, the ith

component li ∈ Li of ~l is denoted by ~l[i], v is a valuation on the set of clocks X and v(x) is the value

of the clock x ∈ X . The network can do a discrete transition if all the components agree to and time

can progress in the network also if all the components agree to. This is formalized by the following

definition:

Definition 2.9. (Semantics of NTA)

Let A1, . . . ,An be n TA with Ai = 〈Li, ℓ0i , Ei, A, λi, X,Guardi,Resetsi, Invi〉, SA1
, . . . , SAn

their

semantics with SAi
= (Qi, q0i , A,→i). Let f be a (partial) synchronization function (A ∪ {•})n → A.

The semantics of (A1| . . . |An)f is a timed transition system S = (Q, q0, A,→) with Q = L1 × . . . ×
Ln × (R≥0)

X , q0 is the initial state ((ℓ01 , . . . , ℓ0n),0) and→ is defined by:

• (~l, v)
b∈A
−−→ (~l′, v′) iff

– Let R =
⋃

i∈[1..n],(~l[i],~l′[i])∈Ei

Resetsi((~l[i], ~l′[i])). Then v′ = v[R← 0],

– all Ai agree on synchronization i.e. ∃(a1, . . . , an) ∈ (A ∪ {•})n s.t. f(a1, . . . , an) = b and

for any i ∈ [1..n] we have:

∗ If ai = •, then ~l′[i] = ~l[i],

∗ If ai ∈ A, then (~l[i], v)
ai−→i (~l′[i], v

′
i). Note that ∀x ∈ X\Resets, v′(x) = v′i(x)

• (~l, v)
d∈R≥0

−−−−→ (~l, v + d) iff for all i ∈ [1..n], every Ai agrees on time elapsing i.e. (~l[i], v)
d
−→i

(~l[i], v + d)

3. Clock Transition Systems

Definition 3.1. (Clock Transition System)

A (labeled) Clock Transition System is a tuple 〈V, T,Pre,Post,m0, A, λ,X,Guard,Resets, Inv〉 such

that:

• V is a finite non-empty set of integer variables;

• T is a finite non-empty set of transitions;

• Pre : T → F(NV ,B) gives a discrete guard for each transition;

• Post : T → F(NV ,NV ) gives a discrete assignment for each transition;

• m0 is the initial valuation of V ;

• A is a finite non-empty alphabet;

• λ : T → A is a labeling function of the transitions; X is a finite set of clocks;

• Guard : T → C(X) gives a time guard for each transition;

• Resets : T → 2F(NV ,B)×X defines a conditional reset of clocks on transitions;

• Inv ⊆ F(NV ,B)× B(X) defines a finite set of invariants.

The semantics of the CTS T = 〈V, T,Pre,Post,m0, A, λ,X,Guard,Resets, Inv〉 is defined by the

timed transition system ST = (NV ×RX
≥0, (m0,0), A,→) such that
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• (m, v)
a∈A
−−−→ (m′, v′) iff ∃t ∈ T s.t.











































Pre(t)(m) is true

λ(t) = a,

m′ = Post(t)(m),

v |= Guard(t),

v′ = v
[

{x|(f, x) ∈ Resets(t) and f(m)} ← 0
]

,

∀(f, J) ∈ Inv, f(m′) implies v′ |= J.

• (m, v)
d∈R≥0

−−−−→ (m, v + d) iff ∀(f, J) ∈ Inv, f(m)⇒ ∀0 < d′ ≤ d, v + d′ |= J .

Boundedness of CTSs is defined exactly as for TPNs.

State space and main properties. Clock Transition Systems only feature explicit clocks and integer

variables. We have shown in [17] how the classical simulation/zone graph construction, used in the

tool Uppaal [16], can be easily extended to CTSs. For bounded CTS this abstraction gives a finite

representation of the infinite state-space and many analysis techniques can be constructed to decide

safety, reachability, liveness, etc. We then obtain the following theorems.

Theorem 3.2. k-boundedness is decidable for CTSs. Reachability is decidable for bounded CTSs.

3.1. TPNs and CTSs

We now prove that possibly unbounded TPNs form a subclass of CTSs. First, the following theorem

holds:

Theorem 3.3. Every TPN N can be translated into a CTS T (N ) s.t. N ∼= T (N ).

Proof:

Let N = 〈P, T,Pre,Post,m0, A, λ, Is〉 be a TPN. And let T (N ) = 〈P, T,Pre′, Post′,m0, A, λ,X,

Guard,Resets, Inv〉 be the Clock Transition System defined by:

• for each t ∈ T , Pre′(t) = ft with ft(m) iff t ∈ en(m);
• for each t ∈ T , Post′(t) = g with ∀p ∈ P, g(m)(p) = m(p)− Pre(p, t) + Post(p, t);
• X = T ;

• ∀t ∈ T,Guard(t) = t ∈ Is(t), with a slight abuse on the expression of constraints;

• ∀t ∈ T,Resets(t) = {(ht′ , t
′)|t′ ∈ T s.t. t• ∩ •t′ 6= ∅}, with ht′(m) is true iff t′ ∈ new(m, t);

• Inv = {(ft, t ∈ I
↓
s (t))|t ∈ T}.

The operational semantics of T (N ) is defined by the time transition system ST (N ) = (NV ×

RT
≥0, (m0,0), A,→) such that:

• (m, v)
a∈A
−−−→ (m′, v′) iff ∃t ∈ T such that:











































t ∈ en(m),

λ(t) = a,

∀p ∈ P,m′(p) = m(p)− Pre(p, t) + Post(p, t),

v |= t ∈ Is(t),

v′ = v[{t′|t′ ∈ new(m, t)} ← 0],

∀t′ ∈ en(m), v′ |= t′ ∈ I
↓
s (t′)
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t0[0, 0]

p1

p3

p2

p4

t1[0,∞[ t2[1, 2]

t3[2, 2]p5

Figure 1. A Time Petri Net.

• (m, v)
d∈R≥0

−−−−→ (m, v + d) iff ∀t′ ∈ en(m), ∀d′, 0 < d′ ≤ d, v + d′ |= t′ ∈ I
↓
s (t′).

This is exactly the semantics of N . This proves the theorem. ⊓⊔

V = {p1, p2, p3, p4, p5}, T = {t0, t1, t2, t3} m0 = (1, 1, 0, 0, 0), X = T

Guard(t0) = (t0 = 0),Guard(t1) = (t1 ≥ 0) Guard(t2) = (1 ≤ t2 ≤ 2),Guard(t3) = (t3 = 2)

Pre(t0) = (p3 ≥ 1) ∧ (p4 ≥ 1) Resets(t0) = {((p1 = 0), t1), ((p2 = 0), t2)}

Pre(t1) = (p1 ≥ 1),Pre(t2) = (p2 ≥ 1) Resets(t1) = {((p3 = 0), t0), ((p3 = 0), t3)}

Pre(t3) = (p3 ≥ 1) Resets(t2) = {((p4 = 0), t0)},Resets(t3) = ∅

Post(t1) = (p1 := p1 − 1, p3 := p3 + 1) Post(t2) = (p2 := p2 − 1, p4 := p4 + 1)

Post(t3) = (p3 := p3 − 1, p5 := p5 + 1)

Post(t0) = (p1 := p1 + 1, p2 := p2 + 1, p3 := p3 − 1, p4 := p4 − 1)

Inv = {(Pre(t0), (t0 = 0)), (Pre(t1), true), (Pre(t2), (t2 ≤ 2)), (Pre(t3), (t3 ≤ 2))}

Table 1. CTS coding the TPN of Fig. 1.

To illustrate the encoding, consider the TPN in Fig. 1. Its equivalent in CTS is given in Table 1. We

now define a syntactic subclass of CTSs that is equivalent to TPNs:

Definition 3.4. The syntactic subclass CTS-TPN of CTS is defined by the following restrictions:

• ∀t ∈ T, ∀p ∈ V , there exists k(p, t) ∈ N, k′(p, t) ∈ Z s.t.:

– k′(p, t) ≥ −k(p, t);

– Pre(t) =
∧

p∈P p ≥ k(p, t) and Post(t) is a list of assignments ∀p, p := p+ k′(p, t);

– For a valuation m, we define m′
t by ∀p ∈ P,m′

t(p) = m(p) − k(p, t) + k′(p, t) and m′′
t by

∀p ∈ P,m′′
t (p) = m(p)− k(p, t).

Then Resets(t) = {(gt′ , xt′)|t
′ ∈ T} and gt′(m) holds iff t = t′ or (Pre(t′)(m′

t) and not

Pre(t′)(m′′
t ));
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• ∀t ∈ T , Guard(t) refers to at most one clock xt and xt = xt′ implies t = t′;

• Inv = {(Pre(t), Jt)|t ∈ T} (note that Jt may be true);

• ∀t ∈ T , Jt refers only to xt and is not equal to xt < 0. Furthermore, if Jt = xt ≤ k or

Jt = xt < k, then the set of valuations satisfying Guard(t) ∧ xt = a is non-empty;

• ∀t ∈ T , if Jt = true then Guard(t) has no finite upper bound.

Theorem 3.5. Every CTS-TPN T can be translated into a TPN N (T ) such that T ∼= N (T ).

Proof:

Let T = 〈P, T,Pre,Post,m0, A, λ,X,Guard,Resets, Inv〉 be a CTS-TPN with the above restrictions.

Let N (T ) = 〈P, T,Pre′,Post′,m0, A, λ, Is〉 be the TPN defined by:

• for p ∈ P and t ∈ T , Pre′(p, t) = k(p, t) and Post
′(p, t) = k(p, t) + k′(p, t) (as in definition 3.4);

• for t ∈ T , Guard(t) defines a right-unbounded interval Ig. Then Is(t) = Ig ∩
⋂

t′∈T s.t. Pre(t′) Jt′ .

Let us write the semantics of T taking the restrictions of CTS-TPN into account. The operational

semantics of T is defined by the time transition system ST = (NV ×RX
≥0, (m0,0), A,→) such that:

• (m, v)
a∈A
−−−→ (m′, v′) iff there exists t ∈ T such that:

– Pre(t);

– λ(t) = a;

– ∀p ∈ P,m′(p) = m(p)− k(p, t) + k′(p, t);

– v |= xt ∈ Ig: since xt is the only variable used, the constraint is an inteval Ig;

– v′ = v
[

{xt′ |(t = t′) ∨ (Pre(t′)(m′) ∧ ¬Pre(t′)(m′′
t ))} ← 0

]

;

– ∀t ∈ T , Pre(t)(m′) implies v′ |= Jt.

• (m, v)
d∈R≥0

−−−−→ (m, v + d) iff ∀0 < d′ ≤ d, v + d′ |=
⋂

t∈T s.t. Pre(t) Jt.

It is clear that we have Pre(t)(m) in T iff t ∈ en(m) in N (T ). And therefore, {xt′ |(t = t′) ∨
(Pre(t′)(m′)∧¬Pre(t′)(m′′

t ))} is indeed the set of clocks associated to transitions that are newly enabled

in N when firing transition t from m.

Consequently, for t′ ∈ T , if Pre(t′)(m′) we have two possibilities:

• either, v′(xt′) = 0 and then v′ |= Jt since Jt is not xt < 0;

• or v′(xt′) 6= 0. But then Pre(t′)(m) and v′(xt′) = v(xt′). We thus had v |= Jt and we have

v′ |= Jt.

We have v |= Guard(t) = xt ∈ Ig but we know that v must also satisfy all the enabled invariants

so we could actually write this as: v |= xt ∈ Ig ∩
⋂

t′∈T s.t. Pre(t′) Jt′ . Finally, it easy to see that

Ig ∩
⋂

t′∈T s.t. Pre(t′) Jt′ is an interval I and I↓ =
⋂

t′∈T s.t. Pre(t′) Jt′ .

With all this, it is clear that the semantics of T is exactly the semantics of N (T ), and the theorem

follows. ⊓⊔
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Corollary 3.6. The class CTS-TPN is equivalent to the class of TPNs up to isomorphism of TTS.

Proof:

The CTS exhibited in the proof of theorem 3.3 clearly belongs to CTS-TPN. ⊓⊔

3.2. NTA and CTSs

Now we prove that NTA form a subclass of CTSs and are indeed equivalent to bounded CTSs.

Theorem 3.7. Every NTA A can be translated into a CTS T (A) s.t. A ∼= T (A).

Proof:

Let A = (A1| . . . |An)f be a NTA, with for all i, Ai = 〈Li, ℓ0i , Ei, A, λi, X, Guardi,Resetsi, Invi〉.
Let us define the CTS T (A) = 〈P, T,Pre,Post,m0, A, λ

′, X,Guard′,Resets′, Inv′〉 such that:

• P = {p1, . . . , pn} contains one variable pi for each TA Ai. Suppose w.l.o.g. that locations are

actually integers so that we can write, for instance, m(p1) = ℓ01 ;

• Let ⊥ be a special symbol belonging to none of the Ei. For all i, we extend λi to a function of

Ei ∪ {⊥} to A ∪ {•}.

T is the set of elements (e1, . . . , en) in E1 ∪ {⊥} × · · · × En ∪ {⊥} such f(λ1(e1), . . . , λn(en))
is defined;

• For t = (e1, . . . , en) ∈ T , we have:

– Pre(t)(m) is true iff for all i such that ei 6= ⊥, writing ei = (li, l
′
i), m(pi) = li;

– Post(t)(m) = m′ with for all i such that ei 6= ⊥, writing ei = (li, l
′
i), m

′(pi) = l′i and for all

i such that ei = ⊥, m′(pi) = li;

– λ′(t) = f(λ1(e1), . . . , λn(en));

– Guard
′(t) =

∧

ei 6=⊥ Guardi(ei);

– Resets
′(t) = {(true, x)|x ∈

⋃

ei 6=⊥ Resetsi(ei)}, true being the function that returns always

true;

• ∀i ∈ [1..n], m0(pi) = ℓ0i ;

• Inv
′ = {(gli , Invi(l))|li ∈ Li, i ∈ [1..n]}, with gli(m) iff m(pi) = li.

Let us explicit the semantics of T (A): it is the TTS ST = (NV ×RX
≥0, (m0,0), A,→) such that:

• (m, v)
b∈A
−−→ (m′, v′) iff there exists t = (e1, . . . , en) ∈ T such that:











































∀ei 6= ⊥,m(pi) = li, by writing ei = (li, l
′
i),

b = f(λ(e1), . . . , λ(en)),

m′(pi) = l′i if λ(ei) 6= • and m′(pi) = li otherwise ,

∀i, v |= Guardi(ei),

v′ = v
[

R← 0
]

with R =
⋃

i∈[1..n],ei 6=⊥ Resetsi(ei),

∀i, v′ |= Invi(m
′(pi)),
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• (m, v)
d∈R≥0

−−−−→ (m, v + d) iff ∀i, ∀0 < d′ ≤ d, v + d′ |= Invi(m(pi)).

The very last condition exactly means that for all Ai, (m(pi), v)
d
−→ (m(pi), v + d) in its semantics.

We can now rewrite the other condition as: (m, v)
b∈A
−−→ (m′, v′) iff there exists t = (e1, . . . , en) ∈ T

such that b = f(λ(e1), . . . , λ(en)) and for all i ∈ [1..n]:

• either λi(ei) = • and m(pi) = m′(pi);

• or λi(ei) 6= •, ∃li, l
′
i s.t. ei = (li, l

′
i) and























m(pi) = li and m′(pi) = l′i,

v |= Guardi(ei),

v′ = v
[

R← 0
]

with R =
⋃

i∈[1..n],ei 6=⊥ Resetsi(ei),

v′ |= Invi(l
′
i)

This means: (m, v)
b∈A
−−→ (m′, v′) iff there exists (a1, . . . , an) ∈ (A ∪ {•})n such that b =

f(a1, . . . , an) and for all i ∈ [1..n]:

• either ai = • and m(pi) = m′(pi);

• or ai 6= • and ∃li, l
′
i such that:

{

m(pi) = li and m′(pi) = l′i,

(li, v)
ai−→ (l′i, v

′′), for some v′′ s.t. v′′(x) = 0 implies v′(x) = 0.

The bijection h : L1 × · · · × Ln ×R≥0 → NP ×R≥0 such that h(l1, . . . , ln, v)(pi) = (m, v), with

∀i,m(pi) = li, is therefore a graph isomorphism between the semantics of A and T (A) since it allows

to find exactly the semantics of T (A) from that of A. ⊓⊔

To illustrate the encoding, consider the NTA in Fig. 2. Its equivalent in CTS is given in Table 2.

l1 l2

x ≤ 1

l3

y ≤ 1

l4

a : [x]

b : x = 0

b : [x] c : y = 1, [y]

b

Figure 2. A network of two timed automata with two clocks x and y. The boxed constraints above the locations

are invariants. Transitions are labeled by their action (a, b or c), the guard on clocks and resets (bracketed).

Theorem 3.8. Every bounded CTS T can be translated into a TA A(T ) s.t. T ∼= A(T ).

Proof:

Let T = 〈V, T,Pre,Post,m0, A, λ,X,Guard,Resets, Inv〉 be a k-bounded CTS. Let us define the

TA A(T ) = 〈L, ℓ0, E,A, λA, X,GuardA,ResetsA, InvA〉 such that:
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V = {p1, p2} m0 = (l1, l3)

T = {A,B1, B2, C} X = {x, y}

λ(A) = a, λ(B1) = λ(B2) = b, λ(C) = c Guard(A) = Guard(B1) = true

Pre(A) = (p1 = l1),Post(a) = (p1 := l2) Guard(B2) = (x = 0)

Pre(B1) = ((p1, p2) = (l2, l3)) Guard(C) = (y = 1)

Post(B1) = ((p1, p2) := (l2, l4)) Resets(A) = Resets(B1) = {(true, x)}

Pre(B2) = ((p1, p2) = (l2, l3)) Resets(B2) = ∅

Post(B2) = ((p1, p2) := (l1, l4)) Resets(C) = {(true, y)}

Pre(C) = (p2 = l3),Post(C) = (p2 := l3)

Inv = {((p1 = l1), true), ((p1 = l2), (x ≤ 1)), ((p2 = l3), (y ≤ 1)), ((p2 = l4), true)}

Table 2. CTS coding the NTA of Fig. 2.

• L is a set of (k + 1)|V | locations. To each location l ∈ L, is associated a value m(l) of the set of

variables V (m : L→ NV );

• ℓ0 is the location such that m(ℓ0) = m0

• E is a subset of L× L and is the set of directed edges;

• The invariant associated with each location l ∈ L is defined by:

InvA(l) = {J | ∃(f, J) ∈ Inv st f(m(l)) = true}

• ∀e = (l, l′) ∈ L × L, such that ∃t ∈ T , Pre(t)(m(l)) = true and m(l′) = Post(m(l)), we add e

to E and we label e by:

– the action name λA(e) = λ (t),

– the guard: GuardA(e) = Guard (t),

– the clocks assignments: ResetsA(e) = {x | ∃(h, x) ∈ Resets(t) s.t. h(m(l)) = true}

We first let R ⊆ QT × QA, the relation between a state of the Timed Automaton and a state of the

Clock Transition System defined by:

{

∀(m, vT ) ∈ QT

∀(l, vA) ∈ QA

, (m, vT )R(l, vA)⇔

{

m = m(l)

vT = vA

First, by construction, given a value m, there is one and only one location l ∈ L in A(T ) such that

m(l) = m. Then, since (m, vT )R(l, vA) implies vT = vA,R is a bijection.

Let (m, v) ∈ QT and (l, v) ∈ QA such that (m, v)R(l, v). In both models T and A(T ), invariants

are associated to discrete states m and l and are identical by construction: InvA(l) = {J | ∃(f, J) ∈
Inv st f(m(l)) = true}. Moreover there is an arc between l and l′ in A(T ) iff ∃t ∈ T , Pre(t)(m(l)) =
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true and m(l′) = Post(m(l)) and guards, resets and labeling are syntactically identical for arc (l, l′) in

A(T ) and transition t leading from m = m(l) to m′ = m(l′) in T . Then, for any reachable state (m, v)
of ST the conditions for the firing of an action a ∈ A or for the elapsing of d ∈ R≥0 are identical to

those from the state (l, v) of SA. Thus,

• the firing of a discrete transition gives (m, v)
a∈A
−−−→ (m′, v′T ) ⇔ (l, v)

a
−→ (l′, v′A) and since the

sets of clock resets are identical, we have v′T = v′A and then (m′, v′T )R(l
′, v′A);

• the elapsing of time increase the valuation of v and then obviously: (m, v)
d∈R≥0

−−−−→ (m, v + d)⇔
{

(l, v)
d
−→ (l, v + d)

(m, v + d)R(l, v + d)
⊓⊔

Moreover, since the CTS exhibited in the proof of theorem 3.7 is clearly bounded, we have:

Corollary 3.9. The class of bounded CTSs is equivalent to the class of TA up to isomorphism of TTS.

4. Discussion

Fig. 3 summurizes how the different classes are inter-

CTS

TPN
CTS0

CTS∞

2CM

bounded TPN

TA

Figure 3. Expressiveness sum up

twined with each other. 2CM stands for 2-counter machines

; CTS0 is the CTS coding the Timed Automaton A0 pro-

posed in [4] such that there is no TPN weakly bisimilar to

A0. CTS∞ is the CTS obtained from CTS0 by adding an

unbounded discrete behavior. This CTS is obviously neither

a TPN nor a TA.

CTS0: V = {p} ; m0 = l0 ; T = {ta} ; X = {x} ;

λ(ta) = a ; Guard(ta) = (x < 1) ; Pre(ta) = l0 ; Post(ta) =
l1 ; Resets(ta) = ∅ ;

CTS∞: V = {p1, p2} ; m0 = (l0, 0) ; T = {ta, tb} ;

X = {x} ; λ(ta) = a ; λ(tb) = b ; Guard(ta) = (x < 1)
; Guard(tb) = (x > 0) ; Pre(ta) = (p1 = l0) ; Post(ta) = (p1 := l1) ; Pre(tb) = (p1 = l1) ;

Post(tb) = (p1 := l1, p2 := p2 := p2 + 1) ; Resets(ta) = ∅ ; Resets(tb) = {x}
As we have seen in the previous section, the expressive power and conciseness of Clock Transition

Systems are two of their best assets. Furtermore, since both TA and TPNs can be easily transformed

in Clock Transition Systems, whose sizes are linear wrt. that of the TA or TPN, one can imagine a

modeling workflow in which sequential components are modeled as TA, components featuring complex

synchronization are modeled as TPNs, and complex dynamics are directly discretized in the form of

Clock Transition Systems. This mixed modeling can ultimately be transformed in Clock Transition

Systems for the analysis. We can lift most of the analysis techniques developed for (time) Petri nets and

(timed) automata to CTS. For instance:

• For unbounded untimed CTSs, given adequate restrictions on the discrete guard and assignment

functions (such as those in the subclass CTS-TPN), we can compute a coverability graph [13].
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• For bounded CTSs (with time), we can easily extend the region abstraction [1] or the zone abstrac-

tion used in the tool Uppaal [16]. We have shown in [17] how the zone graph construction can be

extended to CTSs. These abstractions give a finite representation of the infinite state-space. From

these basic abstractions, many analysis techniques can be constructed to decide safety, reachability,

liveness, etc.

• For potentially unbounded CTSs (with time), the techniques based on these abstractions become

semi-algorithms as for potentially unbounded TPN [7]. A few interesting problems are still decid-

able though, e.g. k-boundedness and even safety control of the unbounded CTS to automatically

make it bounded using the technique of [8]. It should also be possible to apply supervision tech-

niques like in [9].

Finally, new techniques developed directly for CTSs can be immediately applied to both TPNs and

TA, thus reducing the duplication of efforts.

5. Conclusion and perspectives

We have defined the new model of clock transition systems. It blends concepts from both time Petri

nets and networks of timed automata. That means that CTS is a good intermediate model to develop

tools, while factoring software developments. We showed that (in terms of isomorphism of TTS formal

semantics):

• TPNs and TA may be encoded using CTSs;

• The syntactic subclass CTS-TPNs forms exactly the set of TPNs;

• Bounded CTSs form exactly the set of Timed Automata;

• Computation of a symbolic state-space is possible for CTSs and, in particular, allows model-

checking.

The other contribution is that CTSs ultimately appear to be a powerful and concise formalism for

describing timed models. One could also imagine a possible mixture of NTA, TPNs and CTSs to model

complex timed behaviors, all of them being ultimately transcribed into CTSs, analyzed by a unique

engine.

The outlook is therefore to start from this model for our next developments in the tool Romeo [18].

In particular, we will equip this model with a concurrent semantics to build timed unfoldings, extending

techniques from [12].
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