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Study of thermosensitive heterogeneous media via space-time homogenisation

Claude Boutin, Henri Wong *

Laborateire Géomatériaux, Département Génie Civil et Bitiment (CNRS URA 1652),
Ecole Narionale des Travaux Publics de I'Etat, rue Maurice Audin, 69518 Vaulx-en-Velin cedex, France

Abstract - In this paper is presented a theoretical study on the coupled thermosensitive behaviour of heterogeneous, biphasic materials subjected
to harmonic excitations of long duration (fatigue tests for example), by a double homogenisation approach — with respect to both space and
time. Applied 1o the thermal problem, this results in the differentiation of several qualitatively different evolutions in the temperature field.
For the mechanical aspect, heat generated by mechanical work leads to temperature rises, which in tum reduce the material moduli, resulting
in a bilateral coupling. It is shown that this effect is significant in the case of bituminous concrete. The evolution of the material properties
takes place, however, generally on o much longer time-scale than the period of excitation. A double homogenisation approach then results in
an entirely macroscopic description.

thermosensitive behaviour / space-time homogenisation [/ heterogeneous media / thermal viscoelasticity / bilateral thermomechanical
couplings / complex compliance tensor / asymptotic analysis / multiple-scale variahles

1. Introduction

In this paper, we study the macroscopic (with respect to a pertinent scale of observation) behaviour of
temperature-sensitive biphasic composite materials subjected to a large number of cyclic loadings, starting
from the rheological behaviour of each phase on a local scale. Common examples are fatigue load tests of
bituminous concrete or resinous concrete. Besides the classic double space-scales in the study of heterogeneous
media, the present problem also involves two distinct time-scales. Indeed, the rapidly oscillating load, which
defines a microchronological time-scale, generates heat slowly through the mechanical work done, which in
turn modifies progressively the mechanical properties. The method of homogenisation of periodical structures
is applied simultaneously with respect to space and time to treat these aspects.

Mote that our objective here is to obtain macroscopic descriptions useful for practical applications by formal
asymptotic analyses. Aspects related to mathematical convergence are not treated in this paper.

The work presented here differs from previous macroscopic thermomechanical descriptions of heterogeneous
media for example those found in Sanchez Palencia (1980) and Francfort and Suquet (1986). In these papers, the
mechanical behaviour is temperature-independent; coupling arises from thermal dilation, due to heat generated
by mechanical dissipation. This coupling was further suppressed in Francfort and Suquet (1986) by setting a null
thermal expansivity, in order to establish convergence results. In this paper, thermal expansion is also neglected.
However, coupling due to thermosensitivity of the material — mechanical dissipation generates heat, which in
turn modifies the material properties and changes the dissipative power — is accounted for.

* Correspondence and reprints



After a brief review of the governing constitutive equations in each of the two phases — an elastic solid skeleton
filled by a viscoelastic thermosensitive medium — and the principle of the homogenisation method, based on
asymptotic analysis and use of multiple-scale variables, the mechanical problem under isothermal conditions
is first reviewed. When scale separation is possible, which is explicitly assumed here, space homogenisation
leads to the constitutive equations of an equivalent, macroscopically homogeneous material, and at the same
time the mascroscopic rheological parameters, such as the complex stiffness tensor and the average mechanical
dissipation. In the absence of temperature variation, there are, however, no slow-varying quantities, and the
adequate time-scale only depends on the loading frequency.

The problem of thermal diffusion in a heterogeneous medium, with an arbitrary time-dependent distributed
source, is then considered. The space-time homogenisation approach shows that four qualitatively different
situations are possible, depending on the relative magnitudes of the conductive, inertial and source terms. For
each particular combination of material constants and source intensity, the analysis shows whether macroscopic
descriptions — either space or time, or both — are available. The conclusions have a general character, and
are applicable independently of the mechanical problem.

The combined thermomechanical problem, taking into account simultaneously the heat generated due to
mechanical dissipation and the material softening due to heating, is then formulated in the light of the
preceding analyses. The thermal power due to mechanical dissipation being identified, the thermal diffusion
problem is completely defined, giving a macroscopic solution under specified conditions. Finally, substitution
of the temperature field in the mechanical problem allows one to obtain the macrochronological drift of the
macroscopic quantities.

The final result is a system of coupled, partial differential equations, which together with the initial and
boundary conditions, defines a classic boundary value problem. Its numerical solution is straight forward and
necessitates the same amount of computations as in the case of a homogeneous material with a slowly varying
load/heat source.

An idealised case of a multi-layered medium, which has a semi-analytical solution, is treated in detail, in
order to illustrate the main concepts developed.

2. General assumptions

2.1. Geometry, loading and quasi-static behaviour

We are interested in the thermosensitive behaviour of a heterogeneous body occupying a volume V in a
three-dimensional space (figure I). This body is supposed to be composed of two distinct materials — one linear
elastic and the other viscoelastic and thermosensitive, both of which are homogeneous and isotropic — referred
to hereafter as the elastic phase and the viscoelastic phase. On a local scale, the thermomechanical properties
are supposed to be perfectly periodical, made up of identical unit cells € (figure 1), while each unit cell Q can
be partitioned into {25 (s’ for the elastic phase) and Qf (‘f’ for the viscoelastic phase). We shall denote by ||
the volume of €2, and n the volume fraction of the viscoelastic phase
_ 1oyl

1€
Only small displacements and small strains are considered here. Attention will be concentrated on quasi-

static behaviour under harmonic excitations. In the absence of body forces, the general equation of motion
div(o) + F = pU reduces to the following equation of static equilibrium

n <1 (1

div(c) =0 2)



unit cell £
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Figure 1. Example of a biphasic material (a) and its geometric idealisation (b);
(a) a typical bituminous concrete sample in fatigue tests; (b), geometry of the heterogeneous periodical biphasic medium under study.

Despite the linear constitutive law (to be introduced in Section 2.2) and the non-consideration of inertial forces,
mechanical dissipation coupled with thermosensitivity introduce non-linearities, and the material responses
(displacements and strains) are in general not harmonic. Nonetheless, limiting ourselves at the moment to
situations where such non-linearities are ‘small’ (small dissipative power, therefore slow evolution of material
constants), for short durations (in the order of the excitation period ¢, = 27 /w), the structural response is
quasi-harmonic, and may be represented by the real part of a complex function of the form

U = Ue! (3)

where U may be complex or real, and varies on a time-scale that is much longer than the excitation period. The
notation ||.|| will be used to denote the amplitude of a complex number, for example: ||e’?|| = 1. No particular
notation will be used to distinguish scalars from tensors; the context should make their distinction unambiguous.
The limit of validity of the quasi-harmonic response (3) will be reviewed in Section 7.

2.2. Mechanical behaviour of constituents

2.2.1. Elastic phase

Not taking thermal dilation into account, the constitutive relation of the elastic phase is written
o°=a:e(Us) (ie o = ajrien(Us)) 4)



where e(U) = (VU +!VU) is the linearised strain tensor, and a;j; the classic elastic moduli, supposed to be
temperature-independent, and ‘:’ represents a double contraction between two tensors. Linearity of the operator
e implies that the strain rate tensor d is given by

d(U) = e(iwl) = iwe(U) 5
2.2.2. Viscoelastic thermosensitive phase

The behaviour of the viscoelastic thermosensitive phase, under the hypotheses of uncompressibility and
harmonic excitations, is described by Eqs (6) and (7) below

of = —=P142M*(w,0)e(Us) (6)
div(Uf) =0 (7
where P = —Tr(c/) is the mean pressure, M* the complex modulus — a function of temperature 6 and

angular frequency w — and div the divergence operator. Equation (7) implies that e(Uy) is a pure deviator with
Tr(e(Us)) = 0. The viscous behaviour introduces a positive mechanical dissipation and leads to temperature
rises. The increase in temperature in turn reduces the modulus M™* and softens the material. The precise form
of the mechanical dissipation will be derived later.

The thermosensitivity of the viscoelastic phase is of central importance in our analysis. To fix ideas, in the
case of bitumen, a 1 °C rise in temperature results in an approximately 5 % drop in the amplitude of M*.
This factor introduces a truly bilateral coupling between the mechanical and the thermal problems, in such a
way that no one problem can be solved independently of the other. The case where the mechanical parameters
are temperature-independent and thermal expansion negligible (¢ = 0), so that the mechanical problem is
decoupled from the thermal problem, has been treated by Sanchez Palencia (1980) and Francfort and Suquet
(1986) with a convergence result.

2.3. Thermal behaviour of constituents

Both elastic and viscoelastic phases are supposed to obey the classic Fourier’s law of thermal conduction,
where the heat flux ¢ is related to the thermal gradient by ¢ = —AV4, and the temperature field verifies the
classic heat equation

(pCYH6* — div[\, VO*] = 8, (8)

(pC) is the specific heat per unit volume and A the thermal conductivity — both supposed to be constant. S is
the internal heat source due to mechanical dissipation, to be derived here below. Here 1 is to be replaced by
s’ in the elastic phase and by ‘f’ in the viscoelastic phase.

2.3.1. Heat source in the elastic phase

The only heat source considered comes from the coupling effect. For the elastic phase, the instantaneous
source S takes the following form (see e.g. Fung, 1968)

Ss = —0°aijrif;dr (9)

where a;; are the thermal dilation coefficients of the elastic phase, while 6° is.the absolute temperature. When
the displacement is a harmonic function of time, Ss represents small fluctuations around a zero average value,
and its long-term effects are negligible. If we further do not take into account thermal dilations (o = = 0), then
Ss is identically zero. This last assumption, adopted in the rest of this paper, is partly justified by the small



temperature changes (a few degrees) and the amplitude of the coefficients of; (in the order of 105/°C, and
partly by the prevailing ‘unconfined’ conditions for the problems considered.

2.3.2. Heat source in the viscoelastic thermosensitive phase

As for the elastic phase, we suppose that a{j = 0. However, non-zero mechanical dissipation intervenes in

the viscoelastic phase. For the constitutive law (6) and at a fixed excitation frequency w, the material behaviour
can be ascribed to the Kelvin—Voigt type. Hence, we may write the stress as the sum of a reversible and
an irreversible component

of = a,’.c + O';fr (10)

_2M;
T ow
The mechanical dissipation is given by Re{o?} : Re{d(U;)}. Putting Uy = usel(®t%), where us = ||Uf||
and ¢ is the phase-lag, the last expression simplifies to

Sf = 2wM; sin?(wt + @)e(us) : e(uf) (12)

of = —P1+2M,e(Us); of

r

d(Uy) (11)

3. Thermosensitive behaviour of a biphasic medium subject to harmonic loading: general setting

We are interested in the simultaneous evolution of the fully coupled displacement and temperature fields
inside the heterogeneous body V. The knowledge of the displacement field leads to the deduction of the strain
and stress fields through the constitutive relations.

3.1. Mechanical problem

In the elastic phase, eliminating ¢° from the equilibrium and constitutive equations (2) and (4) leads to

divia : e(Us)] =0 in Q; (13)
while a similar operation for the viscoelastic phase gives
div[-P1+ 2M*(w,0)e(Uf)] =0 in Qf (14)
bearing in mind the uncompressibility condition
div(Us) =0 in (15)
The displacement and the stress vectors are continuous across the phase boundary I' (figure 1), thus
a:e(Us) N = [-P1+2M*(w,8)eUs)]-N onT (16)
Uy=U; onT an
At the boundary of the body V, either displacement or surface tractions are specified
U,=U% ondV, : (18)
o* - N=T? ondV, (19)

Ud(z,t) and T%(x,t) respresents the imposed boundary displacements and stresses, of the form
Ud — ”U-d”eiwt; Td — ”Td“eiwt (20)



Equations (13)—(20) define the mechanical problem of the composite body V, where the notation M*(w,#)
highlights the coupling with temperature. As mentioned in Section 2.1, we will seek a solution of the form

Uy = Uye™? (21)
3.2. Thermal problem

The heat equation must be satisfied at every point within the body V

(pC)H6* — div[), V"] = S, (22)
where
Ss=0 in 23)
S; = 2wM; sin®(wt + @) e(uf) : e(uf) in Qs (24)
At the interface T', both temperature and the normal heat flux are continuous
§°=6' onTl (25)
AsVE N =XV6F-N onT (26
while on the macroscopic boundary, either the temperature or the heat flux are specified
9" = 9%(z) on Vy (27)
~A\ V8" - N = ¢(z) on 8V, (28)

Equations (22)—(28) define the thermal problem. Coupling with the mechanical problem arises through the heat
source Sy in (24) which depends explicitly on the displacement field uy.

Hence thermomechanical coupling intervenes in both directions: mechanical dissipation Sy generates heat
while inversely, the heat generated softens the materials and modifies the dissipative power. In consequence,
both the displacement amplitude ||U,|| and the phase-lag in (21) will vary with time, whereas they would have
remained constant had the material behaviour been temperature-independent.

In addition, the microstructure and the cyclic loading generate fast-varying local fluctuations, with respect
to both space and time. Nonetheless, it is rather the long-term ‘drifts’, such as strain and stress amplitude
variations, or global rise in temperatures, which are of practical interest. This justifies our research into such
long-term drifts by the method of homogenisation.

3.3. Principle of the homogenisation method

3.3.1. Space homogenisation

The aim of spatial homogenisation is to obtain a ‘continuum’ description at the macroscopic level, starting
from the descriptions of the microstructural components.

Obviously, it is impossible to obtain a macroscopic description if the underlying phenomenon varies essentially
at the level of local heterogeneities. An essential condition to be satisfied is that the phenomenon presents a
characteristic length of variation L (within a body of comparable or larger size), much larger than that of the
local heterogeneities I. Hence, the search for a homogenised behaviour makes sense only if the condition of scale
separation is fulfilled. Actually, this condition leads to two requirements which result in a ‘local invariance’:
a) the first concerns the material: it must be sufficiently regular so that one can define a (elementary) representative



volume element (RVE) of a characteristic microscopic size [; b) the second is related to the phenomenon in
question: the characteristic length L of its variations must be large in comparison with [.

If these two conditions are fulfilled, a macroscopic variation in the phenomenon over the microstructures can
be discerned, and the problem can be treated using standard continuum mechanics. The space homogenisation of
periodic structures uses asymptotic and multiple-scale analyses (Sanchez—Palencia, 1980). The two well-distinct
space-scales lead to the use of two space-variables, z and y: = describes variations on the macroscopic scale, and
y describes variations on the microstructural scale. The small parameter €1 (7 < 1) denotes the space-scale ratio

e1=1/L T =e1y

For a given problem, the value of €1 can be assessed by estimating L using a dimensional analysis on the
macroscopic scale (Boutin and Auriault, 1990).

Use of the double space variables transforms the common spatial derivatives at the macroscopic (respectively
microscopic) space-scale into J, + ei’lay (respectively 0y + €10.). Due to the different orders of magnitude
introduced by &1, the variables are expressed in the form of asymptotic expansions in powers of &7. For
example, with respect to the displacement U, we have

U(z,y) = U'(z,y) + iU (2,y) + §U%(z,9) + ... with: O(U*/UY) =1 . (29)

while the usual differential operations on the macroscopic scale on U will be modified. Using the suffix ‘z’ or
‘y’ to indicate the independent space variable with respect to which derivatives are taken, we have for example

divia : e(U)] = 7 2divyla : e, (U)] + ;7 {div.[a : e, (U)] + divyfa : (e (U°) + e (U))]}
+ e3{div,[a : (e (U) + e, (U))] + divy[a : (e (U) + ey (U*)]} + - -- (30)

A specificity of this method is to express the existence of a RVE through the assumption of the periodicity of
the microstructure. This microstructural periodicity induces an identical periodicity on the functions U*, with
respect to the local coordinate y.

The process consists of introducing the series representation (29) in the equations governing the physics,
then identifying the terms of the same power in €;, and finally solving recursively the problems obtained
for each power.

In principle, this method is all the more precise as ¢; is small compared to I, that is, when the two scales are
clearly distinguished. In this case, the description obtained at the first significant order defines the equivalent
continuum behaviour of the material, with an accuracy of O(ey).

3.3.2. Time homogenisation

In a similar manner, some phenomena may exhibit fast-varying, quasi-periodic temporal fluctuations, but show
a remarkably smooth and gradual progression when examined over a long duration of time. The temperature
rise in a bituminous concrete sample during a fatigue test is a good illustration of this double-scale temporal
evolution:; the rapid temperature fluctuations on a microchronological scale are governed by the period f
(te = 2w /w) of the cyclic load, while a progressive temperature rise on a longer time-scale can be discerned.

In this latter case, the condition of scale separation depends on the duration of observation . When £/t > 1,
scale separation is possible, and a macrochronological description, focussed on the ‘slow’, progressive variations
(analogue to the macroscopic description above), can be found.



As in space homogenisation, we will define two time-scales: a microchronological time-scale with . as the
reference duration, and a macrochronological time-scale with a much longer reference duration t, such that a
second small parameter &; (g; < 1, in general different from e;) denotes the time-scale ratio

E—te
1= 7

We will denote the corresponding ‘micro’ and ‘macro’ time coordinates by ¢ and 7', such that

T=€tt

An example of time homogenisation can be found in Guennouni (1988). An analysis simultaneously using
space and time homogenisation can for example be found in Dormieux et al. (1993).

In the following section, we will begin by considering the particular case when temperature changes are
negligible, hence the rheological parameters remain constant. In consequence, there are no slow-varying (with
time) quantities, and only one time-scale — the one imposed by the cyclic loading — is pertinent.

4, Space homogenisation of the mechanical problem under isothermal conditions

The following presentation follows the same line of reasoning as in Boutin and Auriault (1990), where the
same method of formal asymptotics was used. Since there is only one small parameter 1, related to the double
space-scales, we will simply write ¢ instead of &; to simplify.

4.1. Main assumptions

We shall assume that i) temperatures remain at the reference value 6,5 everywhere. Hence, all rheological
parameters remain constant; ii) a macroscopic space-scale exists, such that /L < 1; iii) the displacement
field is harmonic (i.e. U= iwl); iv) the viscoelastic stresses and the elastic stresses are of the same order of
magnitude. Inertial and gravity forces are not taken into account.

4.2. Space homogenisation

From i), M* = ref = M* (w,0rcf) remains constant. With assumption iv), the system of equations (13)-
(20) written in macroscopic coordinates and local time coordinates need not be renormalised. Taking terms of
the order €2 in (13), =% in (14), e~ in (16), €¥ in (17) and £~ in (15), the following homogeneous system
of linear equations is obtained (Boutin and Auriault, 1990)

divy[a : e,(U%)] =0 in
divy[ M, e, (UF)] = 0 in Q¢
a:ey(UJ) N =2M};e,(U})-N onT . (31)
U =0} onT

divy (U}) =0 in Qf



which leads to the conclusion that U9 = UY = U%(x, t) is independent of y. Terms of an order higher give

divy[a : {e-(U°) + e,(UD)} =0 in Q

VPO + 2divy (M5 f(ex(U°) + ey (U})] = 0 in

a: {ex(U°) +ey(Us)}- N = {-P°1+2 :ef[em(Uo) + ey(U})]} ‘N onT (32)
Ul = Ufl onT’

dive(U°) + divy(U}) = 0 in Qf

It is evident that U}, U} and P? depend linearly on e,(U?). Noting that U! = U} in ©, and U! = U}
in Qf, we can write

Ul =U(z,1) + X(:ff(y)emﬂ(Uo) 33)
P'=p! (z,t) — T:’e[.’f(y)emﬂ(UO) (34)

Here, the vector fields xfff (y) and the scalar fields Tf;‘;(y), defined up to an arbitrary constant, are the particular
solutions of problem (32) when e, (U 0) takes up the particular values

erij(U’) =1 wheni=cand j = B; ei;(U°) = 0 otherwise

The usual compatibility conditions then lead to the set of macroscopic equations
dive(0%) = 0; (0°) = Cls : €2(U") (35)

where (.) = T%[ Jo(.)dS is the spatial averaging operator, and C;,; is a fourth-order tensor comprised of the
equivalent macroscopic moduli, which accounted for the material properties of elastic and viscoelastic phases,
and their respective topologies. Its components are given by

(1 _ n)aijmn
12|

+|QLH[2M;;J¢ /Q eyij (X £)dQ + 6 /Q Tfe‘fdn] (36)
I f

C*ijkl = (1 _ n)aijkl + /Q eymn(xlféf)dﬂ + 2nM:ef6ik5jl

ref

The above relation also defines the macroscopic moduli C*¥l at any other temperature 8, upon replaceinent
of M},; by M*(w,9).

4.3. Mechanical dissipation in terms of macroscopic variables

Since d(U) = e(iwl), the instantaneous mechanical power (in part reversible, in part dissipative) is locally
given by S = Refo] : Re[e(iwl))] in both solid and fluid phases. Integrating over (s and {y, taking into
account the respective forms of o at zero order, we obtain the following space average of the total mechanical
power II, entirely in terms of macroscopic variables

(I) = Re[C}, rec(U°)] : Relez (iwU°)] (37)



depending exclusively on the macroscopic quantities C7,; and U 0 Noting U%(z, t) = u0(z, t)e(4+t) (40 real),
and splitting C7,; into its real and imaginary parts, C7,; and Cy ., we arrive at the following form of (II)
after a little simplification '
; - sin(2 t
(T1) = we(u?) : {C,’.ef sin (¢ + wt) — ;ef%w_))} : e(u?) (38)
The second term fluctuates around a zero average value and corresponds actually to the reversible elastic work.
Hence the mechanical dissipative power in terms of macroscopic variables is

(S) = wsin®(¢ + wt)e(u) : Cppp : e(u”) (39)

This expression is consistent with (24), the factor 2M; at the microscopic level being replaced by C,’:ef at
the macroscopic level. Note that heat generated by (S) should in principle modify the macroscopic moduli
C* through the temperature-dependent modulus M*(w,f) of the viscoelastic phase, while the isothermal
description (35) and (36) does not take this effect into account.

4.4. Limits of validity of the isothermal description

The description given above has been validated experimentally by Boutin et al. (1995). However, on account
of the thermal sensitivity of the material (|6C*/C*| ~ 5 %/°C in the case of bituminous concrete), and the heat
energy accumulated at the end of a large number of cycles (typically over a million in a fatigue test of bituminous
concrete), a temperature rise of a few degrees can be expected, and thermal-softening effects must be considered.
Note that such effects were simulated by Piau (1989), and experimentally observed by Doubbaneh (1995).

To account for the thermal-softening effects on the mechanical behaviour, the thermal problem as defined in
Section 3.2 has to be considered, taking notably into account heat generated by mechanical dissipation. In order
to arrive at an entirely macroscopic description, the first step to be taken is to seek for a ‘homogenised’ version
of the thermal problem, which allows definition of the equivalent specific heat and thermal conductivity, taking
into account a macroscopic heat source similar to expression (39).

The thermal problem is to be solved simultaneously with the mechanical problem. At each stage, the
temperature field 8 so found is incorporated in the mechanical problem to update the values of the temperature-
dependent mechanical parameters. Conversely, the latter information is used to update the heat source
term.

In the forthcoming sections, we will begin with a detailed treatment of the thermal problem of a heterogeneous

medium, distinguishing the different situations encountered, which will then be followed by an analysis of the
coupled thermomechanical problem.

5. Space-time homogenisation of the thermal problem

5.1. The physics of thermal conduction in heterogeneous media

The physical process of thermal conduction in a heterogeneous medium is hereafter described. At small
times, heat energy generated locally and non-uniformly in the viscoelastic phase creats a non-uniform
temperature field of small amplitude, with spatial and temporal oscillations due to the harmonic excitation
and the microstructure. Progressively, the local gradients flatten out by diffusion, while an average temperature
rise becomes distinguishable. :

At large times, the temperature field is macroscopically homogeneous across the local heterogeneities, local
spatial fluctuations around the mean temperature profile being then negligible. Moreover, temporal oscillations
are at this stage an order of magnitude lower than the current temperature, which evolves progressively.



Temperatures tend progressively towards steady-state conditions if the boundary conditions are not adiabatic
everywhere and the source is quasi-constant and bounded.

5.2. Scale definition

For the problem we are interested in, the microscopic space-scale is naturally imposed by wne size ! of
the heterogeneities of the material, while the time-scale is defined by the period f. of the harmonic loading
conditions (te = 2(w/w).

On the other hand, one can always choose reference values of time £, length [, and temperature 6 in such a
way that, estimated with these characteristic values, the three terms in the heat equation, namely: the inertial,
conductive and the source term, are all of the same order. In other words

o(ﬂ) - o(’f_") —os) (40)
t 12

In consequence, for the reference duration £, the reference length [ is identified with the heat front advance
6 = (k)/2 (with k = \/pC) during £, and the reference temperature increase is given by 8 = St/(pC).
The particular values (%, I, 67) correspond to the natural choice of intrinsic reference values for the problem
of heat transfer.

In other words, the inertial, conductive and the source terms are of the same order when pertinent space-
and time-scales — corresponding to thé characteristic time of evolution and the associated heat front avance
— are adopted. In the following section, we will identify £ with the actual time, and I with the current heat

front advance 6;, and see how the relative magnitudes of the three terms may evolve in the course of loading,
and the possible situations that may arise.

5.3. Different possible situations

On account of the above discussion, the analysis proceeds in the following manner: A) at the current time £,
compare 6; with [ to see if a macroscopic spatial description is available; B) compare ¢ with t. to see if a
macrochronological temporal description is available.

Now rewrite the heat equation in local coordinates ¢ and y, as defined in Section 3.3

The relative order of magnitude of the three terms, expressed in local coordinates, is then
S S te
— =0 ——Y)Y=0{= 42
pCo:0 (pC’ﬁ/te) ( t > (42)
S S 12
= = — (43
Ty, ()] o(wm)=°l(5) @

on account of (16) and (17). Since physically, the temperature oscillations at any point cannot be ‘faster’ than
the periodic fluctuation of the source itself, an observation time much shorter than t. is inadequate for our
problem. Hence, only two cases need to be distinguished

t=0(t.) or >t

For each, we have to compare &§; with [ for the existence of a macroscopic space description. There are
thus four different cases to be considered, depending on the size of the heterogeneities, the thermal properties
and the excitation frequency. We will briefly examine the qualitative results here below and leave the details
of the analysis to Annexe A.



Case i §;/1 < O(1), t = O(te)

In this first case, the duration of observation is of the same order as the period of the source, hence only
one time-scale is pertinent — the one defined by the period ¢, of the mechanical load. Temperature rises take
place with significant oscillations, and of a period comparable to the observation time, around the still weak
current values (cf. figure 2). The fact that the heat front advance §; is still less than, or of the order of the
size of heterogeneities [ means that spatial temperature distribution is non-uniform, dominated by the source
distribution. An adequate space-time description of this case can only be performed with local variables (y, t).

Figure 2. Space—time evolution of & in Case i.

Case ii: 61 < O(1), £ > te

This second case corresponds to an observation time £ that is much longer than the period of excitation. A
progressive temporal evolution profile can be distinguished, which can be described by the macro-chronological
time-scale . The fact that 0; is less than or in the order of [ means that the temperature field is spatially
heterogeneous (cf. figure 3), and the local variable y must be retained for a pertinent spatial description (case
of high frequency, low diffusivity, large-size heterogeneities).

9 —"y’ X

b bitumen A

rain
-g-d

t, T

Figure 3. Space~time evolution of 8 in Case ii.

We now consider cases &; > .

Case iii: §; > 1, t = O(te)

The advance of heat front §; is in this third case substantially larger than microstructural size I, even at small
times (case of low-frequency excitation, high diffusivity, small heterogeneities or their combinations). In other
words, temperatures tend to uniformise amongst local heterogeneities (cf. figure 4), and a pertinent macroscopic
scale  exists, with a corresponding characteristic dimension &; suitably larger than I (§;/1 > O(¢™!)). On the
other hand, temporal oscillations have only occurred for a few periods, and no pertinent macrochronological
time description is yet available.
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Figure 4. Space—time evolution of @ in Case iii.
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Case iv: 6§ > I, t > t.

This is the most ’ideal’ case, the irregularities in the temporal and spatial evolutions tend to be negligible.
An average temperature profile can be distinguished, which increases progressively (cf. figure 5), and can be
described entirely by macroscopic space-time variables.
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Figure 5. Space~time evolution of 6 in Case iv.

The following table summarises the types of space-time description according to the scale factors.

Table I. Types of space-time description according to the scale factors.

te
Et = —
t
£ = 0(1) g <Kl
Case i (y,t) Case ii (y,T) .
s &1 =0(1) divy [A(V8(y,1))] = pC8:8(y, t) — S(v.1) divy [M(Vy6(y, T))] = pCOré(y,T) — {SHy, T)
ey =1/6; .
1 t Case iii (z,t) Case iv (z,T)

&1 K1 dive[Am Vz8(z,1)] = (pC)0:6(z,t) - (S)(=, 1) divz[An V20(z, T)] = (oC)0rb(z,T) - ({S})(z,T)

Note: Aps = macroscopic thermal conductivity, given by Eq. (A10), {S} = time-average of S over a period (¢, + Z.).

The above descriptions have been obtained under the most general assumptions. In particular situations, some
of the terms may degenerate according to the specific loading conditions and the boundary conditions, leading
to further simplifications. For example, a stationary state is reached at large time if the source is independent
of the macrochronological time-scale and the boundary conditions are non-adiabatical (at least over part of
the boundary) and time-independent.



5.4. Relation between the space-scale and time-scale factors

In order to treat all possible cases, it was assumed in the above analysis that the time-scale factor &1 = t./f and
the space-scale factor e1 = {/6; were independent. However, for a given material and a fixed value of excitation
frequency, these two scale factors are clearly not independent, on account of the equality 6; = (kj £)1/2, hence

e te kart _ karte (heat front advance within one period t(,> 2 (44)

2T 2P characteristic grain size
For the particular example of bituminous concrete (I & 1mm, ky; = Axz/(pC) = 1 mm?/s) subject to cyclic
load tests at frequencies of 1 — 10 Hz (hence ¢, = 0.1 — 1 s), we have kjst./I*> = O(1). Thus

e el (45)

Physically, this means that when the temporal evolution reaches a state such that an average temperature
rise can be distinguished (ie. a macrochronological time description is possible), the spatial distribution of the
temperature field is still irregular, and no meaningful spatial average temperature profile can yet be distinguished.
Only at still larger times, when [/6; = O(¢) and ¢./f = O(e?), will a macroscopic space description be possible.
In other words, as far as fatigue tests of bituminous concrete are concerned, we would normally encounter the
following situations in the respective order

Case i — Case ii — Case iv-b

Other scenarios could effectively be encountered under different situations, for example a different material
with different microstructural sizes, different thermomechanical properties and a different excitation frequency,
where €1 and e+ would be related by a different relationship.

6. Space—time homogenisation of the coupled thermomechanical problem

Having obtained a macroscopic description of the mechanical problem and that of the thermal problem
separately, we are now in a position to treat the ’complete’ problem, taking into account the coupling effects
due to thermosensitivity, namely

Ml _,
o0

in our analysis. We will first review the space homogenisation taking into account (46), and then proceed
onwards to obtain an entirely macroscopic description after another homogenisation with respect to time.

(46)

6.1. Space homogenisation

The previous description given in Section 4 has now to be revised, taking into account the temperature
dependency of the complex modulus. Other assumptions adopted for the description of isothermal behaviour still
hold. As before, we assume, to start with, that macroscopic space-time-scales exist. The necessary conditions
will be reviewed after the solution process.

Denote by 66 = 69 + e8! + €262 ... the temperature deviation from its initial reference value fref. For
‘small’ temperature variations, the temperature-dependent complex modulus of the viscoelastic phase can be
approximated by the first term in the Taylor series expansion

M*(w,0) ~ M*(w,0,05) + A*(w,0,5)(8° + 6 +...) @47



where A*(w,0rcf) = 9gM*(w,0,05) expresses the thermal sensitivity of the material. To simplify, we will
simply write A*. The intensity of spatial fluctuations of M* at zero order depends therefore on that of °. Due
to fluctuations of M* the set of isothermal equations (31) have to be revised to

divy|a. eJ(UO)] =0 in Q;
divy [(M75 + A*0°)ey(U}’)] =0  inQy
a. ey(U ) =2(M, ef + A*oo)ey(U?) onT (48)
Ug = Uf onT
divy(U9) = 0 in 0

which is formally the same system as in (31), with M* res Teplaced by M * e T A*@0 — with the important
difference that spatlal and temporal fluctuations of 6 (2 and ¢, penodlc) pass on to the modulus
M*(z,y,T,t) = M}, 5+ A 69 in the present case. Notwithstanding, we still arrive at the same conclusion that
Ul = = U; 9 = UO(z, T,t) is independent of y, despite the space fluctuations of 6°.

The same modification affects the system of an order higher

divyla : (e(U°) + e1 CAEL in Q,
—Vy PO + 2divy (M}, ; + A*6°)(ex(U°) + ey (U}))] = 0 in Qf .
a:[ex(U%) + ey(UD)] - N = (—P%1 + 2(M},; + A*0°)[ex(U°) + ¢y(U})]) N onT (49)
Uy =U; onT
div, (U°) + divy(U}) =0 in O
which admits the same kind of solution as before, except that it now depends implicitly on the value of §°
U' = u'(z, T,1) + X’ (¥)ecap(U°) (50)
PY = 7,5(9)erap(U%) (51
and the macroscopic description
div,(c%) = 0; (6%) = C* : e, (U) (52)

where similar to Section 4.2, x*8 and Tap are the particular solutions of the system (49) when Bmij(UO) =1
for i = « and j = § and e,;;(U 0) = 0 otherwise, and C* is the tensor of the equivalent macroscopic moduli

1 —n)gimn :
C*iiFl — (1 — n)aH 4 (—IT)I_ / eymn (X™)dQ + 2n(M, s + A*0°)6:1.651

by 202+ 28) [ eusoyan sy [ Maal (53
S

J

The thermomechanical coupling intervenes here by the explicit presence of the.term M, ef T A*8° and the
implicit dependence of x*? and 7,5 on 6°.

Here again, the instantaneous mechanical power is locally given by II = Re[o] : Re[e(iwU?)]. The space
average (II) is formally similar to (38). Using the notation

Uz, T,t) = Wz, T)e“t = u0(z, T)e*®Tet,  C* = C, 4 iC; (Cr and C; real) (54)



where w0 = ||U?|| is the ‘real’ displacement amplitude and ¢ the phase-lag, the instantaneous power (II)
can be written as

(II) = we(u?) : {C’,- sin?(¢ 4 wt) — Crs’i—n(z—(q;+—wt))} : e(u?) (55)

and the part dissipated
(8) = wsin®(¢ + wt)e(u?) : C; : e(u?) (56)
Contrary to (38) and (39) however, C, and C; evolve with time due to thermosensitivity.

6.2. Time homogenisation

In the forthcoming sections, we will only retain the first-order terms #° and U°. To simplify notation, the
exponent ‘0’ will be dropped. On a finite volume V, bounded by a closed surface 9V (figure 1), the spatially
homogenised mechanical boundary problem is defined by the following set of equations

div[C* : e(U)] =0 inV

Case 1. U=U%z,T)e! ondVy; C*:e(U)-N=0 ondV, (displacement controlled) 57

Case 2. C*:e(U)-N =o%=z,T)e™* ondV,; U=0 ondVy (stress controlled)
where for generality we have supposed that the imposed displacements and stresses U%e! and o%™? vary
on both time-scales. In practical cases, they usaually do not depend on T. To simplify the presentation, we
will suppose either displacement-controlled (Case 1) or stress-controlled fatigue tests (Case 2). Generalisation
to simultaneous existence of both types of boundary conditions can be achieved by superposition. Linearity of
the equations clearly suggests a solution of the form U = U(z, T)e™? = ue'®e?, v real and U(z, T') = ue'®
being the complex amplitude of the oscillation varying on the macro-chronological time-scale, solution of the
following system obtained from (57)

div[C* : e(U(z,T))] =0 inV
Case 1. U(z,T) = U%(z,T) onVy; C*:e(U)-N=0 ondV, (58)
Case 2. C*:e(U(z,T)) =o*(z,T) ondV,; U=0 ondVy

Time does not intervene explicitly in (58), but we need the temperature field at each instant in order to
calculate C*. Denoting by {} the temporal averaging operator, defined by

T+t,
{}= ti / ()dr

and on account of the relation ¢, = 27 /w, the macroscopic source ({S}) can be simplified to
w
({S}hH = Ee(u) : C; - e(u) (59)

which is a quadratic function of e(w), depending only on the macroscopic coordinates = and T'.
The homogenised thermal problem is thus defined by

div[Ap VO] = pCOT8 — ({S}) inV
6= 9"(:1:) on dVy (imposed temperature) (60)
—AVO-N = ¢'(x) on 9V, (imposed heat flux)



The last equations (58)—(60) define a completely macroscopic description of the coupled boundary problem
through a set of nonlinear partial differential equations involving only macroscopic coordinates = and T. Its
solution gives directly the long-term ’drifts’ of temperature and displacement amplitudes.

7. Domain of validity

The remarkably simple form of the final system of Egs (58)-(60) deserves a few comments. Notably, the
validity of the macroscopic description derived is subject to specific conditions.

Recalling the approximative equality ||AM™* /M7 || = ||A*A8/M;, (||, we deduce that ||AM* /M (|| < e
whenever the temperature increase is less than a critical value defined by fcrit = ||M;, /A*||. In other words,
thermal effects on mechanical properties are negligible as long as § < ;. On account of the thermal power S
and the volumetric heat capacity pC, this leads to the definition of a critical time defined by tcriz = pClcrit/ S,
such that ¢ < teri¢ implies 6 < Ocris. With reference to the definition of ¢+ and ¢, the following situations
can be distinguished.

i) terit > te:

for t < tcrit, we have necessarily 8 < 8.rit, and the isothermal description applies whatever the distribution
may be of 6 within the RVE. Whereas for ¢ > t.;z, we have necessarily § > Ocrit; the inequality feris > te
implies that 6 already varies on a macrochronological time-scale when ¢ sweeps across tcriz (i.e. when @
bypasses 0.r;;, and the macroscopic description [Eqs (43)-(45)] applies. Hence we have a smooth transition
from a macroscopic isothermal behaviour at small times (described by a constant complex modulus ;‘e fFhtoa
coupled behaviour (M™* varies with 6, therefore with time) when ¢ goes beyond tcrit.

il) terit < te OF forit = Lo

in this case, the duration during which thermal effects are negligible (¢ < tcrit) is smaller or of the same order
as a loading cycle. We are then in a very particular situation: the mechanical properties evolves significantly
even within a single loading cycle. In such a case, the concept of a complex modulus — which supposes a
purely isothermal harmonic excitation at the stationary regime — can no longer be applied [hypothesis behind
a harmonic solution (3) breaks down], and the overall behaviour is highly non-linear. Note however that for
materials commonly encountered in civil engineering and for ordinary loading conditions (frequency, strain
amplitude and temperature), this last case is never met in practice.

In order to illustrate the above discussion, let us consider the case of an isotropic bituminous concrete sample
subjected to a fatigue test at a frequency of 10 Hz, with a strain amplitude of 10, At this frequency, & is
around 0.2 mm. Moreover, at ambient temperature with typical thermophysical properties, the amplitude and the
dissipative part of the macroscopic complex shear modulus are respectively in the order of 3000 and 1000 MPa,
and the thermosensitivity ||A*|| is around 150 MPa/°C. The value of fcrit is given by ||A*Gcrit/ My | =403
(if we choose a precision of € = 1073) so that 0 ~ (10’"3 3000/150) = 0.02°C. On acount of the strain
amplitude, the thermal power dissipated leads to a temperature increase per cycle of around 1.5 x 10~5°C. With
this in mind, the evolution of a typical fatigue test can be described approximately as below

End of first cycle (0.1 8): = 1.5 x 1075, and ||AM*/M}, || = 7.5 x 1077 « 1073, therefore the isothermal
description is valid. .

After 100 cycles (10 s): § = 1.5 x 1073°C, hence [[AM* [ Myes]| = 7.5 % 105 <« 1073, While at this time,
the temperature begins to unformise, since 6j00te = 2 mm = [ (typical grain size of a few mm), there is still no
incidence on the mechanical behaviour as the magnitude of 8 is small (§ < Ocrit).

After 1000 cycles (100 s): § = 0.015°C, and ||AM™ /M] (|| = 7.5 X 10~*. Thermal effects start to approach
the critical threshold.



After 10* cycles (1000 s): § = 0.15°C, and ||AM*/M}, || = 7.5 x 1073 > 1073, Mechanical softening due
to internal heating becomes significant. Notice that we now have 6191¢c = 2 cm > [, so that the temperature
is practically constant in the unit cell. ’

These simple estimations will be completed by a 1-D example in the next section.

8. Multi-layered media: a 1-D example

In this section, the previous results are applied to a simple 1-D structure. Although the existence of
such idealised media is hypothetical, this model does display efficiently the essential features of the above
development. The original treatment was given by Boutin and Auriault (1990) assuming isothermal conditions,
in which interested readers can find greater details.

8.1. Analytical formulation

Consider a stratified periodic medium consisting of alternating elastic (£0s) and viscoelastic (Qf) layers
(figure 6). Both phases are homogeneous and isotropic, with thicknesses of (1 — n)h and nh respectively.

X1A P X2,X3 __.-
= o 'nh>
So¢ unit cel] ¥2,¥y3
~~~~~~ \‘\ § HEH (l‘n)h
X1B Tl mmmmy

yl

Figure 6. Geometry of the multi-layered medium.

The problem is to find the particular solutions x’/* which give in turn the first-order displacement U'. On
account of the symmetry, the periodicity and the static equilibrium requirements, U! is of the form

UL = o+ b U} =y + ]

Only the coefficients a; and a! are of interest, since b; and b} give no contribution to the strains. According
to Boutin and Auriault (1990)

n
a1 = 1- n(eu +e22 +e33); ax = —2e1pnK*; a3z = —2epnK*
ay = —(en +ex +eas); ay =2enn(l - n)K*; a3 = 2e13(1 — n)K*
o =M

np+ (1 —n)M*



where e;; = ewij(UO) is the macroscopic strain tensor of the zero-order displacement, while the fluid pressure
at zero order is given by

A+2(np+ (1 —n)M*
1-n

PO =2~ M*)er + )(eu + e22 + €33)

Identification term by term allows the determination of the particular solutions x’*, and finally the complex
tensor C* relating the macroscopic strain to the macroscopic stress. Putting the stress and strain tensors in
vectorial form, respectively o = {011, 022,033, 023,031,012} and € = {11, €22, €33, 2€23, 2€31, 2e12}, C* can
be expressed in matrix form as follows

A+2 2
{ + 2 A+ 2np A+ 2np 0 0 0 W
1-n A+2 1-n A 21 n
e R & mE M 0 0 0
A+2
c - 1+ “+4 (M* — 1) 0 0 0
(1 —n)u+nM* 0 0
SYM _ eM 0
np+ (1 — n)M*
pM*
L np+ (1 — n)M* |

In particular, the complex shear modulus (1 —n)u + nM* corresponds to the sum of the stiffnesses, taking into
account the respective volume fractions, when shearing occurs in the plane perpendicular to the stratification
(i.e. o23), while uM* /[np+ (1 —n)M*)], the inverse of n/M* + (1 —n)/pu, represents an addition of flexibilities
when shearing occurs in a plane parallel to the stratification (ie. 12 or 013). These correspond to classic parallel
and series structural mechanisms.

8.2. Particular case of pure shear and undeformable solid phase

For illustrative purposes, consider a state of pure shear in which only o12 and ej2 are non-zero.

Thus, the only non-zero displacement component is in the yz direction, namely: U32 = —2nK*e12y1 and
U }2 = 2(1 — n)K™ej2y1, leading to the following forms of the strain tensor components
0 e2 O
Cx(UO) =leia 0 O0]F;
0 0 O
0 -nKejz 0 0 (1-n)Keya 0
ey(UL) = |-nKens 0 0l; ey(U}) = |(1 —n)eiz 0 0
0 0 0 ' 0 0 0

which give, upon superposition, the zero-order strains within the elastic (e = e, (U°?)+e,(U?)) and viscoelastic
(€% f=e(U 0y 4 ey(Us 1Y) phases, as illustrated in figure 7. In other words, while the macroscopic displacement is
correctly described by the zero-order term UY alone, local fluctuations being of the order O(e), its macroscopic
derivative e, (U 0) only indicates the average strains. A correct description of the stresses, which depends on the
‘true strains’, must take into account the first-order displacements independently of the scale factor.

In this form the problem is still complicated since the dependence of M* on § is itself complex. A particularly
interesting limiting case presents when the stiffness of the solid phase tends towards infinity (undeformable).
This case is a fairly good approximation for bituminous concrete for which the order of ||x/M*|| is around 100.



-~ |

ey(U) + ex(U0) = zero-order strain

Figure 7. Decomposition of zero-order strain into a macroscopic and a localised component.

When p — oo, we have

1—-n

1
K* — = thus eylz(Usl) — —e12, and eylz(U}) — e12
The local (‘true’) strain e, (U?) + e,(U?), associated with a macroscopic average strain profile ;3 is therefore
given by
es12 = 0 in the elastic phase

ez . . .
ef12 = —— in the viscoelastic phase
n

On the other hand, the macroscopic harmonic shear flexibilities (coefficients 1/Cgy and 1/Cg) tend to their
limiting value n/M* as u — oo. This is illustrated in figure 8.

Figure 8. Shear strain in the elastic and viscoelastic layers, and the macroscopic average strain profile.

Thus, a macroscopic shear stress of o2 induces a shear strain of ef13 = 2—1377012 in the fluid and zero shear
strain in the solid, leading to a macroscopic shear strain of ;3 = 2—1(}[—.012, on account of their relative thicknesses.
Another important consequence is that the global response e12 is ‘in phase’ with the local response ef13.

8.3. Mechanical dissipation (the heat source)

Consjder a pure sinusoidal excitation, with o1 = Ye'™! which induces a sinusoidal response ey3 =
(v/2)e"“*=%) (T and -y both real), given by the equation 012 = 2C¢se12. Putting M* = || M||e'®, we have

*
oo vl
n



The macroscopic mechanical power is thus given by
X

ATJL 612] Reliwess)

(IT) = Re[oij]Refiwe;;] = Re [2

Using expressions involving ¥ and «, this can be simplified to

(TI) = wEyRe[e“?] Re[ie!“9)]

Taking the average over a period from ¢ to t 4+ 27/w, and eliminating the reversible work gives the
doubly-homogenised macrosocopic dissipation

{(8)} = swDysing

At a particular point in the medium, the relation ¥ = ||M*||y/n allows expression of {(S)} either in terms
of the stress amplitude ¥ or of the strain amplitude ~
wE?sing _ 1 [|M*|| ,

M;
(0 = amziyn =24 w7 2

. 1
sin ¢ = iw—n—'y

8.4. Boundary value problem with imposed stress

When a sinusoidal shear stress 013 = Zei? is applied on the upper free surface z 4 (figure 6), the equilibrium
condition and the negligence of inertial effects impose a homogeneous stress field, which follows instantaneously
the boundary traction without phase-lag. Taking into account the first form of {(S)}, the uncoupled problem
of thermal conduction to be solved is

920  nwx? sin[¢(6)]

(pC)0T0 — )\Mm = TW inV

(BC1) 6 =60%=) on 9V,
o0

(BC2) —Aug- = ¢*(z) on 9V,

Either (BC1) or (BC2) or mixed boundary conditions are admissible on z = z 4, similarly for z; 3.

This is a well-defined, non-linear thermal conduction problem with the source term depending on the current
temperature; it can be solved numerically by standard packages (using the Euler implicit scheme for example).

8.5. Numerical example

8.5.1. Material properties and loading

Consider a multi-layer medium of viscoelastic bitumen and undeformable solid, as shown in figure 6, with
a total thickness of 10 cm (214 = 0, £18 = 10 cm), consisting of alternating layers of bitumen of 1 mm and
solid of 9 mm (i.e. h = 1 cm, n = 0.1), with the following properties.

Bitumen: see for example Huet (1963) for the time-frequency dependence of the bitumen modulus

Af = 0.2 WmPC; (pC)s = 2 x 10° J/m¥/°C ’

M*(w,0) = M*[wr(f)] = 1+6(iw-r(9))]\f['?°+(iwr(0))—“

My = 2000 MPa; § = 4.3; h =74; k=027, f =10 Hz

7(6) = 10 Exp[— g% : o = 0.0021 s5; Gy = 20; Gy = 150°C




Grains: ) = 1.4 W/m/°C; (pC)s = 2 x 10° J/m3/°C
subject to the following boundary and initial conditions
0($1A) =0(z18) = eref =10°C
6(t = 0) = b5 = 10°C

Equivalent homogeneous material properties:
v =0875W/m/°C
(pC) = 2 x 10% J/m3/°C

where 1/Ayr = (1 — nS /As +n/Af, Ay being the conductivity perpendicular to the multilayers.

The classic representation of the complex modulus of bitumen M* on the Cole~Cole plane is shown in
figure 9, together with the locations of four particular values of M™ at respectively 10, 20, 35 and 60°C at
10 Hz. Figure 10 shows the reduction of M,, M; (the real and imaginary parts of M*) and ||M*|| with
temperature, in the range of 10-70°C.

250
L]
200 ] i
%‘?,150 <
A
T 100 1o} €-
20°C \
50
35°C
°C
250 500 750 1000 1250 1500 1750 2000
M, MPa

Figure 9. M; versus M, of the bitumen considered (Cole-Cole representation,
complete spectrum and the portion for temperatures between 10-70°C)

Loading: a cyclic shear stress is applied to the surface at 7 = ;4. Quasi-static equilibrium implies that at
all times, this boundary stress is followed by the shear stress at every point of the medium without delay. The
amplitude and frequency of the applied shear stress are

¥ =05MPa; f=10Hz

8.5.2. Numerical results and comments

A) Small time evolution, constant modulus: at small times, except at points close to the boundary, the
boundary conditions are not felt (since the heat front advance &; is then of negligible magnitude: Case i). The
periodical microstructure implies that the temperature field- must be h-periodical, with maximum and mininum
values occuring respectively in the middle of bitumen and solid layers, and zero heat flux at the same points.
Analysis can therefore be restricted to a unit cell —nh/2 < y1 < (1 —n)h/2 (figure 6) with a volumetric power
of S = w¥?sin¢/(2||M*|)) in the bitumen layer: —nh/2 < 3 < 0. At small times, since the temperature



change is small, we can take, as a first approximation, M*(8) = M*(8,¢). At 10 °C, for the given properties
of the bitumen, we have ||M*|| = 168 MPa, M, = 134 MPa, and M; = 100 MPa, leading to an initial thermal
power of Sy = 28138 W/m3 within the bitumen, the thermal power of the solid phase being taken to be zero.
Figure 11 plots the temperature evolution at the middle of solid (f;) and bitumen layers (6f). At very
small times, when heat generated is still confined to the bitumen layer, () rises very quickly according to
0f = Oref +tS5/(pC)s = 10 + 0.014¢, while (65) remains at f,.¢. As a local temperature gradient appears,
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Figure 11. Small time temperature evolutions at middle layers of solid and fluid
phases, compared to the global temperature rise due to a homogenised heat source.

Figure 10. Reduction of ||M*||, Re[M™] and Im[M™*] with temperature.
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heat is transferred to the adjacent solid layer in such a way that the curve (fy) flattens out, while (6;) begins
to rise. After an initial duration of about 40 s (of which the characteristic diffusion time (pC)L%/)\s =~ 36 s
is a correct order of magnitude estimate), when heat generated is shared by both phases, both curves follow
the same slope - that of the average temperature () = ({S})t/(pC) + Ores. where ({S}) is the macroscopic
volumetric thermal power given by ({S}) = n{Sy}, taking into account the respective volume fractions.

B) Small time evolution, homogenised medium and source, changing modulus: if the reduction in stiffness
due to a temperature rise is taken into account, a constant stress amplitude will lead to an increasing strain
amplitude, thus the thermal power increases with time. The temperature increase will then be faster than in
Case A above, as shown in figure 12 below. The effect is largely non-linear, as the increased thermal power
accelerates temperatures rises, which in turn enhances the stiffness loss. The negligence of boundary conditions,
equivalent to an adiabatical condition here, will then lead to an artificial ‘explosive’ temperature rise.
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Figure 12. Homogenised temperature rises, with Case B: M™* temperature-dependent, compared to Case A: M™ temperature-independent.

C) Large time evolution, homogenised medium and source: at large times, the boundary conditions can no
longer be neglected. For the particular case of fixed temperatures at x4 and z1p, the temperature field tends
towards a stationary profile. This stationary profile is parabolic if the complex modulus remains at its initial value
M*(0,.¢), leading thereby to a constant thermal power. The transient values now have to be found by solving
the partial differential equations (Section 8.4), which is non-linear for the temperature-dependent modulus.

Evolutions in the temperature profile in both cases are plotted in figure 13. Close to each other at small times,
when M*(8) is of little difference from its initial value M*(6,.s), the two temperature fields tend to separate
from each other at larger times, especially near the centre where larger temperature differences occur.

Figure 14 shows the profiles of M* at different times, illustrating quantitatively the stiffness loss due to
temperature. Again, the minimum of M™* occurs at the centre where § is maximum, and converges to the ends
where 0 is fixed at 0,.¢. Note that for a maximum temperature rise in the order of 4 °C in this example,
and for a typical reduction of ||AM*/M*|| = 7 % per degree rise in temperature, this leads to a 28 %
reduction in M*. For constant applied stress, this stiffness loss leads to an increase in strains, as illustrated
by figure 15. On account of ||Cgg|| = ||M*(10 °C)||/n = 1680 MPa, the initial strain amplitude is given by
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Figure 14, Profiles of the amplitude of the complex modulus ||M*|| at five different times.

lleiz]| = =/(2]|C*||]) = 1.49 x 10~%. At 4 °C higher (for example at t = 5000 s in figure 13), the strain
amplitude becomes 1.9 x 10~ (27 % increase), in accordance with the stiffness loss.

Figure 16 plots the temperature variation in the four cases studied above: Curves A and B represents the small
time variations (equivalent to adiabatical boundary conditions) extrapolated to large times, already presented
in figure 12, while Curves C and D represent the evolution of the maximum temperature at the centre of the
sample, respectively for constant and temperature-dependent modulus. Noticeably, the small time approximations
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Figure 16. Temperature variations taking into account different hypotheses.

are only valid for the first 2000 s; moreover, the small temperature variations during this interval justify the
assumption of constant modulus. At larger times, heat evacuated due to the boundary conditions quickly limits
the temperature rises, so that a stationary state is reached somewhere between ¢t = 6000 and 8000 s. Note that
the characteristic time needed for the boundary conditions to reach the centre is given by (pC)L2/Aps = 5700 s
(L = 5 cm = centre to boundary distance), giving a correct ’order of magnitude’ estimate of the transient
duration. The case of a temperature-dependent modulus takes a longer time to reach the stationary state (around
12000 s) due to non-linear effects.



9. Conclusions

In regard to the thermal diffusion problem of a heterogeneous medium with an internal source, it has been
shown by double homogenisation that four qualitatively different cases can be encountered, depending on
the thermal-mechanical properties, the loading parameters (frequency, amplitude), as well as the duration of
observation. For a single experiment with a set of predetermined parameters such as a bituminous concrete sample
under cyclic loading, the situation evolves with time, but only part of the cases enumerated can be encountered.

The analysis of the fully coupled thermomechanical problem provides an explicit expression of the heat source
term, and takes into account the time-dependent thermal-softening effect (due to the presence of a thermosensitive
phase), which in the majority of cases progresses on a macrochronological time-scale. Space homogenisation
reduces the computations to the case of an equivalent homogeneous medium, the ’global’ behaviour being
described by macroscopic variables. Time homogenisation further reduces the computations. The long-term
evolutions can thus be directly computed without the need to follow the rapid temporal oscillations.

The method of analysis presented here can also be applied to other materials such as resinous concrete and
more generally to heterogeneous materials containing a thermosensitive phase.

Annexe A

Asymptotic analyses of thermal conduction

The details of the asymptotic analyses leading to the results in Section 5.4 are now presented. Depending
on the relative magnitudes of t./f and 1/;, supposed to be independent of each other at the present stage of
analysis, the relative order of magnitude of the conductive, inertial and source terms in the heat equation will
be different. The configurations considered are summarised in the following table.

Table AL Different cases considered.

£ = .ti
T
0o(1) <1
g =1/6; 0o(1) Case i Case ii
<1 Case iii Case iv

Case i: g = O(1), & = O(1): for this case (I/6;; te/t = O(1)), no macroscopic scales are possiblé, and
the local variables y and ¢ have to be retained

divy[A(V8)] = pCOE — S (AD)

Taking into account the spatial periodicity of heat source and the microstructure and the fact that the boundary
conditions only affect a thin boundary layer of §; at small time leaving the majority of interior points unaffected,
the temperature field is £2-periodical except over a thin boundary layer. Hence the resolution can be limited to a
unit cell Q (figure 1). Moreover, linearity of the problem implies that the solution can be expressed in the form
of a convolution product involving a transient thermal Green’s function defined on the cell.

Case ii: €y = O(1) and &; < 1; this case corresponds to a long observation time compared with the excitation
period, while the corresponding heat front advance remains comparable to the size of local heterogeneities.



According to Eqs (42) and (43), the heat equation can in this case be formally renormalised to take the following
form, in local coordinates (t,y)

ediv[]\(V8)] = pCl — €S (A2)
where for simplicity we have written ¢ for €;. No macroscopic length scale exists. To account for the temporal
fluctuations, we seek a solution in the form of an asymptotic series

0=0°14e0" +%6% +... (A3)

where §' are periodical with respect to ¢. Zero-order terms in (A2) then lead to 8:0° = 0, in other
words 8° = %y, T) is independent of t. Taking into account the periodicity of #, we have necessarily
f T+ 8:0'dr = 0. Hence, first-order terms in (A2), after time averaging, give

divy[A(V,6%)] = pCBr6° — {S} (A4)

where the independent variables are y and T (ie. microscopic space description and macrochronological time
description), and {} is the temporal averaging operator

=1 [ 0w

Here again, due to the spatial periodicity and the linearity of the problem, computations can theoretically be
confined to a unit cell, and the solution can once again be expressed in the form of a convolution product
involving the macrochronological transient Green’s function.

Case iii: e, = O(1) and g < 1; in this case, the observation time is comparable to the period while the
corresponding heat front advance is very large compared to the size of local heterogeneities. This case can for
example occur when heterogeneities are of extremely small size. Putting ¢ = £, the equation to be solved is

div(AV8) = e2pCl — €28 (A5)

No macrochronological time-scale exists, and the time derivative 6 is simply 9:8, while the left-hand side
div[AV#] admits the classic asymptotic development. Zero-order terms of (AS) lead to

div,(AV,8%) =0 (A6)
Hence #° = 69(z, ) is independent of y. The first-order terms, taking account of this result, give
divy[M(Vz6° + V,6M)] =0 4 (A7)
The general solution of (A7) is, following Auriault (1983) and Francfort and Suquet (1986)
6'(z,9,t) = ((y)Vab’(3,1) + ©'(a,1) (A8)

where the components ;(y) are particular solutions of (A8) when V.89 equals the i unit vector ;. Substituting
the above expression of #! in the equation of second-order terms, and taking the space average, we get the
following equation

div.[Ay V0] = (pC)5:6° — (S) (A9)
where Aps is the macroscopic conductivity tensor, defined by
1
hor = [ M+ V¢l (A10)
12| Jo :

Here, the independent variables are z and ¢ (i.e. macroscopic space but microchronological time description).
The influence of the boundary conditions is no longer confined to the vicinity of boundary points, so that the
determination of the temperature field normally requires the knowledge of the macroscopic boundary conditions.



Case iv: g1 < 1, & < 1, this corresponds to a long observation time compared to the period of excitation
and a large heat front advance compared to the size of local heterogeneities. In the two previous cases, the
choice of the ‘small parameter’ is unique and unambiguous, whereas the present case is more complicated, and
a new difficulty arises on the choice of the relevant ’small parameter’ in the asymptotic solution scheme. We
now have to distinguish the following three subcases of interest:

iv-a: = = O(1); iv-b: L O(e1); iv-c: a_ O(et)
€1 €1 or3

Case iv-a: for €; [e1 = O(1), denote & = €; = e1 where the equality sign should be understood in the sense of
order of magnitude. The heat equation can in this case be formally renormalised to read, in local coordinates (t,y)
div[]AVE] = epCh — €25 (A11)

Note that this time, the double scale derivative has to be applied both to space and time derivatives. As above, we
seek a solution in the form of an asymptotic series (A3). The zero-order terms in (A11) give divy()\VyHO) =0,
thus 80 = 6%z, T,t) is independent of y.

The first-order terms give divy[A(V36° + V,8')] = pC8,8°, which, after taking the space average on 2 leads
to (pC)8;6° = 0. Thus §° = §°(z, T'), while the general solution of divy[A(V;8° 4+ V,61)] = 0 is (A8), which,
taking into account the additional independent variable T', reads

0 (x,y, T, t) = ((y)V.0%(z, T) + ©'(z, T, t) (A12)
The second-order terms, after taking the space average, lead to (9;' = 8;0©! independent of )
div,[AprV46°] = (pC)(878° + 8:6*) — (S)
Here, only 8,0 and (S) depend on the ‘local’ time ¢, which shows that effects of source oscillations only affect

terms of first-order or higher. Taking the time average of the above relation, we get the following macroscopic
heat equation, depending only on the macroscopic variables z and T'

. o6°
divy[Ap V6% = (pC’)—a? - ({S})‘ (A13)
Case iv-b: for €;:/e1 = O(e1), put &; = € and & = £2. The renormalised heat equation then reads
div[\ gradf] = pC — 28 (A14)

Note that the double-scale time derivative is now written

6 = (8 +e207)[60 + €8 + €202 + .. ] = 8,80 + 88" + e2(Br6° + B6%) + ...

Zero-order terms of (A14) give divy(AV46°) = pC3;80. Space averaging, owing to the Q-periodicity of §°
then leads to (pC8;6°) = 0, independently of the value of ¢, whereas time averaging gives divy(AVy{6°}) =0,
whatever is the value of y. This is only possible if #° is itself independent of y and ¢, in other words,
8° = 6(z,T).

Now, first-order terms, after taking the temporal average, lead to

divy[MV0° + V4 {6'})] =0

giving, on account of §° = #%(z,T), the solution
{6'}(z,4,T) = ((y)Ve*(2,T) + ©'(,T) (AL5)



The second-order terms then result in
divy [MV.8" + Vy8%)] + div, [\(V.6° + V,81)] = pC[078° + 8:6%) — S

Successive spatial and temporal averaging then lead to the macroscopic description (A13) previously found.
Case iv-c: for this last case e1/e; = O(e;), denotes e; = € and 1 = 2. The renormalised equation reads
div[A gradd] = e2pC — %S (A16)
while the conductive term, on account of the double-scale space derivative, is now written

div(AV8) = [div, + e2div,]|[Vy + €2V, ]{6° + e8! + %67 + .. .}

The zero- and first-order terms lead to ° = 8%(z, T, t) and 8! = 4*(z, T,t), while the second-order terms give
divy[A(V,8?% + V.8%)] = 0, hence the classic solution 62 = ((y)V.8° + ©%(z, T, t). The third-order terms give
div,[\(V,8° + V.81)] = pC8,8°. Taking the space average, this leads to the conclusion that § = 6%(z, T).
Finally, the fourth-order terms result in

divy, [MV 0 + V,.6%)] + diva [M(V,0% + V.0%)] = [676° + 8,8'] - S
Y Yy Y

The space-time average again leads to the completely macroscopic description (A13).
The following table summarises the space-time descriptions according to the scale factors.

Table AIL Space—time descriptions according to the scale factors.

o=t
T
= 0(1) <1
=0(1) Case i Case ii
(9, (1. 7)
& = 1/6,'
<1 Case iii Case iv
(z,1) (z,T)
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