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Acoustics of a bubbly fluid
at large bubble concentration

C. BOUTIN* and J. L. AURIAULT **

ABSTRACT. — The homogenization process is used to investigate how acoustic waves propagate in a bubbly
fluid at finfte concentration. This method involves the considration of waves whose lengths are large compared
with the bubble size. We focus on the linear domain, with viscous, thermal and capillary effects. It is shown
that this medium displays thres different macroscopic descriptions according to bubble diameter and wave
frequency. For bubbles of small size, the capillary effect leads to a model where in acoustic waves are either
propagative with low celerity or diffusive. On increasing the bubble diameter we obtain waves which are
damped and dispersed by both viscous and thermal effects. Finally for large bubbles, we get biphasic undamped
and dispersed waves. Moreover, the homogenization method allows us to predict the kind of behaviour and
the accuracy of the model from a knowledge of the physical characteristics of the mixture. Applications of
these results are presented in the case of water containing air bubbles in equal proportion.

1. Intrnductiqn

This paper deals with the linear acoustic of bubbly fluids with a finite concentration
of bubbles. We define the different macroscopic behaviours of the mixture and we specify
their areas of validity in terms of the frequency and the bubble size. The effects of
viscosity, thermal conduction and capillarity are all taken into account in the macroscopic
description. To keep it simple, the effects of possible mass transfers are not included in
this model.

MNumerous experimental studies on a liquid-gas mixture under steady of shock waves
have been performed [Catersen & Foldy, 1947], [Fox et al., 1955], [Noordjiz & Van
Wijingaarden, 1974], [Micaelli, 1982], [Nigmatulin, 1987], [Coste ef al., 1990]. Phenomen-
ologic theoretical approaches have been proposed for example in [C & F, 1947], or in
[Crespo, 1969] where the effect of the displacement between both phases is discussed,
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and in [Prosperetti, 1976] and [Miksis & Ting, 1984] where thermal effects
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account. bergm*y the homogenization method is leading to n

linear case of a perfect fluid with a finite or infinitesimal gas con
1985]. In the non-linear area, a model mncludin mmetric uuiﬁbi def
been proposed by [Miksis & Ting, 1986], and completed in [Miksis & Ting, 1987] by the
introduction of a viscous effect in a mixture at weak concentration. The mixtures of two
viscous fluids has been treated in [Levy, 1981] and in [Auriault & Lebaigue, 1989] where
capillary effects are taken into account. Suspensions of solid particles are studied in
[Fleury, 1980].

The homogenization method is sunitable for bubbly fluids since h@y pressnr‘_ two well
distinct characteristic lengths, the bubble diameter 2R and the macroscopic wave length A
In the case of finite concentrations, the interbubble distance and the size of the bubbles
are of the same order of magnitude, so that the bubble interactions are not overlooked.
The influence of viscosity, thermal conduction and capillarity are explitly taken into
account. Obviously the physics at the microscopic level is strongly dependent on the
physical properties of both elements. Consequently, we have systematically evaluated the
differences in the properties of the liquid and the gas by using the ratio & between the
two characteristic lengths. This procedure allows us to estimate correctly the importance
of the different phenomena. In this manner we are able to define correctly the conditicns
of validity and the accuracy of the macroscopic descriptions.

We describe the principle of the homogenization method in section 2. Section 3 is
devoted to the description of the viscous, thermal and capillary effects on the local scale,
which allows us to identify the three dimensionless numbers which characterize these
phenomena. It appears that these number cannot be varied independently of €, and that
three different cases are possible. Section 4 deals with the results of the homogenization
process which is described in the Appendices. It is shown that:

For very small bubbles such as those with 2R <3 P¢/c B (P4, o, B being the equilibrium
pressure, the surface tension and the volumic gas concentration respectively), because of
the effects of capillarity, the wave celerity decreases with bubble size until it changes
from a propagative to a diffusive wave. The gas is under isothermal conditions, and
viscosity imposes a bulk displacement of both phases.

When the order of bubble diameter is given by 2R=0( \/’ﬁ/'cd)zO( \/17;7@ (v, being
the fluid kinematic viscosity and 4, the thermal diffusivity of the gas), the acoustic waves
are dispersive and are damped by viscosity and thermal conduction. Both these effects
are of the same order of magnitude, in the case of finite concentration.

When the bubble radius R is of the order of (p§w?/126)'? (p% being the density of
the fluid and « the angular frequency of the wave), the gas behaves adiabatically, and
the bubbles move in the fluid with asymmetric deformation modes. The coupling between
both phases is essentially inertial and it results in undamped but disperive waves.
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2. Homogenization method

2.1, PRINCIPLE

Let us briefly recall the basic principles of an homogenization process, namely those
of multiple scales and asymptotic expansions. For more details one can refer to [Sanchez-
Palencia, 1980].

A phenomenon occurring in a thinly heterogeneous medium can be studied using
homogenized the equations on condition that there are two very different scales. The first
scale characterizes the heterogeneities, and the second is associated with the macroscopic
phenomenon. If / and L are the representative lengths of these micro- and macroscopic
scales, their ratio e=J//L is a small parameter such as s<1. Classically, for wave
propagation, we have

L=co/o=r2T

where L is the macroscopic wave length and ¢, the wave velocity. When taking the
microscopic scale to be the diameter of the bubbles {(/~2R), we obtain

e=2R.®/c,.

As a consequence of these two separated scales, a spatial invariance is present at the
microscopic level. We assume periodic invariance, for two reasons. Firstly, it presents
great advantages from a theoretical point of view (the existence and umigueness of the
local fields are guaranteed) and secondly, when the medium is homogenizable, it seems
that the structure of the constitutive equations is valid for non-periodic materials
[Auriault, 1991]. We refer to the periodic cell as simply the cell.

The existence of two very different typical lengths implies that any quantity @ depends
a priori on two dimensionless space variables X// and X/L, or on two physical space
variables y and x, describing the microscopic and the macroscopic scale, respectively:
O=®(y, x); x=ey. In this way we adopt the microscopic point of view since the leading
space variable is the local variable y. So the scaling process of the equations will be
performed by using / as the characteristic length. The local spatial invariance implies the
periodicity of @ in the variable y.

The use of these two sets of variables introduces powers of ¢ in the equations governing
the physics at the local scale (through the spatial derivatives 0/dy changed into
0/0y+¢.0/0x). For this reason, we naturally look for ® (y, x) in the form of an asymptotic
expansion in powers of g, i.e.

O (y, x)=) " 0" (y, x).

Now one substitutes these expansions in to the scaled equations where the dimenionless
numbers are scaled with powers of ¢, then identifies the terms at each power of € and,
finally, one solves the corresponding problems.



2.2. THE FPARAMETER €

A thorough physical analysis on the microscopic scale is essential in order fo chbiair
consistent macroscopic behaviour. Therefore a correct choice of & is fundamental
because & is used to estimate the relative importance of the different effects acting in the
cell.

»a
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From a mathematical point of view, ¢ is an infinitesimal quantity. The macroscopic
description is a limit description, infinitely precise, corresponding to infinitely small
heterogeneities with regard to the macroscopic length, or inversely, to an infinitely large
macroscopic dimension in wmparison with the heterogeneities.

From a physical point of view, & is not an infinitesimal quantity since it corresponds
to the finite ratic between the fmite micro and macmswmc sizes. As a consequence, the
macroscopic description, at the first order of approximation, is a correct representation
only to an accuracy of g. Note that in the cae of wave propagation ¢ linearly depends
on the frequency. In practice, the value of e is between about 107% to 0.1, but very weak
levels are rarely reached (in the case of a representative volume of 1 mm?, ¢=107"7
implies that the macroscopic length is 10 km )

8o, if any dimensionless number or ratio of microscopic effects is about 1074, it must
be considered O (1) assuming e infinitely weak, O (g) if e~ 107% or O (¢?) when ¢ is about
1072, Of course, these different estimates lead to different macroscopic descriptions.
These various scalings express the fact that a weak phenomenon is not negligible with
infinite accuracy but must be neglected when the description becomes less accurate.

Later on we will use these two aspects of & the mathematical approach for the
resolution of the problems and the physical approach for the scaling of the equations
and for the interpretation of the homogenized behaviour.

3. The physics at microscopic scale

In this section, we examine the physics of bubbly fluids at the microscopic level. We
limit ourselves to the study of harmonic excitations, and we only consider small perturba-
tions. Therefore we systematically use the linearized equations in which the convective
terms are neglected. The results so obtained are valid to first order when the displacements
are small in comparison with the bubble size.

Notation For any variable associated with each phase (indexed by «; a=f for the
liquid, a=g for the gas) the index * is related to the sum of the equilibrium value (indexed
by ¢) and the fluctuation value of this quantity. For example, the total density is:

PL=p5 T pa e

3.1. THE PHYSICS OF THE PHENOMENON: A SIMPLIFIED APPROACH

The following elementary description is obtained by neglecting the displacements
between both phases, the viscosity, the thermal transfers and the capillarity.



3.1.1. The relative effects of th

Let us study the case of an acoustic wave propagating in an air-water mixture at finite
concentration. The values of tl ,m‘*j’ 1d the Wonmres&bmzy of both phases are

given below (y= 1.4 is the specific

Pr 9; Kf l{gzy pe
(kg/m®)  (kg/m) {Pa) (Pa)
103 1.23 2.10° 1.4.10°

If we consider a typical value of
given by pf/p5=0(g) and K,

Moreover as we are @@aiing with finite concentrations §= 0 (1), the typical lengths of
the bubbles and the liquid are of the same order of magn ilﬂdc and the size / of the cell
is of the order of the bubble diameter 2R (Fig. 1) :

=0()=0(R), I[=0(R).

°% 00 0 0% o045 © O
DGQOOOQQOO
0o 0 0 p O 0 O o
o o o o o
o] O o] o]
Ooooo Oooooo
o o 0 © 0 g o©
°% oo 0 0% o0qg © O
0.00 090 45 g o0 00
0O 0 0 o 0 0 0O o
o 0 g o O 0 g o
QoOOo OoOOoo
C 0o p © © o g o

Fig. 1. — A bubbly fluid at finite concentration. The interbubble distance
and the bubble radius are of the same order of magnitude.

3.1.2. Wave propagation

Under a long wave, the pressure is constant in a cell. Because of the ratio of the
compressibility of the phases, the volume variation of the mixture comes from the gas
phase only, i.e.

AV[V=B.(Av,fv,)=B.P/K,.

Therefore the bulk compressibility is equal to K=Kg/ B=1v.P¢/B, and to the first order
of approximation the mixture density is p=(1—B) %

Consequently the acoustic celerity ¢, is approximately given by
€o =\/K—/5= \/m and the value of € is 2R. ®/c,.

3.1.3. Scaling

From the above simplified analysis, we can define for each quantity its reference value
(indexed by ") and its dimensionless variable (indexed by *), which is necessarily O (1).



Displacement. The displacements of both phases are of the same order of magnitude.

As we are dealing with small transformations, taking R as the reference length, we have

U=0(E.R), and vp=U" . uf, =" 2],

©
@ 2

Densities: During the propagation of a long wave, the bulk volume variation oscillates
on the macroscopic length scale, and the local volume variations are given by

(Avyfv)=£"1. (Ao, fv,)=0(UL)=0(c.R/L)= O ().

i

They are balanced by the density variations, 4 (pL)/pl= O (Avfv,).

<‘

Therefore, taking p as the reference density, we get

~

Consequently, the continuity eguations are written for both phases in the following
linearized and pon dimensional fi ;orms,

— In the liquid: &*(p}) + \pf ) div* (w})=0.
— In the gas: c(p;k)—l’{pg } div* (u¥)=0.

Pressures: The pressure in both phases are of the order of the reference pressure.
pr=R. UYL, P,=P".P}, P,=P.PL

Wave propagation: The phenomenon is propagative on the macroscopic scale so the
pressure gradient is balanced by the inertial terms. Therefore we have

grad (P)=0 (P'/L)=0(p.w?.U".

In the next sections we introduce the viscous, thermal and capillarity effects, while
keeping the above scalings, which describe the acoustic properties of the mixture.

3.2. VISCOUS EFFECTS

Until now we have taken into account neither the relative displacements between the
fluid and the gas nor their viscosities. This point has already been studied in [M & T,
1987] in the case of low conecentration and in [L, 1981] and [A & L, 1989] for a mixture
of two liquids.

3.2.1. The Navier-Stokes equation

Under harmonic excitation, and in the linearized form, the Navier-Stokes eqaution

becomes

grad (P,)— i, (grad (div (1)) + A () =p;. 0”1,

where p is the dynamic viscosity and u the displacement field.



We see from the table below ‘he case of an air-water mixture, the kinematic

viscosities {v=u/p%) of the

o
re roughly of the same order.

y by vy v,
(Pa.s) (Pa.sy (m%/s) (m%[s)
10-e 18.167° 167¢ 15.10°¢

3.2.2. The Scalings

o,

We scale the equations by adopting R as the reference length (y=R.y*).

Beginning with the momentum balance in the fluid, we divide the Navier-Stokes

S
equation by the reference pressure gradient P7/L to get

e~! grad* (P%)—1.N,. 5. p" (A* (uf) +grad® (div* () =S.(p5 +&°.p} ™). uf,

with

N,=v,/oR2, §=F.0? U/(P/L).

In the gas, the same procedure leads to
-1 DAYy 5 * 3 ¢ ¥y 2 Sty ok
et grad* (P —ieN,, S.pf [A* (u)) +grad® (div* (w)))i=cS(p; +e pF ey ul,
; — 2
with N, =v,/eR*
The fluctuations of the stresses in each fluid are given by

o,=—P,I+2iep E(u,), with  Ew);=(u ;+u; /2.

When we normalize these stresses using the reference pressure, we get

o,=P".(—P%.1+2.£.i.N,.S.E*(u})) in the fluid,

and

G,=P".(—P}.1+2.€%.i(N,,.S)p¢ . E*(u})) in the gas.

We have seen in the previous section that the reference pressure gradient is balanced
by the inertial forces. Therefore S= O (1).

The ratios between viscous and inertial terms, N, and N, can be expressed as

=(,/R)?* and N,,=(,/R)? w1thl——\/vf/co and I, \/E/B,

where /, and J,, represent the thickness of the viscous layer in the fluid and in the gas
respectively. As they are of the same order of magnitude, we will only use N, to
characterize the viscous effects. Their influence is described by the order of magnitude
of the dimensionless number Ny. In section 4 we study the three more representative
cases: Ny =0 (g™1), Ny=0(1), Ny=0(e).



3.3. THE EFFECTS OF THERMAL CONDUCTION
In Section 3.1 we used the adiabatical compressibility of the gas. As
1977} or [M & T, 1984], this assumption is not valid in the presence of heat transfer.
These effects are described by the Fourier conduction law
3.3.1. The Fourier law and state equation
The linearized form of the Fourier law under harmonic excitation is
div (k. grad (T))=iw.(0,.C,,— P,

where k,, C,, are the conductivity and the specific heat, respectively.
The thermal constants of air and water are given in the table below. We notice that

the conductivities are ugHy of the same order, but the fluid diffusivity 4,=k/p5.C,,
is much larger than that of the gas. |
Cor Cpg ' k ] kg df ’:zg
(/K .kg) @rK.kg) (W/K.m) (WEK.m) @)  (mfs)

4.18.10° 10° &6@2 0.026 212.107° 14,1077

The thickness of the thermal layer is given by [, = \/

— If this layer is smail relative to R, the heat transfers are negligible outside this
zone, and the transformation is adiabatic. We have T,=0 (P /pl. C,o-

The difference in the two densities means that temperature fluctuations in the gas are
much more important than those in the fluid so that T,=0@E".T).

— on the other hand if the frequency is sufficiently low [, is large in comparison with
R, the perturbation occurs isothermally. The continuity of thermal flux allows us to
compare the temperature levels in both phases and give T,=O(T -

Equation of state: Under small harmonic perturbations, assuming that the gas is
perfect, we have

P, =P*(p,/p;+T,/T9.

3.3.2. The Scalings

We take as the reference temperature variation T=P/p;.C

Under adiabatic conditions we have T,= 0 (T").

Let us first scale the Fourier equation in the gas. Dividing the equation by the thermal
inertial terms p;.C,,.0.T", we get

N,.div(k}.grad(T}))=i.(T¥—P}), where N,=d,/o.R*=([,,/R)*
Therefore the above dimensionless form of the Fourier equation is scaled for N,< 0O (1).

Conversely, when N,=0(¢™") and the conditions are isothermal, then T,=0(. T,
and we have

e.N,.div (k¥ .grad (T¥)=i.(s. T —PX).



If we divide the Fourier equation by the thermal inertial term p5.C, .17, we get

J

€. Ny, div(k}.grad (TE)=i.e. (T} —P%), where N, =d /0. R*={ /R)*

Since the density is much larger in the fluid we have N, /N, =0 (g).
Hereinafter we use N, to characterize the thermal effects, and we study the three
following cases N,=0 (™), N,=0 (1), N,= 0 (e).
The equation of State: Taking into account the normalisations of the ressures, densities
J
and temperatures, the dimensionless state equation of the gas is written in the form:
when N, <0 (1)

e

5

2 " e N et ¥~
YPE=p¥/B.o +(v— 1D (¢ C,le% C,)TE,
and for N,= 0 (g)
T e* e* ¥ £
YPI=p}B.0; +te(y—D(p; C,,/05 C,)TE

3.4. CAPILLARITY EFFECTS

We focus here on the effects of the capillarity. If the capillary tension is o (for water
o=75.10"% N/m), and the variation of the bubble radius under small perturbations is
v, then we have on T

(c,—o7).e=P,.n  with P,=-20d(1/R)=2cr/R%

3.4.1. Scaling

The dimensionless form of this equation is (oF—o¥f).n=(P,/P").n with
W l=P,/P'=(25.8/3R. K)(G.¢/R)L/U).

This expression shows that the Weber number W =P"/P, depends on two factors.

On the one hand, it depends on the ratio between the ‘rigidity” of the capillary
membrane K =2 /3R and the bulk rigidity K,/B (here we take K =P¢, which we justify
later). Again we will have to consider three sizes of the ratio to describe most of the
possible cases K. B/Pe=0 (1), O (g), O (e?).

On the other hand, W depends on /R, i.e. on the deformation mode of the bubbles.
Two cases can be considered:

— either the curvature variation is one order of magnitude less than the displacement
ie. rlR=0(?

— or, as proposed in [M & T, 1986], the variation of the curvature radius is of the
same order as the displacement, which gives r/R=0 (U"/R)=0 (¢).

As the volume variation is O (¢?), the deformation mode must necessarily be asymmet-
ric.



3.5, SUMMARY

The microscopic description given in the previous paragraphs is valid for the following
cwxdlnm § concerning t“m, properties of the constituents:

Pilps=06) KK, =0(@);  v,v=0();
CpolCor=0(1);  k,lk

The effects of the viscosity, the thermal conduction and the capillary tension, character-
ized by the dimensionless numbers N,, N, W respectively, depend n -t Gnly on the
physical constants but also on the bubble size and the excitation frequency.

it is important to notice that the orders of magnitude of these numbers are not
independent. As a matter of fact, for air-water mixtures, the thermal layer L, in the gas
and the viscous layer in the liquid {,; are of about the same order of magnitude, because

L= /dv;x04=0(1) ie N=0(N,).

Moreover, decreasing or increasing the diameter of the bubbles and their relative separ-
ation makes viscous, thermal and capillary terms increase or decrease, respectively. At
atmospheric pressure, with the usual values of the physical constants we have

com25mfs s0 of3pr.co=0(1) and /3k co=0(1}

which leads to the following relationship K,.B/P°=0 (s Ny} =0{eN,.

In next section we treat three cases (A, B, C) which cover a large range of bubble
diameters (10™" to 107% m) and of acoustic frequencies (107! to 10° Hz). Table presents
for each case the order of magnitude of the dimensionless numbers and gives, in terms
of bubbles’ size and frequency, the condition of validity for each case.

TABLE 1. — Summary of the three cases and their conditions of validity.

N, N, K..B/P®
0E™ 0E™ oM
Case B . ............. v /. R*xco/2 R.0 d,Jo R*~cof2 R.@ 26.B3 R.P°~1
o o 0 ()
Casedh v V0. R2x1 djo R2x1 26.B/3 R.P*~2 R.0jc,
Case C . . 0 0 (® 0 (£

v,/o.R*~2 R.ofc, d,fo R*~2 R.0/c, 2 o B/3 RP°~(2 R 0/cy)?

4. Macroscopic descriptions

We examine here three different macroscopic behaviours of a bubbly fuid:
case A: “Medium” bubble size and frequencies;

case B: “Small” bubble size;

case C: “Large” bubble size and “high” frequencies.
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4.1. Case A: “MEDIUM” BUBBLE SIZE AND FREGUENCIES

H

K. . B/P*=0(e) corresponds to bubbles of

The case where N, =0 (N)=0(1),
gnitude of dw viscous and the thermal layers, and for

meter of the order of ma
the “rigidity” of the capillary me mblame 18 weal.

4.1.1. Formal scaled equations

In order to simplify the presentation we will use the dimensional variables with the
formal scaled equations. From the dimensional analysis of Section 3, the system tc be
treated is

In the liguid

(A1) P,=—s"2. K, .div(u,),
(A.2) o,=—F, I+2.ico.u Eupy,
(A.3) e .grad(P)—i.0.u,. (A, +grad (div(m, )= p%. 0% uy,
(A.4) §2.p,+p¢. div(u,)=0
(A.5) e.div(k,.grad (T)=iw.(p5.C,;. T,—B).
In the gas
(A.6) P =P (p,/p;+T,/T%,
(A7) o,=—P, I+2.i.¢* . pE(),
(A.3) S“lagmﬁ(Pg)—z’,s.m.pgn(&(&zg)—i—gmﬁ(div(uf}}):a.pg.mz.ug,
(A.9) ’ €.p,+pp.div(m,)=0,
(A.10) div(k,.grad (T ))=iw.(p;.C,,.T,—P,).

At the interfaces

(A.11) u,=u,
(A.12) (6,—0,).n=¢.P..n with P, =2or/R?
(A.13) T,=e1.T,

(A.14) k;.grad(T,).n=¢"' .k, .grad(T).n.

4.1.2. Macroscopic behaviour

The details of the homogenization procedure are given in Appendix A.

As the thickness of viscous layer is of the order of magnitude of the interbubble
distance, the velocity field is inhomogeneous within the cell. Consequently, the bubbles
move in the fluid and this relative displacement contains a phase shift with respect to
the pressure gradient because of the viscosity. Since the diffusivity of the fluid is weak;
its temperature is constant in the cell, except in the vicinity of the bubbles. Conversely,
the gas temperature is not constant, and the heat flux introduces a phase shift between
the pressure and the temperature perturbations. Therefore the volume variations of the
gas are not in phase with the pressure. Lastly, the capillary tension constrains the bubble



deformations to be spherical, while being negligible in comparison with the pressure
flnctuations.

like a medium

We show, in Appendix A, that the mixture be‘l Ve
with one pressure field P and two displacement field

(1-8).U,=(1/p5.07) grad (P),

{
(A.15) § B.U,=(B/p%.0%) (I+M)grad (P),
{ div((1-B). Up+div(B.U)=B(—1+G(1—1/y))P/P.

Misa compi@x symmetric tensor which depends on the dimensionless frequency w/m,,
(©,=v;/R?). G is a complex function depending on @/, (®,=d,/R?).

Comments

— The meaning of the first two equations is clearer if they are written in their inverse

forms:

2

(1-§).grad (B)=(1—B). p§. 0 [M.(1 - BYB—D ™~ (U,~ U+ U,]
B.grad (B)=(1—B). pj. 0 [~ (M. (1— B)/B—D ™ (U, ~U).

The real part of the complex tensor (M. (1—8)/B—1)7* is related tc the inertial coupling,
and its the imaginary part, divided by the frequency corresponds to the viscous coupling.
The calculation of tensor M uses the variational formulation given in Appendix A.

— The complex function G describes the fact that the gas is not in adiabatic or
isothermal conditions. This function can be expressed analytically in the form [Auriault,
1983} -

G=1-(3/ioF }(E+cotlu\/zm,) \/3@3}) with o} =o/o,.

— The medium is dissipative. In the case of large concentration the dissipation due to
the viscous effects is of the same order of magnitude as that due to thermal effects.

— For transient vibrations, this frequency description can be transformed to
the temporal domain by an inverse Fourier transform. The frequency dependence
of the description introduces memory effects with a duration of about
=02 n/0,)~0Q2r/w,).

4.1.3. Wave propagation

We focus on harmonic pressure waves, in the case of isotropic macroscopic behaviour
M=M._I The elimination of U, and U, in (A.15) leads to the equation

(A.16) —(1/ps.0*)(1+B(1 +M))AP)=B(1—-G(1—1/y)P/Pe.
We look for solutions of the form

P=P,.et=%;,  c=c +i.c,.



On substituting this expression into (A. 16), we get the dispersion eguation

2.y i f o N2 e f N2 — — 1} 5 — £n [
e ={ey i) = I+ B M- BY/B— Uliy— Gy~ 1}
The present medivm produces a dispersive attenuated propagation mode, since M and
i

G are complex and depen& on . As M=0(1) and G=0(1), the celerity ¢ is of the
same order as ¢,. This result extends that obtained in [P, 1977], [M & T, 1984 (who
considered only the thermal effects) and in [M & T, 1987] where only the viscous effects
are considered and in the case of weak concentrations so that the bubble interactions
are negligible.

4.2. Case B: “SMALL” BUBBLE SIZE

In this case N,=0(N,)=0(e™') and K,.B/P°=0(1). The bubble diameter is much
smaller than the thicknesses of the viscous and thermal layers, and the “rigidity” of the
capillary membrane is of the same order of magnitude as that of the mixture.

4.2.1. Formal scaled equations

The set of formal scaled equations to be treated is (A.1-A.14) with the exception of
the following which are now indexed with B.
In the liguid

(B.3) e N grad (P —i.e™ . 0. p,. (AQuy) +grad (divmp))=p%. 02 u,,
(B.5) divik,.grad(T ) =iw.(p5.C, ;. T,—P).

In the gas
(B.6) P,=P¢.(p,/p¢+2.T,/T°),
B.7) o,=— P I+2.i.c.0.p,E(),
(B.8) e l.grad (P)—i.w.p,.(A(w,)+grad(div(ap)))=¢.pl. 0. u,
(B.10) el divk,.grad(T))=iw.(p;.C,,.T,— P,).

At the interfaces

(B.12) (c,—c,).n=P_.n,
(B.13) T,=T,
(B.14) k;.grad(T;).n=k,.grad(T).n.

4.2.2. Macroscopic description

As the viscous layer is much larger than the interbubble distance, the bubbles and the
fluid more together, in phase with the pressure gradient. Moreover, the bubble size is
very small in comparison with the thermal layer. Therefore the temperature is constant
in the gas, which corresponds to isothermal conditions. Lastly the capillary tension
imposes spherical deformations, and is of the same order of magnitude as the pressure
spherical deformations, and is of the same order of magnitude as the pressure perturba-
tions. Therefore the pressure in each phase is different.
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The homogenization ( Ay;,’fu_d.\}x B) shows that the mixture behaves likes a medium
with one displacement field U and two pressurs fields P, and P, satisfying the equations:
g Pg: '“{P‘g/b ﬁi‘v'(b'é
(B.15) é‘ Po==(1-(1-8).KE/BO@YRdiv(U), with K, =2¢/3R,
{ grad (P )+ B/(1 - B grzd (P)=(p%.0*) U.

Comiments

— At the first order of approximation, the medium is not dissipative. This comes
from the isothermal conditions of the gas and from the viscosity which stops the relative
displacements whithin the cell. (As a2 matter of fact, the medinm is dissipative, but at
second order only)

— The equivalent medium is isotropic whatever the arrangement of the bubbles in
the cell.

— The description does not depend on the 'requency, so it remains valid for transient
motions.

4.2.3. Wave propagation
Let us study harmonic wave propagation. Looking for a sclution for the gas pressure

in the form

— it —
Pg —_ PO Lole x/c):;

Egs. (B.15a and b) give P,=(1—-(1-03).K/P)P,.
Then, eliminating the displacement U in (B. 1 5¢) gives

(1=B).APY+B.AP)=—((1—B).07.0”) (BP)P,,
leading to
=(1-(1-B) K /P ®/1—P).B.pP=[1—(—B)*. (K./PD/¥lc]

There we have to distinguish between different kinds of propagation according to the
value of K, which is directly related to the bubbles radius since K, =2c/3R.

—If K, <P¢/(1—B), we obtain a real celerity, independent of the frequency
e=co. [(1—(1—B)*. K /P2

The celerity is smaller than ¢, because of the capillarity and the isothermal conditions
in the gas. As the wave travels through the medium, the pressure in the fluid and in the
gas are in phase, but the capillary tension imposes less pressure in the fluid.

— If P¢/(1-B)<K,<P?/(1—B)? then the velocity becomes very small (theoretically
zero when K, =P¢/(1—B)?). The capillary tension, which almost compensates for the gas
pressure, prevents the propagation of the acoustic wave. Moreover, due to the small
value of the celerity, diffraction effects due to the bubbles can occur.



, &7 18 a negative number, the celerity is purely imaginary

Therefore the wave is no longer propagative but diffusive. The propagation is prevented
by the “negative rigidity” of the capillary membrane which causes the gas and Hquid
pressures to be opposite in phase.

In short, we will bear in mind that for “lttle” bubbles, , i.e. if 2R~4c(1-R)?/3Pe,
the capillarity is an essential factor for the propagation of acoustic waves in bubbly
fluids.

4.3. Case C: “LARGE” BUBBLE SIZE AND “HIGH” FREQUENCIES

Assuming bubbles of “large” radii, the capillary and viscous effects become negligible
to first order. Therefore we have N,=0O(N)=0(g) and K. B/Pe=0 ().

Due to the weak rigidity of the capillary membrane, the deformation mode of the
bubbles can be assymmetrical. In such conditions, the bubble curvature variation, r, is
of the same order as the displacement, so r/R=0 (e) and W= 0 (e).

4.3.1. Formal scaled equations
q

The relevant eguations are (A 1-A.14) except for the equations below indexed with

C.
In the liguid
(C.2) o;= =P, X428 w.u, . E(u)),
(C.3) s—lLgrad{Pf)—d.m.sa[uf.,(A(ﬁf)wkgmd(div{uf))):pjﬁ.@z,uf,
(C.3) _ szndiv{kf.gmd(rff))=im.(p?.Cpf.Tf—Pf}.
In the gas
(C.7) o,=—P.0+2.i.e> 0.y, E(u),
(C.8) 8_1.grad(Pg)—i,m.ug.sz(A(ug)+grad(div(uf)))=a.pg.mznug,
(C.10) e.div(k,.grad ThH=iw. (p;.Cpy. T,— P,).

4.3.2. Macroscopic description and wave propagation

The displacement fields of both phases are constant except within the thin viscous
layer located at the boundaries of the bubbles. Consequently, the bubbles move relative
to the liquid. This introduces an inertial coupling between the fluid and the gas corre-
sponding to a virtual mass effect. In the same manner the thermal conduction is limited
to the vicinity of the bubbles, so the gas is under adiabatic conditions. Lastly the capillary
tension is weak enough to allow assymmetrical deformation modes.

By the homogenization process (Appendix C) the medium is described by a single
pressure field P and two displacement fields U, and U,, described by the equations
below.

(1=B).U,;=(1/p5. 0% grad (P),
(C15) ) B.U=(B/p%. 0% (T+ M) grad (P),
i div((1-B).Up)+div(B.U,)= — (B/y P) P.
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Comments

— In contrast to the tensor M in (A .15), the tensor M’ is real Moreover there is no
phase shift due to the thermal effect since at first order the gas is under adiabatic
conditions.

— The symmetric tensor M’ includes the inertial and capillary effects and depends on
the frequency through (1/2) (©,/@)? where @, = \/m

®, is the second oscillation frequency of a bubble in a fluid (Lamb cited in
M & T, 1986]).

— Although the bubbles are deformed and move within the cell, the viscous effects
are too weak to appear at the macroscopic level. At the first order of approximation,
the propagation arises without any attenuation. (The dissipation is of the second order,
which introduces an attenuation per wave length of the order of ¢, in the real medium).

— In the isotropic case (M'=M'.1) the velocity is given by
A=1+BA+MNEPY/B.pH=(1+BI+M)(1—B)

M’ depends on the frequency, so the propagation is dispersive. Moreover, each of the
diagonal terms M; are bounded below by B/(1—8) (see Appendix C), so the celerity ¢ is
greater than ¢,

(C.16) c=c, [AFBAFMNA-P) 2co.

(C.16) may be compared with Crespo’s result [C, 1969]: c=¢, m@——_@, which
was obtained for weak concentrations and does not include the dispersion due to the
capillary effect. In this case, the inertial coupling corresponds to M'=2 which is the
virtual mass effect of a single bubble in a liquid. For large concentrations, an analytical
value can not be proposed since the bubble interactions are not negligible, However
the calculation of M' can be carried out using the variationnal formulation given in
Appendix C.

4.4. SUMMARY

Three behaviours have been obtained for fixed values of the dimensionless numbers.
One can prove, as in [B & A, 1990], that there is a continuous evolution between all
behaviours. Consequently, the validity range of each description can be delimited by
intermediate values of the dimensionless numbers such as \/E. €" (n integer).

In Figure 2, we have drawn in the frequency-bubble diameter plane the domain of
validity of the three cases, for an air- water mixture at equal concentration.

— The domain corresponding to the case A, is characterized by

JETENZ o TNz feZK.BPze

— The range of case B is given by
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Fig. 2. — The validity ranges of the different behaviours of an air-water mixture at equal concenirations,

according to the diameter of the bubbles and the wave frequency. N,£ /e % N,z /e “Medium” bubble
size and frequencies: Case A, Egs. (A.15). N, \/-5_1: “Small” bubble size: Case B, Egs. (B.15). Nfg\ €
“Large” bubble size, “high” frequencies: Case C, Egs. (C.15).

— Finally case C is obtained when
N,,g\/g, N,g\/?é, KC.B/P6§8.\/E.

At a given frequency, the behaviours of cases A and C can be extended to mixtures
with bubbles of different sizes, as long as we stay within the same region of validity.
For the case B we have to define as many pressure fields as there are different diameters.
Therefore, there are as many propagation modes as there are bubbles sizes (as for
mixtures of two liquids [A & L, 1989]).

We recall that these descriptions cannot describe the diffraction effects which occur
when e=2R.w/c,2 1.

5. Conclusion

We have investigated the linear acoustics of bubbly fluids at large concentration, taking
into account the bubble interactions, the viscosity, heat transfers and capillary effects.
The results are valid for a large number of configurations, since they can be applied for
mixtures constituted of liquid and gas with approximately the same mechanical and



thermal characteristics as water and air, with bubble sizes ranging from 1078 0 1072 m
and for a wide frequency range (from 0.1 to 10° Hz).

The small paramster ¢ is used systematically in the homogenization process. It is used
particulary to measure the ratios between various properties of the two phases and to
evaluate the dimensionless numbers describing the physics on the local scale. In this
manner, we are able to determine the validity conditions of the different models, and
secondly to give their accuracy according to the bubbles’ diameter and the frequency.

We show that three acoustic behaviours are possible.

— For small bubbles such that the rigidity of the capillary membrane is of the same
order as the bulk incompressiblity, the capillary effects tend to decrease the sound celerity
to such a point that the wave becomes diffusive. The viscous and thermal layers are
large, therefore the bubbles do not move within in the fluid and the gas is under
isothermal conditions.

When the bubble size is of same order as the viscous and thermal layers, the
acoustic waves are damped. The attenuation is due to the superposition of two effects
which give rise to dampings of the same order of magnitude i.e. the displacements
between the liquid and the gas, and the phase shift between pressure and gas density
due to the thermal conduction.

When the bubbles are large in comparison with the thermal and viscous layers,
relative displacements occur leading to a virtual mass effect, and the gas is under adiabatic
conditions. Finally, the capillary tension is so weak that bubbles oscillate asymmetrically.

APPENDIX

The homogenization process applied to bubbly fluids

Let us consider a medium made up of gas bubbles of identical diameter, periodically
distribued in a fluid (Fig. 3). Q is the volume of the periodic cell T its boundary and T,
the interface separating the two phases. Q, and Q, indicate the fluid and gas volume
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Fig. 3. — Geometric description of the gas-fluid mixture
at finite concentration. The periodic cell of the mixture.




respectively n,, n, their unit outward normal vector. The volumic concentration of the
gas is defined by B=|G i/i Q|, and that of the Hquid by 1 —p=|, /|0
4

In order to simplify the presentation, we study a cell containing one bubble only. We
led to cells containing several bubbles.

will see later that the results can easily be extend
APPENDIX A

Case A : “Medium™ bubble size and frequencies
Al. The local description

The set of Egs. (A.1-A.14) corresponding to the case A [N,=C0®)=0(1) and
K,.B/Pe=0(g)] will be numbered (1A-14A). As described in Section 2, we introduce
into the equations asymptotic expansions of each variable, and 9/9y is replaced by
3/8y+¢8/0x. By collecting together terms with the same powers of & we obtain the first
orders of Egs. (1A-14A). (We denote them by using the same numbers with an additional

index corresponding to the order.)
In the liquid

(2A-0) (2A-1) o0=—P%1  ol=—-PLI+2.i0.uE, @)
(BA-0) grad, (P9 =0,
(BA-1)  grad PO+ gra;tiz,fw g (A, (@) + grad, (div, @)= 05. 0® . uf,
GA-D)@A=T) div,@)=0, div,@})+div,@)=0,
(5A-0) - 0=i0.(p5.C,,. Ts—PY).

In the gas
(6A-0) PO=Pe (pg/pg-i-TO/Te)
(1A-0) (7A-1) o°=—P0.1I, ol=-PLLI,
(8A-0) (BA-1) grad, (Pg) =0, grad, (Pg) +grad, (P ;) =0,
(9A-0) (9A-1) div, (ug) =0, pg +p;. (div, (ug) +div, (u;)) =0,
(10A-0) div, (k, . grad, (T)=i0. (p¢.C,,. T~ P2).

At the interface

(11A-0); (11A-D) u)=u, up=u,,
(12A-0); (12A-1) (PJ—P9.n=0, (6,—0c}).n=P.n,
(134-0) T9=0. o



A2, The pressures

From the system (3A-0, 8A-0, 12A-0), we deduce that the pressure is constant over

the period so that Py=PJ=

P(x).
The pressure P/ is determined by integrating equation (8A-1), which gives
g o

(15A) P =P (x)—y.grad ().

A3. The temperature and the gas density

Using expansions for the equilibrium pressure and temperature, Bq. (10A-0) becomes
div, (k, . grad, (To/T*)/iw. ;. C,,— To/T?= —P (1 —1/y)/P=.

This, together with (13A-0), is a problem already solved in [A, 1983 (Sec. 4)] where it
is shown that the temperature in the gas is given by

(16A) Ty=P(x).g ). T°(1— /)P,

where g(y) is a complex function of the dimensionless frequency w/e, (with @,=d4/R?).
The density in the gas is related to the pressure by relation (6A-0) which gives

(1745 Py/pg=P/P*—T{/T¢, so that pf=P.(1-g(y){1~1/y)) pi/P".

A4, The displacement fields

Since we assume that the variation of the curvature radius r is O (e?.R), while the
displacement is O (e.R), the modification of the radius of the bubble appears at the
second order only. This requires that the interface does not change its form at the first
order. Thus, on any point of the interface, the displacement uf} can be resolved mnto a
constant translation over the period and a displacement tangential to the surface of the
bubble:

(18A) ‘ uf=u (x)+u  with w'.n=0 on T,

Actually, u, (x) is related to u} by an integral condition since we have

2

J yi(uj‘?.ng)ds=f yi(uc(x)+u’).ngds=ucj,J yi-ngds=u,;.8;|Q,
I'g ) g Ty
which gives

(19A) uc(x)=|Qg"1j y (}.n,)ds.

/T'g



A4 1. A VARIATIONAL FORMULATION FOR THE LIQUID DISPLACEMENT FIELD

Eags. (4A-0, 3A-1, 12A-1, 18A) govern the displacement field in ,. We study the
structure of the solution by establishing a variational formulation. Let us consider the

vector space W of compiex test vectors w defined by

w defined on Q,, Q-periodic/div(w)=0, On I tw=w(x)+w,; w.n=0},
f k5 \ 9 g

associated with the hermitian product
f’ ey W S
mowy=1 (E@: E @")+u wd,

¥y
Jay
(where w* is the complex conjugate of w).
When multiplying (3A-1) by any member w* of W, and integrating over £}, we obtain
R .

; [ ]
j grad, (P).w*dv— j div, (o7). w*do=
Qf Qf :

L.m.,_
L.,
“ o

( (
j div, (c}) . w* do= } (b wh),; dv— j oL W dv.
Qs af af

Due to the zero divergence of w* and the symmetry of E,, the last term can be written
in the form -

f (—P;.6;+t2.i0.uE, (uf)”)w:fjdv—ﬂj io.p;E @), E, (w*); dv.
Qf

'Using the divergence theorem, we obtain
f (F;W%),; dz:=§ (Of; W) .mds,
Qf rulg
which, because of (12A-1) and (15A) and the periodicity, implies
——J (P +PHywt.n;ds
g
= —J. P} (x)w;-".njds%—J‘ (y.grad, (P))w} .njds—wc(x).J Pl .n;ds.
g Ig Ty

The kinematic condition (18A) implies that the first integral is zero. By using the
momentum balance applied to the zero mass interface, the last integral also disappears.

Finally, putting

E, ), E, (w¥),; dv+j‘ uf.w* dv,
Qf

<u197 W>= _(iuf/pj’-m)J‘

Qf



the variational formulation becomes

(20A) VweW, (uf, w)y=(grad, (P)/p%. %) ( | w* dv— [ y(w*n)ds §

SO jf‘g /

[
%

A4.2. THE FLUID DISPLACEMENT FIELD

The variational formulation (20A) displays the linearity of the problem, and the Lax-
Milgram lemma ensures the existence and the uniqueness of EE?- which depends linearly
on the pressure gradient. It is convenient to resolve the solution into two terms.

— The first terms is due to the forcing term in the fluid volume, i.e. the first term in
the right hand member of (20A). The corresponding solution is obviously the constant
vector

grad, (P)/p5. 0%

— The second term is due to the stresses applied on the surface of the bubble i.e. the
last term of (20A). It leads to solutions of the form: )

m. grad, (P)/p5. 0.
The tensor m is made up of the complex fields m? which depend on the local variable

and the dimensionless frequency w/w, (with @,=v,/R?) since they are solutions of

(21A) YweW, (u, why= —(grad, (P)/p?.m%(n}[ y(w*.n}ds),

ixd

when
(gi‘adx (P)/p;' . mz)i = 6:';7'
In conclusion we have

(22A) uf=(grad, (P)/p%.@%) ([+m).

A4.3. THE AVERAGE DISPLACEMENT FIELD IN THE GAS

As the bubbles are not connected, the determination of u? allows us to find directly
the average displacement in the gas. Taking into account equations (9A-0, 11A-0), we
integrate over Q, the identity (u,y,) ,=div, (uJ).y;+ 8. ug, to give

f (CERA dv=J u; dv={ (). ) -ny ds=J y; (. ny) ds.
Qg Qg Tg Qg
Using expression (19A) the average displacement in the gas is therefore given by

(23A) » Ug=]Qg{“1f ul . do=u,(x).

Qg



A8, The balance equations

A5.1. THE MOMENTUM BALANCE
On integrating the momentum balances of the two phases (3A-1) and (BA-1) over
their respective domain of definition and adding term by term, we find

1 1 — e A
jﬂgméx(P}dv~§\ Gf.nfa’s+§‘ Fg.ugds—f pT.w".wydv.
Q Tulg JIg Qf

The two surface integrals cancel out because of the pericdicity, stress continuity {12A-1)

I N,

p

tgeq L. { . , 1 3
and the equilibrium of the interface | since they have a zero mass i.e. | P..m,.ds=0 /5

jfg
Therefore we obtain the macroscopic momentum balance
oo
U,=|Q,]7! g w) do=(1/p%. ®%) (grad, P+ (B/(1 — ) grad, P).
JES

By comparing with expression (22A) of u9, we obtain

(24A) 1@)*1}{ mdo=p/(1— )L
ar

The macroscopic momentum balance of the gas is given by (234, 194, 22A):

r

U;}gzgi—lj ugdw(gmx(;@)/p;.mﬂ]Qgg—lJr y.(+m)n,ds

Qg Tg

i.e.

U,=(1/p5.0*)A+M).grad, (P), with M=|Q |} J( (y.m)m, ds.

Ty

AS5.2. THE VOLUME BALANCE

Using the expression (17A) for the gas density fluctuation, and integrating (4A-1) and
(9A-1) over &, and Q, respectively, we get after addition,

f divx(ug)dv-i-J‘ divx(uf]’)dv-i‘f u}.nfds-l-f u, .0, ds
Qf Qg I'g

g

—- f P.(1-g(y) (1~ )P db.
Qg

As a result of (11A-1) and the periodicity, the surface integrals cancel out. After reversing
the order of the y-integration and the x-differentiation, there exists only one macroscopic



volume balance:

ie.

A®, Macroscopic description

Finally, we obtain at the macroscopic level a medium governed by the constitutive
equations below, where the index . has been omitted. G and M are, respectively, a
complex scalar function of the dimensionless frequency ®/w, and a complex symmetric
tensor depending on ©/wm,.

( (1-8).U,=(1/p;. o) grad (P),
(254) B.U,=(B/p°. 0% A+M)grad (P),
| div((1—B).Up)+div(p.U)=B(~1+G (1= 1/y) PP,

A6.1. SOME PROPERTIES OF THE FUNCTION

In [A, 1983] it is show that 0<SRe(G)=<1; 0=Im(G)=<1. Moreover it is shown that

when o/®, —» 0, G — 0 with Re(G)=0 (0?) and Im(G)=O(w). Also when ®/®, — o0,
G—1.

For spherical bubbles G can be expressed analytical in the following form.

G=1+@/io}) (1~ fiof.coth(fiof),  of=o/o,

A6.2. PROPERTIES OF THE TENSOR M

The components of tensor M are given by M;;=|Q,|™* f ;.M. ng ds. Let us consider
g

the particular solution m? of (21A). Putting w*=m" we have

Mrp:lggl_l (m?, m™ >-



From the symmetry of the right hand side, we deduce the symmetry of M. The real and
5 3
imaginary parts of M, (without summation on i) are given ?fw

/o R s \
~ H : I3 [ ¥ ilz oz
Re(MZE)=(M,+ 14;-‘3//x‘i =4 g m’m J)\}:E@gg *k% imt dp 120,
‘L\ o5 / Jﬁf /
5 o
®Y — (R __‘ ~1 ~ TP foaml (o 7% ]
Im (M%) =(M;—MH/2i=|0, |7 Gu, /o5 JJ}‘J% E,(m); E, @ ), dv)20.
Qf

Using the Schwartz inequality and (24A) we get the lower bound

h\/

"‘H/ g1 i

/
26A) Re(M#)=|Q,|” ﬁr {m* |? do 3~ BA1—B) (no summation on i}
[ AN =/ S J

Wi:zf

Lastly, from Eq. (21A) it is clear that m tends to a purely imaginary value when w/@,
tends to zero, end m tends to a real value when ®/e, tends to infinity.

A6.3. COMMENTS

1,

The hypothesis of the presence of only one bubble in the period can be dispensed
with, by introducing a kinematic condition for each bubble. In this way, the variational
formulation remains similar and there is no modification of the macroscopic description.

APPENDIX B

Case B: “small” bubble size
B1. The local description
The equations to be treated in the case B [N, =0(N)=0 (1), K,.B/P*=0(1)] are

the same as in Appendix A except for those below which are now indexed with B.
In the liquid

(2B-0) 0= —P%.1+2.i0.1,E, (u2)
(2B-1) or=—Pr.I+2.i0.u E, @D+E, u}),
(3B-0) grad, PO —io.p, (A, (u9)+grad, (div, (u9)))=0,

(BB-1) —iw.u (A, ) +A, (u}+grad, (div, (u)) +grad, (div, (u))
+grad, (P9 +grad, (P =p%. 0’ .ul.
In the gas

(6B-0) PO=P°.p2/pe,
(7B-0) (7B-1) o9=-P0L, ol=-PLI+2.i0.u,E @),

‘EO



(8B-0) grad, (PJ}=0,

(e orad (POYL grad ( P 0y
(8B-1) grad, (P)) +grad, (P} —im.p, (&, @)+ grad, (div, @)=0

At the interfaces

(12B-0) (12B-1) (60-c®.n=P%.n, (ocl—c}.n=Pl.n.

o

B2. The pressure and the density of the gas
Equation (8B-0) gives a constant gas pressure at the first order: OrP (x\z.
Equation (6B-0) leads to a constant perturbation of density on the bubble
G €D e
(278) P, =Py PH/P

Notice that there is no thermal effect at the first order since the gas is under isothermal
conditions. Therefore the investigation of the acoustics of the mixture does not need to
study the thermal conduction any further. '

B3. Displacement and pressure in the Hguid
Using the same idea as in Appendix A, we must add to Egs. (4A-0, 3B-0, 12B-0), the

kinematic condition (18A) expressing the invariance of the form of the bubble at the
first order. It is easy to show that the variational formulation of this problem is

VweW, —(igf.m)jr E, @), E, (w*),;dv=0,

from which we get u}=U(x). Then P}=P,(x) and with (12B-0) P? =P (x).
As in the previous case, we can express the fluid displacement in the gas volume by

Ug:ngl_lL w) . dv=u,(x)=U(x).

B4. Balance equations

B4.1. MOMENTUM BALANCE

Integrating the momentum balances (3B-1) and (8B-1) over their respective domains
leads to

f gradx(Pf)dv—FJ gradx-(Pg)dv—j c}.nfdy-J‘ cjz,‘.lngds=Jw p5. 0. Udb.
of 0, uTg Ty of

r



The two surface integrals cancel out as before (see Appendix A). We are left with
grad (P )+ B/(1 - B) grad, (P )= (05 0®) U
B4.2. MASS BALANCE
With (6B-0), Eq. (9A-1) expressing the local mass balances in the gas is as follows
D ope (4 1 o =0 i
P,/Pe+(div, (u,)+div, (u)))=0 in Q.

Separately integrating (4A-1) and (9A-1) over their own domains we obtain

j( u;ungds—%divxg_j ugdzJ:—{QA P, /P
T'g L JQg _g

But the capillary pressure is constant over all the interface and consequently the curvature
is a constant at any point of the capillary membrane. That means that the first significant
deformation occurs in a spherical mode. Thus, we have

—up.n,=u,.n,=r' =P (x)(R*20),

so that [Q,|7! f u, .m,ds=P,(x)/K, with K,=20/3R.
I
And as I@gt*lj W do=TU

Qg

we successively obtain
div, (U)=(B/1 - B)P/K.=(B/1—B). (P, —P/K,

and

div,(U)= -P/K,—P,/P°=—P,/K —P, (1/P°—1/K)

I.e.

Py=—®/Pdiv,(U), Py=-(1~-(1-BK/P)PB)div, (V).

BS. Macroscopic description

Macroscopically the mixture behaves like a medium which satisfies the equations:

(28B) P,=—(P¢/B)div, (1)
P,=—(1—(1—-B)K,/P®(P*/B)div,(U), with K,=20/3R,



grad, (P )+ (B/1 — B) grad, (P )= {(p5.

We can verify that the presence of W bubbles s &, (i=1, ..., ™) of the same diameter
i P

does not change the results, if we put P,={Q,[7*. ¥ | P (x)dv.
i=1dJag:

APPENDIX C

Case C : “Large” bubble size and freguencies
1. Local description

For the case C(N,= 0 (N,)=0(s) and K. B/P®= 0 (g?)) the set of equations at different
orders used in the homogenization process are those of Appendix A, except for the
following which are now indexed with C.

For the liquid
(2C-0) (2C-1) o9=-P9.I, ol=-PLI,
(3C-0)(3C-1) grad, {P%} =0, grad, (P9)+grad (P))=p%. 0" ul.
For the gas
(10C-0) O=ia. (p£.C,,. TO—PY).

C2. The pressure, temperature and density in the gas

Using (3C-0), (8C-0) and (12A-0), we get P9=PJ=P(x).

The gas pressure at the next order is given by (8C-1) P}= —y.grad, (P)+P (x).

The temperature is given by (10C-0) which leads to T,=P/p;.C

Therefore the oscillation of the gas density, which is given by Eq. (6A-0),
p,/pg=P/P—T,/Te=(1—-P°¢T°.p;.C,)P/P®

is connected to the pressure by the adiabatic law p,/p;=P/yP*.

C3. The displacement field

The displacements are governed by Egs. (4A-0, 3C-1, 11A-0, 12A-1, 9A-0). We study

thig differential system using its variational formulation. With this aim, let us take the



scalar product of (3C-1) with any test field of the vectorial space W, defined by

= {w defined over Q/w real, O-periodic, div, (w)=0}

and then ntegrate over {&,,

s

J J

. - .
i 4 R {
j grad (P).wdo+ J grad, (P}).wdo= J p%. 0. u}. W,
9] of oy

When making use of (12A-1) and the periodicity of P, we have

I8

[
1 L ow) Ay — 1
div, (P, .w)dv j . div, (w) dv

ar

f grad, (P }).wdv=
Qf

JOf

With the expression for Pl, it becomes

g

{ { B
} (P;+Pj),wgﬂfds=j ;(x)w B,ds— % (yugﬁ'&dx{P})W.ﬁdeTLé Pl.w.n,ds.
Tg J B

Tg I'g

Finally, by using the zero divergence of w, the variational form becomes: Vwe W,

gmd&?)(f de—j( y{w.nf)a’,y):p}.mzf M%W@_{ Plow.n,ds
Qf g Qf

J)Tg

Since here an asymmetrical deformation may appear, the kinematic condition (18A) used
up to now is no longer satisfied, and we have to express P! as a function of ug.

C3.1. THE CAPILLARY TENSION

The motion at any point on the interface can be resolved into a bulk displacement u,
corresponding to the displacement of the centre of gravity of the bubble, plus the normal
and tangential displacements u, and w;: u}=wu,(x)+u,+u,.

As in Appendix A the displacement u, is equal to u (x)=|Q,| ™! J u) dv and because

Qg
of the initial sphericity of the bubble y= —R.n,, so that

I'g

(29C) uc(x)=[9g|_1j y(u?.ng)ds=R.]Qg[_1f n, (u).n,)ds.

At first order, the capillary pressure is due only to the normal component u,,

(30C) Pl=—(26/RY)u,.n,=—(2c/R*) (u}—u)n,.



Thus

J

: ; )
j( Pl.w.n do= ; ~Qo/RH(()~u).n)w.n,ds
Tg J

i

oand | L0 )
= -—(Z@/Rz}f\ % ( mp(w.n)ds— | (w.n)(w.n;)ds|
Jg vIg /

and by using expression (29C) for u, (x}, we obtain

1
{ P..w.nds
JTg

;r r ® N

5y Y | 4] 7. 7y j—1 § PR | 7 \.

= n(z@‘/R%( % @l.n)(w.n)ds—R.|[O, | } nfm}.mf)w{ n,(w.n)ds |

\.Jfg Tg : JIg J
Then, putting

(“ 7
(a,wy;=| uwl.wdv+(20/p50’R?)

Jar

/o r \

n(w.ng) ds)ﬁ,

ig

x{j (u?.nf}(waﬁf)ds—‘Rngi_l§ ﬂf(ug.ﬂf)dsj
g Ig

the variational formulation becomes

N

R
VYweW,, (u?,w}lz(i/p;mz)gra@x(P)<J de—“; y',wuﬂfds),
af

Tg

In this form the linearity of the problem clearly appears. However it remains necessary
for us to prove that (u%, mj? %, is strictly positive, to be in a position to apply the Lax-
Milgram lemma. '

C3.2. ', )1 IS A SCALAR PRODUCT

Obviously, the term f u?,u? dv meets this condition. For the other terms of
af

(u?, ul ), we use expression (29C) of P to obtain
—j P! .u?.nfds=(2c;/R2)f (w,.n,)(u,+u).n.ds
Ty g

=(20/R2)<f (u,,.nf)zds-!-uc.J (un.nf)nfds>.
Tg

I'g

But, as above,

-o={ Pclnfds=—(2c/R2)J (u,.n,)n, ds,
g g



r [
o1 0 . N

—1 Pla).n,ds=1 (u,.n)%ds20.
w!.“fg s;I‘g

Since { , ), is a symmetric definite positive bilinear form, use now the Lax-Milgramm
lemnma to deduce the existence and the unigueness of the solution. Consequently

YmeW,, {(u, w),=—{(grad (P)/p5 &%)

when
(grad, (P)/p5.0%),=3,,

.

These particular solutions m ? depend only on the dimensioniess frequency

@2o/péa® . RY|T,|.|Q, =12 (0,/0)>  where (0,)*=12.0/p%;.R".

C4. The balance equations

They are obtained in the same mammer as in Appendix A:

Mowmentum balance:

grad P=(p%.0>)U,  where Uf:iﬁfl_lj‘ ud dv,
of

which again proves that
(I—B).iﬁf["lj‘ (A+m).dv=1 so iﬁf“lf m' do=(p/1-B)L
Qf Qf

Volume balance:

div((1—B).U,)+div(B.U)=— (B/yP) P

with Ug=|Qg]‘1j u) do.

Qg



Finally we get the constitutive equations of the homogenized medivm:

‘1

(1—). U= —(1/p5.0") grad (P)
(310) B.U,= — (B/p}.0?) (I+ M) grad (P),
div((1— ). Up)+div(B. Uy =(B/yP*)P,

in which
; g, g
Vi1 B 4S.

Due to the symmetry of ( , »;, M’ is a symmetric real tensor which depends on the
frequency through (1/2)(e,/@)?. It can again be shown that the diagonal terms M}, (no
summation on i) satisfy the inquality M= B/(1 — B).
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