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Abstract. Ultrasonic guided-wave technologies are powerful nondestruc-
tive testing techniques to characterize bone material. This work aims to
evaluate the effect due to spatial heterogeneity of bone material prop-
erties on its ultrasound response using axial transmission technique. A
probabilistic model is introduced to describe the mechanical behavior of
bone material. The numerical results focused on studying of FAS (First
Arriving Velocity) showing that this quantity strongly depends on the
dispersion induced by statistical fluctuations of stochastic elasticity field.
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1 Introduction

It is well-known that cortical bone is a highly complex composite material formed
by a hierarchical and multiscale constituents. Due to the fluctuation of pore dis-
tribution and physical properties of mineralization of bone tissues, cortical bone
at the vascular scale is a heterogeneous and random medium. These factors
would not be neglected when performing diagnostics of cortical bone. One of the
most usual techniques used for diagnostics of long bone is known as ultrasonic
pulsed through-transmission or axial transmission technique (ATT). This tech-
nique, which measures the wave velocity in the bone longitudinal direction, has
been shown particularly suitable to predict mechanical as well as geometrical
characteristics of the bone [10]. In the past, most models of ATT considered
cortical long bone as a medium with homogeneous properties along its longitu-
dinal direction. Hence, homogeneous or functionally graded material properties
have been used to model the cortical bone plate [2, 7, 12, 13]. In practice, the
exploitation of measured signal data naturally needs to also take into account
the uncertainty of material characteristics. However, most of parametric studies
of wave propagation in bone are mainly limited to deterministic media.

Some studies have recently been carried out to investigate the influence of
random properties of cortical bone in the context of ultrasound characteriza-
tion. A probabilistic model based on the maximum entropy principle has been
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constructed for considering cortical bone plate as homogeneous or multi-layered
media [11, 3, 5]. It has been shown that a simplified mechanical model with an
additional stochastic modeling of bone elasticity properties are able to repre-
sent the in vivo measurements in the statistical sense. However, in these works,
material inhomogeneities along longitudinal direction of bone have always been
neglected.

This paper presents a stochastic model to consider the random fluctuation
of material properties in both radial and longitudinal directions in a cortical
bone plate. Section 2 presents the description of the problem and the numeri-
cal method to compute the time domain solution of the acoustic response of a
heterogeneous bone plate coupled with fluid. Next, we provides a procedure to
construct a parametric model for the elasticity properties of bone plate. Then,
Section 3 shows a numerical test to study the sensitivity of VFAS due to dis-
persion of the stochastic elasticity field in the bone. Last, Section 4 gives some
conclusions of this work.

2 Modeling of transient wave propagation in a
heterogeneous bone immersed in fluid

2.1 Geometrical configuration

Let R(O; e1, e2, e3) be a reference Cartesian frame where (e1, e2, e3) is an or-
thonormal basis. Figure 1 shows a common configuration for modeling an ul-
trasound axial transmission test. It consists of an anisotropic elastic layer sand-
wiched between two idealized acoustic fluids. The bone material is assumed
to be heterogeneous in the plane (e1, e2) but homogeneous along e3 direc-
tion. An acoustic line source, which is parallel to e3, produces an excitation
at xs = (xs

1, x
s
2) inside the upper fluid layer. Hence, the problem may be reduced

into a two-dimensional plane strain problem in the (O; e1, e2) plane. In Figure
1, the infinite bone layer occupying the domain Ωb with a constant thickness h
(Ωb = {x1 ∈ R, 0 ≥ x2 ≥ −h}). This bone plate is loaded on its upper and lower
surfaces by two fluid halfspaces which represents the soft tissues. The upper fluid
domain is denoted by Ωf

1 (Ωf
1 = {x1 ∈ R, x2 ≥ 0}) and the lower one is denoted

by Ωf
2 (Ωf

2 = {x1 ∈ R, x2 ≤ −h}). The interfaces between the bone (Ωb) and
the fluids (Ωf

1 and Ωf
2 ) are denoted by Γ bf

1 and Γ bf
2 , respectively (see Fig. 1).

In that follows, the whole of domain is denoted by Ω = Ωf
1 ∪Ωb ∪Ωf

2 .

2.2 Governing equations and numerical methods

For the sake of simplifying, the described trilayer system, which consists of a
heterogeneous anisotropic elastic layer Ωb and two homogeneous inviscid acoustic
fluid layers, will be all modeled as an elastic medium. At each point x in Ω, the
constitutive law equation is expressed by

σ = c̄ ε, with ε =
1
2
(gradu + (gradu)T ), (1)
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Fig. 1. Geometrical configuration of the trilayer model for ultrasound axial transmis-
sion test

where σ(x, t) and ε(x, t) denote the stress and strain tensors, respectively; u(x, t)
denotes the displacement vector; c(x) is the fourth-order elasticity tensor of the
fluid or solid depending on x: c̄(x) = cf for x ∈ Ωf

1 ∪ Ωf
2 and c̄(x) = c(x) for

x ∈ Ωb. The elasticity tensor of the fluid cf , which is homogeneous in Ωf
1 ∪Ωf

2 ,
is as an isotropic elastic tensor without shear modulus. The elasticity tensor of
the solid c depends on x and is determined by 6 elastic constants. Note that in
the next section, the probabilistic model only concerns the tensor of elasticity of
the domain Ωb.

By neglecting the body force field, the equation of motion in domain Ω reads

div σ = ρ ü, ∀x ∈ Ω, (2)

where ρ(x) is the mass density and div designates the divergence operator. The
domain Ω is at rest for t < 0. Note that no interface condition is required for
this elastoacoustic problem because both of fluid and bone domains are modeled
as elastic media.

An explicit time domain finite difference scheme, which is based on a stag-
gered grid formulation for the velocity and stress components, has been imple-
mented [9] to solve the two-dimensional problem (2). The scheme is second-order
in time and fourth-order in space. In order to avoid the wave reflected due to the
boundaries at finite distances, the PML Perfectly Matched Layer (PM) technique
has been is used.

The acoustic response will be captured at a linear array of receivers as shown
in Fig. 1. This emitter and receiver configuration is typical one in ultrasonic axial
transmission devices for characterizing the cortical layer of bone. When using the
axial transmission technique, the earliest event or wavelet (also called by First
Arriving Signal, FAS) of the multicomponent signal recorded at the receivers
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has been the most often investigated because it is considered as a relevant index
of bone status [18, 1, 8]. In this work, the quantity of interest to be studied will
be the FAS velocity.

2.3 Construction of a parametric probabilistic model for an
anisotropic elastic medium

Parametric probabilistic models are built by modeling the local physical proper-
ties of the medium. In the present study, only the uncertainty of elasticity tensor
C(x), of which the mean value is defined by c(x), will be considered. At each
point x ∈ Ωb, tensorC depends on 21 independent random variables. In practice,
it is impossible to have a sufficient large set of experimental data, especially for
bone material, to estimate the probability distribution of the random elasticity
tensor. Moreover, the random spatial variation of the elastic property should be
considered. To overcome this difficulty, we use Soize’s model whereby the prob-
ability distribution is built by full-filling the maximum entropy principle. Using
this principle, the stochastic elasticity tensor C(x) may be parameterized by its
mean values c(x) via its matrix representation, and by a minimal set of essen-
tial parameters which consists of only 4 parameters: one scalar dispersion level
δ and one vector λ that contains three spatial correlation lengths. The detail of
essential steps to estimate the random field C(x; c, δ,λ) at every point x ∈ Ωb

may be found in [16, 17] .

3 Numerical results

This section will present some illustrative results on studying the ultrasound
wave propagation through a random 4mm-thickness cortical bone layer. For this
simulation, the pressure source acts on a spatial length of 0.75 mm which is
horizontally placed in the fluid at 2 mm from the upper interface of the solid
layer. The excitation signal is a Gaussian with a center frequency fc = 1 MHz
[4]. The responses will be calculated at 14 receivers are regularly spaced with a
pitch of 0.8 mm and a distance of emitter to closest receiver equal to 11 mm.

Fluid and solid material properties Both fluid layers, which represent the soft
tissues and bone marrow, are considered to be an inviscid water with a mass
density ρf = 1 000 kg.m−3 and a bulk modulus Kf = 2.25 GPa.

The mean model of the bone material is assumed to be a transversely isotropic
medium. This behavior has been experimentally shown by different authors
[6, 14, 15] to be a realistic approximation of cortical bone properties. This ex-
ample uses data given by [6] who measured the homogenized bone proper-
ties by performing tensile and torsional tests with a mechanical testing sys-
tem on 18 different human femoral bone specimens. The components of the
mean elasticity tensor are given by: a11 = 23.05 GPa, a22 = a33 = 15.08 GPa,
a12 = a13 = 8.72 GPa, a44 = 3.3 GPa, a55 = a66 = 4.7 GPa.
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Parameters for the uncertain elasticity model As discussed before, this study
is restricted to only consider the uncertain heterogeneous in the plane (x1,x2).
Thus only the dispersion δ and two correlation lengths (λ1, λ2) need to be
introduced to control the random variation of elasticity field. For this example,
a correlation length λ1 = λ2 = 2×10−4 m, which may be seen as a typical center-
to-center distance between osteons in cortical bone, is used. Two different values
of the dispersion δ = 0.1 and δ = 0.3 will be investigated. Figure 2 shows a map
illustrating the spatial variation of Aij .
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Fig. 2. Spatial variation of the elasticity tensor components Aij
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Numerical parameters for the finite-difference solver The finite difference sim-
ulation is performed for each of 800 Monte-Carlo realizations. A rectangular
domain with size 0.03 × 0.01 m is used to be able to contain all details of the
model, i.e three layers with the source and receivers. The grid steps in both
x1- and x2-direction are chosen to be identical: ∆x1 = ∆x2 = 2 × 10−5 m to
ensure that grid intervals are smaller than about 1/8 of the smallest wavelength
in whole domains. As a result, the grid has 1501 × 501 points (about 1.4 × 106

degrees of freedom). The time step is chosen by using CFL stability condition
∆t < α∆/c, where α is a constant, ∆ is the smallest space interval and c is the
maximum wave velocity in the domain. For this study, the time step size is fixed
by ∆t = 10−9 s.

Results and discussions Fig. 3 (left) presents the VFAS obtained for all of 800
Monte-Carlo realizations. Two levels of dispersion δ = 1 and δ = 0.3 have been
considered. It can be seen that when δ = 0.1, the values of VFAS oscillate around
the one corresponding to the mean model which is shown as the red continuous
line (Vmean

FAS = 3606 m.s−1). When the dispersion is higher (δ = 0.3), the mea-
sured values of VFAS are globally decrease. It may be explained by the fact that
when the heterogeneity of the medium is greater, the scattering phenomenon be-
comes more significant and may modify the global wave velocity in the domain.
In addition, we obtained a greater dispersion of VFAS is more important in the
case δ = 0.3 than the one in the case δ = 0.1.

In Fig. 3 (right), the probability density functions of VFAS are computed
for both cases. One may state that the probability density function of VFAS

strongly depends on the dispersion δ. It means that in the practice, neglecting
the uncertain heterogeneity in bone may lead to a poor prediction of the mean
value of mechanical properties by using VFAS as a index.
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Fig. 3. (left) Values of VFAS evaluated at each realization; the solid line is obtained for
the homogeneous material properties; (right) probability density functions of VFAS
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4 Conclusion

The heterogeneity of bone’s mechanical properties is significant and need to be
considered when studying the sensitivity of ultrasound response in cortical long
bone. As the statistical data on real bone material is hardly found, a parametric
probabilistic method, which is based on the maximum entropy principle, has
been used to generate an optimal probabilistic model for taking into account
the uncertainties of bone elasticity. A explicit FDTD solver has been developed
for simulating the wave propagation in a transversely isotropic heterogeneous
medium in the time domain. It has been shown that the FAS velocity is very
sensitive to dispersion of the bone’s elasticity tensor in statistic sense. Detailed
study need to be carried out and will be presented in a forthcoming paper.

Although the uncertain elastic model of the plate presented in this paper
was developed to study behavior of cortical long bone, this procedure is of wider
interest and may be applied to the characterization of other materials.
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