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Abstract

Dimension reduction is one of the biggest challenge in high-dimensional regression
models. We recently introduced a new methodology based on variable clustering as a
means to reduce dimensionality. We introduce here an R package that implements two
enhancements regarding the latter methodology. First, an improvement in computational
time for estimating the parameters is presented. As a second enhancement, users of our
method are now allowed to constrain the model to identify variables with weak or no effect
on the response. An overview of the package functionalities as well as examples to run an
analysis are described. Numerical experiments on simulated and real data were performed
to illustrate the gain of computational time and the good predictive performance of our
method compared to standard dimension reduction approaches.
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1. Introduction

High dimensionality is increasingly ubiquitous in numerous scientific fields incuding genet-
ics, economics and physics. Reducing the dimensionality is a challenge that most statistical
methodologies must meet not only to remain interpretable but also to achieve reliable pre-
dictions. In linear regression models, dimension reduction techniques often refer to variables
selection. Approaches for variables selection are implemented in publicly available software,
that involve the well-known R packages glmnet and spikeslab. The R package glmnet imple-
ments the Elastic net methodology [Zou and Hastie (2005)], which is a generalization of both
the LASSO [Tibshirani (1996)] and the ridge regression (RR) [Hoerl and Kennard (1970)].
The R package spikeslab in turn, implements the Spike and Slab methodology [Ishwaran and
Rao (2005)], which is a Bayesian approach for variables selection.

Dimension reduction can not however, be restricted to variables selection. Indeed, the field can
be extended to include approaches which aim is to create surrogate covariates that summa-
rizes the information carried in initial covariates. Since the emblematic Principal Component
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Regression (PCR)[Jolliffe (1982)], many of the latter methods spread in the recent literature.
As specific examples, we may refer to the OSCAR methodology [Bondell and Reich (2008)],
or the PACS methodology [Sharma, Bondell, and Zhang (2013)] which is a generalization of
the latter approach. Those methods mainly proposed variables clustering within a regression
model as a way to reduce the dimensionality. Despite their theoretical and practical appeal,
implementations of those methods were often proposed only through Matlab or R scripts, lim-
iting thus the flexibility and the computational efficiency of their use. The CLusterwise Effect
REgression (CLERE) methodology [Yengo, Jacques, and Biernacki (2013)], was recently in-
troduced as a novel methodology for simultaneous variables clustering and regression. The
CLERE methodology is based on the assumption that each regression coefficient is an unob-
served random variable sampled from a mixture of Gaussian distributions with an arbitrary
number g of components. In addition, all components in the mixture are assumed to have
differents means (b1, . . . , bg) and equal variances equal to γ2.

In this paper, we propose two new features for the CLERE model. First, the stochastic EM
(SEM) algorithm is proposed as a more computationally efficient alternative to the Monte
Carlo EM (MCEM) algorithm previously introduced in [Yengo et al. (2013)]. Secondly, the
CLERE model is enhanced with the possibility of constraining the first component to have its
mean equal to 0, i.e. b1 = 0. This enhancement mainly aimed at facilitating the interpretation
of the model. Indeed when b1 is set to 0, variables assigned to the cluster associated with
b1 might be considered less relevant than other variables. Those two new features were
implemented in a C++ program available through the R package clere.

The outline of the present paper is the following. In Section 2, the definition of the model
is recalled and the strategy to estimate the model parameter is presented. In Section 3 are
described both the MCEM and SEM algorithms. This section also presents how the number
of clusters is chosen and how the constraint on parameter b1 can be interpretated. Section 4
presents the main functionalities of the R package clere. In Section 5, numerical experiments
are presented aiming at illustrating the computational gain of the SEM algorithm over our
former strategy and the good predictive performances of CLERE compared to standard di-
mension reduction methods. In that section, we also present two real data analysis performed
with the R package clere,through two datasets. Finally, perspectives and further potential
improvements of the package are discussed in Section 6.

2. Model definition and notation

Our model is defined by the following hierarchical relationships:
yi ∼ N

(
β0 +

∑p
j=1 βjxij , σ

2
)

βj |zj ∼ N
(∑g

k=1 bkzjk, γ
2
)

zj = (zj1, . . . , zjg) ∼M (π1, . . . , πg) .

(1)

For an individual i = 1, . . . , n, yi is the response and xij is an observed value for the j-th
covariate. βj is the regression coefficient associated with the j-th covariate (j = 1, . . . , p).
Let β = (β1, . . . , βp), y = (y1, . . . , yn)′, X = (xij), Z = (zjk), b = (b1 . . . bg)

′ and π =
(π1, . . . , πg)

′.
Moreover, log p(y|X;θ) denotes the log-likelihood of model (1) assessed for the parameter
θ =

(
β0, b,π, σ

2, γ2
)
. Model (1) can be interpretated as a Bayesian approach. However, to
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be fully Bayesian a prior distribution for parameter θ would have been necessary. Instead,
we proposed to estimate θ by maximizing the (marginal) log-likelihood, log p(y|X;θ). This
partially Bayesian approach is referred to as Empirical Bayes (EB) [Casella (1985)]. Let Z be
the set of p× g-matrices partitioning p covariates into g groups. Those matrices are defined
as

Z = (zjk)1≤j≤p,1≤k≤g ∈ Z ⇔ ∀j = 1, . . . , p

{
∃! k such as zjk = 1

if k′ 6= k then zjk = 0.

The log-likelihood log p(y|X;θ) is defined as

log p(y|X;θ) = log

[∑
Z∈Z

∫
Rp

p(y,β,Z|X;θ)dβ

]
.

Since it requires integrating over Z with cardinality gp, evaluating the likelihood becomes
rapidly computationnally unaffordable.

Nonetheless, maximum likelihood estimation is still achievable using the expectation maxi-
mization (EM) algorithm [Dempster, Laird, and Rubin (1977)]. The latter algorithm is an
iterative method which starts with an initial estimate of the parameter and updates this esti-
mate until convergence. Each iteration of the algorithm consists of two steps, denoted as the
E and the M steps. At each iteration d of the algorithm, the E step consists in calculating the
expectation of the log-likelihood of the complete data (observed + unobserved) with respect
to p(β,Z|y,X;θ(d)), the conditional distribution of the unobserved data given the observed
data, and the value of the parameter at the current iteration, θ(d). This expectation, often
denoted as Q(θ|θ(d)) is then maximized with respect to θ at the M step.

In model (1), the E step is analytically intractable. A broad literature devoted to intractable
E steps recommands the use of a stochastic approximation of Q(θ|θ(d)) through Monte Carlo
(MC) simulations [Wei and Tanner (1990), Levine and Casella (2001)]. This approach is
referred to as the MCEM algorithm. Besides, mean-field-type approximations are also pro-
posed [Govaert and Nadif (2008), Mariadassou, Robin, and Vacher (2010)]. Despite their
computational appeal, the latter approximations do not generally ensure convergence to the
maximum likelihood [Gunawardana and Byrne (2005)]. Alternatively, the SEM algorithm
[Celeux, Chauveau, and Diebolt (1996)] was introduced as a stochastic version of the EM al-
gorithm. In this algorithm, the E step is replaced with a simulation step (S step) that consists
in generating a complete sample by simulating the unobserved data using p(β,Z|y,X;θ(d)).
After the S step follows the M step which consists in maximizing p(β,Z|y,X;θ) with re-
spect to θ. Alternating those two steps generate a sequence

(
θ(d)

)
, which is Markov chain

whose stationnary distribution (when it exists) concentrates around a local maximum of the
likelihood.

3. Estimation and model selection

3.1. Initialization

The two algorithms presented in this section are initialized using a primary estimate βj
(0) of

each βj . The latter can be chosen either at random, or obtained from univariate regression
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coefficients or penalized approaches like LASSO and ridge regression. For large SEM or
MCEM chains, initialization is not a critical issue. The choice of the initialization strategy
is therefore made to speed up the convergence of the chains. A Gaussian mixture model

with g component(s) is then fitted using β(0) =
(
β
(0)
1 , . . . , β

(0)
p

)
as observed data to produce

starting values b(0), π(0) and γ2
(0)

respectively for parameters b, π and γ2. Using maximum

a posteriori (MAP) clustering, an initial partition Z(0) =
(
z
(0)
jk

)
∈ Z is obtained as

∀j ∈ {1, . . . , p}, z(0)jk =

1 if k = argmink′∈{1,...,g}

(
βj

(0) − b(0)k′
)2

0 otherwise.

β0 and σ2 are initialized using β(0) as follows:

β
(0)
0 =

1

n

n∑
i=1

yi − p∑
j=1

β
(0)
j xij

 and σ2(0) =
1

n

n∑
i=1

yi − β(0)
0 −

p∑
j=1

β
(0)
j xij

2

.

3.2. MCEM algorithm

The Sochastic Approximation of the E step

Suppose at iteration d of the algorithm that we have
{(
β(1,d),Z(1,d)

)
, . . . ,

(
β(M,d),Z(M,d)

)}
,

M samples from p
(
β,Z|y,X;θ(d)

)
. Then the MC approximation of the E -step can be written

Q
(
θ|θ(d)

)
= E

[
log p(y,β,Z|X;θ(d))|y,X;θ(d)

]
≈ 1

M

M∑
m=1

log p(y,β(m,d),Z(m,d)|X;θ(d)).

However, sampling from p
(
β,Z|y,X;θ(d)

)
is not straightforward. However, we can use a

Gibbs sampling scheme to simulate unobserved data, taking advantage of p
(
β|Z,y,X;θ(d)

)
and p

(
Z|β,y,X;θ(d)

)
from which it is easy to simulate. Those distributions, respectively

Gaussian and multinomial, are described below in Equations (2) and (3).
β|Z,y,X;θ(d) ∼ N

(
µ(d),Σ(d)

)
µ(d) =

[
X′X + σ2(d)

γ2(d)
Ip

]−1
X ′
(
y − β(d)0 1p

)
+ σ2(d)

γ2(d)

[
X′X + σ2(d)

γ2(d)
Ip

]−1
Zb(d)

Σ(d) = σ2
(d)
[
X′X + σ2(d)

γ2(d)
Ip

]−1 (2)

and (note that p
(
Z|β,y,X;θ(d)

)
does not depend on X nor y)

p
(
zjk = 1|β;θ(d)

)
∝ π(d)k exp

−
(
βj − b(d)k

)2
2γ2(d)

 . (3)

In Equation (2), Ip and 1p respectively stands for the identity matrix in dimension p and the
vector of Rp which all coordinates equal 1. To efficiently sample from p

(
β|Z,y,X;θ(d)

)
a
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preliminary singular vector decomposition of matrix X is necesary. Once this decomposition
is performed the overall complexity of the approximated E step is O

[
M(p2 + pg)

]
.

The M step

Using the M draws obtained by Gibbs sampling at iteration d, the M step is straightforward
as detailed in Equations (4) to (8). The overall computational complexity of that step is
O (Mpg).

π
(d+1)
k =

1

Mp

M∑
m=1

p∑
j=1

z
(m,d)
jk , (4)

b
(d+1)
k =

1

Mpπ
(d+1)
k

M∑
m=1

p∑
j=1

z
(m,d)
jk β

(m,d)
j , (5)

γ2
(d+1)

=
1

Mp

M∑
m=1

p∑
j=1

g∑
k=1

z
(m,d)
jk

(
β
(m,d)
j − b(d+1)

k

)2
, (6)

β
(d+1)
0 =

1

n

n∑
i=1

yi − p∑
j=1

(
1

M

M∑
m=1

β
(m,d)
j

)
xij

, (7)

σ2
(d+1)

=
1

nM

M∑
m=1

n∑
i=1

yi − β(d+1)
0 −

p∑
j=1

β
(m,d)
j xij

2

. (8)

3.3. SEM algorithm

In most situations, the SEM algorithm can be considered as a special case of the MCEM algo-
rithm [Celeux et al. (1996)], obtained by setting M = 1. In model (1), such a direct derivation
leads to an algorithm which computational complexity remains quadratic with respect to p.
To reduce that complexity, we propose a SEM algorithm based on the integrated complete
data likelihood p(y,Z|X;θ) rather than p(y,β,Z|X;θ). A closed form of p(y,Z|X;θ) is
available and given subsequently.

Closed form of the integrated complete data likelihood

Let the SVD decomposition of matrixX be USV ′, where U and V are respectively n×n and
p× p orthogonal matrices, and S is n× p rectangular diagonal matrix which diagonal terms
are the eigenvalues

(
λ21, . . . , λ

2
n

)
of matrix XX ′. We now define Xu = U ′X and yu = U ′y.

Let M be the n × (g + 1) matrix which first column is made of 1’s and which additional
columns are those of matrix XuZ. Let also t = (β0, b) ∈ R(g+1) and R be a n × n diagonal
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matrix which i-th diagonal term equal σ2 + γ2λ2i . With these notations we can express the
complete data likelihood integrated over β as

log p (y,Z|X;θ) = −n
2

log (2π)− 1

2

n∑
i=1

log
(
σ2 + γ2λ2i

)
− 1

2
(yu −Mt)′R−1 (yu −Mt)

+

p∑
j=1

g∑
k=1

zjk log πk. (9)

Simulation step

To sample from p (Z|y,X;θ) we use a Gibbs sampling strategy based on the conditional distri-
butions p

(
zj |y,Z−j ,X;θ

)
, Z−j denoting the set of cluster membership indicators for all co-

variates but the j-th. Let w−j =
(
w−j1 , . . . , w−jn

)′
, where w−ji = yui −β0−

∑
l 6=j
∑g

k=1 zlkx
u
ilbk.

The conditional distribution p(zjk = 1|Z−j ,y,X;θ) can be written

p(zjk = 1|Z−j ,y,X;θ) ∝ πk exp

[
−
b2k
2

(
xuj
)′
R−1xuj + bk

(
w−j

)′
R−1xuj

]
, (10)

where xuj is the j-th column ofXu. In the classical SEM algorithm, convergence to p (Z|y,X;θ)
should be reached before updating θ. However, a valid inference can still be ensured in settings
when θ is updated only after one or few Gibbs iterations. These approaches are referred to as
SEM-Gibbs algorithm [Biernacki and Jacques (2013)]. The overall computational complexity
of the simulation step is O (npg), so linear with p and no quadratic as obtained previously
with MCEM.

To improve the mixing of the generated Markov chain, we start the simulation step at each
iteration by creating a random permutation of {1, . . . , p}. Then, according to the order defined
by that permutation, we update each zjk using p(zjk = 1|Z−j ,y,X;θ).

Maximization step

log p (y,Z|X;θ) corresponds to the marginal log-likelihood of a linear mixed model [Searle,
Casella, and McCulloch (1992)] which can be written

yu = Mt+ λv + ε (11)

where v is an unobserved random vector such as v ∼ N
(
0, γ2In

)
, ε ∼ N

(
0, σ2In

)
and

λ = diag (λ1, . . . , λn). The estimation of the parameters of model (11) can be performed us-
ing the EM algorithm, as in [Searle et al. (1992)]. We adapt below the EM equations defined
in [Searle et al. (1992)], using our notations. At iteration s of the internal EM algorithm, we

define R(s) = σ2
(s)
In + γ2

(s)
λ′λ. The detailed internal E and M steps are given below:

Internal E step:
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v(s)σ = E
[(
yu −Mt(s) − λv

)′ (
yu −Mt(s) − λv

)
|yu
]

= σ4(s)
(
yu −Mt(s)

)′
R(s)R(s)

(
yu −Mt(s)

)
+ n× σ2(s) − σ4(s)

n∑
i=1

1

σ2(s) + γ2(s)λ2i
.

v(s)γ = E [v′v|yu]

= γ4
(s)
(
yu −Mt(s)

)′
R(s)λ′λR(s)

(
yu −Mt(s)

)
+ n× γ2(s) − γ4(s)

n∑
i=1

λ2i

σ2(s) + γ2(s)λ2i
.

h(s) = E [yu − λv|yu] = Mt(s) + σ2(s)R−1(s)
(
yu −Mt(s)

)
.

Internal M step:

σ2
(s+1)

= v(s)σ /n.

γ2
(s+1)

= v(s)γ /n.

t(s+1) =
[
M ′M

]−1
M ′h(s).

Given a non-negative user-specified threshold δ and a maximum number Nmax of iterations,
Internal E and M steps are alternated until

| log p
(
y,Z|X;θ(s)

)
− log p

(
y,Z|X;θ(s+1)

)
| < δ or s = Nmax.

The computational complexity of the M step is O
(
g3 + ngNmax

)
, thus not involving p.

Attracting and absorbing states

• Absorbing states. The SEM algorithm described above defines a Markov chain which
stationnary distribution is concentrated around values of θ corresponding to local max-
ima of the likelihood function. This chain has absorbing states in values of θ such as
σ2 = 0 or γ2 = 0. In fact, the internal M step reveals that updated values for σ2 and
γ2 are proportional to previous values of those parameters.

• Attracting states. We empirically observed that attraction around σ2 = 0 was quite
frequent when matrix X is centered and p > n. To reduce this attraction, we advocate
users of the package not to center the columns when p, the number of variables is
smaller than n, the sample size. A similar behavior was also observed with the MCEM
algorithm when p > n and M < 5.

3.4. Model selection

Once the MLE θ̂ is calculated (using one or the other algorithm), the maximum log-likelihood

and the posterior clustering matrix E
[
Z|y,X; θ̂

]
are approximated using MC simulations

based on Equations (9) and (10). The approximated maximum log-likelihood l̂, is then utilized
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to calculate AIC [Akaike (1974)] and BIC [Schwarz (1978)] criteria for model selection. In
model (1), those criteria can be written as

BIC = −2l̂ + 2(g + 1) log(n) and AIC = −2l̂ + 4(g + 1). (12)

An additional criterion for model selection, namely the ICL criterion [Biernacki, Celeux, and
Goavert (2000)] is also implemented in the R package clere. The latter criterion can be written

ICL = −2l̂ + 2(g + 1) log(n)−
p∑
j=1

g∑
k=1

πjk log(πjk), (13)

where πjk = E
[
zjk|y,X; θ̂

]
.

3.5. Interpretation of the special group of variables associated with b1 = 0

The constraint b1 = 0 is mainly driven by an interpretation purpose. The meaning of this
group depends on both the total number g of groups and the estimated value of parameter γ2.
In fact, when g > 1 and γ2 is small, covariates assigned to that group are likely less relevant
to explain the response. Determining whether γ2 is small enough is not straightforward.
However, when this property holds, we may expect the groups of covariates to be separated.
This would for example translate in the posterior probabilities πj1 being larger than 0.7.
In addition to the benefit in interpretation, the constraint b1 = 0, reduces the number of
parameters to be estimated and consequently the variance of the predictions performed using
the model.

4. Package functionalities

The R package clere mainly implements a function for parameter estimation and model
selection: the function fit.clere(). Four additional functions for graphical representa-
tion plot(), summarizing the results summary(), getting the predicted clusters of variables
clusters() and making predictions from new design matrices predict() are also imple-
mented in the package.

4.1. The main function fit.clere()

The call of the R function fit.clere() is:
R> mod <- fit.clere(y, x, g, analysis = "fit", algorithm = "SEM",

+ nItMC = 1, nItEM = 1000, nBurn = 200, dp = 10, nsamp = 2000,

+ maxit = 1000, tol = 1e-6, plotit = FALSE, sparse = FALSE,

+ theta0 = NULL, Z0 = NULL)

Each of the input function arguments is described in Table 1. The fit.clere() function
returns an R object of class Clere. In addition to all input parameters, this object has the
other slots detailed in Table 2.
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Argument name Description

y is a vector of response of size n

x is a n× p matrix.

g is either the exact number groups (when analysis = "fit")
or the maximum number of groups to be tested
(when analysis = "aic", analysis = "bic" or analysis = "icl").

analysis takes value in {"fit","aic","bic","icl"}.
When analysis = "fit",
the model is fitted assuming that the exact number of groups is g.
When instead, analysis = "aic", analysis = "bic" or analysis = "icl",
the model is fitted g times with a number of group(s) between 1 and g.
The g models are then compared respectively using AIC, BIC and ICL
criterion and the best model is returned.

algorithm allows to select between SEM (algorithm = "SEM") and
MCEM (algorithm = "MCEM") algorithms to estimate
the model parameters.

nItMC is the number of complete Gibbs sampling (described in Equation (10))
iterations run before simulating a partition Z when running SEM algorithm.

nItEM is the number of SEM or MCEM iterations.

nBurn is the number of iterations burn-in discarded to calculate the MLE in the
SEM algorithm. This number is also used in the MCEM algorithm as a
number of discared iterations for the Gibbs sampling required to
draw from p(y,β,Z|X;θ).

dp is the length of thinning interval used to break dependence between the sampled
partitions. It corresponds to the number of Gibbs iterations to skip between
consecutive draws of the chain.

nsamp is the number of Gibbs iterations used to approximate the log-likelihood.

maxit is the maximum number of internal EM algorithm iterations runnned at the
M step of the SEM algorithm.

tol is the tolerance parameter required to end the internal EM
algorithm runnned at the M step of the SEM algorithm.
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nstart is the number of random starting points used to fit the model.

parallel equals FALSE or TRUE. It indicates whether parameter the fit from different random
starting points shoud be perform through parallel computing. It uses the function
mclapply from package parallel.

plotit equals FALSE or TRUE. This boolean parameter indicates whether a summary
graph should be plotted.

sparse equals FALSE or TRUE. It indicates whether parameter b1 is set to 0.

theta0 is a user-specified initial guess of the model parameter θ.

Z0 is a user-specified initial partition of the variables given as a vector of size p
of integers between 1 and g

Table 1: Input arguments of the function fit.clere().

4.2. Secondary functions summary(), plot(), ggPlot(), clusters() and predict()

Examples of calls for the functions presented in this section are given in Section 5.3.

The summary() function prints an overview of the estimated parameters and returns the
estimated likelihood and information based model selection criteria (AIC, BIC and ICL).

The call of functions plot() and ggPlot() are similar to the one of function summary(). The
latter function function produces graphs such as ones presented in Figure 1. The function
ggPlot() requires a prior installation of the R package ggplot2. However, there is no depen-
dancies with the latter package since the R package clere can be installed without ggplot2.
When ggplot2 is not installed, the user can still make use of the function plot().

The function clusters(), takes one argument of class Clere and a threshold argument.
This function assigns each variable to the group which associated posterior probability of
membership is larger than the given threshold. When threshold = NULL, the maximum a
posteriori (MAP) strategy is used to infer the clusters.

The predict() function has two arguments, being a clere and a design matrix Xnew. Using
that new design matrix, the predict() function returns an approximation of E [Xnewβ|y,X;θ].

5. Numerical experiments

This section presents two sets of numerical experiments. The first set of experiments aims at
comparing the MCEM and SEM algorithms in terms of computational time and estimation or
prediction accuracy. The second set of experiments aimed at comparing CLERE to standard



11

Argument name Description

intercept is the estimated value for parameter β0.

b is the estimated value for parameter b. It is a numeric vector of size g.

pi is the estimated value for parameter π. It is a numeric vector of size g.

sigma2 is the estimated value for parameter σ2.

gamma2 is the estimated value for parameter γ2.

theta is a nItEM × (2g+4) matrix containing values of
the model parameters and complete data log-likelihood at each iteration
of the SEM/MCEM algorithm.

likelihood is an approximation of the log-likelihood using nsamp MC simulations.

entropy is an approximation of the entropy using nsamp MC simulations.

P is a p× g matrix approximating E [Z|y,X;θ] using nsamp MC simulations.

Bw is a p × nsamp matrix which columns are samples from
the distribution p(β|y,X;θ).

Zw is a p × nsamp matrix which columns are samples from
the distribution p(Z|y,X;θ). Each column is sampled
partition coded a vector of size p containing integers
taking values between 0 and (g − 1).

Table 2: The function fit.clere() function returns an R object of class Clere. In addition
to all input parameters, this object has the other slots described in this table.

dimension reduction techniques. The latter comparison is performed on both simulated and
real data.

5.1. SEM algorithm versus MCEM algorithm

Description of the simulation study

In this section, a comparison between the SEM algorithm and the MCEM algorithm is per-
formed. This comparison is performed using the four following performance indicators:

1. Computational time (CT) to run a pre-defined number of SEM/MCEM iterations. This
number was set to 2,000 in this simulation study.
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Figure 1: Values of the model parameters in view of SEM algorithm iterations. The vertical
green line in each of the four plots, represents the number nBurn of iterations discarded before
calculating maximum likelihood estimates.

2. Mean squared estimation error (MSEE) defined as

MSEEa = E
[
(θ− θ̂a)′(θ− θ̂a)

]
,

where a ∈ {"SEM","MCEM"} and θ̂a is an estimated value for parameter θ obtained with
algorithm a. Since θ is only known up to a permutation of the group labels, we chose
the permutation leading to the smallest MSEE value.

3. Mean squared prediction error (MSPE) defined as

MSPEa = E
[
(yv −Xvθ̂a)′(yv −Xvθ̂a)

]
,

where yv and Xv are respectively a vector of responses and a design matrix from a
validation dataset.

4. Maximum log-likelihood (ML) reached. This quantity was approximated using 1,000
samples from p(Z|y; θ̂).
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Three versions of the MCEM algorithm were proposed for comparison with the SEM algo-
rithm, depending on the number M (or nsamp) of Gibbs iterations used to approximate the
E step. That number was varied between 5, 25 and 125. Those versions were respectively
denoted MCEM5, MCEM25 and MCEM125. The comparison was performed using 200 simu-
lated datasets. Each training dataset consisted of n = 25 individuals and p = 50 variables.
Validation datasets used to calculate MSPE consisted of 1,000 individuals each. All covariates
were simulated independently according to the standard Gaussian distribution:

∀(i, j) xij ∼ N (0, 1).

Both training and validation datasets were simulated according to model (1) using β0 = 0,
b = (0, 3, 15)′, π = (0.64, 0.20, 0.16)′, σ2 = 1 and γ2 = 0. This is equivalent to simulate data
according to the standard linear regression model defined by:

yi ∼ N

 32∑
j=1

0× xij +
42∑
j=33

3× xij +
50∑
j=43

15× xij , 1


All algorithms were run using 10 different random starting points. Estimates yielding the
largest likelihood were then used for the comparison.

Results of the comparison

Table 3 summarizes the results of the comparison between the algorithms. The SEM algorithm
ran faster than its competitors in 74.5% of the simulations. The gain in computational time
yielded by SEM was between 1.3-fold (when compared to MCEM5) and 22.2-fold (when com-
pared to MCEM125). This improvement was accompanied with a good accuracy in parameter
estimation (second best median MSEE: 0.258; smallest MSEE in 25.5% of the simulations)
and a smaller prediction error (smallest median MSPE: 1.237; smallest MSPE in 48.5% of
the simulations). Those good performances were mainly explained by the fact that the SEM
algorithm most of the time reached a better likelihood than the other algorithms.

5.2. Comparison with other methods

Description of the methods

In this section, we compare our model to standard dimension reduction approaches in terms of
MSPE. Although a more detailed comparison was proposed in [Yengo et al. (2013)], we propose
here a quick illustration of the relative predictive performance of our model. The comparison
is achieved using data simulated according to the scenario described above in Section 5.1.
The methods selected for comparison are the ridge regression [Hoerl and Kennard (1970)],
the elastic net [Zou and Hastie (2005)], the LASSO [Tibshirani (1996)], PACS [Sharma et al.
(2013)], the method of Park and colleagues [Park, Hastie, and Tibshirani (2007)] (subsequently
denoted AVG) and the spike and slab model [Ishwaran and Rao (2005)] (subsequently denoted
SS). The first three methods are implemented in the freely available R package glmnet. The
latter package was used with default options regarding the choice of tuning parameters.
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% of times Median
Performance indicators Algorithms the algorithm was best (Std. Err.)

CT (seconds) SEM 74.50 1.60 ( 0.23 )
MCEM5 25.50 2.04 ( 0.13 )
MCEM25 0 7.63 ( 0.46 )
MCEM125 0 35.6 ( 2.22 )

MSEE SEM 25.5 0.258 ( 0.19 )
MCEM5 33.0 1.019 ( 0.97 )
MCEM25 22.5 0.257 ( 0.21 )
MCEM125 19.0 0.295 ( 0.25 )

MSPE SEM 48.5 1.237 ( 0.16 )
MCEM5 20.5 1.523 ( 0.49 )
MCEM25 19.0 1.258 ( 0.19 )
MCEM125 12.0 1.272 ( 0.21 )
True parameter — 1.159 ( 0.08 )

ML SEM 59.5 -78.60 ( 3.60 )
MCEM5 10.5 -79.98 ( 5.78 )
MCEM25 18.0 -79.00 ( 3.84 )
MCEM125 12.0 -79.47 ( 4.20 )
True parameter — -77.60 ( 2.37 )

Table 3: Performance indicators used to compare SEM and MCEM algorithms. Computa-
tional Time (CT) was measured on a Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz processor.
The best algorithm is defined as the one that either reached the largest log-likelihood (ML)
or the lowest CT, Mean Squared Prediction Error (MSPE) and Mean Squared Estimation
Error (MSEE). The best algorithm for each criterion is highlighted in bold font.

PACS methodology proposes to estimate the regression coefficients by solving a penalized least
squares problem. It imposes a constraint on β that is a weighted combination of the L1 norm
and the pairwise L∞ norm. Upper-bounding the pairwise L∞ norm enforces the covariates
to have close coefficients. When the constraint is strong enough, closeness translates into
equality achieving thus a grouping property. For PACS, no software was available. Only an
R script was released on Bondell’s webpage1. Since this R script was running very slowly, we
decided to reimplement it in C++ and observed a 30-fold speed-up of computational time.
Similarly to Bondell’s R script, our implementation uses two parameters lambda and betawt.
In [Sharma et al. (2013)], the authors suggest assigning betawt with the coefficients obtained
from a ridge regression model after the tuning parameter was selected using AIC. In this
simulation study we used the same strategy; however the ridge parameter was selected via 5-
fold cross validation. 5-fold CV was preferred to AIC since selecting the ridge parameter using
AIC always led to estimated coefficients equal to zero. Once betawt was selected, lambda

1http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r

http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r
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was chosen via 5-fold cross validation among the following values: 0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other default parameters of their script were
unchanged.

The AVG method is a two-step approach. The first step uses hierarchical clustering of co-
variates to create surrogate covariates by averaging the variables within each group. Those
new predictors are afterwards included in a linear regression model, replacing the primary
variables. A variable selection algorithm is then applied to select the most predictive groups
of covariates. To implement this method, we followed the algorithm described in [Park et al.
(2007)] and programmed it in R.

The spike and slab model is a Bayesian approach for variable selection. It is based on the
assumption that the regression coefficients are distributed according to a mixture of two
centered Gaussian distributions with different variances. One component of the mixture (the
spike) is chosen to have a small variance, while the other component (the slab) is allowed to
have a large variance. Variables assigned to the spike are dropped from the model. We used
the R package spikeslab to run the spike and slab models. Especially, we used the function
spikeslab from that package to detect influential variables. The number of iterations used to
run the function spikeslab was 2,000 (1,000 discarded).

When running fit.clere(), the number nItEM of SEM iterations was set to 2,000. The num-
ber g of groups for CLERE was chosen between 1 and 5 using AIC (option analysis="aic").
Two versions of CLERE were considered: the one with all parameters estimated and the one
with b1 set to 0. The latter approach is subsequently denoted CLERE0 (option sparse=TRUE).

Results of the comparison

Figure 2, summarizes the comparison between the methods. In this simulated scenario,
CLERE outperformed the other methods in terms of prediction error. Those good perfor-
mances were improved when parameter b1 was set to 0. CLERE was also the most parci-
monous approach with an averaged number of estimated parameters equal to 8.5 (6.7 when
b1 = 0). The second best approach was PACS which also led to parcimonous models. Vari-
ables selection approaches as whole yielded the largest prediction error in this simulation.

5.3. Real datasets analysis

Description of the datasets

We used in this section the real datasets Prostate and eyedata from the R packages lasso2
and flare respectively.

The Prostate dataset comes from a study that examined the correlation between the level
of prostate specific antigen and a number of clinical measures in n = 97 men who were about
to receive a radical prostatectomy. This dataset was used in multiple publications including
[Tibshirani (1996)]. We used the prostate specific antigen (variable lpsa) as reponse variable
and the p = 8 other measurements as covariates.

The eyedata dataset is extracted from the published study of [Scheetz (2006)]. This dataset
consists in gene expression levels measured at p = 200 probes in n = 120 rats. The response
variable utilized was the expression of the TRIM32 gene which is a biomarker of the Bardet-
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Figure 2: Comparison between CLERE and some standard dimension reduction approaches.
The number of estimated parameters (+/- standard error) is given with the name of the
method to be compared.

Bidel Syndrome (BBS).

Those two datasets was utilized to compare CLERE to the methods described in Section 5.2.
All the methods were compared in terms of out-of-sample prediction error estimated using
cross-validation (CV). 100 CV statistics were calculated by randomly splitting each dataset
into training (80% of the sample size) and validation (20% of the sample size) sets. Those
CV statistics were then averaged and compared accross the methods in Table 4.

Running the analysis

Before presenting the results of the comparison between CLERE and its competitors, we
illustrate the command lines to run the analysis of the Prostate dataset. The dataset is
loaded by typing:

R> library(lasso2)

R> data(Prostate)

R> y <- Prostate[,"lpsa"]
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R> x <- as.matrix(Prostate[,-which(colnames(Prostate)=="lpsa")])

Possible training (xt and yt) and validation (xv and yv) sets are generated as following:

R> itraining <- 1:(0.8*nrow(x))

R> xt <- x[ itraining,] ; yt <- y[ itraining]

R> xv <- x[-itraining,] ; yv <- y[-itraining]

The fit.clere() function is run using AIC criterion to select the number of groups between
1 and 5. To lessen the impact of local minima in the model selection, 5 random starting points
are used. This can be implemented as written below

R> mod <- fit.clere(y=yt,x=xt,g=5,analysis="aic",parallel=TRUE,

+ nstart=5,sparse=TRUE,nItEM=2000,nBurn=1000,

+ nItMC=10,dp=5,nsamp=1000)

R> summary(mod)

-------------------------------

| CLERE | Yengo et al. (2013) |

-------------------------------

Model object 2 groups of variables ( Selected using AIC criterion )

---

Estimated parameters using SEM algorithm are

intercept = -0.1395

b = 0.0000 0.4737

pi = 0.7188 0.2812

sigma2 = 0.3951

gamma2 = 4.181e-08

---

Log-likelihood = -78.28

Entropy = 0.5152

AIC = 182.63

BIC = 168.57

ICL = 183.15

R> plot(mod)

Running the command ggPlot(mod) generates the plot given in Figure 1. We can also access
the cluster membership by running the command clusters(). For example, running the
command clusters(mod,threshold=0.7) yields

R> clusters(mod,thresold=0.7)

lcavol lweight age lbph svi lcp gleason pgg45

2 2 1 1 1 1 1 1
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In the example above 2 variables, being the cancer volume (lcavol) and the prostate weight
(lweight), were assigned to group 2 (b2 = 0.4737). The other 6 variables were assigned to
group 1 (b1 = 0). Posterior probabilities of membership are available through the slot P in
object of class Clere.

R> mod@P

Group 1 Group 2

lcavol 0.000 1.000

lweight 0.000 1.000

age 1.000 0.000

lbph 1.000 0.000

svi 0.789 0.211

lcp 1.000 0.000

gleason 1.000 0.000

pgg45 1.000 0.000

The covariates were respectively assigned to their group with a probability larger than 0.7.

Moreover, given that parameter γ2 had very small value (γ̂2 = 4.181 × 10−8), we can argue
that cancer volume and prostate weight are the only relevant explanatory covariates. To
assess the prediction error associated with the model we can run the command predict() as
following:

R> error <- mean( (yv - predict(mod,xv))^2 )

R> error

[1] 1.550407

Results of the analysis

Table 4 summarizes the prediction errors and the number of parameters obtained for all the
methods. CLERE0 had the lowest prediction error in the analysis of the Prostate dataset
and the second best performance with the eyedata dataset. The AVG method was also very
competitive compared to variable selection approaches stressing thus the relevance of creating
groups of variables to reduce the dimensionality. It is worth noting that in both datasets,
imposing the constraint b1 = 0 improved the predictive performance of CLERE.

In the Prostate dataset, CLERE robustly identified two groups of variables representing
influcial (b2 > 0) and not relevant variables (b1 = 0). In the eyedata dataset in turn, AIC
led to select only one group of variables. However, this did not lessened the predictive per-
formance of the model since CLERE0 was second best after AVG, while needing significantly
less parameters. PACS low performed in both datasets. The Elastic net showed good predic-
tive performances compared to the variable selection methods like LASSO or Spike and slab
model. Ridge regression and Elastic net had comparable results in both datasets.

6. Conclusions and Perspectives
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100×Averaged CV-statistic Number of parameters
Dataset Methods (Std. Error) (Std. Error)

Prostate LASSO 59.58 (3.46) 5.75 (0.29)
RIDGE 57.58 (3.36) 8.00 (0.00)
Elastic net 57.37 (3.39) 8.00 (0.00)
CLERE 58.18 (3.13) 6.00 (0.00)
CLERE0 55.48 (3.46) 6.00 (0.00)
AVG 60.59 (3.58) 6.30 (0.16)
PACS 67.08 (5.51) 5.15 (0.30)
Spike and slab 57.76 (3.21) 5.70 (0.28)

eyedata LASSO 0.878 (0.05) 27 (1.69)
RIDGE 0.854 (0.05) 200 (0.00)
Elastic net 0.851 (0.05) 200 (0.00)
CLERE 0.877 (0.06) 4 (0.00)
CLERE0 0.839 (0.05) 4.12 (0.07)
AVG 0.811 (0.06) 17.2 (0.98)
PACS 2.019 (0.023) 1.38 (0.07)
Spike and slab 0.951 (0.07) 11.5 (0.55)

Table 4: Real data analysis. Out-of-sample prediction error (averaged CV-statistic) was
estimated using cross-validation in 100 splitted datasets. The number of parameters reported
for CLERE/CLERE0 was selected using AIC.

We presented in this paper the R package clere. This package implements an efficient al-
gorithm for fitting the CLusterwise Effect REgression model. This algorithm, namely the
SEM algorithm, was compared to a previously published approach and showed a significant
improvement in computational time. The good performances of SEM over MCEM could
have been expected regarding the computational complexities of the two algorithms that are
O
(
npg + g3 +Nmaxng

)
and O

(
M(p2 + pg)

)
respectively. In fact, as long as p > n, the SEM

algorithm has a lower complexity. However, the computational time to run our SEM algo-
rithm is more variable compared to MCEM as its M step does not have a closed form. We
finally advocate the use the MCEM algorithm only when p < n.

Another improvement was also proposed to facilitate the interpretation. This improvement
was proposed by constraining the model parameter b1 to equal 0. We illustrated through
simulations that such constraint may also lead to a reduced prediction error. We illustrated
on a real dataset, how to run an analysis using a detailed R script presented in Section 5.3.
Our model can easily be extended to the analysis of binary responses. This extension will be
proposed in forthcoming version of the package.
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