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Introduction

Groupoids are mathematical structures able to describe symmetry properties more gen-

eral than those described by groups. They were introduced (and named) by H. Brandt in

1926. Around 1950, Charles Ehresmann used groupoids with additional structures (topo-

logical and differentiable) as essential tools in topology and differential geometry. In

recent years, Mickael Karasev, Alan Weinstein and Stanisław Zakrzewski independently

discovered that symplectic groupoids can be used for the construction of noncommutative

deformations of the algebra of smooth functions on a manifold, with potential applications

to quantization. Poisson groupoids were introduced by Alan Weinstein as generalizations

of both Poisson Lie groups and symplectic groupoids.

We present here the main definitions and first properties relative to groupoids, Lie

groupoids, Lie algebroids, symplectic and Poisson groupoids and their Lie algebroids.

1 Groupoids

1.1 What is a groupoid? Before stating the formal definition of a groupoid, let us ex-

plain, in an informal way, why it is a very natural concept. The easiest way to understand

that concept is to think of two sets, Γ and Γ0. The first one, Γ, is called the set of arrows

or total space of the groupoid, and the other one, Γ0, the set of objects or set of units of

the groupoid. One may think of an element x ∈ Γ as an arrow going from an object (a

point in Γ0) to another object (another point in Γ0). The word “arrow” is used here in a

very general sense: it means a way for going from a point in Γ0 to another point in Γ0.

One should not think of an arrow as a line drawn in the set Γ0 joining the starting point

of the arrow to its end point: this happens only for some special groupoids. Rather, one

should think of an arrow as living outside Γ0, with only its starting point and its end point

in Γ0, as shown on Figure 1.

The following ingredients enter the definition of a groupoid.

– Two maps α : Γ → Γ0 and β : Γ → Γ0, called the target map and the source map of the

groupoid. If x ∈ Γ is an arrow, α(x) ∈ Γ0 is its end point and β (x) ∈ Γ0 its starting

point.
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Γ0

x y

m(x,y)

α
(
m(x,y)

)
= α(x) β (x) = α(y) β (y) = β

(
m(x,y)

)

Γ

Figure 1: Two arrows x and y ∈ Γ, with the target of y, α(y) ∈ Γ0, equal to the source of

x, β (x) ∈ Γ0, and the composed arrow m(x,y).

– A composition law on the set of arrows; we can compose an arrow y with another

arrow x, and get an arrow m(x,y), by following first the arrow y, then the arrow x.

Of course, m(x,y) is defined if and only if the target of y is equal to the source of x.

The source of m(x,y) is equal to the source of y, and its target is equal to the target

of x, as illustrated on Figure 1. It is only by convention that we write m(x,y) rather

than m(y,x): the arrow which is followed first is on the right, by analogy with the

usual notation f ◦ g for the composition of two maps g and f . When there will be

no risk of confusion we will write x ◦ y, or x.y, or even simply xy for m(x,y).The

composition of arrows is associative.

– An embedding ε of the set Γ0 into the set Γ, which associates a unit arrow ε(u) with

each u ∈ Γ0. That unit arrow is such that both its source and its target are u, and it

plays the role of a unit when composed with another arrow, either on the right or on

the left: for any arrow x, m
(

ε
(
α(x)

)
,x
)
= x, and m

(
x,ε

(
β (x)

))
= x.

– Finally, an inverse map ι from the set of arrows onto itself. If x ∈ Γ is an arrow, one

may think of ι(x) as the arrow x followed in the reverse sense. We will often write

x−1 for ι(x).

Now we are ready to state the formal definition of a groupoid.

1.2 Definition. A groupoid is a pair of sets (Γ,Γ0) equipped with the structure defined by

the following data:

– an injective map ε : Γ0 → Γ, called the unit section of the groupoid;

– two maps α : Γ → Γ0 and β : Γ → Γ0, called, respectively, the target map and the

source map; they satisfy

α ◦ ε = β ◦ ε = idΓ0
; (1)

– a composition law m : Γ2 → Γ, called the product, defined on the subset Γ2 of Γ×Γ,

called the set of composable elements,

Γ2 =
{
(x,y) ∈ Γ×Γ;β (x) = α(y)

}
, (2)

which is associative, in the sense that whenever one side of the equality

m
(
x,m(y,z)

)
= m

(
m(x,y),z

)
(3)

is defined, the other side is defined too, and the equality holds; moreover, the com-

position law m is such that for each x ∈ Γ,

m
(

ε
(
α(x)

)
,x
)
= m

(
x,ε

(
β (x)

))
= x ; (4)
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– a map ι : Γ → Γ, called the inverse, such that, for every x ∈ Γ,
(
x, ι(x)

)
∈ Γ2 and(

ι(x),x
)
∈ Γ2, and

m
(
x, ι(x)

)
= ε

(
α(x)

)
, m

(
ι(x),x

)
= ε

(
β (x)

)
. (5)

The sets Γ and Γ0 are called, respectively, the total space and the set of units of the

groupoid, which is itself denoted by Γ
α
⇉

β
Γ0.

1.3 Identification and notations In what follows, by means of the injective map ε ,

we will identify the set of units Γ0 with se subset ε(Γ0) of Γ. Therefore ε will be the

canonical injection in Γ of its subset Γ0.

For x and y ∈ Γ, we will sometimes write x.y, or even simply xy for m(x,y), and x−1 for

ι(x). Also we will write “the groupoid Γ” for “the groupoid Γ
α
⇉

β
Γ0.

1.4 Properties and comments The above definitions have the following consequences.

1.4.1 Involutivity of the inverse map The inverse map ι is involutive:

ι ◦ ι = idΓ . (6)

We have indeed, for any x ∈ Γ,

ι ◦ ι(x) = m
(
ι ◦ ι(x),β

(
ι ◦ ι(x)

))
= m

(
ι ◦ ι(x),β (x)

)
= m

(
ι ◦ ι(x),m

(
ι(x),x

))

= m
(
m
(
ι ◦ ι(x), ι(x)

)
,x
)
= m

(
α(x),x

)
= x .

1.4.2 Unicity of the inverse Let x and y ∈ Γ be such that

m(x,y) = α(x) and m(y,x) = β (x) .

Then we have

y = m
(
y,β (y)

)
= m

(
y,α(x)

)
= m

(
y,m

(
x, ι(x)

))
= m

(
m(y,x), ι(x)

)

= m
(
β (x), ι(x)

)
= m

(
α
(
ι(x)

)
, ι(x)

)
= ι(x) .

Therefore for any x ∈ Γ, the unique y ∈ Γ such that m(y,x) = β (x) and m(x,y) = α(x) is

ι(x).

1.4.3 The fibers of α and β and the isotropy groups The target map α (resp. the

source map β ) of a groupoid Γ
α
⇉

β
Γ0 determines an equivalence relation on Γ: two ele-

ments x and y ∈ Γ are said to be α-equivalent (resp. β -equivalent) if α(x) = α(y) (resp.

if β (x) = β (y)). The corresponding equivalence classes are called the α-fibers (resp. the

β -fibers) of the groupoid. They are of the form α−1(u) (resp. β−1(u)), with u ∈ Γ0.

For each unit u ∈ Γ0, the subset

Γu = α−1(u)∩β−1(u) =
{

x ∈ Γ;α(x) = β (x) = u
}

(7)

is called the isotropy group of u. It is indeed a group, with the restrictions of m and ι as

composition law and inverse map.
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ι(x)

x
y

ι(y)

m(x,y)

ι
(
m(x,y)

)

Γ0

α
-fi

be
r β

-fiber

Figure 2: A way to visualize groupoids.

1.4.4 A way to visualize groupoids We have seen (Figure 1) a way in which groupoids

may be visualized, by using arrows for elements in Γ and points for elements in Γ0. There

is another, very useful way to visualize groupoids, shown on Figure 2.

The total space Γ of the groupoid is represented as a plane, and the set Γ0 of units as

a straight line in that plane. The α-fibers (resp. the β -fibers) are represented as parallel

straight lines, transverse to Γ0.

1.5 Examples of groupoids

1.5.1 The groupoid of pairs Let E be a set. The groupoid of pairs of elements in E

has, as its total space, the product space E ×E. The diagonal ∆E =
{
(x,x);x ∈ E

}
is its

set of units, and the target and source maps are

α : (x,y) 7→ (x,x) , β : (x,y) 7→ (y,y) .

Its composition law m and inverse map ι are

m
(
(x,y),(y,z)

)
= (x,z) , ι

(
(x,y)

)
= (x,y)−1 = (y,x) .

1.5.2 Groups A group G is a groupoid with set of units {e}, with only one element e,

the unit element of the group. The target and source maps are both equal to the constant

map x 7→ e.

1.6 Definitions. A topological groupoid is a groupoid Γ
α
⇉

β
Γ0 for which Γ is a (maybe non

Hausdorff) topological space, Γ0 a Hausdorff topological subspace of Γ, α and β surjec-

tive continuous maps, m : Γ2 → Γ a continuous map and ι : Γ → Γ an homeomorphism.

A Lie groupoid is a groupoid Γ
α
⇉

β
Γ0 for which Γ is a smooth (maybe non Hausdorff)

manifold, Γ0 a smooth Hausdorff submanifold of Γ, α and β smooth surjective submer-

sions (which implies that Γ2 is a smooth submanifold of Γ×Γ), m : Γ2 → Γ a smooth map

and ι : Γ → Γ a smooth diffeomorphism.
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1.7 Properties of Lie groupoids

1.7.1 Dimensions Let Γ
α
⇉

β
Γ0 be a Lie groupoid. Since α and β are submersions, for

any x ∈ Γ, the α-fiber α−1
(
α(x)

)
and the β -fiber β−1

(
β (x)

)
are submanifolds of Γ, both

of dimension dimΓ−dimΓ0. The inverse map ι , restricted to the α-fiber through x (resp.

the β -fiber through x) is a diffeomorphism of that fiber onto the β -fiber through ι(x) (resp.

the α-fiber through ι(x)). The dimension of the submanifold Γ2 of composable pairs in

Γ×Γ is 2dimΓ−dimΓ0.

1.7.2 The tangent bundle of a Lie groupoid Let Γ
α
⇉

β
Γ0 be a Lie groupoid. Its tangent

bundle T Γ is a Lie groupoid, with T Γ0 as set of units, T α : T Γ→ T Γ0 and T β : T Γ→ T Γ0

as target and source maps. Let us denote by Γ2 the set of composable pairs in Γ×Γ, by

m : Γ2 → Γ the composition law and by ι : Γ → Γ the inverse. Then the set of composable

pairs in T Γ×T Γ is simply T Γ2, the composition law on T Γ is T m : T Γ2 → T Γ and the

inverse is T ι : T Γ → T Γ.

When the groupoid Γ is a Lie group G, the Lie groupoid T G is a Lie group too.

We will see below that the cotangent bundle of a Lie groupoid is a Lie groupoid, and

more precisely a symplectic groupoid.

1.7.3 Isotropy groups For each unit u ∈ Γ0 of a Lie groupoid, the isotropy group Γu

(defined in 1.4.3) is a Lie group.

1.8 Examples of topological and Lie groupoids

1.8.1 Topological groups and Lie groups A topological group (resp. a Lie group) is

a topological groupoid (resp. a Lie groupoid) whose set of units has only one element e.

1.8.2 Vector bundles A smooth vector bundle π : E → M on a smooth manifold M

is a Lie groupoid, with the base M as set of units (identified with the image of the zero

section); the source and target maps both coincide with the projection π , the product and

the inverse maps are the addition (x,y) 7→ x+y and the opposite map x 7→ −x in the fibers.

1.8.3 The fundamental groupoid of a topological space Let M be a topological space.

A path in M is a continuous map γ : [0,1]→ M. We denote by [γ] the homotopy class of

a path γ and by Π(M) the set of homotopy classes of paths in M (with fixed endpoints).

For [γ] ∈ Π(M), we set α
(
[γ]

)
= γ(1), β

(
[γ]

)
= γ(0), where γ is any representative of

the class [γ]. The concatenation of paths determines a well defined composition law on

Π(M), for which Π(M)
α
⇉

β
M is a topological groupoid, called the fundamental groupoid

of M. The inverse map is [γ] 7→ [γ−1], where γ is any representative of [γ] and γ−1 is the

path t 7→ γ(1− t). The set of units is M, if we identify a point in M with the homotoppy

class of the constant path equal to that point.

When M is a smooth manifold, the same construction can be made with piecewise

smooth paths, and the fundamental groupoid Π(M)
α
⇉

β
M is a Lie groupoid.
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2 Symplectic and Poisson groupoids

2.1 Symplectic and Poisson geometry Let us recall some definitions and results in

symplectic and Poisson geometry, used in the next sections.

2.1.1 Symplectic manifolds A symplectic form on a smooth manifold M is a differen-

tial 2-form ω , which is closed, i.e. which satisfies

dω = 0 , (8)

and nondegenerate, i.e. such that for each point x ∈ M an each nonzero vector v ∈ TxM,

there exists a vector w ∈ TxM such that ω(v,w) 6= 0. Equipped with the symplectic form

ω , a smooth manifold M is called a symplectic manifold and denoted by (M,ω).
The dimension of a symplectic manifold is always even.

2.1.2 The Liouville form on a cotangent bundle Let N be a smooth manifold, and

T ∗N be its cotangent bundle. The Liouville form on T ∗N is the 1-form θ such that, for

any η ∈ T ∗N and v ∈ Tη(T
∗N),

θ(v) =
〈
η,T πN(v)

〉
, (9)

where πN : T ∗N → N is the canonical projection.

The 2-form ω = dθ is symplectic, and is called the canonical symplectic form on the

cotangent bundle T ∗N.

2.1.3 Poisson manifolds A Poisson manifold is a smooth manifold P equipped with a

bivector field (i.e. a smooth section of
∧2 T P) Π which satisfies

[Π,Π] = 0 , (10)

the bracket on the left hand side being the Schouten bracket. The bivector field Π will

be called the Poisson structure on P. It allows us to define a composition law on the

space C∞(P,R) of smooth functions on P, called the Poisson bracket and denoted by

( f ,g) 7→ { f ,g}, by setting, for all f and g ∈C∞(P,R) and x ∈ P,

{ f ,g}(x) = Π
(
d f (x),dg(x)

)
. (11)

That composition law is skew-symmetric and satisfies the Jacobi identity, therefore turns

C∞(P,R) into a Lie algebra.

2.1.4 Hamiltonian vector fields Let (P,Π) be a Poisson manifold. We denote by

Π♯ : T ∗P → T P the vector bundle map defined by

〈
η,Π♯(ζ )

〉
= Π(ζ ,η) , (12)

where ζ and η are two elements in the same fiber of T ∗P. Let f : P → R be a smooth

function on P. The vector field X f = Π♯(d f ) is called the Hamiltonian vector field asso-

ciated to f . If g : P → R is another smooth function on P, the Poisson bracket { f ,g} can

be written

{ f ,g}=
〈
dg,Π♯(d f )

〉
=−

〈
d f ,Π♯(dg)

〉
. (13)
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2.1.5 The canonical Poisson structure on a symplectic manifold Every symplectic

manifold (M,ω) has a Poisson structure, associated to its symplectic structure, for which

the vector bundle map Π♯ : T ∗M → M is the inverse of the vector bundle isomorphism

v 7→ −i(v)ω . We will always consider that a symplectic manifold is equipped with that

Poisson structure, unless otherwise specified.

2.1.6 The KKS Poisson structure Let G be a finite-dimensional Lie algebra. Its dual

space G∗ has a natural Poisson structure, for which the bracket of two smooth functions f

and g is

{ f ,g}(ξ ) =
〈
ξ ,

[
d f (ξ ),dg(ξ )

]〉
, (14)

with ξ ∈ G∗, the differentials d f (ξ ) and dg(ξ ) being considered as elements in G, identi-

fied with its bidual G∗∗. It is called the KKS Poisson structure on G∗ (for Kirillov, Kostant

and Souriau).

2.1.7 Poisson maps Let (P1,Π1) and (P2,Π2) be two Poisson manifolds. A smooth

map ϕ : P1 → P2 is called a Poisson map if for every pair ( f ,g) of smooth functions on

P2,

{ϕ∗ f ,ϕ∗g}1 = ϕ∗{ f ,g}2 . (15)

2.1.8 Product Poisson structures The product P1 × P2 of two Poisson manifolds

(P1,Π1) and (P2,Π2) has a natural Poisson structure: it is the unique Poisson structure

for which the bracket of functions of the form (x1,x2) 7→ f1(x1) f2(x2) and (x1,x2) 7→
g1(x1)g2(x2), where f1 and g1 ∈C∞(P1,R), f2 and g2 ∈C∞(P2,R), is

(x1,x2) 7→ { f1,g1}1(x1){ f2,g2}2(x2) .

The same property holds for the product of any finite number of Poisson manifolds.

2.1.9 Symplectic orthogonality Let (V,ω) be a symplectic vector space, that means

a real, finite-dimensional vector space V with a skew-symmetric nondegenrate bilinear

form ω . Let W be a vector subspace of V . The symplectic orthogonal of W is

orthW =
{

v ∈V ;ω(v,w) = 0 for all w ∈W } . (16)

It is a vector subspace of V , which satisfies

dimW +dim(orthW ) = dimV , orth(orthW ) =W .

The vector subspace W is said to be isotropic if W ⊂ orthW , coisotropic if orthW ⊂W and

Lagrangian if W = orthW . In any symplectic vector space, there are many Lagrangian

subspaces, therefore the dimension of a symplectic vector space is always even; if dimV =
2n, the dimension of an isotropic (resp. coisotropic, resp. Lagrangian) vector subspace is

≤ n (resp. ≥ n, resp. = n).

2.1.10 Coisotropic and Lagrangian submanifolds A submanifold N of a Poisson

manifold (P,Π) is said to be coisotropic if the bracket of two smooth functions, defined

on an open subset of P and which vanish on N, vanishes on N too. A submanifold N of a

symplectic manifold (M,ω) is coisotropic if and only if for each point x ∈ N, the vector

subspace TxN of the symplectic vector space
(
TxM,ω(x)

)
is coisotropic. Therefore, the

dimension of a coisotropic submanifold in a 2n-dimensional symplectic manifold is ≥ n;

when it is equal to n, the submanifold N is said to be Lagrangian.

7



2.1.11 Poisson quotients Let ϕ : M → P be a surjective submersion of a symplectic

manifold (M,ω) onto a manifold P. The manifold P has a Poisson structure Π for which

ϕ is a Poisson map if and only if orth(kerT ϕ) is integrable. When that condition is

satisfied, that Poisson structure on P is unique.

2.1.12 Poisson Lie groups A Poisson Lie group is a Lie group G with a Poisson

structure Π, such that the product (x,y) 7→ xy is a Poisson map from G×G, endowed with

the product Poisson structure, into (G,Π). The Poisson structure of a Poisson Lie group

(G,Π) always vanishes at the unit element e of G. Therefore the Poisson structure of a

Poisson Lie group never comes from a symplectic structure on that group.

2.2 Definitions. A symplectic groupoid (resp. a Poisson groupoid) is a Lie groupoid

Γ
α
⇉

β
Γ0 with a symplectic form ω on Γ (resp. with a Poisson structure Π on Γ) such that

the graph of the composition law m

{
(x,y,z) ∈ Γ×Γ×Γ;(x,y) ∈ Γ2 and z = m(x,y)

}

is a Lagrangian submanifold (resp. a coisotropic submanifold) of Γ× Γ× Γ with the

product symplectic form (resp. the product Poisson structure), the first two factors Γ
being endowed with the symplectic form ω (resp. with the Poisson structure Π), and the

third factor Γ being Γ with the symplectic form −ω (resp. with the Poisson structure −Π).

The next theorem states important properties of symplectic and Poisson groupoids.

2.3 Theorem. Let Γ
α
⇉

β
Γ0 be a symplectic groupoid with symplectic 2-form ω (resp. a

Poisson groupoid with Poisson structure Π). We have the following properties.

1. For a symplectic groupoid, given any point c ∈ Γ, each one of the two vector subspaces

of the symplectic vector space
(
TcΓ,ω(c)

)
, Tc

(
β−1

(
β (c)

))
and Tc

(
α−1

(
α(c)

))
, is the

symplectic orthogonal of the other one. For a symplectic or Poisson groupoid, if f is a

smooth function whose restriction to each α-fiber is constant, and g a smooth function

whose restriction to each β -fiber is constant, then the Poisson bracket { f ,g} vanishes

identically.

2. The submanifold of units Γ0 is a Lagrangian submanifold of the symplectic manifold

(Γ,ω) (resp. a coisotropic submanifold of the Poisson manifold (Γ,Π)).

3. The inverse map ι : Γ → Γ is an antisymplectomorphism of (Γ,ω), i.e. it satisfies

ι∗ω =−ω (resp an anti-Poisson diffeomerphism of (Γ,Π), i.e. it satisfies ι∗Π =−Π).

2.4 Corollary. Let Γ
α
⇉

β
Γ0 be a symplectic groupoid with symplectic 2-form ω (resp. a

Poisson groupoid with Poisson structure Π). There exists on Γ0 a unique Poisson structure

Π0 for which α : Γ → Γ0 is a Poisson map, and β : Γ → Γ0 an anti-Poisson map (i.e. β is

a Poisson map when Γ0 is equipped with the Poisson structure −Π0).

2.5 Examples of symplectic and Poisson groupoids

2.5.1 The cotangent bundle of a Lie groupoid Let Γ
α
⇉

β
Γ0 be a Lie groupoid.
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We have seen above that its tangent bundle T Γ has a Lie groupoid structure, determined

by that of Γ. Similarly (but much less obviously) the cotangent bundle T ∗Γ has a Lie

groupoid structure determined by that of Γ. The set of units is the conormal bundle to

the submanifold Γ0 of Γ, denoted by N∗Γ0. We recall that N∗Γ0 is the vector sub-bundle

of T ∗
Γ0

Γ (the restriction to Γ0 of the cotangent bundle T ∗Γ) whose fiber N∗
pΓ0 at a point

p ∈ Γ0 is

N∗
pΓ0 =

{
η ∈ T ∗

p Γ;〈η,v〉= 0 for all v ∈ TpΓ0

}
.

To define the target and source maps of the Lie algebroid T ∗Γ, we introduce the notion

of bisection through a point x ∈ Γ. A bisection through x is a submanifold A of Γ, with

x ∈ A, transverse both to the α-fibers and to the β -fibers, such that the maps α and β ,

when restricted to A, are diffeomorphisms of A onto open subsets α(A) and β (A) of Γ0,

respectively. For any point x ∈ M, there exist bisections through x. A bisection A allows

us to define two smooth diffeomorphisms between open subsets of Γ, denoted by LA and

RA and called the left and right translations by A, respectively. They are defined by

LA : α−1
(
β (A)

)
→ α−1

(
α(A)

)
, LA(y) = m

(
β |−1

A ◦α(y),y
)
,

and

RA : β−1
(
α(A)

)
→ β−1

(
β (A)

)
, RA(y) = m

(
y,α|−1

A ◦β (y)
)
.

The definitions of the target and source maps for T ∗Γ rest on the following properties. Let

x be a point in Γ and A be a bisection through x. The two vector subspaces, Tα(x)Γ0 and

kerTα(x)β , are complementary in Tα(x)Γ. For any v ∈ Tα(x)Γ, v−T β (v) is in kerTα(x)β .

Moreover, RA maps the fiber β−1
(
α(x)

)
onto the fiber β−1

(
β (x)

)
, and its restriction to

that fiber does not depend on the choice of A; its depends only on x. Therefore T RA

(
v−

T β (v)
)

is in kerTxβ and does not depend on the choice of A. We can define the map α̂
by setting, for any ξ ∈ T ∗

x Γ and any v ∈ Tα(x)Γ,

〈
α̂(ξ ),v

〉
=

〈
ξ ,TRA

(
v−T β (v)

)〉
.

Similarly, we define β̂ by setting, for any ξ ∈ T ∗
x Γ and any w ∈ Tβ (x)Γ,

〈
β̂ (ξ ),w

〉
=
〈
ξ ,T LA

(
w−T α(w)

)〉
.

We see that α̂ and β̂ are unambiguously defined, smooth and take their values in the

submanifold N∗Γ0 of T ∗Γ. They satisfy

πΓ ◦ α̂ = α ◦πΓ , πΓ ◦ β̂ = β ◦πΓ ,

where πΓ : T ∗Γ → Γ is the cotangent bundle projection.

Let us now define the composition law m̂ on T ∗Γ. Let ξ ∈ T ∗
x Γ and η ∈ T ∗

y Γ be such

that β̂ (ξ ) = α̂(η). That implies β (x) = α(y). Let A be a bisection through x and B a

bisection through y. There exist a unique ξhα ∈ T ∗
α(x)Γ0 and a unique ηhβ ∈ T ∗

β (y)Γ0 such

that

ξ = (L−1
A )∗

(
β̂(ξ )

)
+α∗

x ξhα , η = (R−1
B )∗

(
α̂(ξ )

)
+β ∗

y ηhβ .

Then m̂(ξ ,η) is given by

m̂(ξ ,η) = α∗
xyξhα +β ∗

xyηhβ +(R−1
B )∗(L−1

A )∗
(
β̂ (x)

)
.

9



We observe that in the last term of the above expression we can replace β̂ (ξ ) by α̂(η),
since these two expressions are equal, and that (R−1

B )∗(L−1
A )∗ = (L−1

A )∗(R−1
B )∗, since RB

and LA commute.

Finally, the inverse ι̂ in T ∗Γ is ι∗.

With its canonical symplectic form, T ∗Γ
α̂
⇉

β̂

N∗Γ0 is a symplectic groupoid.

When the Lie groupoid Γ is a Lie group G, the Lie groupoid T ∗G is not a Lie group,

contrary to what happens for T G. This shows that the introduction of Lie groupoids is

not at all artificial: when dealing with Lie groups, Lie groupoids are already with us! The

set of units of the Lie groupoid T ∗G can be identified with G∗ (the dual of the Lie algebra

G of G), identified itself with T ∗
e G (the cotangent space to G at the unit element e). The

target map α̂ : T ∗G → T ∗
e G (resp. the source map β̂ : T ∗G → T ∗

e G) associates to each

g ∈ G and ξ ∈ T ∗
g G, the value at the unit element e of the right-invariant 1-form (resp.,

the left-invariant 1-form) whose value at x is ξ .

2.5.2 Poisson Lie groups as Poisson groupoids Poisson groupoids were introduced

by Alan Weinstein as a generalization of both symplectic groupoids and Poisson Lie

groups. Indeed, a Poisson Lie group is a Poisson groupoid with a set of units reduced

to a single element.

3 Lie algebroids

The notion of a Lie algebroid, due to Jean Pradines, is related to that of a Lie groupoid in

the same way as the notion of a Lie algebra is related to that of a Lie group.

3.1 Definition. A Lie algebroid over a smooth manifold M is a smooth vector bundle

π : A → M with base M, equipped with

– a composition law (s1,s2) 7→ {s1,s2} on the space Γ∞(π) of smooth sections of π ,

called the bracket, for which that space is a Lie algebra,

– a vector bundle map ρ : A → T M, over the identity map of M, called the anchor map,

such that, for all s1 and s2 ∈ Γ∞(π) and all f ∈C∞(M,R),

{s1, f s2}= f{s1,s2}+
(
(ρ ◦ s1). f

)
s2 . (17)

3.2 Examples

3.2.1 Lie algebras A finite-dimensional Lie algebra is a Lie algebroid (with a base

reduced to a point and the zero map as anchor map).

3.2.2 Tangent bundles and their integrable sub-bundless A tangent bundle τM :

T M → M to a smooth manifold M is a Lie algebroid, with the usual bracket of vector

fields on M as composition law, and the identity map as anchor map. More generally,

any integrable vector sub-bundle F of a tangent bundle τM : T M → M is a Lie algebroid,

still with the bracket of vector fields on M with values in F as composition law and the

canonical injection of F into T M as anchor map.

10



3.2.3 The cotangent bundle of a Poisson manifold Let (P,Π) be a Poisson manifold.

Its cotangent bundle πP : T ∗P → P has a Lie algebroid structure, with Π♯ : T ∗P → T P

as anchor map. The composition law is the bracket of 1-forms. It will be denoted by

(η,ζ ) 7→ [η,ζ ] (in order to avoid any confusion with the Poisson bracket of functions). It

is given by the formula, in which η and ζ are 1-forms and X a vector field on P,

〈
[η,ζ ],X

〉
= Π

(
η,d〈ζ ,X〉

)
+Π

(
d〈η,X〉,ζ

)
+
(
L(X)Π

)
(η,ζ ) . (18)

We have denoted by L(X)Π the Lie derivative of the Poisson structure Π with respect to

the vector field X . Another equivalent formula for that composition law is

[ζ ,η] = L(Π♯ζ )η −L(Π♯η)ζ −d
(
Π(ζ ,η)

)
. (19)

The bracket of 1-forms is related to the Poisson bracket of functions by

[d f ,dg] = d{ f ,g} for all f and g ∈C∞(P,R) . (20)

3.3 Properties of Lie algebroids Let π : A → M be a Lie algebroid with anchor map

ρ : A → T M.

3.3.1 A Lie algebras homomorphism For any pair (s1,s2) of smooth sections of π ,

ρ ◦{s1,s2}= [ρ ◦ s1,ρ ◦ s2] ,

which means that the map s 7→ ρ ◦ s is a Lie algebra homomorphism from the Lie algebra

of smooth sections of π into the Lie algebra of smooth vector fields on M.

3.3.2 The generalized Schouten bracket The composition law (s1,s2) 7→ {s1,s2} on

the space of sections of π extends into a composition law on the space of sections of

exterior powers of (A,π ,M), which will be called the generalized Schouten bracket. Its

properties are the same as those of the usual Schouten bracket. When the Lie algebroid

is a tangent bundle τM : T M → M, that composition law reduces to the usual Schouten

bracket . When the Lie algebroid is the cotangent bundle πP : T ∗P → P to a Poisson

manifold (P,Π), the generalized Schouten bracket is the bracket of forms of all degrees

on the Poisson manifold P, introduced by J.-L. Koszul, which extends the bracket of 1-

forms used in 3.2.3.

3.3.3 The dual bundle of a Lie algebroid Let ϖ : A∗ → M be the dual bundle of the

Lie algebroid π : A → M. There exists on the space of sections of its exterior powers a

graded endomorphism dρ , of degree 1 (that means that if η is a section of
∧k A∗, dρ(η) is

a section of
∧k+1 A∗). That endomorphism satisfies

dρ ◦dρ = 0 ,

and its properties are essentially the same as those of the exterior derivative of differential

forms. When the Lie algebroid is a tangent bundle τM : T M → M, dρ is the usual exterior

derivative of differential forms.

We can develop on the spaces of sections of the exterior powers of a Lie algebroid and

of its dual bundle a differential calculus very similar to the usual differential calculus of

vector and multivector fields and differential forms on a manifold. Operators such as the

11



interior product, the exterior derivative and the Lie derivative can still be defined and have

properties similar to those of the corresponding operators for vector and multivector fields

and differential forms on a manifold.

The total space A∗ of the dual bundle of a Lie algebroid π : A →M has a natural Poisson

structure: a smooth section s of π can be considered as a smooth real-valued function on

A∗ whose restrictiion to each fiber ϖ−1(x) (x ∈ M) is linear; that property allows us to

extend the bracket of sections of π (defined by the Lie algebroid structure) to obtain a

Poisson bracket of functions on A∗. When the Lie algebroid A is a finite-dimensional

Lie algebra G, the Poisson structure on its dual space G∗ is the KKS Poisson structure

discussed in 2.1.6.

3.4 The Lie algebroid of a Lie groupoid Let Γ
α
⇉

β
Γ0 be a Lie groupoid. Let A(Γ) be

the intersection of kerT α and TΓ0
Γ (the tangent bundle T Γ restricted to the submanifold

Γ0). We see that A(Γ) is the total space of a vector bundle π : A(Γ)→ Γ0, with base Γ0,

the canonical projection π being the map which associates a point u ∈ Γ0 to every vector

in kerTuα . We will define a composition law on the set of smooth sections of that bundle,

and a vector bundle map ρ : A(Γ) → T Γ0, for which π : A(Γ) → Γ0 is a Lie algebroid,

called the Lie algebroid of the Lie groupoid Γ
α
⇉

β
Γ0.

We observe first that for any point u ∈ Γ0 and any point x ∈ β−1(u), the map Lx :

y 7→ Lxy = m(x,y) is defined on the α-fiber α−1(u), and maps that fiber onto the α-fiber

α−1
(
α(x)

)
. Therefore TuLx maps the vector space Au = kerTuα onto the vector space

kerTxα , tangent at x to the α-fiber α−1
(
α(x)

)
. Any vector w ∈ Au can therefore be

extended into the vector field along β−1(u), x 7→ ŵ(x) = TuLx(w). More generally, let

w : U → A(Γ) be a smooth section of the vector bundle π : A(Γ)→ Γ0, defined on an open

subset U of Γ0. By using the above described construction for every point u ∈U , we can

extend the section w into a smooth vector field ŵ, defined on the open subset β−1(U) of

Γ, by setting, for all u ∈U and x ∈ β−1(u),

ŵ(x) = TuLx

(
w(u)

)
.

We have defined an injective map w 7→ ŵ from the space of smooth local sections of

π : A(Γ) → Γ0, onto a subspace of the space of smooth vector fields defined on open

subsets of Γ. The image of that map is the space of smooth vector fields ŵ, defined on

open subsets Û of Γ of the form Û = β−1(U), where U is an open subset of Γ0, which

satisfy the two properties:

(i) T α ◦ ŵ = 0,

(ii) for every x and y ∈ Û such that β (x) = α(y), TyLx

(
ŵ(y)

)
= ŵ(xy).

These vector fields are called left invariant vector fields on Γ.

The space of left invariant vector fields on Γ is closed under the bracket operation.

We can therefore define a composition law (w1,w2) 7→ {w1,w2} on the space of smooth

sections of the bundle π : A(Γ)→ Γ0 by defining {w1,w2} as the unique section such that

̂{w1,w2}= [ŵ1, ŵ2] .
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Finally, we define the anchor map ρ as the map T β restricted to A(Γ). With that compo-

sition law and that anchor map, the vector bundle π : A(Γ)→ Γ0 is a Lie algebroid, called

the Lie algebroid of the Lie groupoid Γ
α
⇉

β
Γ0.

We could exchange the roles of α and β and use right invariant vector fields instead

of left invariant vector fields. The Lie algebroid obtained remains the same, up to an

isomorphism.

When the Lie groupoid Γ
α
⇉

β
is a Lie group, its Lie algebroid is simply its Lie algebra.

3.5 The Lie algebroid of a symplectic groupoid Let Γ
α
⇉

β
Γ0 be a symplectic groupoid,

with symplectic form ω . As we have seen above, its Lie algebroid π : A → Γ0 is the

vector bundle whose fiber, over each point u ∈ Γ0, is kerTuα . We define a linear map

ω♭
u : kerTuα → T ∗

u Γ0 by setting, for each w ∈ kerTuα and v ∈ TuΓ0,

〈
ω♭

u(w),v
〉
= ωu(v,w) .

Since TuΓ0 is Lagrangian and kerTuα complementary to TuΓ0 in the symplectic vector

space
(
TuΓ,ω(u)

)
, the map ω♭

u is an isomorphism from kerTuα onto T ∗
u Γ0. By using that

isomorphism for each u ∈ Γ0, we obtain a vector bundle isomorphism of the Lie algebroid

π : A → Γ0 onto the cotangent bundle πΓ0
: T ∗Γ0 → Γ0.

As seen in Corollary 2.4, the submanifold of units Γ0 has a unique Poisson structure Π
for which α : Γ → Γ0 is a Poisson map. Therefore, as seen in 3.2.3, the cotangent bundle

πΓ0
: T ∗Γ0 → Γ0 to the Poisson manifold (Γ0,Π) has a Lie algebroid structure, with the

bracket of 1-forms as composition law. That structure is the same as the structure obtained

as a direct image of the Lie algebroid structure of π : A(Γ) → Γ0, by the above defined

vector bundle isomorphism of π : A → Γ0 onto the cotangent bundle πΓ0
: T ∗Γ0 → Γ0.

The Lie algebroid of the symplectic groupoid Γ
α
⇉

β
Γ0 can therefore be identified with the

Lie algebroid πΓ0
: T ∗Γ0 → Γ0, with its Lie algebroid structure of cotangent bundle to the

Poisson manifold (Γ0,Π).

3.6 The Lie algebroid of a Poisson groupoid The Lie algebroid π : A(Γ)→ Γ0 of

a Poisson groupoid has an additional structure: its dual bundle ϖ : A(Γ)∗ → Γ0 also has

a Lie algebroid structure, compatible in a certain sense (indicated below) with that of

π : A(Γ)→ Γ0 (K. Mackenzie and P. Xu, Y. Kosmann-Schwarzbach, Z.-J. Liu and P. Xu).

The compatibility condition between the two Lie algebroid structures on the two vector

bundles in duality π : A → M and ϖ : A∗ → M can be written as follows:

d∗[X ,Y ] = L(X)d∗Y −L(Y )d∗X , (21)

where X and Y are two sections of π , or, using the generalized Schouten bracket (3.3.2)

of sections of exterior powers of the Lie algebroid π : A → M,

d∗[X ,Y ] = [d∗X ,Y ]+ [X ,d∗Y ] . (22)

In these formulae d∗ is the generalized exterior derivative, which acts on the space of

sections of exterior powers of the bundle π : A → M, considered as the dual bundle of the

Lie algebroid ϖ : A∗ → M, defined in 3.3.3.
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These conditions are equivalent to the similar conditions obtained by exchange of the

roles of A and A∗.

When the Poisson groupoid Γ
α
⇉

β
Γ0 is a symplectic groupoid, we have seen (3.5) that

its Lie algebroid is the cotangent bundle πΓ0
: T ∗Γ0 → Γ0 to the Poisson manifold Γ0

(equipped with the Poisson structure for which α is a Poisson map). The dual bundle

is the tangent bundle τΓ0
: T Γ0 → Γ0, with its natural Lie algebroid structure defined in

3.2.2.

When the Poisson groupoid is a Poisson Lie group (G,Π), its Lie algebroid is its Lie

algebra G. Its dual space G has a Lie algebra structure, compatible with that of G in the

above defined sense, and the pair (G,G∗) is called a Lie bialgebra.

Conversely, if the Lie algebroid of a Lie groupoid is a Lie bialgebroid (that means, if

there exists on the dual vector bundle of that Lie algebroid a compatible structure of Lie

algebroid, in the above defined sense), that Lie groupoid has a Poisson structure for which

it is a Poisson groupoid (K. Mackenzie and P. Xu).

3.7 Integration of Lie algebroids According to Lie’s third theorem, for any given

finite-dimensional Lie algebra, there exists a Lie group whose Lie algebra is isomorphic to

that Lie algebra. The same property is not true for Lie algebroids and Lie groupoids. The

problem of finding necessary and sufficient conditions under which a given Lie algebroid

is isomorphic to the Lie algebroid of a Lie groupoid remained open for more than 30

years, although partial results were obtained. A complete solution of that problem was

recently obtained by M. Crainic and R.L. Fernandes. Let us briefly sketch their results.

Let π : A → M be a Lie algebroid and ρ : A → T M its anchor map. A smooth path

a : I = [0,1]→ A is said to be admissible if, for all t ∈ I, ρ ◦ a(t) = d
dt
(π ◦ a)(t). When

the Lie algebroid A is the Lie algebroid of a Lie groupoid Γ, it can be shown that each

admissible path in A is, in a natural way, associated to a smooth path in Γ starting from

a unit and contained in an α-fiber. When we do not know whether A is the Lie algebroid

of a Lie goupoid or not, the space of admissible paths in A still can be used to define

a topological groupoid G(A) with connected and simply connected α-fibers, called the

Weinstein groupoid of A. When G(A) is a Lie groupoid, its Lie algebroid is isomorphic

to A, and when A is the Lie algebroid of a Lie groupoid Γ, G(A) is a Lie groupoid and

is the unique (up to an isomorphism) Lie groupoid with connected and simply connected

α-fibers with A as Lie algebroid; moreover, G(A) is a covering groupoid of an open sub-

groupoid of Γ. Crainic and Fernandes have obtained computable necessary and sufficient

conditions under which the topological groupoid G(A) is a Lie groupoid, i.e. necessary

and sufficient conditions under which A is the Lie algebroid of a Lie groupoid.

Key words

Groupoids, Lie groupoids, Lie algebroids, symplectic groupoids, Poisson groupoids, Pois-

son Lie groups, bisections.

Further reading

The reader will find more about groupoids in the very nice survey paper [10], and in the

books [1], [6]. More information about symplectic and Poisson geometry can be found

in [5], [9], [8]. The Schouten bracket is discussed in [9]. The paper [11] presents many

14



properties of Poisson groupoids. Integration of Lie algebroids is fully discussed in [2].

Papers [4] and [12] introduced Lie groupoids for applications to quantization. The books

[3] and [7] are symposia proceedings which contain several papers about Lie, symplectic

and Poisson groupoids, and many references.
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