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Abstract: This article is devoted to the study of tail index estimation
based on i.i.d. multivariate observations, drawn from a standard heavy-
tailed distribution, i.e. of which 1-d Pareto-like marginals share the same
tail index. A multivariate Central Limit Theorem for a random vector,
whose components correspond to (possibly dependent) Hill estimators of
the common shape index 1/a, is established under mild conditions. Moti-
vated by the statistical analysis of extremal spatial data in particular, we
introduce the concept of (standard) heavy-tailed random field of tail index
« and show how this limit result can be used in order to build an estimator
of a with small asymptotic mean squared error, through a proper convex
linear combination of the coordinates. Beyond asymptotic results, simula-
tion experiments illustrating the relevance of the approach promoted are
also presented.

Primary 60K35, 60K35; secondary 60K35.
Keywords and phrases: Heavy-tailed random field, tail index estimation,
Hill estimator, aggregation.

1. Introduction

It is the main purpose of this paper to provide a sound theoretical framework
for risk assessment, when dangerous events coincides with the occurrence of
extremal values of a (continuous) random field with an intrinsic heavy-tail be-
havior. Following in the footsteps of Basrak and Segers [2], where the heavy-tail
property for multivariate random vectors is extended to time series, we general-
ize it to random fields in the present article. Originally, the modeling of extreme
events relied on (univariate) extreme value theory (EVT) (see Beirlant et al.
[6]). The seminal work of de Haan [17] generalized this approach to the func-
tional setup, introducing the concept of max-stable processes, see also Smith
[44]. A variety of extensions have been recently proposed, for instance one may
refer to Schlater [43] for spatial phenomena or to Davis et al. [15] for space-time
models. Generalized EVT is motivated by a variety of applications, including in
particular most empirical studies of extreme climatic events, as in Davis et al.
[16]. Recall finally that Buishand et al. [8] introduced the generalized Pareto
process, considered as the functional extension of the generalized Pareto dis-
tribution, classically used to model the probability of exceedance over a high
threshold.

0
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However, these models are essentially relevant to describe the limit distribu-
tion of extremal observations. In contrast, the theory of regularly varying func-
tions provides a non asymptotic semi-parametric framework, with the ability
to give an appropriate description of heavy-tail phenomena. In risk assessment,
this conservative approach avoids underestimating the probability of occurrence
of extreme events and is the main mathematical tool to carry out worst-case
risk analyses in various fields. It is widely used for risk quantification in Finance
(Rachev et al. [39]), Insurance (Mikosch [37]) or for the modeling of natural haz-
ards, see Tawn [45] or Coles and Walshaw [9]. Hult and Lindskog [34] introduces
the regularly varying processes of D ([O, 1],Rd), the space of right-continuous
functions from [0, 1] in RY with left-limit. Yet, a general theory for spatial pro-
cesses with intrinsic marginal regularly varying behavior has not been developed
so far, to the best of our knowledge. Following de Haan [17] and Buishand et al.
[8], the present article firstly aims at extending the concept of (multivariate) reg-
ular variation to the spatial setup and defining rigorously the notion of standard
heavy-tailed random field with tail index o > 0. The parameter « governing the
extremal behavior of 1-d marginals of the random field, we consider the problem
of estimating the tail index « of a standard heavy-tailed random field observed
on a grid of d vertices. Whereas a variety of statistical techniques for tail index
estimation have been proposed in the univariate setup (see Chap. 6 in Embrechts
et al. [25] for instance), focus is here on extension of the popular Hill inference
method, see Hill [31]. Incidentally, we point out that the analysis carried out in
this paper can be extended to alternative estimation procedures.

In the univariate i.i.d. case, several authors investigated the asymptotic nor-
mality of the Hill estimator under various assumptions, including Davis and
Resnick [14], Beirlant and Teugels [3] or Teugels and Héeusler [46]. In a primary
work, Hsing [33] showed a central limit theorem in a weak dependent setting un-
der suitable mixing and stationary conditions. Recently, these conditions have
been considerably weakened in Hill [32]. Here, the framework we consider is
quite different. The data analyzed correspond to i.i.d observations of a random
field on a compact set S C R? with d > 1 and where each margin is stationary
with the same tail index. Precisely, the random field is observed on a lattice
S1, ..., Si: to each vertex of the lattice corresponds a sequence of n > 1 i.i.d.

random variables with tail index «, the collection of sequences being not inde-

pendent in general. Denoting by Hj )n the Hill estimator using the k; largest

observations at location s;, 1 < i < d, the accuracy of the estimator H (¢ ) is
known to depend dramatically on k;. There are several ways to choose thls pa-
rameter, based on the Hill horror plot (k; is picked in a region where the plot
looks flat or on resampling procedures for instance, see Danielsson et al. [13]).
Eventually, the optimal k;’s are likely to be different, depending highly on the
location s;. Here, we consider the issue of accurately estimating the parameter
« based on the collection of estimators H ,gl)n, .., H ,g)n and investigate the ad-
vantage of suitably chosen convex linear comblnatlon of the local estimates over

a simple uniform average. The study is based on a limit theorem established in
this paper, claiming that /k ( o — 1/a. H,gl "= 1/a) is asymptotically
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Gaussian under mild assumptions, together with the computation of an esti-
mate of the asymptotic covariance matrix. These results can be used to derive
the limit distribution of any linear combination of the local estimators and, as a
byproduct, to find an optimal convex linear combination regarding the asymp-
totic mean squared error (AMSE). For illustration purpose, experimental results
are also presented in this article, supporting the use of the approach promoted,
for risk assessment in the shipping industry in particular.

The paper is organized as follows. In section 2, the concept of heavy-tailed
random fields, extending very naturally the notion of heavy-tailed random vec-
tors, is introduced. In section 3, the main results of this paper are stated, es-
tablishing in particular the asymptotic normality of the multivariate statistic
H,, whose components coincide with local Hill estimators, and explaining how
to derive a tail index estimator with minimum AMSE. The simulation results
are provided in section 4. Numerical results are displayed in section 5, while
technical proofs are postponed to the Appendix section.

2. Background and Preliminaries

We start off with some background theory on regular variation and the measure
of extremal dependence. Next, we rigorously define heavy-tailed random fields
and very briefly recall the classical Hill approach to tail index estimation in
the context of i.i.d. univariate data drawn from a heavy-tailed distribution. The
indicator function of any event £ by 1(€). For all x = (x1, ..., ;) € R, the
cartesian product Hizl(xi, +o0] is denoted by (x,40c]. In addition, all opera-
tions in what follows are meant component-wise, e.g. 1/k = (1/ky, ..., 1/k;)
for any k = (ky, ..., k) € N*.. In addition, Cov[X, Y] will denote the variance
of two square integrable random variables X and Y and Cov[X, X]| = V[X].

2.1. Heavy-tailed random fields

By definition, heavy-tail phenomena are those which are ruled by very large val-
ues, occurring with a far from negligible probability and with significant impact
on the system under study. When the phenomenon of interest is described by
the distribution of a univariate r.v., the theory of regularly varying functions
provides the appropriate mathematical framework for heavy-tail analysis. For
clarity’s sake and in order to introduce some notations which shall be widely
used in the sequel, we recall some related theoretical background before extend-
ing notions pertaining to standard EVT to the spatial context. One may refer to
Resnick [41] for an excellent account of the theory of regularly varying functions
and its application to heavy-tail analysis.
Let o > 0, we set

U(tx)
(t)

RV_o ={U : Ry — Ry borelian |tlim =27
— 00
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the space of regularly varying functions (at infinity) with (tail-)index a. Let X
be a random variable with cumulative distribution function (cdf in short) F'
and survival function F = 1 — F. It is said to belong to the set . of random
variables with a heavy (right) tail of index « if F € RV_,. In addition, the
heavy-tail property can be classically formulated in terms of vague convergence
to a homogeneous Radon measure. Indeed, the random variable X belongs to
RV_, if and only if:

nP (X/F~'(1-1/n) € ) # Vo (-) in M (0, ocl,

where ——— denotes weak convergence (the reader may refer to Resnick [42,

n—00
chap 3.], Hult and Lindskog [34] and Hult and Lindskog [35]) for further details),
F~Y(u) = inf{t : F(t) > u} denotes F’s generalized inverse, v, (z, o] = 272,
M (0, o] the set of nonnegative Radon measures on (0, oo].

Based on this characterization, the heavy-tail model can be straightforwardly
extended to the multivariate setup. Now, consider a d-dimensional random vec-
tor X = (X1,...,X4) taking its values in RY and where each margin has the
same tail index «. It is said to be a standard heavy tailed random vector with
tail index o > 0, we then shall write X € H,, for simplicity, if there exists a non
null positive Radon measure v on (000} such that:

eP(X/F7H 1 —1/2) € 1) —— ("), (2.1)
xr—r 00
where F} is the cdf of the first component. In such a case, v fulfills the homo-
geneity property v(tC) = t~*v(C) for all ¢ > 0 and any Borel set C of (0, oc]?,
and all components are tail equivalent: X; € RV_, fori=1, ..., d.

Regularly varying random fields. We now give the definition of a regu-
larly varying random field. It is characterized by its finite dimensional marginal
distributions.

Definition 2.1. Let (Xy)scgre, be a random field taking its value in RY and
for any s € R4, X, € RV_,. We say that the field X is reqularly varying
if: Vk € N, Vt = (t1,...,t,) € R¥* YV := (Xy,,..., Xy,) is reqularly varying in
the sens of multivariate reqular variations.

By virtue of the Kolmogorov existence theorem (see Billingsley [7] chap 7.
theorem 36.2), this defines a valid continuous random process on R?. This def-
inition of a regularly varying random field is the natural continuous extension
of the notion of multivariate regular variations.

2.2. The Hill method for tail index estimation

A variety of estimators of o have been proposed in the statistical literature in the
context of univariate i.i.d. observations drawn from a heavy-tailed distribution,
see Hill [31], Pickands [38], de Haan and Resnick [19], Mason [36], Davis and
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Resnick [14], Csorgd et al. [11], Dekkers et al. [22]. In this paper, focus is on
the popular Hill estimator but ideas to extend this work to other estimators are
introduced in section 8. The Hill estimator is defined as follows. Let X1, ..., X,
be observations drawn from a heavy-tailed probability distribution with tail
index a and denote X (1) > ... > X(n) the corresponding order statistics. Let
k such that k¥ — oo and k/n — 0; the Hill estimator of the shape parameter
1/« based on the k-largest observations is given by

() [ ()

The asymptotic behavior of this estimator has been extensively investigated.
Weak consistency is shown by Mason [36] for i.i.d. sequences, by Hsing [33]
for weakly dependent sequences, and by Resnick and Starica [40] for linear
processes. Strong consistency is proved in Deheuvels et al. [21] in the i.i.d.
setup under the additional assumption that k/loglogn — co. The asymptotic
normality with a deterministic centering by 1/« requires additional assumptions
on the distribution F' of X. Under the von Mises Condition (recalled later in
the present paper) the asymptotic normality of the Hill estimator has been
established in Teugels and Héeusler [46], de Haan and Resnick [20], Geluk et al.
[28], Hill [32]. In this case,

Vk (Hgn —1/0%) = N (0,1/a?),

where = means convergence in distribution, and k is a function of 8. However,
depending on the choice of k£ and on the property of F regarding second order
regular variation, the Hill estimator can be significantly biased. This is studied
for instance in de Haan and Peng [18].

Hence, the practical issue of choosing k is particularly important and has
been addressed in various papers. They mostly rely on the second order regular
variations and seek to achieve the best trade-off between bias and variance. Drees
and Kaufmann [23] derive a sequential estimator of the optimal & that does not
require prior knowledge of the second order parameters. In Danielsson et al.
[13] a subsamble bootstrap procedure is proposed, where the sample fraction
that minimizes the asymptotic mean-squared error is adaptively determined.
Graphical procedures are also available. In Drees et al. [24] the popular Hill
horror plot is compared to the AltHill Plot that is proved to be more accurate
if F'is not strictly Pareto.

3. Tail index estimation for a heavy-tailed field

Consider a heavy-tailed random field X = (X,)scs, where S € R%, d > 1.
Although the field is not assumed to be stationary in the subsequent analysis,
we suppose that all the 1-d marginal distributions of X have the same (unknown)
tail index a. Suppose also that the field is observed on a lattice s = (s1,...,5;) €
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8!, 1> 2, and that, at each vertex s, € S, n > 1 observations (X, 1, ---, Xs..n)
of X, are available.

In order to state the main results of the paper, we introduce some additional
notations. For simplicity, we abusively set X, := X; and X, ; := X, for
1 <k <land 1l < i < n. Denote respectively by F and F the cdf and the
survival function of the r.v. X = (X1, ..., X;) and by Fy and F}, those of X,
k=1, ..., l. Here and throughout, X;(1) > ... > X;(n) are the order statistics

related to the sample (X, 1,..., X, ) and H,Elll is the Hill estimator based on the
k-largest values observed at location . The quantile of order (n—k+1)/n of F;
is denoted by a(¥(n/k) and we set a(n/k) = (a™M) (n/k),...,a" (n/k)). Finally,
recall that there exists a Radon measure vg such that the following convergence
holds true (see Chapter 6 in Resnick [42] for instance):

n }(1 )([ w

— _ e, ——— 3.1

Lk (a(l)(n/k‘) > Ty, ’a(l)(n/k;) > 33[) —>VS(X)’ ( )
where (z1,...,2) € Ri. We also set v; j(x;,x;) as the limit of vg(z1,...,2)

when all the components but the ¢« — th and the j — th tend to O.

We point out that all the results of this section can be extended to alternative
estimators of the tail index, such as those studied in Danielsson et al. [13],
Dekkers et al. [22] or Danielsson et al. [12]. Technical details are deferred to
Appendix section 8.

It is the goal pursued in this section to show how to combine, in a linear and
convex fashion, the local Hill estimators in order to refine the estimation of «
in the AMSE sense.

3.1. A multivariate functional central limit theorem

As a first go, we start with establishing a theorem stating the convergence
of the tail empirical process toward a Gaussian process. This result is next
used to prove a CLT with a random centering for the random vector whose
components correspond to the local Hill estimators, the latter being all viewed
as functionals of the tail empirical process. Under some additional assumptions,
the random centering is removed and replaced by . The case where the number
of observations involved in the local Hill estimator components depends on the
location considered is also dealt with. The main application of this latter result
is that Hill estimator can be replaced by an alternative estimator when the mean
squared error of this latter is smaller.

Theorem 3.1. (A FUNCTIONAL CENTRAL LIMIT THEOREM) Equipped with
the notations previously introduced, the following weak convergence (in the space
of continuous functions from R% toR) holds : asn, k — +oo such that k = o(n),
we have

n

Vk (; Y1 < Xi o x> - %F (a(n/k)x)) — s W(x), (3.2)

P a(n/k) n—00
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where x = (:cl, . ,a:l), W(x) is a centered Gaussian random field with co-
variance given by:

V(x,y) € R xR, E[W(x)W(y)] = v(max(x,y)).

In order to generalize the result stated above to the situation where the
sample fraction k/n of observations involved in the local Hill estimator possibly
varies with the location, we exploit a property of the inverse of a regularly
varying function: if 1 — F is regularly varying with index —«, then F~1(1—1/.)
is regularly varying with index 1/a, see Beirlant et al. [6].

Corollary 3.2. (A FUNCTIONAL CENTRAL LIMIT THEOREM (BIS)) Let k =
(ki,... k) € N* with k; = ki(n) — oo and k;/n — 0 as n — +oo. Suppose that,
foralli € {1, ..., 1}, ¢; = limy, 00 k1 /k; is well-defined and belongs to 0, +ool.
Set a(n/k) = (aM(n/ky),...,aV(n/k)) and x' = (whcé/ax% e ,cll/axl) . We

have

(LS () - 26 e o9

where W(x) is a centered Gaussian field with same covariance operator as
that involved in Theorem 3.1.

Refer to the Appendix section for the technical proof. Since the local Hill
estimators are functionals of the tail empirical process, a Central Limit Theorem
for the random vector formed by concatenating the latter can be immediately
derived from Theorem 3.1.

Theorem 3.3. Foranyl > 1 ands = (s1,...,s) €S', we have, asn, k — 400
so that k = o(n):

o — d e — d
vk H,S)L—/ 27, (x)—”“",...,H,SZL—/ 2F(@) =) =N (0,9),
' xi(k) K z ' xu(k) * z
(3.4)
where 3 5 = [° [ vij(@, )z ly~tdedy.

The following corollary relaxes the assumption that all local Hill estimators
involve the same number of observations.

Corollary 3.4. Equipped with the assumptions and notations of Corollary 3.2,
for any 1> 1 and any s = (s1, ..., 5) € S', we have

& n — dx * n—_ dx
N (H,ﬁ?n —/ T (2) ?,...,H,ﬁfn —/ ZF) (2) )
X

L (k1) B

with ¥; ; = [3a [Tavij(@,y)z— y " dady, for1<i, j <.
J K3
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We now address the issue of removing the random centering. From a practical
perspective indeed, in order to recover a pivotal statistic and build (asymptotic)
confidence intervals the random centering should be replaced by 1/a. The key
point is that f;j(k,;) L F; () 2 can be substituted for [ £ F; (x) %, along
with (the second order) Condition (3.6) for the latter term. This condition is
used when trying to establish a Central Limit Theorem in the univariate setup

(see Resnick [42]):

Vi€ 1,1}, lim f/ 2F, (”(k)) o g, (3.6)

T

This immediately implies that the random vector
n 1 1 1
vk (H,g,; LY - ) "
e e

X1(k) n— T X1 (k) N— T
VE(/ —F, (x)d—,...,/ —F (2) d) (3.7)

(1)(n/k) k X W (n/k) k x

converges in distribution to A'(0,%’). As shown by expression (3.7), recentering
by (1/a, ..., 1/a) requires to incorporate a term due to the possible correlation
between the random centering and the local Hill estimators into the asymptotic
covariance matrix. Indeed, from Eq. (3.7), we straightforwardly get that

1 1
\/E(H,g}g_a,...,ﬂ,g{;_a) = N (0,9), (3.8)

as n and k = o(n) both tend to infinity, provided that, for 1 < i # 5 < [, the
expectation of the quantity

fF (x —F;(z
@ (n/k) K s T Ja (k) K @ xz

) Xi(k) X (k) o
we(Bg-2) [ AR S (1 - 1) [ R e
o) Jao ey k ) Jai ey k x

converges, the limit being then equal to floo floo vii(z,y)/(xy) dedy—Q; ;, while
Qii=1/a%forallie {1, ..., 1}

A tractable expression for €2 can be derived from the Bahadur-Kiefer rep-
resentation of high order quantiles, see Csorgd and Révész [10], under the ad-
ditional hypothesis (3.9) which can be viewed as a multivariate counterpart of
Condition (3.6):

Xi(k) de [®) dx
f

For 1 <i#j<lI, sup ’%Fw (a(i) (%) z,a) (%) y) — Vi’j(w,y)’

x,y>0

1
=o0 (1()gk> asn, k — 4oo. (3.9)
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This condition permits to establish the next theorem, which provides the form
of the asymptotic covariance of the r.v. obtained by concatenating the local Hill
estimators, when all recentered by 1/a. Corollary 3.6 offers a generalization to
the situation where the number of extremal observations involved in the local
tail index estimation possibly depends on the location.

Theorem 3.5. Suppose that Condition (3.6) and Condition (3.9) hold true,

together with the von Mises conditions: Vi € {1, ..., I}
, _ _sFi(s) _

Then we have the convergence in distribution

1 1
ﬁ(ﬂ,ﬁ}g—a,...,ﬂé” ):w\/(o,Q), (3.11)

n g

valbD ey <G <.
where € ; =

% otherwise.
Corollary 3.6. Suppose that the assumptions of Corollary 3.2 are fulfilled and

that, for any integer 1 > 1 and any s = (s1,...,5,) € S, conditions (3.6), (3.9)
and (3.10) hold. Then, we have

1 1
Vi <H,$?n - LHY, - a) = N(0,T), (3.12)
where, for 1 <i# j <I,
ro_ vii(e/®, ¢/
J = 02 :

Before showing how the results above apply to the aggregation of the local
tail index estimators, we exhibit a distribution fulfilling the conditions involved
in the previous analysis.

Example 3.7. The l-dimensional Gumbel copula C,, with dependence coefficient
v >1 1is given by

Cy(ug,...,u) =exp| — ((—=logui)” + -+ (—logu;)"” v .
(- )

Let XU ... X® be heavy-tailed r.v. s defined on the same probability space
with tail index o and survival functions F; =1 — F;, i = 1...1 and with joint

distribution F = C,, (Fl, ey Fl>. In this case, we have:

VI<iZj<l, w(my)=a 4y — (@ +y )"
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In addition, Condition (3.9) is satisfied if, as n, k — oo,

:0(1O;k>. (3.13)

For instance, if F; is the GPD, Condition (3.13) is satisfied, since in this case
Sup,~¢ | Fi (axx) —27% = O ((k/n)l/a), The proof is given in the Appendiz 7
therein.

for 1 <3<, sup|F; (a(i) (2) x) —x @
x>0 k

3.2. Application to AMSE minimization.

Based on the asymptotic results of the previous section, we now consider the
problem of building an estimator of the form of a convex sum of the local Hill
estimators H,S)n, e 7ng),n’ namely Hy ,(\) = Zé:l /\ingll)m where the \;’s are
non negative real numbers such that 2221 A; = 1, with minimum asymptotic
variance. Precisely, the asymptotic mean square error (AMSE in abbreviated

form) is defined as AMSE()) = kE [(Hk,n(A) _ ;)2}, for k € {k1,....ki}.

[

Hence, the goal is to find a solution \* = (A},...,A}) of the minimization
problem
l
min AMSE()N) subject to A= 1. 3.14
A=(Ai)1<i<1€[0,1] ( ) J ; ( )
Observe that we have
. 2 2
i 1 i 1
AMSE(\) = kE <Z;AiH,§i?n—a> = kE (z;Ai (H,ggn_a»
1= 1=
- 0 _ 1 G _ 1
= k Y Ho_ 2 Ho_ 2
2| (s 5) (- )
=1 j=1
1ol
= D) MAT, ="ATA
i=1j=1

The minimization problem (3.14) thus boils down to solving the quadratic
problem:

argmin’ \T'\,
cx<d

where the constraint matrix C' and the vector d are given by:

-1 =1 --- =1
-1 0 --- 0
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A variety of procedures can be readily used to solve this quadratic problem,
including Uzawa’s algorithm for instance, see Glowinski [29].

Now, going back to statistical estimation, suppose that a consistent estimator
a of « is at our disposal. As the matrix I' is unknown in practice, we define

L [ x@ 0 L B M
U —— E 1 m m dTl, , =22~ 7 7~
Vi,j (l‘,y) L P <XZ(/€) >, XJ(]C) >y | an i,] 42

Then, we compute N N
APt = argmin’ AL\,
ox<d
The quantity Hkm(//\\"f’t) is then referred to as Best Empirical AggRegation
(BEAR) estimator. The performance of the BEAR estimator is investigated
from an empirical perspective by means of simulation experiments in the next
section.

4. Simulations

For illustrative purposes, we computed the BEAR estimator for simulated ran-
dom fields observed on regular grids of dimension 2 x 1, 2 x 2, 3 x 3. The
distributions of the margins were chosen among the Student-¢ distribution with
degree of freedom «, the Generalized Pareto Distribution (GPD) with shape pa-
rameter 1/« and the Fréchet distribution with shape parameter «, these three
distributions sharing the same tail index «. The main barrier in practice is the
choice of the optimal sample fraction k used to compute the marginal Hill es-
timators. This choice had to be automated. We implemented the procedures
introduced in Beirlant et al. [4, 5], Danielsson et al. [13]. Unfortunately, they
lead to inaccurate choices for small sample sizes (except for the ¢-distribution),
significantly overestimating the optimal k& for the GPD and the Fréchet distri-
butions. The corresponding results are not documented. For the Student-¢, the
GPD and the Fréchet distribution, it is possible to determine an optimal value
kopt in terms of AMSE. Hence, for each simulated sample we decided to choose at
random the optimal k in the interval [max(30, 0.5kop;:), min(n/3,1.5k,p.)] where
n is the sample size. The largest admissible value is bounded by n/3 because
we considered that including a larger fraction of the sample would lead to a
highly biased estimate. Similarly, we bounded the smallest admissible value in
order not to obtain estimates with a too large variance. In addition the interval
[0.5k0pt, 1.5kopt] seemed to be a reasonable choice to account for the error in the
selection of the optimal sample fraction.

We tried two different choices of copulas to describe the asymptotic depen-
dence structure of the field, namely the Gumbel copula (Gudendorf and Segers
[30]) and the ¢-copula (Frahm et al. [26]). Both yielded very similar results and
only the results for the Gumbel copula with dependence parameter v = 3 (v =1
for exact independence and v — oo for exact dependence) are displayed.

The results for different values are presented in Table 1 where n is the sample
size. The mean squared error (MSE) of the BEAR estimator is compared to
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the MSE of two other estimators. Firstly, the Average estimator (Ave.) is the
weighted average over all the marginal Hill estimators with weights equal to
the marginal optimal k. Secondly, the MSE of the so-called Marginal estimator
(Marg.) is the weighted average (weights marginal k) of the marginal MSE’s.
The figure in brackets indicates ratio of MSE of the estimator and of the BEAR.

The results indicate a very good behavior of the BEAR estimator, even for
relatively small sample sizes n except when a or n becomes too large (bold
values). We point out that when n is too small the exponent measure is estimated
with less accuracy and the error contaminates the covariance matrix f(italic
values). However, for large n the gain in MSE is significant.

The bad behavior of BEAR for some values of o can be understood through
second order approximations of the marginal and multivariate distributions and
is the subject of current research.

5. Example : sloshing data tail index inference

In the liquefied natural gas (LNG) shipping industry, sloshing refers to an hy-
draulic phenomenon which arises when the cargo is set in motion, [27]. Fol-
lowing incidents experienced by the ships Larbi Ben M’Hidi and more recently
by Catalunya Spirit, these being two LNG carriers faced with severe sloshing
phenomena, rigorous risk assessments have become a strong requirement for
designers, certification organizations (seaworthiness) and ship owners. In addi-
tion, sloshing has also been a topic of interest in other industries (for instance,
see [1] for a contribution in the field of aerospace engineering). Gaztransport
& Technigaz (GTT) is a French company which designs the most widely used
cargo containment system (CCS) for conveying LNG, namely the membrane
containment system. The technology developed by GTT uses the hull struc-
ture of the vessel itself: the tanks are effectively part of the ship. The gas in the
cargo is liquefied and kept at a very low temperature (—163°C) and atmospheric
pressure, thanks to a thermal insulation system which prevents the LNG from
evaporating. Although this technology is highly reliable, it can be susceptible
to sloshing: waves of LNG apply very high pressures (over 20 bar) on the tank
walls on impact and may possibly damage the CCS. Due to its high complexity,
the sloshing phenomenon is modeled as a random process. The phenomenon is
being studied by GTT experimentally on instrumented small-scale replica tanks
(1/40 scale) as the one in Fig. 1. The tanks are shaken by a jack system to re-
produce the motion of the ship and induce the occurrence of sloshing, with the
associated high pressures being recorded by the sensors.

GTT studies the sloshing phenomenon during experiments on small scaled
tanks replica (1/40), like the one of Fig. 1. The tank is instrumented with a
collection of pressure sensors, divided in arrays. A pressure measurement is
considered as a sloshing impact if the maximal pressure recorded is above 0.05
bar. As soon as a sensor records a pressure above 0.05 bar (we call it an event),
the pressures measured by all the other sensors of the array are also recorded
at a frequency of 200Hz. The recording stops when the pressures measured by

imsart-ps ver. 2012/08/31 file: HillMultiHal.tex date: February 3, 2014



A. Demaiteo and S. Clémengon/On Tail Index Estimation based on Multivariate Data12

o dim. n BEAR Ave. (Improv.) Marg. (Improv.)

1000 7.0x 1073 7.3 x 1073 (4.8%) 1.0 x 10™2 (44.8%)

2x2 2500 3.5x10°3 3.7 x 1072 (6.8%) 5.3 x 1072 (52.4%)

10000 9.4 x 10~4 1.1 x 1073 (19.9%) 1.7 x 1073 (76.0%)

1000 7.6 x 1073 7.1 x 1073 (-6.2%) 1.0 x 1072 (35.9%)

a=1 3x3 2500 3.5 x 1073 3.6 x 1073 (2.4%) 5.1 x 1073 (45.8%)
10000 7.9 x 10~4 1.0 x 1073 (27.9%) 1.7 x 1073 (110.0%)

1000 7.4 x107% 5.4 x107% (-27.8%) 8.7 x 1073 (17.4%)

4x4 2500 4.4 x107% 3.1 x107% (-185%) 6.5 x 1073 (27.7%)

10000 9.2 x 10~ 1.0 x 1073 (9.6%) 1.7 x 1073 (82.0%)

95 1000 21x 103 2.2 x 1073 (3.1%) 2.7 x 1073 (28.9%)

2500 1.2x 1073 1.2 x 1073 (5.0%) 1.9 x 1073 (59.7%)

10000 4.6 x 10~4 5.1 x 10~% (11.5%) 8.0 x 10~% (72.3%)

1000 2.2 x 1073 2.6 x 1073 (18.2%) 4.2 x 1073 (92.4%)

a=2 3x3 2500 1.1x1073 1.3 x 1073 (12.3%) 2.1 x 1073 (87.9%)
10000 4.3 x 10~ 4.8 x 1074 (12.1%) 8.3 x 10~% (94.8%)

1000 2.2 x 1073 2.5 x 1073 (14.9%) 4.2 x 1073 (95.8%)

4x4 2500 1.2x1073 1.3 x 1073 (4.0%) 2.2 x 1073 (83.8%)

10000 5.0 x 10~ 5.2 x 1074 (3.4%) 9.1 x 10~% (80.5%)

1000 1.1 x107% 6.0 x 1074 (-46.5%) 2.0 x 1073 (75.2%)

2x2 2500 24x1074 2.6 x 1074 (6.2%) 6.8 x 1074 (178.8%)

10000 6.8 x 1075 8.4 x 1072 (22.8%) 2.2 x 107% (224.1%)

1000 1.4 x107% 6.4 x 1074 (-52.8%) 2.3 x 1073 (73.3%)

a=5 3x3 2500 25x107% 2.8 x 1074 (14.3%) 8.7 x 107% (253.5%)
10000 6.0 x 1075 8.6 x 1072 (42.8%) 2.7 x 104 (347.8%)

1000 1.8 x 1073 7.4 x 1074 (-58.7%) 2.7 x 1072 (49.6%)

4x4 2500 3.0x10"* 3.3 x 107* (8.9%) 9.9 x 10~% (227.2%)

10000 5.3 x 1075 9.1 x 1072 (70.2%) 3.3 x 1074 (522.4%)

imsart-ps ver. 2012/08/31 file: HillMultiHal.tex date: February 3, 2014

TABLE 1

Simulation results. MSEs of the three estimators




A. Demaiteo and S. Clémengon/On Tail Index Estimation based on Multivariate Data13

F1G 1. Scheme of the small scaled tank (1:40). The empty compartment are where the sensors
are nested.

all the sensors are back to zero. For each event and for each sensor, we have a
collection of measures. For each sensor and each event, we only keep the highest
pressure.

GTT provided us with a low filling configuration data set: the tanks are nearly
empty (the level of LNG in the tank is 10% of the height of the tank so that
only the lower parts of the tank are instrumented with sensors). We consider the
observations of the sensors array emphasized in Fig. 1 and represented in Fig.
2. This is a 7 x 3 sensors array. 31197 events were recorded by the 21 sensors.

F1c 2. sensors array (after a 90° rotation)

It is the assumption of GTT that the tail index is the same for the observa-
tions of all the sensors, even though the field is not supposed to be stationary.
This totally fits in the framework of this paper and we use our methodology to
estimate the tail index a.

First step : Marginal estimation of a. At each location s;, i =1...21,

we randomly chose half the observations and draw a Hill plot based on these ob-
servations. We used it determine graphically k; the optimal number of extremes
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3.7 3.5 4.1 4.1 3.4 3.6 3.3
(3.2—-4.2) (2.8—4.1) (3.7—4.6) (3.6—-4.5) (3.1-3.6) (3.3—4.0) (2.8—3.7)
3.9 3.4 3.3 4.2 4.0 3.2 3.7
(3.5—4.4) (3.0-3.9) (2.8—38) (3.6—4.8) (3.3—4.7) (2.4—4.0) (3.2—-4.2)
3.6 3.7 34 3.9 3.6 3.4 3.6
(3.2 —-4.0) (3.4—4.0) (3.2-37) (3.6—4.3) (3.1—4.1) (3.0—3.8) (3.3—4.0)
TABLE 2

Marginal tail index estimation with 95% confidence intervals.

to be used. We computed the Hill estimator H,S)n with the other half of the ob-
servations. The Hill plots for four sensors are presented in Fig. 3. The solid line
corresponds to the Hill plot used to determine k. We compared it (for validation
purpose) to the Hill plot drawn using the second half of the data (dashed line).
The estimation @ of « used for the aggregation procedure is the average over
all these estimations. We found @ = 3.6, with an estimated standard deviation
of 1.1 x 1072,

sensor S40 sensor S41
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o |
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]
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Fic 3. Hill plots for the sensors S35, 536, S37 and S38.

Second step : Aggregation. We used the methodology described in section
3.2 to compute the BEAR estimator. We found a°P! = 3.4 with an estimated
standard deviation of 5.2 x 1073,
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6. Conclusion

This paper introduces the concept of (standard) heavy-tail random field and
proposes the so-termed BEAR estimator to estimate its tail index. Incidentally,
the BEAR estimator can also be used in the context of regularly varying random
processes (

citepHult05) or in any heavy-tailed multivariate framework, as long as all the
margins share the same tail index. Beyond the asymptotic analysis, it was shown
to be highly accurate even for small sample sizes. When « increases, some ap-
proximations needed to derive asymptotic result are bad, especially for the GPD
distribution. This can be understood with second order conditions of the mar-
gins. It is the subject of further research to estimate the bias of the BEAR
estimator. This study could help deciding which marginal estimator to choose
(Hill, Moment and J) in order to minimize the asymptotic mean squared error.

Appendix - Technical Proofs

Convention for the remaining of the paper: Without loss of generality
and for ease of notation, the proofs are given in dimension (I = 2). To lighten,
we set X 1= X,,, Y 1= X,,, V 1= Vs, .4,, a(n/k) = aM(n/k) and b(n/k) =

D (n/k). The survival functions of X and Y are denoted by Fx and Fy
respectively, and the survival function of (X,Y") is denoted by F' . We observe
an n-sample ((Xl,Yl), R (Xn,Yn)) of (X,Y) and for any ¢ = 1...k, we set
Ui = Fx(Xl) and V; = Fy(Y;)

Proof of Theorem 3.1. We set

B3 = (/1@; (et > =50~ )
7 (a ()= (5)v))

Finite dimensional convergence: We first show than any finite dimensional
projection of ay,(x,y) converges in distribution toward a Gaussian random vec-
tor. We use a result of

citep[p.41]Araujo80, providing a multivariate version of the Lindeberg-Feller

theorem. Let (x1,y1),..., (2, ) a finite subset of Ri. Denote, for 1 <7 < n
and 1 <5<

1 X; Y;
Znten) = 1 (s > 50y > )

T e ()m).

Firstly, notice that E[Z; ,(z;,y;)] =0,1 <i<nand 1 <j<lI.
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Lindeberg condition: With Z; ,, = (Z; n(x1,91), - - -, Zi n(z1, Y1) and the euclidean
norm ||.||, we have || Z; ,||*> = Z;:l Zin(z5,y5)% < t/k which gives

inll>e

n
Ve >0, Z/ |1 Zinl[?dP — 0 as n— 0.
=172z

Now, let r, s < . We have

n

Z E [Zi,ﬂ(x'm yT)Zi,n(xm ys)}

Jj=1

n X1 Yl
= E]P) (a (n/k) > max(x,., xs)a W > maX(ymys)>

F (R (o) £ (o () w0 (7))

— v(max(z,, xs), max(y., ¥s))-

Hence (an(1,91)s - -y n(@n,yn)) = N (0,V), with V; ; =
Z/(HlaX(ﬂfi793j)7ma‘X(yi7yj) :

Tightness: Let M > 0. We prove the tightness of a,, on [0, M] from which
we deduce that the process is asymptotically tight on RT (for technical details,
refer to

citep[][Th. 4]Schmidt06). To do so we show the asymptotic uniform equiconti-
nuity in probability of a,,: V€ > 0, ¥n > 0, 36 € (0,1), mg € N, s.t. Vm > myg:

P sup lon (21, 91) — an(w2,2)[ > € | <.
|1 —a2]®+|y1 —y2|* <6
x;,y;€[0,M],i=1,2

In the sequel we introduce the following additional notations:
v0< x1,T2,Y1,Y2 < 00, we set

hd S]? ($1,$2,y1,y2) = %E?zl 1 (-Tl < a(ff/ik) < z2, b(;f}k) < yl)
o F(znaaynye) = F ((a(#)era (@) wa], (0(2) 1.0 (3) ).

We partition the square [0, M]? into cubes with partition points
(Mly/L,Mls/L),l; € {0,...,L},L € N;i = 1,2. Now, choose £ > 0 and § €
(0,1) such that 1/L > §. We first have
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P sup |l (21, y1) — an (w2, y2)| > €
|1 —z2 | +|y1 —y2|> <6
zj,y;€[0,M],i=1,2

<P|l3 - =1
< lg?%cL (rslui) an(z1,91) — an(@2,y2)| > € 1
1=1,2
" (z2,y2)€l,L

Without loss of generality, assume z1 < x9, y1 < y2. Then, denoting by &' :=
£/3, we have that I; is smaller than

n mn
Z P sup 7 S]?(xlax27yl7oo)_Fkl(xlax27ylaoo) >§/
1<hsL (1).(22)en,. VE
n
+P sup 7’5'(&317007?/1,1/2) —F(9€17007y1,y2)‘ > ¢
(1)-(2)en VE
=1y + I3

We show that I tends to 0 as n, k — co. The quantity I3 can be dealt with
exactly the same way. We have

Ss(xhx?ayhoo) —F;:L(.T17x27y1700) > £’

Z P sup .
€l L \/E

1<l,<L (FH).(22)
=12

= P sup %‘52(171,372,0,00) *FIS(ZChxz,O»OO)
151 SL (1).(2)en,, VE
- (SITCL(IMZL‘Q?O)yl) - F]?(xl,$2,07y1)>‘ > &J
!
S P sup ‘Sl’:(ml,xz,o,m)7F]?(Z'1,ZE2,0,OO)‘ >£\/E
Gz | \e pens "
!
n n k
+ P sup ‘Sk (xl,xQ,O,yl) — F (ml,xQ,O,yl)‘ > %ﬁ

(=) (2)ens
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<exp|— ke RV Vi
- 32n2F(CYF) An3/2F(CY1)

+ exp <— ke —— .1 < Ve - >> = Fy + Es.

32n2F (CYF) 4n3/2F (CYF)

This inequality can be found in
citepRuymgaart84 with ¢ satisfying the following properties:(i) x — ¥(z) is
decreasing, (ii) x — zv(z) is increasing, and:

CiihL _ <Ma(n/k;)lfl1 - 1),Mb(nék‘) ll} % (0,00
Céi,’nL . (Ma(n/k)lfll — 1)’Mb(n£k) ll} " (07Ma(n£k)lg}

Notice that F(Cé‘;;f) < %Z/k) We distinguish two cases. First, for F;, we

have M;»% S 1. In this case
ke? Ve ( kL )
ex — . < ex —_— . 1 .
P ( 32n2F(CyF) v <4n3/2F(C’ﬁ;LL) =P\ Sna (n/k) v

Ve’
n3/2F(CyL5)

W Ve VR
- < 2Pl <4n3/2F(Oii;f)>> = ( s <1>) |

We hence have

I <212 <exp (“sim v ) +ex (—ﬁ.w <1>>> —.

Second, for Fs, we have > 1. In this case the bound is

As the result holds for I3, we obtain the tightness on [0, M]? for every M.
O

Proof of Corollary 3.2. The regular variation property of a¥ (n/k;) gives im-
mediately a(® (n/k;) /a® (n/k;) —s cl/®.
n—oo

i
Now, to get the result, we compose the convergence and plug this limit in
equation (3.2), as we do hereinafter in equation (6.1). O

Proof of Theorem 3.3. In order to obtain Eq. (3.4), we apply a transform on
the tail empirical process of Eq.(3.2). The tail empirical process is evaluated at
x1 = (2,0) and x3 = (0,y). The left-hand term of Eq. (3.4) is then obtained
by replacing a (n/k) and b(n/k) by their empirical counterpart. The result is
integrated over (1,00] to obtain the desired convergence. In addition, in the
sequel k := k(n) is a sequence such that k — oo, k = o(n).
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First, we make a change of variable so that we can re-use some results given
in
citepresnick2007heavy chap.9. Theorem 3.1 gives
n

1 X Y; n
(5351 (ot > = g =) vt

i ( /B O’bg;k)>y>‘ZFY(b<”/’“>y)>;‘(W<x1“>,w<x2’*))7

where W is the process defined in Theorem 3.1, (V[/(xl_o‘)7 W(x;o‘)> ~N(0,%)

and

One also have (
citep[][Eq. (4.17)]resnick2007heavy)

X() Y e
(a<n/k>’ b(n/k>> RAREA

Hence from Proposition 3.1 in
citepresnick2007heavy we have

1 — X; Y, "
(ﬂ (’fzﬂ( (n/k) ~ " b(n/k) >O> 7L x(aln/k)z),
%Z“ (aé;k) -0 b(Ek) ~ y) - (o k>y>> )
X(k)  Y(k) . .
(a(n/k)’b(n/k))) = ((W(Xl ), W (x5 )),(1,1)).

Now, we apply the composition map (z(t),p) — z(tp) which gives

X Y N—
<X(k) >z, 0] > 0) - EFX(X(k)a:),

Equation (6.1) yields, again by
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citep[][p.297-298]resnick2007heavy, as n, k — oco:

([ () [
[ 0G0 amomn?)

= ([T [Twegn ™) w2

° —ondx 2
VU W M} =
o _dr [ . dy B e dxdy
(Cov/ Wxa—,/ Wxa} = / / v(x, = o2
[ wean T [ wegn e

Equation (6.2) is equivalent to

vk (H,fn - /100 %FX (X(k)x)‘ii,H,ﬁn - /100 %Fy (Y(k)y)dy> =K (6.3)

2 452

whereK~N<0,< oz ))
o2 2
a2

Proof of Corollary 3.4. The argument is the same as for Corollary 3.2. O

with

Proof of Theorem 3.5. In order to prove Theorem 3.5, we need to give an ana-
lytic expression to the covariance matrix in Eq. (3.11). This is the object of the
Lemmas (6.1) and (6.2).

Lemma 6.1. Under Condition (3.10), we have

lim E

k—o0

x (@) — y ()
(n/k) F T Jon/k) K x

X (k) Y (k) 1.1
k/ " dx ng dx] v(l, )
a

Lemma 6.2. Under Condition (3.9), we have

1\ [Y® d 1 [ 1 1,1
lim E k(H,fn—)/ Py () :7/ v (@, )dx—”(;).
k—o0 i b(n/k) x a Jy T o

To show the Lemmas 6.1 and 6.2, we linearize functional of the order statistics
X(1),...,X(k),Y(1),...,Y(k) of X and Y as series of the original observations
X1,..., Xy, Y1,...,Y,. This is done, using Taylor series and the Bahadur-Kiefer
representation of the order statistics (
citepBahadur66), in Lemmas 6.3 and 6.4. The Bahadur-Kiefer representation
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involves a remainder term (see

citepKiefer67) that needs to be controlled. This is the object of Lemmas 6.5, 6.6
and 6.7. The Lemmas 6.1 and 6.2 put together all the results of the aforemen-
tioned Lemmas. Lemma 6.8 simplifies the expressions given in Lemmas 6.1 and
6.2.

O
Lemma 6.3 (BAHADUR-KIEFER REPRESENTATIONS). We set p; = ”_jfl and

p;=1—p; 1=1...k, we have the almost sure equalities

1 Uj <pi) —pi
X(0)=a(n/i) - -3 ( )P T () (6.4)
j=1 (a n/i )
Xk d 1 & U; < T,

/ EFY (x) i - _ - ( pk) Pk + n(pk) (65)

(n/k) K TS a/k) fx (a(n/k)) a0k

—~ 1(U; <pi) —pi T (pi)
; a(n/z)fx< (n/z)) o <a(n/z)> '

log X (i) = loga(n/i) —

§\>—‘

where T,, is a remainder terms.

Proof of Lemma 6.3. Eq. (6.4) is just the Bahadur Kiefer representation of
X (4). For Eq. (6.5) we have almost surely

[omimsos = [ im ()%
-2 (- GE) ) e ()
—aln —an 2
T ((X(kc)t ) ) |

Eq. (6.6) follows from a Taylor expansion of the logarithm function.

O

Lemma 6.4 (CONTROL OF THE REMAINDER TERMS). Assuming Conditions
(3.2) and (3.4) in
citepCsorgo1978, we have almost surely:

sup |T(y)|=0O (n*3/4 (loglog n)_1/4 (log n)_1/2) . (6.7)
0<y<1
Y (k) dx 1
Fy(x)==0 ( n=%* (loglogn 1/4 logn)_1/2> . (6.8
Jo o 5Py @5 =0 (G Gostoam (63)
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Proof of Lemma 6.4. Eq.(6.7) follows directly from Th.E in
citepCsorgo1978.

In order to prove Eq. (6.8), we start recalling some fact about uniform ap-
proximation of the generalized quantile process. We set

o () = V(Y () — an/i)) fy (a(n/i)) (6.9)
u () = Vi (UG) ~ po) (6.10)

It is known from
citepCsorgo1978 that under specific conditions satisfied by regularly varying
survival functions, we have

sup ‘pn ,}:(y)’ =0 (n_l/Q log log n) a.s. (6.11)
0<y<1

sup ‘u ’— ( —1/4 loglogn)fl/4 (logn)71/2> a.s., (6.12)
0<y<1

of

citep[see][cond. (i) to (iv) p.18]Csorgo2004. We deduce for Eq. (6.11) and (6.12)
that

sup |pn )| =0 ( —1/4 loglogn)fl/4 (logn)fl/Q) a.s. (6.13)

0<y<1

Now, for Eq. (6.8), notice that

Y(k) gy dx 1 pn(pr) Pn(Pk) 2
—Fy(z)—=——~"—+0 <") a.s.
/b(n/k) N T 1T Vb (n/k)
and conclude by means of Eq. (6.13) O

Lemma 6.5 (COVARIANCE COMPUTATION (I)).
YR dx
E |log X (i) / "y (2) P | = Mo (i) + R (k) + Roa(k),
b(n/k) K T

where

P(X >a(n/i),Y > b(n/k) ) — By

M, (i) =
na(n/i)fx (a(n/z)) n/k fy (b(n ))
_ n=3/2 (loglog n) /2 (logn) ~*
Roa(k) = O ( « (n/B) b/ F) > |
R,2(k)=0 (c “b(n/k)" n3 (log logn)fl/4 (log n)71/2) .
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Proof of Lemma 6.5. One may write

Yk) dx
log X (i / —Fx(z)—| =
Of % <>x]

Oani—ln 1L(U; <pi) i ln L(V; < pw) =P
E{(lg (n/i) ”;an/z)fx( (n/z))) ( nz:: b(n/k) fY( (n/kz)))]

Tapi) [ ng . do
© (a(n/i) /b(n/k) Fr @) )

= Mn(i) + le(k) + ng(k).

E

+E

We have
M.(0) = [(12”: ( (U; <pi) — pi)(ﬂ(Vj Spk)—pk) )]
ol "2 na(n/i) fx (a(n/i) )b (n/8) v (b(n/E) )
( a(n/ )Y>b”/k))—@]3k
na(n/1) fX( (n/i ) n/k)fy( (n/k))

By Lemma 6.4, we have

a(n/k)b(n/k)

In addition, by virtue of Cauchy-Schwarz inequality, we have

—3/2 —1/2 -1
Rua(k) = O <n (loglogn) (logn) ) '

ool

b(n/k)""\JE [log? X ()] E [T, (pr)?).

For any positive value of a, E [log2 X(i)] < +oo. Hence, we have

Rya(i) = O (b (n/k)~" n=3/% (loglog ) ~"/* (log n)*1/2) ,
O

Lemma 6.6 (COVARIANCE COMPUTATION (II)). The following asymptotic re-
lationships hold

Vi=1...k M)~ %%P(X > a(nfi),Y > b(n/k)).
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In the particular case i = k, we have

v(1,1)
ka2 -

Proof of Lemma 6.6. Von Mise’s Conditions (3.10) give

M, (k) ~
a(n/i) fx (a(n/z))b(n/k) fy (b (n/k)) ~ OLZ%. (6.14)
With Eq. (6.14), this yields
P<X>a(n/i),Y>b(n/k:)) PP L n

na(n/i) fx (a(n/i) )b (n/k) fx (b(n/) ) ~ == P(X > a(n/i).Y > b(n/k) ).

O

Lemma 6.7 (COVARIANCE COMPUTATION (III)). The following convergence
holds

" n > v(x,1)

nlgn;O; ZP(X > a(n/i), Y > bn/k)) = /1 v(@.1) 4,

T

Proof. Write, forany i =1...k

%P(X > a(n/i),Y > bn/k)) = =P (X —a (%) (%) y oy (Z)>
(

‘We have
ap Z 2F (a (f> zb(3) ”(f’l)
<3 3 (e ()2 () v o)
=201
<> L gl (a(}) 20 () -l
~ logk. 3scli% %F (a (%) x,b (%)) —v(z,1)

(1) by Condition (3.9).

2
S
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Then,
(e (@ 0) - (8)
<Y (s ()20 (7)) o)

Hence

S () 0) -

In addition, using Potter’s Bound, for any € > 0 if n is large enough we have

7

As n — oo and € — 0, the bounds of Eq. (6.15) converges towards
fol v (x_l/a, 1) 2z~ dz. We deduce from the above that

Ik (a(2) Yy (et o ()
kziy<a(”)’1> nqoo/o z dm_o‘/1 P

k

Finally, we obtain the desired convergence

b E n vz,
S HF (o) S0 (7)) e [ M
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Proof of Lemma 6.1. We have

kE

x X —I'y x)—
(n/k) K T Joinsr) K T

1L~ 1(U; <pi) —pk To (o)
kE — i
K n; ("/k)fx<a(n/k)) a(n/k))

Il LV <pr) —ps T, (px)
: ( "; a(n/k) fy(b(n/k:)) i b(n/k))]
1(U; < px) *pk) (11 (Vi < pr) *pk) ]
n/k) fx (a(n/k) )b (n/k) fx (b(n/k) )

Do), [*0 g ] g | T [T g e
a(n/k) Jom/ey k b(n/k) Jank) k x

IP’(X >a(n/k),Y > b(n/k)) — P
nb (n/k) fx (b(n/k))a (n/k) fx (a (n/k))

+0 (k”_3/2 (loglogn) /2 (log n)_1>

/X(k) nf dj Y (k) nf d;v]

<
Il
—_
S|
—

+E

=k

a(n/k)b(n/k)

The result follows from Lemma 6.6.

Proof of Lemma 6.2. Using the notations above, we can write
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Y(k)
lim E |k (H,fn - 1) / "Fy () &
k—o0 ’ (% b(n/k) k x

1 Yk) dx

=1 E log —F —
1 YR dx
=1 E l X(1) —log X (k) — — —F —

k

klirlgo Z M, ( (k) by Lemma 6.4.
1 & v(1,1)
= nhﬁrr;c) 2 Z = (X > a(n/i),Y > b(n/k)) . by Lemma 6.6.

1 [ 1 1,1
= 7/ vz, )d$ U 5 ) by Lemma 6.7.
a fy x a

Lemma 6.8.

1 J1 Ty @ J1 z @ J1 Y
Proof of Lemma 6.8. For 1 <i# j <, we have
l/ Vig (% 2) (2, 1) dx—/ / Vw da:dy
a fy x

l/oon(l’y dy—/ / Vmacy ddy.
@ J1 )

and

Now, just notice that

J A Y
1 )1 Ty 1 Jy Y L Ja Ty

O

7. Example - Technical details

We first treat the case | = 2. We set I} = G, Fy, = H, a(l)(n/k) = a and
2 (n/k) = by
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We have F(apz,bry) = G (apz) + H (byy) — 1+ C, (G (agz), H (bry) ), and

n n
ECV (G (akm)vH(bky)) %
n_ v n__ oA\ /v n_ v N o\ /v
= ((kG (akx)) +(EH(bky)) ) +O<<kG(akm)) +(EH(bky)) )
1/v
n— —a —o v E* - _ -« v
=<<kG(akw)—x +a ) +<kH(bky)+y y )>
N v N v 1/v
_ 7G (apx) —x=\v 1 RH (bry) —y~*\\ "
_ va k k
N <x (1 + T« ) + Yy <1 + Yy~ ) >
= (x—lloc + y—ya)l/’/ +0 (ZG(akx) -z %F (bky7) -y a)
€T « y o
This gives
n— _ 1 _ 1
[P us) =] = 0 (sug B one)— 2| g 0 - 2] )
Now, in the general case, it can easily be shown that for x; > 0,i=1,...,d,

we have

l
o)=Y S (DR (g )

k=11<i1#--#i, <l
It follows that for any 1 <1 # j <[, we have:

Vi,j(xay) _ (xfua + yfua)l/u'

8. Extensions to alternative tail index estimation methods

We now give an insight into the way the BEAR procedure can be generalized
to alternative local estimators of the tail index.

Given a sample X1, ..., X,, with distribution in RV _,, for some « > 0, and
the related order statistics X (1) > --- > X(n),
citepDekkers89 introduced the moment estimator Mj, ,, defined as

—1
1 H?

My =Hpp+1—=[1- 252 , (8.1)
2 Lin

where
1 Zk X(i
Lk,n = % 2 10g2 <)((k(—i—)1)) . (82)
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Note that L, j is an estimator of 2/042.
citepVries1996 also introduced the estimator Jj ,, defined as

Ly n
Jkn_ e

= 8.3
"= (53

This estimator was used in
citepDanielsson2001 to derive the optimal number k of upper order statistics
through a bootstrap method.

A Central Limit Theorem for L;, and J;,. We use the same notations
as those introduced at the beginning of section 3 and consider a [-dimensional
vector X of regularly varying margins with index —a. Following steps by step
the proofs of the main results of section 3, one may adapt them to obtain a
multivariate CLT for (L,(:ZL, ce L;c{)n) and for (J,glr)” ..

integrals [~ .92 in Eq.(6.2) by 2 [, .logz 9 yields:

x

i, J,gl)n) First, replacing
oo
= d
vk (Lg?)z - 2/ %F1 (X1 (k)x) logz—, ...,
’ 1 x
Ly~ 2/ 7y (Y (k)y) IOgy;/) = Ky (8.4)
1

Then, under Condition (3.6), the random centering can be removed. The variant
of Theorem 3.11 follows:

2 ! 1
vk (L;f; - S LY - a) = N (0,Qy). (8.5)
More generally
VE (I = a1, = a0) 5 N (0,90), (8.6)

where, for any 1 < i </, Ilgzzl can be either L,(;)n with o; = 2/042 or H,?ZL with
a; = 1/a. The generalization of Theorem 3.11 for Ji , can be established by
means of the Delta method. Indeed,

2 14 (%Lk,n—l)

2 agg (aHin—1)

1 o?
=—(14+(—=Lin—1 l1—\aHry,—1)+o| |aHry, -1 a.s..
«Q 2
Jk,n = l g <Lk,n — 22> — <Hk,n — 1) + o0 ((OéHk,n — 1>> a.s. (87)
a o« o «

For any (i,7) € {1,...,1}?, set:
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o Cry(i,j) = limy_ye0 Cov (\/g (Lg) _ ;) VE (Hziffl B ;))

[e3 [e3

o Crr(i,j) = limy_ 00 Cov (\/; (L;(f,)n* 2 ) 7\”(%?}*1))

o2 o2 bl

e Cuu(i,j) = limg_o Cov (\/E (H,iz)n - l) v (H,g]i - l))

[0 (03

We then have:

lim Cov (x/E (J,ﬁ’}l - 1) VE (J,S) - 1)) =
k ’ « ’ (0%

—00
o? .« L« . .
ZCLL(%]) - 5CLH(Z,J) - §CLH(]7Z) +Cuu(i,j). (8.8)

The same kind of relation holds for the asymptotic covariance of the Moment
estimator limy_, . Cov (\/E (M,izzI — l) Vk (M,gjgl — l)) Hence, the BEAR

[e3 «
method can be straightforwardly generalized to a combination of local Moment
estimators (respectively J-estimators).

References

[1] H. N. Abramson. The dynamic behavior of liquid in moving containers.
Technical report, NASA, 1966.

[2] B. Basrak and J. Segers. Regularly varying multivariate time series. Stoch.
Proc. Appl., 119(4):1055-1080, 2009.

[3] J. Beirlant and J.L. Teugels. Extreme value theorey. proc., oberwolfach
1987. lecture notes in statistics. Stoch. Proc. Appl., 51, 1989.

[4] J. Beirlant, Vynckier P., and J.L. Teugels. Tail index estimation, pareto
quantile plots and regression diagnostics. Journ. Am. Stat. Assoc., 91(436),
1996.

[5] J. Beirlant, Vynckier P., and J.L. Teugels. Excess functions and estimation
of the extreme-value index. Bernoulli, 2(4), 1996.

[6] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes:
Theory and Applications. John Wiley & Sons, New York, first edition,
October 2004.

[7] P. Billingsley. Probability and measure. Wiley, 2nd edition, 1986.

[8] T. A. Buishand, L. de Haan, and C. Zhou. On spatial extremes: with
application to a rainfall problem. Ann. Appl. Stat., 2(2), 2008.

[9] S. Coles and D. Walshaw. Directional modelling of extreme wind speeds.
Jour. Roy. Stat. Soc. Ser. C, 43(1):139-157, 1994.

[10] M. Csorgo and Révész. Strong approximation of the quantiles process.
Ann. Stat., 6:882-894, 1978.

[11] M. Csorgo, P. Deheuvels, and P.M. Mason. Kernel estimator of the tail
index of a distribution. Ann. Stat., 13:1050-1077, 1985.

[12] J. Danielsson, D. W. Jansen, and C.G. de Vries. The method of moments
ratio estimator for the tail shape parameter. Com. Stat. - Th. Meth., 25
(4), 1996.

imsart-ps ver. 2012/08/31 file: HillMultiHal.tex date: February 3, 2014



A. Dematteo and S. Clémengon/On Tail Index Estimation based on Multivariate Data 31

[13]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

J. Danielsson, L. de Haan, L. Peng, and C.G. de Vries. Using a bootstrap
method to choose the sample fraction in tail index estimation. Jour. Multi.
Anal., 76(2):226-248, 2001.

R. A. Davis and S. I. Resnick. Tail estimates motivated by extreme value
theory. Ann. Stat., 12:1467-1487, 1984.

R. A. Davis, C. Kliippelberg, and C. Steinkohl. Max-stable processes for
modelling extremes observed in space and time. Jour. Kor. Stat. Soc., 2013.
to appear.

R. A. Davis, C. Kliippelberg, and C. Steinkohl. Statistical inference for
max-stable processes in space and time. Jour.Roy. Stat. Soc. Ser. B, 2013.
to appear.

L. de Haan. A spectral representation for max-stable processes. Ann. Prob.,
12(4):1194-1204, 1984.

L. de Haan and L. Peng. Comparison of tail index estimators. Stat. Neer-
landica, 52:6070, 1998.

L. de Haan and S.I. Resnick. A simple asymptotic estimate for the index
of a stable distribution. Jour. Roy. Stat. Soc. Ser. B, 42:83-87, 1980.

L. de Haan and S.I. Resnick. On asymptotic normality of the Hill estimator.
Stoch. Models., 14:849867, 1998.

P. Deheuvels, E. Haiisler, and D.M. Mason. On the limiting behavior of the
pickands estimator for bivariate extreme-value distributions. Math. Proc.
Cambridge Philo. Soc., 104:371-381, 1988.

A.L.M. Dekkers, J.H.J. Einmahl, and L. de Haan. A moment estimator for
the index of an extreme-value distribution. Ann. Stat., 17(4):1833-1855,
1989.

H. Drees and E. Kaufmann. Selecting the Optimal Sample Fraction in
Univariate Extreme Value Estimation. Stoch. Proc. App., 75:149-172, 1998.
H. Drees, L. de Haan, and S. Resnick. How to Make a Hill Plot. Ann. Stat.,
75:149-172, 2000.

P. Embrechts, C. Kliippelberg, and T. Mikosch. Modelling Extremal Events
for Insurance and Finance. Springer, 1997.

G. Frahm, M. Junkera, and Szimayerb A. Elliptical copulas: applicability
and limitations. Stat. Prob. Lett., 63:275-286, 2003.

T. Gavory and P.-E. de Seéze. Sloshing in membrane LNG carriers and its
consequences from a designer’s perspective. Proc. of the 19t" ISOPE Conf.,
3:13-21, 2009.

J. Geluk, L. de Haan, Resnick S.I., and C. Starica. Second-order regular
variation, convolution and the central limit theorem. Stoch. Proc. App., 69:
139-159, 1997.

R. Glowinski. Handbook of Numerical Analysis. Handbook of Numerical
Analysis Series. Gulf Professional Publishing, North-Holland, 1990.
Gordon Gudendorf and Johan Segers. Extreme-value copulas. In Piotr
Jaworski, Fabrizio Durante, Wolfgang Karl Hardle, and Tomasz Rychlik,
editors, Copula Theory and Its Applications, Lecture Notes in Stat., pages
127-145. Springer Berlin Heidelberg, 2010.

B.M. Hill. A simple general approach to inference about the tail of a

imsart-ps ver. 2012/08/31 file: HillMultiHal.tex date: February 3, 2014



A. Demaiteo and S. Clémengon/On Tail Index Estimation based on Multivariate Data 32

[32]
[33]
[34]

[35]

[36]

distribution. Ann. Stat., 3:1163-1174, 1975.

J. B. Hill. On tail index estimation for dependent, heterogeneous data.
FEcon. Theory, 5:1398-1436, 2010.

T. Hsing. On tail index estimation using dependent data. Ann. Stat., 19
(3):1547-1569, 1991.

H. Hult and F. Lindskog. Extremal behavior of regularly varying stochastic
processes. Stoch. Proc. Appl., 115:249 — 274, 2005.

H. Hult and F. Lindskog. On regular variation for infinitely divisible
random vectors and additive processes. Adv. Appl. Prob., 38(1):134-148,
March 2006.

D.M. Mason. Law of large numbers for sum of extreme values. Ann. Prob.,
10:754-764, 1982.

T. Mikosch. Heavy-tail modelling in insurance. Comm. Stat. Stoch. Models,
13(4):799-815, 1997.

J. Pickands. Statistical inference using extreme order statistics. Ann. Stat.,
3(1):119-131, 1975.

S. T. Rachev, F. J. Fabozzi, and C. Menn. Fat-Tailed and Skewed Asset Re-
turn Distributions : Implications for Risk Management, Portfolio Selection,
and Option Pricing. Wiley, August 2005.

S. Resnick and C. Starica. Asymptotic behaviourof Hill’s estimator for
autoregressive data. Comm. Stat. Stoch. Mod., 13:5703-721, 1997.

S.I. Resnick. FExtreme Values, Regular Variation and Point Processes.
Springer-Verlag, New-York, 1987.

S.I. Resnick. Heavy-tail phenomena: probabilistic and Statistical modeling.
Springer series in operations research. Springer, 2007.

M. Schlater. Models for stationary max-stable random fields. Eztremes, 5
(1):33-44, 2002.

R. L. Smith. Max-stable processes and spatial extremes. Unpublished, 1990.
J. Tawn. Estimating probabilities of extreme sea-levels. Jour. Roy. Stat.
Soc. Ser. C, 41(1):77-93, 1992.

J. L. Teugels and E. Haeusler. On asymptotic normality of hill’s estimator
for the exponent of regular variation. Ann. Stat., 13:743-756, 1985.

imsart-ps ver. 2012/08/31 file: HillMultiHal.tex date: February 3, 2014



	Introduction
	Background and Preliminaries
	Heavy-tailed random fields
	The Hill method for tail index estimation

	Tail index estimation for a heavy-tailed field
	A multivariate functional central limit theorem
	Application to AMSE minimization.

	Simulations
	Example : sloshing data tail index inference
	Conclusion
	Appendix - Technical Proofs
	Example - Technical details
	Extensions to alternative tail index estimation methods
	References

