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buildings against outdoor noise. This trend of a widespread use of porous materials
highlights the need of tools allowing for the prediction of their response to several
kinds of excitations. From a scienti®c point of view, a better understanding of the
vibro-acoustic behavior of these materials is of great interest. Practically, industrials
and design departments use porous media in multi-layered materials in their wish to
develop high acoustical performance products. Therefore, there is a need for evalu-
ating their e�ciency.
Di�erent models have been proposed to depict a porous material, considering the

¯uid phase displacement. If the solid phase of a porous medium is assumed
motionless, the wave propagates only through the ¯uid phase. This approach is valid
for an acoustical excitation above a decoupling frequency [1] beyond which the two
phases of a porous material are then considered to be uncoupled. The assumption of
a motionless frame has allowed quite accurate descriptions of the response of porous
materials such as soils. Sabatier et al. [2] found that semi-in®nite sandy soils excited
by a plane wave could be correctly modeled using an equivalent ¯uid model. In that
particular case, frame motion appeared to have no in¯uence on the computed sur-
face impedance. On the other hand, this hypothesis is not valid anymore when con-
sidering some hard backed ®nite foams for example. Some results by Allard [3] for a
plane wave excitation show that an equivalent ¯uid model is unable to depict phe-
nomena such as quarter-wave resonance. Tooms [4] also showed the greater accu-
racy of elastic-porous models for the prediction of response of low-density foams to
a point source excitation. Hence, it seems that even for the case of acoustic excita-
tions, taking into account the elastic frame motion is necessary. Besides, equivalent
¯uid models are obviously inappropriate in the case a mechanical force excitation,
since the solid phase is directly stimulated.
Problems involving plane wave excitations are easier to solve than those con-

sidering a volume source or a mechanical excitation for example. In that way, this
kind of excitation has been mainly considered. Studies on two-dimensional con®g-
urations have been made in the case of impinging plane-waves using a complete
description of porous media. Sabatier et al. [2] proposed a description of a porous
material based on a modi®ed form of the Biot±Stoll [5] equations. Considering a
®nite thickness porous material backed by a rigid wall, they applied the boundary
conditions between the air and the porous medium in order to get the amplitude
coe�cients of the propagating waves in the porous medium. Allard [3] used a
formalism allowing replacement of a material layer by a transfer matrix linking the
stresses and velocities at each side of the given layer, so that a surface impedance
could be computed. The utility of this latter method lies in the characterization of a
porous layer by one matrix. Hence, velocities and stresses can be linked at each side
of a multi-layered material by merging layer matrices into a global matrix. Other
works based on a ®nite element model have been achieved for multi-layers of ®nite
lateral size. Bolton and Kang [6] were interested in solving the coupled elasto-poro-
acoustic two-dimensional problem of a porous material excited by an impinging
plane wave under normal incidence. Also, Panneton and Atalla [7] used a formula-
tion involving the solid and ¯uid phase displacement (known as the {u,U} formula-
tion) to describe the porous material in the case of a coupled elasto-poro-acoustic
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three dimensional problem. They applied their theory to the study of the transmis-
sion loss of a double plate with a porous material in between. Recently, these
authors [8] have developed a {u,P} formulation for the porous material using the
solid phase displacement and the air pressure in the pores.
Apart from the plane wave excitation, the acoustic ®eld due to a point source over

an impedance plane has been investigated. In the case of a locally reacting material
[9,10] or an equivalent ¯uid [11], analytical solutions or approximations by series or
integrals have been obtained for three dimensional cases. The problem induced by a
volume source radiating over a porous layer has also been solved when considering
the elasticity of the frame in the porous medium [12,13]. The axisymmetric dis-
placement potentials are expressed as inverse Hankel transforms. Each of these
Hankel transforms stand for plane-wave displacement potentials in the porous
medium and are determined by boundary conditions at the interface. Attenborough
[12] proposed a heuristic approach to compute the solution expressed in an integral
form. This approach gives reasonable accuracy though not completely rigorous.
Fast Fourier techniques have also been developed to compute these axisymmetric
displacement potentials. These methods, known as Fast Fourier Program methods
(FFP programs) initially introduced by DiNapoli and Davenport [14], have been
successfully applied to problems of sound propagation in a system composed of a
horizontally strati®ed ¯uid overlying a horizontally strati®ed elastic and porous
solid [13].
Two dimensional models have also been developed for line source excitations. For

the propagation above a ¯at interface, analytic solutions can be found by consider-
ing a porous material depicted as locally reacting [15]. This kind of problem has also
been studied for geophysical applications in water saturated strati®ed soils [16] using
a {u,P} formulation for the description of the porous material.
In this paper, the two dimensional problem of an acoustical line source radiating

over a planar multi-layers in®nite in two of its dimensions will be investigated. The
line source above a ¯at interface model is often relevant in building acoustics (e.g.,
¯uid conveying ducts radiating noise near a multi-layered wall) and environmental
acoustics (tra�c noise in presence of a ground). The method used is the discrete
wave number method, referred as Bouchon's method. Initially, this method has been
designed in seismic sciences for the computing of the response of an horizontal set of
layers to seismic excitations in the case of complicated shaped grounds [17]. In the
present work, the method is adapted to an acoustic problem in the case of a planar
interface. This approach looks like FFP in its formulation, but is rather di�erent in
its physical content. Moreover, a Fourier transform is used instead of a Hankel
transform. Finally, Bouchon's method can be extended to more complicated pro®le
for the interface between air and the poroelastic material.

2. Theory

The cases studied in this paper consider an in®nitely extended planar multi-layered
material made up of acoustic, elastic, and poroelastic media. The equations governing
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the wave propagation in the media involved are presented in the following, assuming
an exp(j�!�t) time dependence. These equations, valid for a general three dimen-
sional case, are used in the next section for a two-dimensional con®guration.

2.1. The propagation equations

2.1.1. In the ¯uid
The propagation of a wave in a ¯uid is governed by Helmholtz equation

r2p M� � � k2f �p M� � � s MÿM0� �; �1�

where p(M) denotes the pressure at point M(x,z), kf � !=Cf is the wave number in
the ¯uid, Cf the sound speed in the ¯uid, s(MÿM0) a line source located in
M0(x0,z0).

2.1.2. In the porous material
Porous materials are described by Biot±Allard equations [3], and are rewritten

here using the frame displacement ~Us and pressure p inside the pores as variables.
When there is no source in the porous material, the equations are as follows:
For the solid phase

ÿ !2 � ~�11 ÿ ~�212
~�22

� �
� ~US � �� ~�12

~�22 �!2
�rp

� �
� P�QÿN� �rr� ~US

�Nr2 ~US �Q� �

~�22 �!2
rr�rp;

�2�

For the ¯uid phase

ÿ��rp � R��
~�12 �!2

rr�rp� Qÿ R� ~�12
~�22

� �
rr� ~US; �3�

where N, P, Q, R denote Biot coe�cients which are characteristics of the porous
material. These coe�cients depend on the bulk modulus of the ¯uid Kf, the bulk
modulus of the elastic solid Ks, the bulk modulus of the frame Kb, and shear mod-
ulus � (LameÂ coe�cient). Thermal dissipative e�ects are taken into account through
a correcting function G(B2!) introduced in Kb, where B

2 is the Prandtl number.
~�11 and ~�22 are the e�ective densities representing the densities of each phase

modi®ed so as to take into account dissipative viscous and inertial e�ects. ~�12 is an
e�ective density accounting for the coupling between both phases. The correcting
factor G(!) is introduced to include the viscous e�ects, G being the same function as
previously.
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The expressions of the e�ective densities are:

~�11 � 1ÿ�� ��S � �a ÿ j�� ��2 �G !� �
!

; �4�

~�22 � ���f � �a ÿ j�� ��2 �G !� �
!

; �5�

~�12 � ÿ�a � j�� ��2 �G !� �
!

; �6�

with

�a � ÿ���f � �1 ÿ 1� � �7�

representing the inertial coupled e�ects. �f and �S are the ¯uid and in the above
equations, the solid density, � is the ¯ow resistivity � is the porosity, 1 is the tor-
tuosity of the porous material.
The system formed by Eqs. (2) and (3) is solved by expressing the displacement

®elds as a sum of a compressional and a rotational wave. Using this expansion, two
kinds of compressional waves (P1, P2) and one kind of shear wave are shown to
propagate simultaneously in the porous material. For the restricting case of a
motionless frame, the porous material is reduced to its ¯uid phase and is then gov-
erned by an Helmholtz-like equation obtained from Eq. (3). In that case, only one
compressional wave P2 can propagate.

2.1.3. In the elastic material
Using ~U as the displacement ®eld of the elastic material, the displacement equa-

tion of motion is given by

�l� ��rr� ~U� ��r2 ~U� ��!2 � ~U � 0; �8�

where � and � are the Lame coe�cients, � is the density of the material.
In this case, the expansion in terms of propagation modes highlight the possibility

for one kind of compressional wave and one kind of shear wave to propagate.

2.2. General response at a receiver

In the following, the two dimensional problem of a multi-layered material excited
by a harmonic line source located in the air is considered. As stated in the intro-
duction, the approach is based on a one-dimensional spatial Fourier transform. The
response ~<i

! M;M0� � in medium i at receiver M due to an harmonic acoustical line

source located in M0 and its one-dimensional Fourier transform ~̂<i kx; z� � are linked
by the following equation:
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~̂<i
! M;M0� � �

��1
1

exp ÿi�kx � xM ÿ xM0
ÿ �ÿ �� ~̂<i kx; z

M ÿ zM0
ÿ �� dkx: �9�

In the following, f̂
� �

denotes the Fourier transform of f along x. For a porous

medium ~̂< kx; z
M� � ~Us

P̂

� �
, for an elastic medium ~̂< kx; z

M� � � ~̂Us

� �
and for a ¯uid

~̂< kx; z
M� � � P̂ .

The quantity exp ÿi�kx � xM ÿ xM0� �� �� ~̂< kx; z
M ÿ zM0� � in Eq. (9) can be seen as the

superposition of all plane wave components with wave-number �=!/Ci (Ci velocity
of the considered kind of wave in the medium) and horizontal wave number kx.

One needs now to evaluate ~̂< kx; z
M ÿ zM0� � in each medium i.

2.2.1. Response in air for an acoustical line source excitation
In free ®eld conditions the Green's function for the pressure due to a line source in

air associated with Helmholtz equation is [17]

H2
0 �f �ÿM0j� �

4�i �
��1
1

1

4�i���kz exp ÿi�kx � xM ÿ xM0
ÿ �ÿ ��exp ÿi�kz �M ÿzM0 jÿ �� dkx;

�10�

where H2
0 is the zero order Hankel's function of the second kind, kz denotes the

vertical wave number in air with k2z � �f� �2ÿk2x:
Both propagating (kx<!/Cf) and evanescent waves (kx>!/Cf) are considered.
In presence of a material, the incident plane wave contribution is re¯ected and

refracted. The response in air can be deduced from Eqs. (9) and (10) and written as
follows.

<̂a k1;M� � � 1

4�i���kz � exp ÿi�kz �M ÿzM0 jÿ �� R kx� ��exp ÿi�kz �M �zM0 jÿ �� �
; �11�

where R(kx) is the plane wave re¯ection coe�cient on the air-multilayered material
interface which only depends of the horizontal wave number kx. R(kx) has the usual
sense for propagating waves, and this notion is extended to evanescent waves [18].

2.2.2. Response in a multi-layered material for a line source
To simplify, the case of a single material of thickness h and backed by a rigid wall

is considered (Fig. 1). The principle of the method presented in this section can be
extended to a large number of materials. The calculation will be detailed for the case
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of one porous material. The main aspects of the method can be reused for an elastic
material or a ¯uid.
In a porous material, the ®elds can be expanded in propagation modes (compres-

sional and shear waves), to give

~̂<porous
! kx; z

M
ÿ � � ~̂US � r�̂"1 � r�̂#1 �r�̂"2 � r�̂#2 �r ^ ~̂ 

" � ~̂ 
#

� �
P̂ � 1

� �ÿ�� �r ~̂US ��r ~̂Uf

� �
8>><>>:

9>>=>>; �12�

with � � 1ÿ ~Kb=KS and � � �ÿ�� �=KS ��= ~Kb:
One shall note that the ¯uid phase displacement ~Uf can be expressed as

~̂Uf � �1 �r�̂1 � �2 �r�̂2 � �3 �r ~̂ ; where �i (i=1,3) denote complex amplitude ratio
of the ¯uid displacement over the solid displacement associated with each kind of
wave. Expressions for �i are given in Ref. [17]. Each scalar potential (�̂"i for

ascending wave and �̂#i for descending waves) or vectorial potential ( ~̂ 
"
for ascend-

ing waves and ~̂ 
#
for descending waves) involved in the solid displacement expres-

sion may be expressed using the transmission coe�cients in the porous medium.
For P waves

�i � 1; 2� : �i � Ai kx� �
4i�kPi

z

exp ÿikPi
z Mÿ ��zM0 jÿ �

: �13�

For an S wave

Fig. 1. Case of an acoustical line source radiating over a ®nite thick porous material.

S. Rigobert et al. / Applied Acoustics 58 (1999) 173 194 179



~ � A3 kx� �
4i�kS

z

exp ÿikS
zMÿ ��zM0 jÿ �

; �14�

where =1 for an ascending wave and ÿ1 for a descending wave. Ai are the trans-
mission coe�cients in the porous medium for each kind of wave (these coe�cients
being di�erent whether the wave is ascending or descending). kPi

z and kS
z are the

vertical wave numbers in the porous medium depending on the kind of wave (the
wave numbers are opposite for an ascending and a descending wave). The expres-
sions of these wave numbers are given in Ref. [17].
For the case of an elastic material, <̂i kx; z

M� � � fÛSg is expanded in propagation
modes involving compressional and shear waves potentials, in the same way as pre-
viously. The expressions of these potentials are similar to the ones given in Eqs. (13)
and (14), but the vertical wave numbers kP

z and kS
z are now those in the elastic

medium.
In the case of a ¯uid, only compressional waves can propagate. The potential �̂

associated with pressure P in the ¯uid has the same expression as in Eq. (13), con-
sidering the vertical wave number kP

z in the ¯uid.

Once Ai have been determined, ~< !! �M� can be reconstructed using Eq. (9).

2.2.3. Calculation of the transmission and re¯ection coe�cients
As said previously, the waves propagating in the di�erent media are expanded in

terms of propagation modes. The solid phase displacement and pressure inside the
pores together with the acoustical pressure are expressed in terms of potentials
whose expression involve re¯ection and transmission coe�cients at each interface of
the multi-layered material. These coe�cients are determined by applying boundary
conditions between materials. These conditions are given for various con®gurations
by Deresiewieckz and Sfalak [19]. For an interface between two porous media, these
are: (a) the solid phase normal displacement continuity, (b) the solid phase tangen-
tial displacement continuity, (c) the continuity of the normal relative displacement
expressed as �� ~US ÿ ~Uf�, (d) the saturating ¯uid pressure continuity, (e) the solid
phase normal strain continuity, (f) the solid phase tangential strain continuity. For a
air-porous material interface, boundary conditions above are replaced by (a0) total
normal displacement continuity, (d), (e), (f0) zero solid phase tangential constraint.
For a porous-elastic material interface, these conditions are (a), (b), (c00) zero relative
displacement in the porous material at the interface, (e00) normal total strain con-
tinuity, (f00) tangential total strain continuity. For boundary conditions in other
con®gurations, the reader may refer to Ref. [19].

2.3. Numerical implementation

The calculation of exp ÿi�kx � xM ÿ xM0� �� �� ~̂< kx; z
M ÿ zM0� � for the case of an in®-

nitely thick porous material is now presented. The same process is used for a ®nite
thickness or a multi-layered material.
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Apart from the incident wave, another compressional wave is considered in air
accounting for the re¯ected ®eld. Two compressional and one shear waves, all des-
cending, propagate in the porous medium. Fig. 2 summarizes the di�erent waves

involved. The calculation of exp ÿi�kx � xM ÿ xM0� �� �� ~̂< kx; z
M ÿ zM0� � can be seen as

the determination of the total response in air of the material (incident + re¯ected
®eld) to an impinging plane wave excitation. For the sake of simplicity, a unit
amplitude for the incident plane wave potential is assumed for this ®rst step of the
calculation. The potentials associated with each kind of wave have the following
expression:

For the incident wave (in air)

�̂ � exp ÿi�kx �x� ��exp ÿi�kair
z �z

ÿ �
; �15�

For the re¯ected wave (in air)

�̂R � A0 �exp ÿi�kx �x� ��exp �i�kair
z �z

ÿ �
; �16�

where A0 is the re¯ection coe�cient on the interface.
For the transmitted waves (in the porous material)
P1 wave

�̂P1
� A1 �exp ÿi�kx �x� ��exp ÿi�
P1

�zÿ �
; �17�

P2 wave

�̂P2
� A2 �exp ÿi�kx �x� ��exp ÿi�
P2

�zÿ �
; �18�

S wave

~̂ � A3 �exp ÿi�kx �x� ��exp ÿi�
S �z� �; �19�

Fig. 2. Re¯exion and transmission in a porous material for a plane wave excitation. The Biot Allard

description of the porous material accounts for the propagation of txo compressional waves and a shear

wave in the porous medium.
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where, A1, A2, A3 are the transmission coe�cients associated with each kind of
wave, and 
P1

; 
P2
; 
S are the vertical wave numbers for P1, P2, S waves, respectively,

in the porous material.
The boundary conditions between the porous material and air (conditions (a0), (d),

(e), (f0)) are now expressed using the above potentials. These conditions yield:

2���
2P1
� l� �=�� �� ���� �1 ÿ 1� �� ���2P1

� �h i
�A1 �

h
2���
2P2

�
�
l

� �=�� �� ���� �2 ÿ 1� �� ���2P2

�i
�A2 � 2���kx �
S �A3 � �air �!2 � 1� R� �;

�20�

2���kx �
P1
�A1 � 2���kx �
P2

�A2 � �� k2x ÿ 
2S
ÿ ��A3 � 0; �21�

1=�� �� �ÿ�� � ����1� ���2P1
� 1=�� �� �ÿ�� � ����2� ���2P2

� �air �!2 � 1� R� �;
�22�

1ÿ�� � ����1� ��
P1
� 1ÿ�� � ����2� ��
P2

� 1ÿ�� � ����3� ��kx
� 
air 1ÿ R� �; �23�

�, � are de®ned in Section 2.2.
The system formed by Eqs. (20)±(23) can by written in matrix form

�MC� � �An� � �ML�; �24�

where [An] is the vector of the re¯ection and transmission coe�cients in the porous
material. More generally, [An] contains the re¯ection and transmission coe�cients in
the multi-layered material. [MC] expresses the boundary conditions between re¯ec-
ted and transmitted waves. [ML] is the incident wave vector. Each row of [MC] and
[ML] corresponds to boundary conditions (20)±(23). Column i of [MC] corresponds
to a kind of wave considered in the multi-layered material and associated to the
coe�cient Ai. System (24) is solved using the Gauss pivot method. In that way, Ai

are obtained and the scalar or vectorial response ~̂< kx; z
M� � is computed for any

value of kx and z, by multiplying coe�cients Ai by the Green's function amplitude
coe�cient (see Eq. (11)).

2.3.1. Computation of ~<i
! x; z� � from ~̂< kx; z

M� �
To compute the ®elds in the di�erent media, an inverse wave number transform

must be performed on ~̂<i kx; z� �(see Eq. (9)). However, this inverse wave number
transform cannot be performed analytically and a numerical method has to be
applied. The discrete wave number method, referred to as Bouchon's method [20],
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and used in seismology, is proposed. In this method, the ®eld radiated by a unique
source is approached by the ®eld created by an in®nite set of periodic sources S!.
These latter sources are periodic along one axis, parallel to the interface, and distant
from each other of distance L (see Fig. 3). By construction, each source of this set is
a superposition of plane waves. The angular spacing between the propagation
direction of two consecutive plane waves is linked to L by Eq. (28). L tending to
in®nity corresponds to a unique source. The response to a periodic set of sources is
also periodic with the same period L. The approximation of the ®eld ~<i

! M� � radi-
ated by a unique source is obtained by adding the contributions of all the periodic
sources ~<i

! Oj;M
ÿ �

, where Oj is the position of the periodic source j. Its expression is
given by

~<i
!jperiodized M� � �

X�1
j� 1

~<i
! Oj;M
ÿ �

: �25�

By using Eq. (9) for each term of the sum in Eq. (25), the response at M(x1,x3) can
®nally be expressed as [20]

~<i
!�M� � ~<i

!jperiodized�M� �
Xn��1

n� 1
exp ÿi�kn �x� �� ~̂< kn; z� ���k; �26�

with

kn � n��k �27�

and

�k � 2�

L
: �28�

The horizontal wave number kx has only discrete values (Eq. (27)), and the spectral
spacing �k is linked to L (Eq. (28)). Practically, Eq. (26) becomes a ®nite sum, with
a summation index varying from ÿNmax to Nmax. Both values of Nmax and L will be
important for the convergence of the approximation of Eq. (26). First, the periodic
length L must be large enough to insure that the discretization of the wave number

Fig. 3. Bouchon's method theoretical principal. The initial source is replaced by a set of in®nite sources

radiating in discrete directions.
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spectrum leads to a suitable approximation of ~̂<! kx; x3� � . Also Nmax must be large
enough so as to take into account at least all signi®cant contributions, i.e. homo-
genous and evanescent wave contribution. Suitable values for Nmax will be discussed
later.
The expression obtained for the approximation of the ®elds using a set of periodic

sources is equivalent to the computation of the response in the material by performing
the calculation in one point of a set of receivers by an inverse discrete Fourier
transform (IDFT) instead of a calculation of this response by direct integration for
that receiver as expressed in Eq. (9). In that way, the use of an IFFT algorithm can
be considered in order to ``optimize'' Bouchon's method, and the ®elds are com-
puted on a grid of receivers parallel to the air±porous interface. For each receiver Mj

with coordinates z ®xed and xj � j��x (j=ÿNmax,Nmax), expression (26) is then
approximated by

~<! Mj

ÿ � � Xn��Nmax

n� Nmax

exp ÿi�kn �xMj
ÿ �� ~̂< kn; z� ���k: �29�

This expression can either be processed with for each receiver Mj or with an IFFT

algorithm using the array ~̂< kj; z
ÿ ���k

� �
j

(j=ÿNmax,Nmax). However if an IFFT

algorithm is used, the positions of the receivers and their spatial spacing will be
determined once �k and Nmax are given. We have x1j=j��x(j=ÿNmax,Nmax) with
�x=2�/kmax, and xmax=�/(�k) according to the Shannon criterion. �k and Nmax

are chosen so as to insure the convergence of the approximation (29).
The algorithm presented above allows for the computation of any ®elds at any

point of a multi-layered material. The characteristics of the material such as surface
impedance or the transmission loss for either a plane wave or a line source excitation
can also be calculated.

3. Validation and numerical results

Basically, the developed algorithm requires solving a series of plane wave pro-
blems associated with the discrete wave number kj. Firstly, the validation of the

calculation of ~̂<! kx; x3� � is considered. Then, some validation results regarding the
computation of pressure levels due to an acoustical line source radiating over a
porous material are presented together with some original results.

3.1. Calculation of ~̂<i kx; z� �

The ®rst example considers a plate-mineral wool-plate system, in®nite in two of its
dimensions and surrounded by air on each side (see Fig. 4). The characteristics of
the materials are given in Table 1. The excitation is an impinging plane wave under
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normal incidence. Fig. 5 compares the transmission loss for this con®guration
obtained with the developed algorithm and those obtained by an analytical formula
of Lesueur [21]. The latter approach originally considered a ¯uid between the two
plates. In the present example, the characteristics of the ¯uid are those of the porous
material depicted by the equivalent ¯uid Biot±Allard [3] model using characteristic

Table 1

Characteristics of aluminium (®rst line) and the porous material (second line)

Young modulus (Pa) 7.1� 1010

Poisson's coe�cient � 0.3

Volumic mass (kg/m3) 2814

Thickness (cm) 1� 10 2

�1 (Tortuosity) 1.2

�(Porosity) 0.925

�1 (kg/m
3) 43

�(N � s/m4) 70,000

� (m) 3� 10 5

�0 (m) 8� 10 5

Thickness (m) 2� 10 2

Fig. 5. Prediction of the transmission loss for the sandwich plate using Lesueur's analytical formula and

the present approach. The porous medium is modeled as an equivalent ¯uid in both cases.

Fig. 4. Con®guration of a sandwich plate excited by an impinging plane wave.
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Table 2

Characteristics of the di�erent layers used in Fig. 5

�1 �1 (kg/m
3) � (N � s/m4) � N (N/cm2) � � (m) �0 (m) Thickness (cm)

Material 1 1.18 41 34� 103 0.98 11� (1+ j� 0.015) 0.3 60� 10 6 87� 10 6 0.4

Material 2 2.56 125 3.2� 106 0.80 100� (1+ j� 0.1) 0.3 6� 10 6 24� 10 6 0.08

Material 3 2.52 31 87� 103 0.97 5.5� (1+ j� 0.055) 0.3 37� 10 6 119� 10 6 0.5

Material 4 1.98 16 65� 103 0.99 1.8� (1+ j� 0.1) 0.3 37� 10 6 121� 10 6 1.6
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viscous and thermal length. The same model has been used in the proposed algo-
rithm for the porous material. The results on Fig. 5 show a very good agreement
between the proposed model and the analytical solution.
The second example considers a porous material made up of four di�erent layers

(see characteristics in Table 2) of ®nite thickness bonded onto a rigid wall. The poro-
elastic structure is excited by an impinging plane wave under normal incidence. The
real and imaginary part of the surface impedance of the structure are computed
using the developed approach. The results are compared to those given by Panneton
and Atalla [7] for a ®nite element model, on Fig. 6. An excellent agreement is
obtained between the two models. Moreover, both of them emphasize the impor-
tance of taking into account the frame movement. Actually they highlight resonance
phenomenon around 500 Hz that would not have been apparent with an equivalent
¯uid model.
In the following, a line source in air radiating over a porous material is con-

sidered. The noise levels at any point will be predicted using the ®elds approxima-
tion presented in Section 2.3.

3.2. Study of the di�erent parameters in¯uential on the convergence

As was seen in Section 2.3, Eq. (29) provides an approximation of the ®elds whose
computation can be optimized by the use of an IFFT algorithm. However, criteria
are to be found for the convergence of this approximation.

3.2.1. Criterion on kmax

The con®guration represented on Fig. 7 is considered with the in®nite thickness
foam depicted in Table 1. The levels are calculated for a receiver at the interface,
right under the source at distance d=0.5 m, using Bouchon's method with L=500 m
for the considered frequency range. First of all, a suitable value for kmax has to be
found to insure the convergence of the sum approaching the ®eld. Fig. 8 represents

Fig. 6. Case of a ®nite thick multilayered material excited by a plane wave with normal incidence. The

surface impedance is predicted by FEM and the present approach with Biot Allard description of the

porous media.
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the results as a function of frequency with a value for kmax varying between
0.95�!/Cair and 1.5�!/Cair. As one could have expected, it appears that all con-
tributions for kx<!/Cair must be taken into account. Actually, these values for kx
correspond to propagating plane waves, so that they cannot be neglected. The value
kmax=1.3�!/Cair seems to insure convergence of the computed ®eld. Studies made
on other materials give similar values for kmax for the considered source-receiver
con®guration.
The second parameter that in¯uences convergence of the sum is the position of the

receiver M(x,z) with respect to the source M0(0,z0). It appears that when the source-
receiver distance is large, i.e. ÿz0j � 1, the required value for kmax gets close to !/
Cair. Also the x coordinate of the receiver (the source is assumed to be at the x-axis

Fig. 8. Suitable frequency dependant values for kmax to insure the convergence of Bouchon's method

approximation of the ®elds. A ®xed kmax/(!/Cair) ratio can be determined for the frequency range considered.

Fig. 7. The di�erent parameters in¯uential on the convergence of Bouchon's method approximation.

Source receiver con®guration.
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origin) has little in¯uence on the required kmax. Actually, considering the previous
remarks, the criterion kmax=2�!/Cair is so applied for all con®gurations and
materials to insure convergence.

3.2.2. Criterion on Nmax

The second criterion of convergence lies in the number Nmax of terms, or equiva-
lently the wave number spacing �k (=kmax/Nmax) chosen for either a term by term
calculation or the IFFT algorithm. When considering the physical approach of
Bouchon's method, �k is linked to the periodization length L. Obviously, the num-
ber of sampling values for the approximation is the important parameter. Conse-
quently, values of L for convergence are frequency dependent.
Moreover, required values forNmax also depend on the distance between the source

and the receiver and the kind of material. This latter dependency is highlighted by a
study on two materials described in this section. A foam with characteristics given in
Table 1, and a soil with a characteristics given in Table 3, are considered, both
having with in®nite thickness. Suitable values of Nmax vary from 300 to 1100 for the
foam and from 300 to 1700 for the soil when the distance between the source and
receiver varies from 0 to 500 m.

3.3. Validation of ~<i
! M� �

An acoustic line source radiating over an in®nite foam is examined. The char-
acteristics of the foam are given in Table 1. Fig. 9 displays the sound levels are

Fig. 9. The use of Bouchon's method for the prediction of pressure levels due to a line source radiating

over a semi in®nite thick foam, modeled as an equivalent ¯uid. The receiver is straight below the source,

at the air porous interface. The results are compared to those given by Chandler Wilde's analytical formula.

Table 3

Characteristics of the soil

�1 � �S (kg/m
3) � (N � s/m4) Shape factor Thickness (m)

1.93 0.269 2650 366 000 1.38 1
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computed for a receiver on the interface, right under the source at distance d=0.5 m
using Bouchon's method and Chandler±Wilde's analytical formula [15]. For the ®rst
method, kmax=2!/(Cair) and a value of L=500 m have been chosen. Since Chand-
ler±Wilde's approach requires to consider the material as locally reacting, Delany±
Bazley model was utilized to characterize the foam for the analytical comparison. In
the developed approach, the Biot±Allard model mentioned earlier was chosen. The
two models used give close descriptions of the porous materials in this case except
perhaps at low frequencies. The results are represented on Fig. 9. Agreement
between the two approaches is excellent.

3.4. E�ciency of the optimization of Bouchon's method by IFFT algorithm

In the present case, pressure levels due to a line acoustic source are calculated on a
grid of receptors at the air±porous interface. The same material as in the previous
example is considered. The results computed at 1000 Hz are represented on Fig. 10,
as a function of the distance from the source. There is a good agreement between
IFFT and the point by point calculation for the considered distances. However, the
results given by IFFT are erroneous when getting close to xmax. This phenomenon is
known as aliasing. This is due to the fact that IFFT algorithm requires that the ®eld
vanishes outside out of the range interval considered, which is not the case here.
From there, the ®eld out of this range interval will be wrapped around in the
neighboring windows. This means that the ®eld calculated in the receptors will be
the sum of the signals in all range windows having the same width as the studied
range interval. As far as the horizontal wave number spectrum is concerned, this
phenomenon can be accounted for by an undersampling of the spectrum in the
neighborhood of a pole of the integrand in Eq. (9). Improvements can be reached by
adaptative integration scheme, or complex integration paths of Eq. (9). These tech-
niques are described elsewhere [22].
To conclude, an IFFT algorithm can be used rather than a point by point compu-

tation to solve in a more e�cient way the considered problem with a plane interface,

Fig. 10. Computation of pressure levels on a grid of receivers at 1000 Hz. Results are represented for a

point by point and an optimization by the use of an IFFT algorithm.
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as far as the computational time is concerned. However, Bouchon's method is of
great interest since it give a physical background to what could be seen as a simple
integration scheme.

3.5. Numerical results for an acoustical line source

Finally a con®guration of a ®nite thickness foam on a rigid support and excited by
a line source is considered. The same emitter±receiver con®guration as for the pre-
vious example is chosen. The characteristics of the foam are given in Table 4. The
levels at the receiver are given by Bouchon's method. A periodization length L=500
m has been taken to insure convergence in the considered frequency range. The
results are represented on Fig. 11. In this case, the in¯uence of the frame motion is
studied. These results show resonance peaks at about 900 Hz which highlight the
importance of taking into account the frame motion. Outside of these resonances,
the levels are very similar for the frequency range studied, with or without account-
ing for skeleton motion.

4. Conclusion

This paper investigated the prediction of the ®elds induced by an acoustical line
source exciting an in®nite lateral multi-layered material with an in®nite planar

Fig. 11. Case of a ®nite thick foam on a rigid backing. In¯uence of the solid phase motion on the pre

diction of pressure levels for a line source excitation. Quarter wave resonances for a complete description

of the porous medium is highlighted.

Table 4

Characteristics of the foam

�1 � �1 (kg/m
3) N(N�m 2) � (Poisson's coe�cient) � (N � s/m4) �0 (m) �0 (m) Thickness (m)

1.2 0.925 43 N 102000+ j� 6000 � 0.45 70 000 3� 10 5 8� 10 5 5� 10 2
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interface. The ®rst original aspect of this work is to take into account the propaga-
tion phenomena in the whole material. In particular, a complete description of por-
ous materials based on Biot±Allard equations was employed. The second aspect is
related to the method used to solve the problem, namely Bouchon's method. In this
method, the ®elds created by the original source are approached by those induced by
a set of in®nite sources radiating in discrete directions. These sources are periodic
along the axis parallel to the interface, and the interspacing is related to the angular
spacing of the discrete directions in which they emit. An IFFT algorithm can also be
used to compute the levels on a grid of receptors from the values of the Fourier
transform of the ®elds in a ®nite numbers of points.
The Fourier transform of the transmitted and re¯ected ®elds computed by the

implemented algorithm has been validated. Several types of materials were con-
sidered: sandwich plates with porous material in-between, ®nite thickness porous
multi-layered material bonded on a rigid wall. The results obtained are in complete
agreement with analytical formulas or other numerical method found in the litera-
ture and testify to the reliability of the algorithm. Moreover, the second case studied
also highlighted the limits of the motionless frame hypothesis, which had already
been underlined in literature.
For a line source excitation, Bouchon's method was used. The results obtained are

again in excellent agreement with those given by an analytical solution for the case
of a porous material considered as locally reacting. Besides, the importance of the
frame movement was demonstrated once again in the case of a ®nite foam on a rigid
backing. Criteria have been established to insure the convergence of the ®elds
approximations. First, the reconstruction of the ®elds requires accounting for all
signi®cant contributions in the sums approaching the ®elds expression. In that way,
the criterion kmax>(2�!/Cmax) was met. Also, a large periodization length L,
linked to �k, had to be taken. For a given frequency, suitable values for Nmax highly
depend on the source-receiver distance and the material. The use of an IFFT
allowed for an optimization of the designed algorithm in terms of computational
time. But then, the ®elds are processed on grid of receivers and a minimal width xmax

is imposed when a maximum �k at ®xed kmax is chosen, since xmax=�/(�k).
The quality of the results obtained enables one to think about Bouchon's method

for an irregularly shaped air±material interface. In particular, future works could
consist in ®nding the response of a linear source radiating over a road coupled with
a soil of any pro®le. This particular problem ®nds applications in outdoor sound
propagation, where one intends to predict sound levels near a roadway. Bouchon's
method has already been used for similar con®gurations in seismology [23]. The
approach consists in replacing the pro®le by a set of periodic sources with unknown
amplitudes distributed on the interface, both in air and in the material. The whole
con®guration obtained is then periodized in one direction, the same way as was done
in this paper. In that way, a periodic pro®le which has to be known on the whole
periodization length L is considered. This ``double periodization'' leads to an
approximation of the ®elds by a double sum. Bouchon's method could also be
employed for a mechanical line force acting on a multi-layered porous material [17].
In this case, the source is considered to lie just slightly below the interface. So rather
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than an acoustical source one has to deal with a poro-elastic or elastic source
according to the kind of material excited. The ®elds in the excited medium are then
determined as was done in this paper. The only changes concern the incident ®elds;
the amplitudes of each propagation mode are related to Green's coe�cients in the
excited medium.
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