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1 Introduction

This text presents some basic notions in symplectic geometry, Poisson geometry, Hamiltonian

systems, Lie algebras and Lie groups actions on symplectic or Poisson manifolds, momentum

maps and their use for the reduction of Hamiltonian systems. It should be accessible to readers

with a general knowledge of basic notions in differential geometry. Full proofs of many results

are provided.

1.1 Contents of the paper

Symplectic and Poisson manifolds are defined in Sections 2 and 3, where their basic properties

are given, often with detailed proofs. Darboux theorem and the main results about the local

structure of Poisson manifolds, however, are given without proof. Actions of a Lie group or of

a Lie algebra on a smooth manifold and, when this manifold is endowed with a symplectic or a

Poisson structure, symplectic, Poisson and Hamiltonian actions are introduced in Section 4. For

Hamiltonian actions of a Lie group on a connected symplectic manifold, the equivariance of the

momentum map with respect to an affine action of the group on the dual of its Lie algebra is

proven, and the notion of symplectic cocycle is introduced. We prove (4.2.14) that given a Lie

algebra symplectic cocycle, there exists on the associated connected and simply connected Lie

group a unique corresponding Lie group symplectic cocycle. The Hamiltonian actions of a Lie

group on its cotangent bundle obtained by lifting the actions of the group on itself by translations

on the left and on the right are fully discussed in Subsection 4.5. We prove that there exists

a two-parameter family of deformations of these actions into a pair of mutually symplectically

orthogonal Hamiltonian actions whose momentum maps are equivariant with respect to an affine

action involving any given Lie group symplectic cocycle (4.5.4). The use of first integrals and,

more generally, of momentum maps for the resolution of Hamiltonian dynamical systems, is

discussed in Section 5. For a system whose Hamiltonian is invariant under a Hamiltonian Lie

algebra action, the Marsden-Weinstein reduction procedure can be used: through the use of

Noether’s theorem, this procedure leads to a reduced symplectic manifold on which a reduced

Hamiltonian system can be solved in a first step. Another way of using the symmetries of the

system rests on the use of the Euler-Poincaré equation. This equation can be written for classical

Lagrangian mechanical systems when there exists a locally transitive Lie algebra action on their

configuration space, or for the corresponding Hamiltonian systems when the Lagrangian is hyper-

regular. However, the Euler-Poincaré equation does not always lead to a reduction of the system:

such a reduction occurs mainly when the Hamiltonian can be expressed as the momentum map

composed with a smooth function defined on the dual of the Lie algebra; the Euler-Poincaré

equation is then equivalent to the Hamilton equation written on the dual of the Lie algebra.
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Finally in Section 6 three classical examples are considered: the spherical pendulum, the motion

of a rigid body around a fixed point and the Kepler problem. For each example the Euler-Poincaré

equation is derived (for the Kepler problem a transitive Lie algebra action is obtained by adding

the Lie algebra of the group of positive homotheties to the Lie algebra of the group of rotations

around the attractive centre), the first integrals linked to symmetries are given. In this Section,

the classical concepts of vector calculus on an Euclidean three-dimensional vector space (scalar,

vector and mixed products) are used and their interpretation in terms of concepts such as the

adjoint or coadjoint action of the group of rotations are explained.

1.2 Further reading

Of course this text is just an introduction. Several important parts of the theory of Hamilto-

nian systems are not discussed here, for example completely integrable systems (although the

three examples presented belong to that class of systems), action-angle coordinates, monodromy,

singular reduction, the Kolmogorov-Arnold-Moser theorem, symplectic methods in Hydrody-

namics, . . . To extend his knowledge of the subject, the reader can consult the books by Ralph

Abraham and Jerry Marsden [1], Vladimir Arnold [4], Vladimir Arnold and Boris Khesin [5],

Patrick Iglesias-Zemmour [33], Camille Laurent-Gengoux, Anne Pichereau and Pol Vanhaecke

[42], Yvette Kosmann-Schwarzbach (editor) [38] on both the scientific and historical aspects of

the development of modern Poisson geometry, Izu Vaisman [64].

1.3 Notations

Our notations are those which today are generally used in differential geometry. For example,

the tangent and the cotangent bundles to a smooth n-dimensional manifold M are denoted, re-

spectively, by T M and by T ∗M, and their canonical projections on M by τM : T M → M and by

πM : T ∗M → M. The space of differential forms of degree p, i.e. the space of smooth sections

of
∧p(T ∗M), the p-th exterior power of the cotangent bundle, is denoted by Ωp(M). Similarly

the space of multivectors of degree p, i.e. the space of smooth sections of
∧p(TM), the p-th

exterior power of the tangent bundle, is denoted by Ap(M). By convention Ωp(M) = Ap(M) = 0

for p < 0 or p > n, and Ω0(M) = A0(M) =C∞(M,R). The exterior algebras of differential forms

and of multivectors are, respectively, Ω(M)=⊕n
p=0Ωp(M) and A(M)=⊕n

p=0Ap(M). Their main

properties are briefly recalled in Section 3.2.6.

When f : M → N is a smooth map between two smooth manifolds M and N, the natural lift of

f to the tangent bundles is denoted by T f : T M → T N. The same notation T f :
∧p T M →∧p T N

is used to denote its natural prolongation to the p-th exterior power of T M. The pull-back by f

of a smooth differential form α ∈ Ω(N) is denoted by f ∗α .

When f : M → N is a smooth diffeomorphism, the push-forward f∗X of a a smooth vector field

X ∈ A1(M) is the vector field f∗X ∈ A1(N) defined by

f∗X(y) = T f
(

X
(

f−1(y)
))

, y ∈ N .

Similarly, the pull-back of a smooth vector field Y ∈ A1(N) is the vector field f ∗Y ∈ A1(M)
defined by

f ∗Y (x) = T f−1
(

Y
(

f (x)
))

, x ∈ M .

The same notation is used for the push-forward of any smooth tensor field on M and the pull-back

of any smooth tensor field on N.
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2 Symplectic manifolds

2.1 Definition and elementary properties

Definition 2.1.1. A symplectic form on a smooth manifold M is a bilinear skew-symmetric dif-

ferential form ω on that manifold which satisfies the following two properties:

• the form ω is closed; it means that its exterior differential dω vanishes: dω = 0;

• the rank of ω is everywhere equal to the dimension of M; it means that for each point

x ∈ M and each vector v ∈ TxM, v 6= 0, there exists another vector w ∈ TxM such that

ω(x)(v,w) 6= 0.

Equipped with the symplectic form ω , the manifold M is called a symplectic manifold and de-

noted (M,ω). One says also that ω determines a symplectic structure on the manifold M.

2.1.2 Elementary properties of symplectic manifolds

Let (M,ω) be a symplectic manifold.

1. For each x ∈ M and each v ∈ TxM we denote by i(v)ω : TxM →R the map w 7→ ω(x)(v,w);
it is a linear form on the vector space TxM, in other words an element of the cotangent space

T ∗
x M. Saying that the rank of ω is everywhere equal to the dimension of M amounts to say that

the map v 7→ i(v)ω is an isomorphism of the tangent bundle T M onto the cotangent bundle T ∗M.

2. Let V be a finite-dimensional vector space, and η : V ×V →R be a skew-symmetric bilinear

form. As above, v 7→ i(v)η is a linear map defined on V , with values in its dual space V ∗. The

rank of η is the dimension of the image of that map. An easy result in linear algebra is that the

rank of a skew-symmetric bilinear form is always an even integer. When (M,ω) is a symplectic

manifold, for each x ∈ M that result can be applied to the bilinear form ω(x) : TxM×TxM → R,

and we see that the dimension of M must be an even integer 2n.

3. The Darboux theorem, due to the French mathematician Gaston Darboux (1842–1917),

states that in a 2n-dimensional symplectic manifold (M,ω) any point has a neighbourhood on

which there exists local coordinates (x1, . . . ,x2n) in which the (2n)× (2n)-matrix (ωi j) (1 ≤
i, j ≤ 2n) of components of ω is a constant, skew-symmetric invertible matrix. We recall that

ωi j = ω

(
∂

∂xi
,

∂

∂x j

)
.

These local coordinates can even be chosen in such a way that

ωi j =





1 if i− j = n,

−1 if i− j =−n,

0 if |i− j| 6= n,

1 ≤ i, j ≤ 2n .

Local coordinates which satisfy this property are called Darboux local coordinates.

4. On the 2n-dimensional symplectic manifold (M,ω), the 2n-form ωn (the n-th exterior

power of ω) is a volume form (it means that it is everywhere 6= 0). Therefore a symplectic

manifold always is orientable.
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2.2 Examples of symplectic manifolds

2.2.1 Surfaces

A smooth orientable surface embedded in an Euclidean 3-dimensional affine space, endowed

with the area form determined by the Euclidean metric, is a symplectic manifold.

More generally, any 2-dimensional orientable manifold, equipped with a nowhere vanishing

area form, is a symplectic manifold.

2.2.2 Symplectic vector spaces

A symplectic vector space is a finite-dimensional real vector space E equipped with a skew-

symmetric bilinear form ω : E ×E → R of rank equal to the dimension of E; therefore dimE is

an even integer 2n. Considered as a constant differential two-form on E, η is symplectic, which

allows us to consider (E,η) as a symplectic manifold.

The canonical example of a symplectic vector space is the following. Let V be a real n-

dimensional vector space and let V ∗ be its dual space. There exists on the direct sum V ⊕V ∗ a

natural skew-symmetric bilinear form

η
(
(x1,ζ1),(x2,ζ2)

)
= 〈ζ1,x2〉−〈ζ2,x1〉 .

The rank of η being 2n, (V ⊕V ∗,η) is a symplectic vector space.

Conversely, any 2n-dimensional symplectic vector space (E,ω) can be identified with the di-

rect sum of any of its n-dimensional vector subspaces V such that the symplectic form ω vanishes

identically on V ×V , with its dual space V ∗. In this identification, the symplectic form ω on E

becomes identified with the above-defined symplectic form η on V ⊕V ∗.

2.2.3 Cotangent bundles

Let N be a smooth n-dimensional manifold. With the notations of 1.3 for the canonical projec-

tions of tangent or cotangent bundles onto their base manifold and for prolongation to vectors of

a smooth map, we recall that the diagram

T (T ∗N)
T πN

✲ T N

T ∗N

τT∗N

❄ πN
✲ N

τN

❄

is commutative. For each w ∈ T (T ∗N), we can therefore write

ηN(w) =
〈
τT ∗N(w),TπN(w)

〉
.

This formula defines a differential 1-form ηN on the manifold T ∗N, called the Liouville 1-form.

Its exterior differential dηN is a symplectic form, called the canonical symplectic form on the

cotangent bundle T ∗N.

Let (x1, . . . ,xn) be a system of local coordinates on N, (x1, . . . ,xn, p1, . . . , pn) be the corre-

sponding system of local coordinates on T ∗N. The local expressions of the Liouville form ηN

and of its exterior differential dηN are

ηN =
n

∑
i=1

pi dxi , dηN =
n

∑
i=1

dpi ∧dxi .
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We see that (x1, . . . ,xn, p1, . . . , pn) is a system of Darboux local coordinates. Therefore any sym-

plectic manifold is locally isomorphic to a cotangent bundle.

2.2.4 The complex plane

The complex plane C is naturally endowed with a Hermitian form

η(z1,z2) = z1z2 , z1 and z2 ∈ C ,

where z2 is the conjugate of the complex number z2. Let us write z1 = x1 + iy1, z2 = x2 + iy2,

where x1, y1, x2, y2 are real, and separate the real and imaginary parts of η(z1,z2). We get

η(z1,z2) = (x1x2 + y1y2)+ i(y1x2 − y2x1) .

The complex plane C has an underlying structure of real, 2-dimensional vector space, which can

be identified with R2, each complex number z = x+ iy ∈C being identified with (x,y) ∈R2. The

real and imaginary parts of the Hermitian form η on C are, respectively, the Euclidean scalar

product g and the symplectic form ω on R2 such that

η(z1,z2) = (x1x2 + y1y2)+ i(y1x2 − y2x1)

= g
(
(x1,y1),(x2,y2)

)
+ iω

(
(x1,y1),(x2,y2)) .

2.2.5 Kähler manifolds

More generally, a n-dimensional Kähler manifold (i.e. a complex manifold of complex dimen-

sion n endowed with a Hermitian form whose imaginary part is a closed two-form), when con-

sidered as a real 2n-dimensional manifold, is automatically endowed with a Riemannian metric

and a symplectic form given, respectively, by the real and the imaginary parts of the Hermitian

form.

Conversely, it is not always possible to endow a symplectic manifold with a complex structure

and a Hermitian form of which the given symplectic form is the imaginary part. However, it is

always possible to define, on a symplectic manifold, an almost complex structure and an almost

complex 2-form with which the properties of the symplectic manifold become similar to those

of a Kähler manifold (but with change of chart functions which are not holomorphic functions).

This possibility was used by Mikhaı̈l Gromov [22] in his theory of pseudo-holomorphic curves.

2.3 Remarkable submanifolds of a symplectic manifold

Definitions 2.3.1. Let (V,ω) be a symplectic vector space, and W be a vector subspace of V .

The symplectic orthogonal of W is the vector subspace

orthW = {v ∈V ; ω(v,w) = 0 for all w ∈W } .

The vector subspace W is said to be

• isotropic if W ⊂ orthW ,

• coisotropic if W ⊃ orthw,

• Lagrangian if W = orthW ,

• symplectic if W ⊕orthW =V .
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2.3.2 Properties of symplectic orthogonality

The properties stated below are easily consequences of the above definitions

1. For any vector subspace W of the symplectic vector space (W,ω), we have orth(orthW ) =
W .

2. Let dimV = 2n. For any vector subspace W of V , we have dim(orthW ) = dimV −dimW =
2n−dimW . Therefore, if W is isotropic, dimW ≤ n; if W is coisotropic, dimW ≥ n; and if W is

Lagrangian, dimW = n.

3. Let W be an isotropic vector subspace of V . The restriction to W ×W of the symplectic

form ω vanishes identically. Conversely, if W is a vector subspace such that the restriction of ω
to W ×W vanishes identically, W is isotropic.

4. A Lagrangian vector subspace of V is an isotropic subspace whose dimension is the highest

possible, equal to half the dimension of V .

5. Let W be a symplectic vector subspace of V . Since W ∩ orthW = {0}, the rank of the

restriction to W ×W of the form ω is equal to dimW ; therefore dimW is even and, equipped

with the restriction of ω , W is a symplectic vector space. Conversely if, when equipped with the

restriction of ω , a vector subspace W of V is a symplectic vector space, we have W ⊕orthW =V ,

and W is a symplectic vector subspace of V in the sense of the above definition.

6. A vector subspace W of V is symplectic if and only if orthW is symplectic.

Definitions 2.3.3. Let (M,ω) be a symplectic manifold. For each x ∈ M,
(
TxM,ω(x)

)
is a

symplectic vector space. A submanifold N of M is said to be

• isotropic if for each x ∈ N, TxN is an isotropic vector subspace of the symplectic vector

space
(
TxM,ω(x)

)
,

• coisotropic if for each x ∈ N, TxN is a coisotropic vector subspace of
(
TxM,ω(x)

)
,

• Lagrangian if for each x ∈ N, TxN is a Lagrangian vector subspace of
(
TxM,ω(x)

)
,

• symplectic if for each x ∈ N, TxN is a symplectic vector subspace of
(
TxM,ω(x)

)
.

2.4 Hamiltonian vector fields on a symplectic manifold

Let (M,ω) be a symplectic manifold. We have seen that the map which associates to each vector

v ∈ T M the covector i(v)ω is an isomorphism from T M onto T ∗M. So, for any given differential

one-form α , there exists a unique vector field X such that i(X)ω = α . We are therefore allowed

to state the following definitions.

Definitions 2.4.1. Let (M,ω) be a symplectic manifold and f : M → R be a smooth function.

The vector field X f which satisfies

i(X f )ω =−d f

is called the Hamiltonian vector field associated to f . The function f is called a Hamiltonian for

the Hamiltonian vector field X f .

A vector field X on M such that the one-form i(X)ω is closed,

di(Ω) = 0 ,

is said to be locally Hamiltonian.
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Remarks 2.4.2. The function f is not the unique Hamiltonian of the Hamiltonian vector field

X f : any function g such that i(X f )ω =−dg is another Hamiltonian for X f . Given a Hamiltonian

f of X f , a function g is another Hamiltonian for X f if and only if d( f −g) = 0, or in other words

if and only if f −g keeps a constant value on each connected component of M

Of course, a Hamiltonian vector field is locally Hamiltonian. The converse is not true when

the cohomology space H1(M,R) is not trivial.

Proposition 2.4.3. On a symplectic manifold (M,ω), a vector field X is locally Hamiltonian if

and only if the Lie derivative L(X)ω of the symplectic form ω with respect to X vanishes:

L(X)ω = 0 .

The bracket [X ,Y ] of two locally Hamiltonian vector fields X and Y is Hamiltonian, and has

as a Hamiltonian the function ω(X ,Y ).

Proof. The well known formula which relates the the exterior differential d, the interior product

i(X) and the Lie derivative L(X) with respect to the vector field X

L(X) = i(X)d+di(X)

proves that when X is a vector field on a symplectic manifold (M,ω)

L(X)ω = di(X)ω ,

since dω = 0. Therefore i(X)ω is closed if and only if L(X)ω = 0.

Let X and Y be two locally Hamiltonian vector fields. We have

i
(
[X ,Y ]

)
ω = L(X)i(Y)ω − i(Y )L(X)ω

= L(X)i(Y)ω

=
(
i(X)d+di(X)

)
i(Y )ω

= di(X)i(Y)ω

=−d
(
ω(X ,Y )

)
,

which proves that ω(X ,Y ) is a Hamiltonian for [X ,Y ].

2.4.4 Expression in a system of Darboux local coordinates

Let (x1, . . . ,x2n) be a system of Darboux local coordinates. The symplectic form ω can be locally

writen as

ω =
n

∑
i=1

dxn+i ∧dxi ,

so we see that the Hamiltonian vector field X f associated to a smooth function f can be locally

written as

X f =
n

∑
i=1

∂ f

∂xn+i

∂

∂xi
− ∂ f

∂xi

∂

∂xn+i
.

A smooth curve ϕ drawn in M parametrized by the real variable t is said to be a solution of the

differential equation determined by X f , or an integral curve of X f , if it satisfies the equation,

called the Hamilton equation for the Hamiltonian f ,

dϕ(t)

dt
= X f

(
ϕ(t)

)
.
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Its local expression in the considered system of Darboux local coordinates is




dxi

dt
=

∂ f

∂xn+i
,

dxn+i

dt
=− ∂ f

∂xi
,

(1 ≤ i ≤ n) .

Definition 2.4.5. Let Φ : N → N be a diffeomorphism of a smooth manifold N onto itself. The

canonical lift of Φ to the cotangent bundle is the transpose of the vector bundles isomorphism

T (Φ−1) = (T Φ)−1 : T N → T N. In other words, denoting by Φ̂ the canonical lift of Φ to the

cotangent bundle, we have for all x ∈ N, ξ ∈ T ∗
x N and v ∈ TΦ(x)N,

〈
Φ̂(ξ ),v

〉
=
〈
ξ ,(TΦ)−1(v)

〉
.

Remark 2.4.6. With the notations of Definition 2.4.5, we have πN ◦ Φ̂ = Φ◦πN .

2.4.7 The flow of a vector field

Let X be a smooth vector field on a smooth manifold M. We recall that the reduced flow of X is

the map Φ, defined on an open subset Ω of R×M and taking its values in M, such that for each

x ∈ M the parametrized curve t 7→ ϕ(t) = Φ(t,x) is the maximal integral curve of the differential

equation
dϕ(t)

dt
= X

(
ϕ(t))

which satisfies ϕ(0) = x. For each t ∈ R, the set Dt = {x ∈ M;(t,x) ∈ Ω} is an open subset of M

and when Dt is not empty the map x 7→ Φt(x) = Φ(t,x) is a diffeomorphism of Dt onto D−t .

Definitions 2.4.8. Let N be a smooth manifold, T N and T ∗N be its tangent and cotangent bun-

dles, τN : T N → N and πN : T ∗N → N be their canonical projections. Let X be a smooth vector

field on N and {ΦX
t ; t ∈ R} be its reduced flow.

1. The canonical lift of X to the tangent bundle T N is the unique vector field X on T M whose

reduced flow {ΦX
t ; t ∈R} is the prolongation to vectors of the reduced flow of X . In other words,

for each t ∈ R,

ΦX
t = T ΦX

t ,

therefore, for each v ∈ T N,

X(v) =
d

dt

(
T ΦX

t (v)
) ∣∣

t=0
.

2. The canonical lift of X to the cotangent bundle T ∗N is the unique vector field X̂ on T ∗M

whose reduced flow {ΦX̂
t ; t ∈ R} is the lift to the cotangent bundle of the reduced flow {ΦX

t ; t ∈
R} of X . In other words, for each t ∈ R,

ΦX̂
t = Φ̂X

t ,

therefore, for each ξ ∈ T ∗N,

X̂(ξ ) =
d

dt

(
Φ̂X

t (ξ )
) ∣∣

t=0
.

Remark 2.4.9. Let X be a smooth vector field defined on a smooth manifold N. Its canonical lift

X to the tangent bundle T N (2.4.8) is related to the prolongation to vectors T X : T N → T (T N)
by the formula

X = κN ◦TX ,

where κN : T (TN)→ T (T N) is the canonical involution of the tangent bundle to T N (see [63]).
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Proposition 2.4.10. Let Φ : N → N be a diffeomorphism of a smooth manifold N onto itself and

Φ̂ : T ∗N → T ∗N the canonical lift of Φ to the cotangent bundle. Let ηN be the Liouville form on

T ∗N. We have

Φ̂∗ηN = ηN .

Let X be a smooth vector field on N, and X̂ be the canonical lift of X to the cotangent bundle.

We have

L(X̂)(ηN) = 0 .

Proof. Let ξ ∈ T ∗N and v ∈ Tξ (T
∗N). We have

Φ̂∗ηN(v) = ηN

(
T Φ̂(v)

)
=
〈
τT ∗N ◦T Φ̂(v),TπN ◦T Φ̂(v)

〉
.

But τT ∗N ◦T Φ̂ = Φ̂◦ τT∗N and T πN ◦T Φ̂ = T (πN ◦ Φ̂) = T (Φ◦πN). Therefore

Φ̂∗ηN(v) =
〈
Φ̂◦ τT∗N(v),T (Φ◦πN)(v)

〉
=
〈
τT ∗N(v),TπN(v)

〉
= ηN(v)

since Φ̂ = (TΦ−1)T . Now let X be a smooth vector field on N, {ΦX
t ; t ∈ R} be its reduced flow,

and X̂ be the canonical lift of X to the cotangent bundle. We know that the reduced flow of X̂ is

{Φ̂X
t ; t ∈ R}, so we can write

L(X̂)ηN =
d

dt

(
Φ̂X

t

∗
ηN

) ∣∣
t=0

.

Since Φ̂X
t

∗
ηN = ηN does not depend on t, L(X̂)ηN = 0.

The following Proposition, which presents an important example of Hamiltonian vector field

on a cotangent bundle, will be used when we will consider Hamiltonian actions of a Lie group

on its cotangent bundle.

Proposition 2.4.11. Let N be a smooth manifold, T ∗N be its cotangent bundle, ηN be the Liou-

ville form and dηN be the canonical symplectic form on T ∗N. Let X be a smooth vector field on

N and fX : T ∗N → R be the smooth function defined by

fX(ξ ) =
〈

ξ ,X
(
πN(ξ )

)〉
, ξ ∈ T ∗N .

On the symplectic manifold (T ∗N,dηN), the vector field X̂, canonical lift to T ∗N of the vector

field X on N in the sense defined above (2.4.8), is a Hamiltonian field which has the function fX

as a Hamiltonian. In other words

i(X̂)dηN =−d fX .

Moreover,

fX = i(X̂)ηN .

Proof. We have seen (Proposition 2.4.10) that L(X̂)ηN = 0. Therefore

i(X̂)dηN = L(X̂)ηN −di(X̂)ηN =−di(X̂)ηN ,

which proves that X̂ is Hamiltonian and admits i(X̂)ηN as Hamiltonian. For each ξ ∈ T ∗N

i(X̂)ηN(ξ ) = ηN(X̂)(ξ ) =
〈

ξ ,T πN

(
X̂(ξ )

)〉
=
〈

ξ ,X
(
πN(ξ )

)〉
= fX(ξ ) .
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2.5 The Poisson bracket

Definition 2.5.1. The Poisson bracket of an ordered pair ( f ,g) of smooth functions defined on

the symplectic manifold (M,ω) is the smooth function { f ,g} defined by the equivalent formulae

{ f ,g}= i(X f )dg =−i(Xg)d f = ω(X f ,Xg) ,

where X f and Xg are the Hamiltonian vector fields on M with, respectively, the functions f and g

as Hamiltonian.

Lemma 2.5.2. Let (M,ω) be a symplectic manifold, let f and g be two smooth functions on

M and let X f and Xg be the associated Hamiltonian vector fields. The bracket [X f ,Xg] is a

Hamiltonian vector field which admits { f ,g} as Hamiltonian.

Proof. This result is an immediate consequence of Proposition 2.4.3.

Proposition 2.5.3. Let (M,ω) be a symplectic manifold. The Poisson bracket is a bilinear com-

position law on the space C∞(M,R) of smooth functions on M, which satisfies the following

properties.

1. It is skew-symmetric: {g, f}=−{ f ,g}.

2. It satisfies the Leibniz identity with respect to the ordinary product of functions:

{ f ,gh}= { f ,g}h+g{ f ,h} .

3. It satisfies the Jacobi identity, which is a kind of Leibniz identity with respect to the Poisson

bracket itself: {
f ,{g,h}

}
=
{
{ f ,g},h

}
+
{

g,{ f ,h}
}
,

which can also be written, when the skew-symmetry of the Poisson bracket is taken into account,

{
{ f ,g},h

}
+
{
{g,h}, f

}
+
{
{h, f},g

}
= 0 .

Proof. The proofs of Properties (i) and (ii) are very easy and left to the reader. Let us proove

Property (iii).

We have {
{ f ,g},h

}
= ω(X{ f ,g},Xh) =−i(X{ f ,g})i(Xh)ω = i(X{ f ,g})dh .

By Lemma 2.5.2, X{ f ,g} = [X f ,Xg] so we have

{
{ f ,g},h

}
= i
(
[X f ,Xg]

)
dh = L

(
[X f ,Xg]

)
h .

We also have

{
{g,h}, f

}
=−L(X f )◦L(Xg)h ,

{
{h, f},g

}
= L(Xg)◦L(X f )h .

Taking the sum of these three terms, and taking into account the identity

L
(
[X f ,Xg]

)
= L(X f )◦L(Xg)−L(Xg)◦L(X f ) ,

we see that the Jacobi identity is satisfied.
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Remarks 2.5.4.

1. In a system of Darboux local coordinates (x1, . . . ,x2n), the Poisson bracket can be written

{ f ,g}=
n

∑
i=1

(
∂ f

∂xn+i

∂g

∂xi
− ∂ f

∂xi

∂g

∂xn+i

)
.

2. Let H be a smooth function on the symplectic manifold (M,ω), and XH be the associaled

Hamiltonian vector field. By using the Poisson bracket, one can write in a very concise way

the Hamilton equation for XH . Let t 7→ ϕ(t) be any integral curve of XH . Then for any smooth

function f : M → R

d f
(
ϕ(t)

)

dt
= {H, f}

(
ϕ(t)

)
.

By succesively taking for f the coordinate functions x1, . . . ,x2n of a system of Darboux local

coordinates, we recover the equations





dxi

dt
=

∂H

∂xn+i
,

dxn+i

dt
=−∂H

∂xi
,

(1 ≤ i ≤ n) .

3 Poisson manifolds

3.1 The inception of Poisson manifolds

Around the middle of the XX-th century, several scientists felt the need of a frame in which

Hamiltonian differential equations could be considered, more general than that of symplectic

manifolds. Paul Dirac for example proposed such a frame in his famous 1950 paper Generalized

Hamiltonian dynamics [17, 18].

In many applications in which, starting from a symplectic manifold, another manifold is built

by a combination of processes (products, quotients, restriction to a submanifold, . . .), there exists

on that manifold a structure, more general than a symplectic structure, with which a vector field

can be associated to each smooth function, and the bracket of two smooth functions can be

defined. It was also known that on a (odd-dimensional) contact manifold one can define the

bracket of two smooth functions.

Several generalizatons of symplectic manifolds were defined and investigated by André Lich-

nerowicz during the years 1975–1980. He gave several names to these generalizations: canoni-

cal, Poisson, Jacobi and locally conformally symplectic manifolds [45, 46].

In 1976 Alexander Kirillov published a paper entitled Local Lie algebras [35] in which he

determined all the possible structures on a manifold allowing the definition of a bracket with

which the space of smooth functions becomes a local Lie algebra. Local means that the value

taken by the bracket of two smooth functions at each point only depends of the values taken by

these functions on an arbitrarily small neighbourhood of that point. The only such structures

are those called by Lichnerowicz Poisson structures, Jacobi structures and locally conformally

symplectic structures.

In what follows we will mainly consider Poisson manifolds.
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3.2 Definition and structure of Poisson manifolds

Definition 3.2.1. A Poisson structure on a smooth manifold M is the structure determined by a

bilinear, skew-symmetric composition law on the space of smooth functions, called the Poisson

bracket and denoted by ( f ,g) 7→ { f ,g}, satisfying the Leibniz identity

{ f ,gh}= { f ,g}h+g{ f ,h}

and the Jacobi identity

{
{ f ,g},h

}
+
{
{g,h}, f

}
+
{
{h, f},g

}
= 0 .

A manifold endowed with a Poisson structure is called a Poisson manifold.

Proposition 3.2.2. On a Poisson manifold M, there exists a unique smooth bivector field Λ,

called the Poisson bivector field of M, such that for any pair ( f ,g) of smooth functions defined

on M, the Poisson bracket { f ,g} is given by the formula

{ f ,g}= Λ(d f ,dg) .

Proof. The existence, uniqueness and skew-symmetry of Λ are easy consequences of the the

Leibniz identity and of the skew-symmetry of the Poisson bracket. It does not depend on the

Jacobi identity.

Remark 3.2.3. The Poisson bivector field Λ determines the Poisson structure of M, since it

allows the calculation of the Poisson bracket of any pair of smooth functions. For this reason a

Poisson manifold M is often denoted by (M,Λ).

Definition 3.2.4. Let (M,Λ) be a Poisson manifold. We denote by Λ♯ : T ∗M → T M the vector

bundle homomorphism such that, for each x∈M and each α ∈ T ∗
x M, Λ♯(α) is the unique element

in TxM such that, for any β ∈ T ∗
x M,

〈
β ,Λ♯(α)

〉
= Λ(α,β ) .

The subset C=Λ♯(T ∗M) of the tangent bundle T M is called the characteristic field of the Poisson

manifold (M,Λ)

The following theorem, due to Alan Weinstein [66], proves that, loosely speaking, a Poisson

manifold is the disjoint union of symplectic manifolds, arranged in such a way that the union is

endowed with a differentiable structure.

Theorem 3.2.5. Let (M,Λ) be a Poisson manifold. Its characteristic field C is a completely

integrable generalized distribution on M. It means that M is the disjoint union of immersed

connected submanifolds, called the symplectic leaves of (M,Λ), with the following properties: a

leaf S is such that, for each x ∈ S, TxS = TxM ∩C; moreover, S is maximal in the sense that any

immersed connected submanifold S′ containing S and such that for each x ∈ S′, TxS′ = TxM∩C,

is equal to S.

Moreover, the Poisson structure of M determines, on each leaf S, a symplectic form ωS, such

that the restriction to S of the Poisson bracket of two smooth functions defined on M only depends

on the restrictions of these functions to S, and can be calculated as the Poisson bracket of these

restrictions, using the symplectic form ωS.

The reader may look at [66] or at [44] for a proof of this theorem.
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3.2.6 The Schouten-Nijenhuis bracket

Let M be a smooth n-dimensional manifold. We recall that the exterior algebra Ω(M) of differ-

ential forms on M is endowed with an associative composition law, the exterior product, which

associates to a pair (η,ζ ), with η ∈ Ωp(M) and ζ ∈ Ωq(M) the form η ∧ζ ∈ Ωp+q(M), with the

following properties.

1. When p = 0, η ∈ Ω0(M) ≡C∞(M,R); the exterior product η ∧ζ is the usual product ηζ of

the differential form ζ of degree q by the function η .

2. The exterior product satisfies

ζ ∧η = (−1)pqη ∧ζ .

3. When p ≥ 1 and q ≥ 1, η ∧ζ evaluated on the p+q vector fields vi ∈ A1(M) (1 ≤ i ≤ p+q)
is expressed as

η ∧ζ (v1, . . . ,vp+q) = ∑
σ∈S(p,q)

ε(σ)η(vσ(1), . . . ,vσ(p))ζ (vσ(p+1), . . . ,vσ(p+q)) .

We have denoted by S(p,q) the set of permutations σ of {1, . . . , p+q} which satisfy

σ(1)< σ(2)< · · ·< σ(p) and σ(p+1)< σ(p+2)< · · ·< σ(p+q) ,

and set

ε(σ) =

{
1 if σ is even,

−1 if σ is odd.

The exterior algebra Ω(M) is endowed with a linear map d : Ω(M)→ Ω(M) called the exterior

differential, with the following properties.

1. The exterior differential d is a graded map of degree 1, which means that d
(
Ωp(M)

)
⊂

Ωp+1(M).

2. It is a derivation of the exterior algebra Ω(M), which means that when η ∈ Ωp(M) and

ζ ∈ Ωq(M),
d(η ∧ζ ) = (dη)∧ζ +(−1)pη ∧dζ .

3. It satisfies

d◦d = 0 .

Similarly, the exterior algebra A(M) of smooth multivector fields on M is endowed with an

associative composition law, the exterior product, which associates to a pair (P,Q), with P ∈
Ap(M) and Q ∈ Aq(M), the multivector field P∧Q ∈ Ap+q(M). It is defined by the formulae

given above for the exterior product of differential forms, the only change being the exchange of

the roles of Ωp(M) and Ap(M). Its properties are essentially the same as those of the exterior

product of differential forms.

There is a natural pairing of elements of same degree in A(M) and in Ω(M). It is first defined

for decomposable elements: let η = η1 ∧· · ·∧ηp ∈ Ωp(M) and P = X1 ∧· · ·∧Xp ∈ Ap(M). We

set

〈η,P〉= det
(
〈ηi,X j〉

)
.

Then this pairing can be uniquely extended to Ωp(M)×Ap(M) by bilinearity.

With any P ∈ Ap(M) we can associate a graded endomorphism i(P) of the exterior algebra of

differential forms Ω(M), of degree −p, which means that when η ∈ Ωq(M), i(P)η ∈ Ωq−p(M).
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This endomorphism, which extends to multivector fields the interior product of forms with a

vector field, is determined by the formula, in which P ∈ Ap(M), η ∈ Ωq(M) and R ∈ Aq−p(M),

〈
i(P)η,R

〉
= (−1)(p−1)p/2〈η,P∧Q〉 .

Besides the exterior product, there exists on the graded vector space A(M) of multivector fields

another bilinear composition law, which naturally extends to multivector fields the Lie bracket of

vector fields. It associates to P ∈ Ap(M) and Q ∈ Aq(M) an element denoted [P,Q]∈ Ap+q−1(M),
called the Schouten-Nijenhuis bracket of P and Q. The Schouten-Nijenhuis bracket [P,Q] is de-

fined by the following formula, which gives the expression of the corresponding graded endo-

morphism of Ω(M),

i
(
[P,Q]

)
=
[[

i(P),d
]
, i(Q)

]
.

The brackets in the right hand side of this formula are the graded commutators of graded en-

domorphisms of Ω(M). Let us recall that if E1 and E2 are graded endomorphisms of Ω(M) of

degrees e1 and e2 respectively, their graded commutator is

[E1,E2] = E1 ◦E2 − (−1)e1e2E2 ◦E1 .

The following properties of the Schouten-Nijenhuis bracket can be deduced from the above for-

mulae.

1. For f and g ∈ A0(M) =C∞(M,R), [ f ,g] = 0.

2. For a vector field V ∈ A1(M), q ∈ Z and Q ∈ Aq(M), the Schouten-Nijenhuis bracket [V,Q] is

the Lie derivative L(V )(Q).

3. For two vector fields V and W ∈ A1(M,E), the Schouten-Nijenhuis bracket [V,W ] is the usual

Lie bracket of these vector fields.

4. For all p and q ∈ Z, P ∈ Ap(M), Q ∈ Aq(M),

[P,Q] =−(−1)(p−1)(q−1)[Q,P] .

5. Let p ∈ Z, P ∈ Ap(M). The map Q 7→ [P,Q] is a derivation of degree p− 1 of the graded

exterior algebra A(M). In other words, for q1 and q2 ∈ Z, Q1 ∈ Aq1(M) and Q2 ∈ Aq2(M),

[P,Q1∧Q2] = [P,Q1]∧Q2 +(−1)(p−1)q1Q1 ∧ [P,Q2] .

6. Let p, q and r ∈ Z, P ∈ Ap(M), Q ∈ Aq(M) and R ∈ Ar(M). The Schouten-Nijenhuis bracket

satisfies the graded Jacobi identity

(−1)(p−1)(r−1)
[
[P,Q],R

]
+(−1)(q−1)(p−1)

[
[Q,R],P

]

+(−1)(r−1)(q−1)
[
[R,P],Q

]

= 0 .

For more information about the Schouten-Nijenhuis bracket, the reader may look at [40] or [49].

Proposition 3.2.7. Let Λ be a smooth bivector field on a smooth manifold M. Then Λ is a Poisson

bivector field (and (M,Λ) is a Poisson manifold) if and only if [Λ,Λ] = 0.

Proof. We define the vector bundle homomorphism Λ♯ : T ∗M → T M by setting, for all x ∈ M, α
and β ∈ T ∗

x M, 〈
β ,Λ♯(α)

〉
= Λ(α,β ) .
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For any pair ( f ,g) of smooth functions we set

X f = Λ♯(d f ) , { f ,g}= i(X f )(dg) = Λ(d f ,dg) .

This bracket is a bilinear skew-symmetric composition law on C∞(M,R) which satisfies the

Leibniz identity. Therefore Λ is a Poisson bivector field if and only if the above defined bracket

of functions satisfies the Jacobi identity.

Let f , g and h be three smooth functions on M. We easily see that X f and { f ,g} can be

expressed in terms of the Schouten-Nijenhuis bracket. Indeed we have

X f =−[Λ, f ] =−[ f ,Λ] , { f ,g}=
[
[Λ, f ],g

]
.

Therefore
{
{ f ,g},h

}
=

[[
Λ,
[
[Λ, f ],g

]]
,h

]
.

By using the graded Jacobi identity satisfied by Schouten-Nijenhuis bracket, we see that

[
Λ,
[
[Λ, f ],g

]]
=−

[
[g,Λ], [ f ,Λ]

]
+2
[[
[Λ,Λ], f

]
,g
]
.

Using the equalities X f =−[Λ, f ] =−[ f ,Λ] and Xg =−[Λ,g] =−[g,Λ] we obtain

{
{ f ,g},h

}
=
[
[X f ,Xg],h

]
+2

[[[
[Λ,Λ], f

]
,g
]
,h

]

= L
(
[X f ,Xg]

)
h+2

[[[
[Λ,Λ], f

]
,g
]
,h

]
.

On the other hand, we have

{
{g,h}, f

}
=−L(X f )◦L(Xg)h ,

{
{h, f},g

}
= L(Xg)◦L(X f )h .

Taking into account the equality

L
(
[X f ,Xg]

)
= L(X f )◦L(Xg)−L(Xg)◦L(X f )

we obtain
{
{ f ,g},h

}
+
{
{g,h}, f

}
+
{
{h, f},g

}
= 2

[[[
[Λ,Λ], f

]
,g
]
,h

]
.

By using the formula which defines the Schouten-Nijenhuis bracket, we check that for any P ∈
A3(M) [[

[P, f ],g
]
,h
]
= P(d f ,dg,dh) .

Therefore {
{ f ,g},h

}
+
{
{g,h}, f

}
+
{
{h, f},g

}
= 2[Λ,Λ](d f ,dg,dh) ,

so Λ is a Poisson bivector field if and only if [Λ,Λ] = 0.
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3.3 Some properties of Poisson manifolds

Definitions 3.3.1. Let (M,Λ) be a Poisson manifold.

1. The Hamiltonian vector field associated to a smooth function f ∈ C∞(M,R) is the vector

field X f on M defined by

X f = Λ♯(d f ) .

The function f is called a Hamiltonian for the Hamiltonian vector field X f .

2. A Poisson vector field is a vector field X which satisfies

L(X)Λ = 0 .

Example 3.3.2. On a symplectic manifold (M,ω) we have defined the Poisson bracket of smooth

functions. That bracket endows M with a Poisson structure, said to be associated to its symplectic

structure. The Poisson bivector field Λ is related to the symplectic form ω by

Λ(d f ,dg) = ω(X f ,Xg) , f and g ∈C∞(M,R) .

The map Λ♯ : T ∗M → T M such that, for any x ∈ M, α and β ∈ T ∗
x M,

〈
β ,Λ♯(α) = Λ(α,β )

is therefore the inverse of the map ω♭ : T M → T ∗M such that, for any x ∈ M, v and w ∈ TxM,

〈
ω♭(v),w

〉
=−

〈
i(v)ω,w

〉
= ω(w,v) .

Hamiltonian vector fields for the symplectic structure of M coincide with Hamiltonian vector

fields for its Poisson structure. The Poisson vector fields on the symplectic manifold (M,ω) are

the locally Hamiltonian vector fields. However, on a general Poisson manifold, Poisson vector

fields are more general than locally Hamiltonian vector fields: even restricted to an arbitrary

small neighbourhood of a point, a Poisson vector field may not be Hamiltonian.

Remarks 3.3.3.

1. Another way in which the Hamiltonian vector field X f associated to a smooth function f

can be defined is by saying that, for any other smooth function g on the Poisson manifold (M,Λ),

i(X f )(dg) = { f ,g} .

2. A smooth function g defined on the Poisson manifold (M,Λ) is said to be a Casimir if for

any other smooth function h, we have {g,h}= 0. In other words, a Casimir is a smooth function

g whose associated Hamiltonian vector field is Xg = 0. On a general Poisson manifold, there may

exist Casimirs other than the locally constant functions.

3. A smooth vector field X on the Poisson manifold (M,Λ) is a Poisson vector field if and only

if, for any pair ( f ,g) of smooth functions,

L(X)
(
{ f ,g}

)
=
{
L(X) f ,g

}
+
{

f ,L(X)g
}
.

Indeed we have

L(X)
(
{ f ,g}

)
= L(X)

(
Λ(d f ,dg)

)

=
(
L(X(Λ)

)
(d f ,dg)+Λ

(
L(X)(d f ),dg

)
+Λ

(
d f ,L(X)(dg)

)

=
(
L(X)(Λ)

)
(d f ,dg)+

{
L(X) f ,g

}
+
{

f ,L(X)g
}
.
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3. Any Hamiltonian vector field X f is a Poisson vector field. Indeed, if f is a Hamiltonian for

X f , g and h two other smooth functions,we have according to the Jacobi identity

L(X f )
(
{g,h}

)
=
{

f ,{g,h}
}
=
{
{ f ,g},h

}
+
{

g,{ f ,h}
}

=
{
L(X f )g,h

}
+
{

g,L(X f )h
}
.

4. Since the characteristic field of the Poisson manifold (M,Λ) is generated by the Hamiltonian

vector fields, any Hamiltonian vector field is everywhere tangent to the symplectic foliation. A

Poisson vector field may not be tangent to that foliation.

Proposition 3.3.4. Let (M,Λ) be a Poisson manifold, H ∈ C∞(M,R) be a smooth function

and XH = Λ♯(dH) ∈ A1(M) be the associated Hamiltonian vector field. A smooth function

g ∈ C∞(M,R) keeps a constant value on each integral curve of XH if and only if {H,g} = 0

identically. Such a function g is said to be a first integral of XH .

A specially important first integral of XH , called the energy first integral, is the Hamiltonian H.

Proof. Let ϕ : I → M be an integral curve of XH , defined on an open interval I of R. For each

t ∈ I
dϕ(t)

dt
= XH

(
ϕ(t)

)
.

The function g◦ϕ is smooth and satisfies

d(g◦ϕ)(t)

dt
= i(XH)(dg)

(
ϕ(t)

)
= {H,g}

(
ϕ(t)

)
.

Since I is connected, g ◦ϕ keeps a constant value if and only if, for each t ∈ I,
d(g◦ϕ)(t)

dt
= 0,

and the above equality proves that such is the case if and only if {H,g}
(
ϕ(t)

)
= 0. The indicated

result follows from the fact that for any point x ∈ M, there exists an integral curve ϕ : I → M of

XH and an element t in I such that ϕ(t) = x.

The skew-symmetry of the Poisson bracket implies {H,H}= 0, therefore the Hamiltonian H

is a first integral of XH .

Remark 3.3.5. Some Hamiltonian mechanical systems encountered in Mechanics, defined on

a Poisson manifold (M,Λ), have as Hamiltonian a smooth function H defined on R×M rather

than on the manifold M. Such a function H is said to be a time-dependent Hamiltonian. The

associated Hamiltonian vector field XH is no more an ordinary vector field on M, i.e. a smooth

map M → T M wich associates to each x ∈ M an element in TxM, but rather a time-dependent

vector field, i.e. a smooth map XH : R×M → T M such that, for each t ∈ R and each x ∈ M

XH(t,x) ∈ TxM. For each fixed value of t ∈ R, the map x 7→ XH(t,x) is the Hamiltonian vector

field on M whose Hamiltonian is the function Ht : M →R, defined by

Ht(x) = H(t,x) , x ∈ M .

Therefore

XH(t,x) = Λ♯
(
dHt

)
(x) , x ∈ M , t ∈ R .

A smooth parametrized curve ϕ : I → M, defined on an open interval I of R, is an integral curve

of the time-dependent vector field XH if for each t ∈ I it satisfies the non-autonomous differential

equation
dϕ(t)

dt
= XH

(
t,ϕ(t)

)
.
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The time-dependent Hamiltonian H : R×M →R is no more a first integral of XH since, for each

integral curve ϕ : I → M of XH and each t ∈ I,

d(H ◦ϕ)(t)

dt
=

∂H
(
t,ϕ(t)

)

∂ t
.

Proposition 3.3.6. Let (M1,Λ1) and (M2,Λ2) be two Poisson manifolds and let ϕ : M1 → M2 be

a smooth map. The following properties are equivalent.

1. For any pair ( f ,g) of smooth functions defined on M2

{ϕ∗ f ,ϕ∗g}M1
= ϕ∗{ f ,g}M2

.

2. For any smooth function f ∈C∞(M2,R) the Hamiltonian vector fields Λ♯
2(d f ) on M2 and

Λ♯
1

(
d( f ◦ϕ)

)
on M1 are ϕ-compatible, which means that for each x ∈ M1

Txϕ
(

Λ♯
1

(
d( f ◦ϕ)(x)

))
= Λ♯

2

(
d f
(
ϕ(x)

))
.

3. The bivector fields Λ1 on M1 and Λ2 on M2 are ϕ-compatible, which means that for each

x ∈ M1

Txϕ
(
Λ1(x)

)
= Λ2

(
ϕ(x)

)
.

A map ϕ : M1 → M2 which satisfies these equivalent properties is called a Poisson map.

Proof. Let f and g be two smooth functions defined on M2. For each x ∈ M1, we have

{ϕ∗ f ,ϕ∗g}M1
(x) = { f ◦ϕ,g◦ϕ}(x) = Λ1(x)

(
d( f ◦ϕ)(x),d(g◦ϕ)(x)

)

=
〈

d(g◦ϕ)(x),Λ♯
1

(
d( f ◦ϕ(x))

)〉
.

We have also

ϕ∗{ f ,g}M2
(x) = { f ,g}M2

(
ϕ(x)

)

=
〈

dg
(
ϕ(x)

)
,Λ∗

2

(
d f
(
ϕ(x)

))〉
.

These formulae show that Properties 1 and 2 are equivalent.

We recall that Txϕ
(
Λ1(x)

)
is, by its very definition, the bivector at ϕ(x) ∈ M2 such that, for

any pair ( f ,g) of smooth functions on M2

Txϕ
(
Λ1(x)

)(
d f
(
ϕ(x)

)
,dg
(
ϕ(x)

))
= Λ1

(
d( f ◦ϕ)(x),d(g◦ϕ)(x)

)
.

The above equalities therefore prove that Properties 2 and 3 are equivalent.

Poisson manifolds often appear as quotients of symplectic manifolds, as indicated by the fol-

lowing Proposition, due to Paulette Libermann [43].

Proposition 3.3.7. Let (M,ω) be a symplectic manifold and let ϕ : M → P be a surjective sub-

mersion of M onto a smooth manifold P whose fibres are connected (it means that for each y ∈ P,

ϕ−1(y) is connected). The following properties are equivalent.

1. On the manifold M, the distribution orth(kerT ϕ) is integrable.
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2. For any pair ( f ,g) of smooth functions defined on P, the Poisson bracket { f ◦ϕ,g ◦ϕ} is

constant on each fibre ϕ−1(y) of the submersion ϕ (with y ∈ P).

When these two equivalent properties are satisfied, there exists on P a unique Poisson structure

for which ϕ : M → P is a Poisson map (the manifold M being endowed with the Poisson structure

associated to its symplectic structure).

Proof. On the manifold M, kerT ϕ is a an integrable distribution of rank dimM −dimP whose

integral submanifolds are the fibres of the submersion ϕ . Its symplectic orthog(onal orth(kerT ϕ)
is therefore a distribution of rank dimP. Let f and g be two smooth functions defined on M2. On

M1, the Hamiltonian vector fields X f ◦ϕ and Xg◦ϕ take their values in orth(kerT ϕ). We have

[X f ◦ϕ ,Xg◦ϕ ] = X{ f ◦ϕ,g◦ϕ} .

Therefore [X f ◦ϕ ,Xg◦ϕ ] takes its values in orth(kerT ϕ) if and only if the function { f ◦ϕ,g◦ϕ} is

constant on each fibre ϕ−1(y) of the submersion ϕ . The equivalence of Properties 1 and 2 easily

follows.

Let us now assume that the equivalent properties 1 and 2 are satisfied. Since the map ϕ : M → P

is a submersion with connected fibres, the map which associates to each function f ∈C∞(M2,R)
the function f ◦ϕ is an isomorphism of C∞(M2,R) onto the subspace of C∞(M1,R) made by

smooth functions which are constant on each fibre of ϕ . The existence and unicity of a Poisson

structure on M2 for which ϕ is a Poisson map follows.

Remark 3.3.8. Poisson manifolds obtained as quotients of symplectic manifolds often come by

pairs. Let us assume indeed that (M,ω) is a symplectic manifold and that the above Proposition

can be applied to a smooth surjective submersion with connected fibres ϕ : M → P, and defines

a Poisson structure on P for which ϕ is a Poisson map. Since orth(kerT ϕ) is integrable, it

defines a foliation of M, which is said to be simple when the set of leaves Q of that foliation

has a smooth manifold structure such that the map ψ : M → Q, which associates to each point

in M the leaf through this point, is a submersion. Then the maps ϕ : M → P and ψ : M → Q

play similar parts, so there exists on Q a unique Poisson structure for which ψ is a Poisson map.

Alan Weinstein [66] has determined the links which exist between the local structures of the two

Poisson manifolds P and Q at corresponding points (that means, at points which are the images

of the same point in M by the maps ϕ and ψ).

Several kinds of remarkable submanifolds of a Poisson manifold can be defined [66]. The most

important are the coisotropic submanifolds, defined below.

Definition 3.3.9. A submanifold N of a Poisson manifold (M,Λ) is said to be coisotropic if for

any point x ∈ N and any pair ( f ,g) of smooth functions defined on a neighbourhood U of x in M

whose restrictions to U ∩N are constants, the Poisson bracket { f ,g} vanishes on U ∩N.

3.4 Examples of Poisson manifolds

3.4.1 Symplectic manifolds

We have seen above that any symplectic manifold is a Poisson manifold.
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3.4.2 Dual spaces of finite-dimensional Lie algebras

Let G be a finite-dimensional Lie algebra, and G∗ its dual space. The Lie algebra G can be

considered as the dual of G∗, that means as the space of linear functions on G∗, and the bracket

of the Lie algebra G is a composition law on this space of linear functions. This composition law

can be extended to the space C∞(G∗,R) by setting

{ f ,g}(x) =
〈

x,
[
d f (x),dg(x)

]〉
, f and g ∈C∞(G∗,R) , x ∈ G∗ .

This bracket on C∞(G∗,R) defines a Poisson structure on G∗, called its canonical Poisson struc-

ture. It implicitly appears in the works of Sophus Lie, and was rediscovered by Alexander Kir-

illov [34], Bertram Kostant [39] and Jean-Marie Souriau [60]. Its existence can be seen as an

application of Proposition 3.3.7. Let indeed G be the connected and simply connected Lie group

whose Lie algebra is G. We know that the cotangent bundle T ∗G has a canonical symplectic

structure. One can check easily that for this symplectic structure, the Poisson bracket of two

smooth functions defined on T ∗G and invariant with respect to the lift to T ∗G of the action of G

on itself by left translations, is too invariant with respect to that action. Application of Proposi-

tion 3.3.7, the submersion ϕ : T ∗G → G∗ being the left translation which, for each g ∈ G, maps

T ∗
g G onto T ∗

e G ≡ G∗, yields the above defined Poisson structure on G∗. If instead of translations

on the left, we use translation on the right, we obtain on G∗ the opposite Poisson structure. This

illustrates Remark 3.3.8, since, as we will see later, each one of the tangent spaces at a point

ξ ∈ T ∗G to the orbits of that point by the lifts to T ∗G of the actions of G on itself by translations

on the left and on the right, is the symplectic orthogonal of the other.

The symplectic leaves of G∗ equipped with the above defined Poisson structure are the coad-

joint orbits.

3.4.3 Symplectic cocycles

A symplectic cocycle of the Lie algebra G is a skew-symmetric bilinear map Θ̃ : G×G→R which

satisfies

Θ̃
(
[X ,Y ],Z

)
+ Θ̃

(
[Y,Z],X

)
+ Θ̃

(
[Z,X ],Y

)
= 0 .

The above defined canonical Poisson structure on G∗ can be modified by means of a symplectic

cocycle Θ̃ by defining the new bracket (see for example [44])

{ f ,g}
Θ̃
(x) =

〈
x,
[
d f (x),dg(x)

]〉
− Θ̃

(
d f (x),dg(x)) ,

where f and g ∈ C∞(G∗,R), x ∈ G∗. This Poisson structure is called the modified canonical

Poisson structure by means of the symplectic cocycle Θ̃. We will see in Section 4.5 that the

symplectic leaves of G∗ equipped with this Poisson structure are the orbits of an affine action

whose linear part is the coadjoint action, with an additional term determined by Θ̃.

4 Symplectic, Poisson and Hamiltonian actions

4.1 Actions on a smooth manifold

Let us first recall some definitions and facts about actions of a Lie algebra or of a Lie group on a

smooth manifold.
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Definition 4.1.1. An action on the left (resp. an action on the right) of a Lie group G on a smooth

manifold M is a smooth map Φ : G×M → M (respectively, Ψ : M×G → M) such that, for any

x ∈ M, g1 and g2 ∈ G, e ∈ G being the neutral element,

• for an action on the left

Φ
(
g1,Φ(g2,x)

)
= Φ(g1g2,x) , Φ(e,x) = x ,

• for an action on the right

Ψ
(
Ψ(x,g1),g2

)
= Ψ(x,g1g2) , Ψ(x,e) = x .

4.1.2 Consequences

Let Φ : G×M → M be an action on the left of the Lie group G on the smooth manifold M. For

each g ∈ G, we denote by Φg : M → M the map

Φg(x) = Φ(g,x) .

The map g 7→ Φg is a groups homomorphism of G into the group of smooth diffeomorphisms of

M. In other words, for each g ∈ G, Φg is a diffeomorphism of M, and we have

Φg ◦Φh = Φgh , (Φg)
−1 = Φg−1 , g and h ∈ G .

Similarly, let Ψ : M×G →M be an action on the right of the Lie group G on the smooth manifold

M. For each g ∈ G, we denote by Ψg : M → M the map

Ψg(x) = Ψ(x,g) .

The map g 7→Ψg is a groups anti-homomorphism of G into the group of smooth diffeomorphisms

of M. In other words, for each g ∈ G, Ψg is a diffeomorphism of M, and we have

Ψg ◦Ψh = Ψhg , (Ψg)
−1 = Ψg−1 , g and h ∈ G .

Definition 4.1.3. Let Φ : G×M → M be an action on the left (resp. let Ψ : M ×G → M be an

action of the right) of the Lie group G on the smooth manifold M. With each element X ∈G≡ TeG

(the tangent space to the Lie group G at the neutral element) we associate the vector field XM on

M defined by

XM(x) =





dΦ
(
exp(sX),x

)

ds

∣∣∣
s=0

if Φ is an action on the left,

dΨ
(
x,exp(sX)

)

ds

∣∣∣
s=0

if Ψ is an action on the right.

The vector field XM is called the fundamental vector field on M associated to X .

Definition 4.1.4. An action of a Lie algebra G on a smooth manifold M is a Lie algebras homo-

morphism ϕ of G into the Lie algebra A1(M) of smooth vector fields on M (with the Lie bracket

of vector fields as composition law). In other words, it is a linear map ϕ : G→ A1(M) such that

for each pair (X ,Y ) ∈ G×G,

ϕ
(
[X ,Y ]

)
=
[
ϕ(X),ϕ(Y)

]
.
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Remark 4.1.5. Let G be a Lie group. There are two natural ways in which the tangent space

TeG ≡ G to the Lie group G at the neutral element e can be endowed with a Lie algebra structure.

In the first way, we associate with each element X ∈ TeG the left invariant vector field XL on

G such that XL(e) = X ; its value at a point g ∈ G is XL(g) = T Lg(X), where Lg : G → G is

the map h 7→ Lg(h) = gh. We observe that for any pair (X ,Y) of elements in G the Lie bracket

[XL,Y L] of the vector fields XL and Y L on G is left invariant, and we define the bracket [X ,Y ] by

setting [X ,Y ] = [XL,Y L](e). This Lie algebra structure on G≡ TeG will be called the Lie algebra

structure of left invariant vector fields on G.

In the second way, we choose the right invariant vector fields on G XR and Y R, instead of the

left invariant vector fields XL and Y L. Since [XR,Y R](e) =−[XL,Y L](e), the Lie algebra structure

on G≡ TeG obtained in this way, called the Lie algebra structure of right invariant vector fields,

is the opposite of that of left invariant vector fields. We have therefore on TeG two opposite Lie

algebras structures, both equally natural. Fortunately, the choice of one rather than the other as

the Lie algebra G of G does not matter because the map X 7→ −X is a Lie algebras isomorphism

between these two structures.

Proposition 4.1.6. Let Φ : G×M → M be an action on the left (resp. let Ψ : M×G → M be an

action on the right) of a Lie group G on a smooth manifold M. We endow G ≡ TeG with the Lie

algebra structure of right invariant vector fields on G (resp, with the Lie algebra structure of left

invariant vector fields on G). The map ϕ : G→ A1(M) (resp. ψ : G→ A1(M)) which associates

to each element X of the Lie algebra G of G the corresponding fundamental vector field XM, is an

action of the Lie algebra G on the manifold M. This Lie algebra action is said to be associated

to the Lie group action Φ (resp. Ψ).

Proof. Let us look at an action on the left Φ. Let x ∈ M, and let Φx : G → M be the map

g 7→ Φx(g) = Φ(g,x).For any X ∈ TeG and g ∈ G, we have

XM

(
Φ(g,x)

)
=

d

ds
Φ
(
exp(sX),Φ(g,x)

) ∣∣
s=0

=
d

ds
Φ
(
exp(sX)g,x

) ∣∣
s=0

=
d

ds
Φ
(

Rg

(
exp(sX)

)
,x
) ∣∣∣

s=0
= T Φx ◦T Rg(X) .

We see that for each X ∈ TxG, the right invariant vector field XR on G and the fundamental vector

field XM on M are compatible with respect to the map Φx : G → M. Therefore for any pair (X ,Y)
of elements in TeG, we have [X ,Y ]M = [XM,YM]. In other words the map X 7→ XM is an action of

the Lie algebra G = TeG (equipped with the Lie algebra structure of right invariant vector fields

on G) on the manifold M.

For an action on the right Ψ, the proof is similar, G = TeG being this time endowed with the

Lie algebra structure of left invariant vector fields on G.

Proposition 4.1.7. Let Φ : G×M → M be an action on the left (resp. let Ψ : M ×G → M be

an action on the right) of a Lie group G on a smooth manifold M. Let XM be the fundamental

vector field associated to an element X ∈ G. For any g ∈ G, the direct image (Φg)∗(XM) (resp.

(Ψg)∗(XM)) of the vector field XM by the diffeomorphism Φg : M → M (resp. Ψg : M → M) is

the fundamnetal vector field (Adg X)M associated to Adg X (resp. the fundamental vector field

(Adg−1 X)M associated to Adg−1 X).
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Proof. For each x ∈ M

(Φg)∗(XM)(x) = T Φg

(
XM

(
Φ(g−1,x)

))

= T Φg

(
d

ds
Φ
(
exp(sX)g−1,x

) ∣∣
s=0

)

=
d

ds

(
Φ
(
gexp(sX)g−1,x

)) ∣∣∣
s=0

= (Adg X)M(x) ,

since gexp(sX)g−1 = exp(Adg X). The proof for the action on the right Ψ is similar.

4.2 Linear and affine representations

In this section, after recalling some results about linear and affine transformation groups, we

discuss linear and affine representations of a Lie group or of a Lie algebra in a finite-dimensional

vector space, which can be seen as special examples of actions.

4.2.1 Linear and affine transformation groups and their Lie algebras

Let E be a finite-dimensional vector space. The set of linear isomorphisms l : E → E will be

denoted by GL(E). We recall that equipped with the composition of maps

(l1, l2) 7→ l1 ◦ l2

as a composition law, GL(E) is a Lie group whose dimension is (dimE)2. Its Lie algebra, which

will be denoted by gl(E), is the set L(E,E) of linear maps f : E → E, with the commutator

( f1, f2) 7→ [ f1, f2] = f1 ◦ f2 − f2 ◦ f1

as a composition law.

A map a : E → E is called an affine map if it can be written as

a(x) = l(x)+ c , x ∈ E ,

the map l : E → E being linear, and c ∈ E being a constant. The affine map a is invertible if and

only if its linear part l is invertible, in other words if and only if l ∈ GL(E); when this condition

is satisfied, its inverse is

a−1(y) = l−1(y− c) , y ∈ E .

By identifying the invertible affine map a with the pair (l,c), with l ∈ GL(E) and c ∈ E, the set

of invertible affine maps of E onto itself becomes identified with GL(E)×E. The composition

law and the inverse map on this product (which is called the semi-direct product of GL(E) with

E) are

(l1,c1),(l2,c2) 7→ (
(
l1 ◦ l2, l1(c2)+ c1)

)
, (l,c)−1 =

(
l−1,−l−1(c)

)
.

The semi-direct product Aff(E) = GL(E)×E is a Lie group whose dimension is (dimE)2 +
dimE; its Lie algebra is the product aff(E) = L(E,E)×E, with the composition law

(
( f1,d1),( f2,d2)

)
7→
[
( f1,d1),( f2,d2)

]
=
(

f1 ◦ f2 − f2 ◦ f1, f1(d2)− f2(d1)
)
.

The adjoint representation is given by the formula

Ad(l,c)
(
( f ,d)

)
=
(
l ◦ f ◦ l−1, l(d)− l ◦ f ◦ l−1(d)

)
.
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Remark 4.2.2. The finite-dimensional vector space E can be considered as a smooth manifold

on which E itself transitively acts by translations. That action determines a natural trivialization

of the tangent bundle T E, the tangent space TxE at each point x ∈ E being identified with E. An

element a ∈ aff(E), in other words an affine map a : E → E, can therefore be considered as the

vector field on E whose value, at each x ∈ E, is a(x)∈ TxE ≡ E. A question naturally arises: how

the bracket of two elements a1 and a2 ∈ aff(E), for the Lie algebra structure of aff(E) defined

in 4.2.1, compares with the bracket of these two elements when considered as vector fields on

E? An easy calculation in local coordinates shows that the bracket [a1,a2] defined in 4.2.1 is the

opposite of the bracket of these two elements when considered as vector fields on E. Remark

4.2.8 below will explain the reason of that change of sign.

Definitions 4.2.3. Let G be a Lie group, G a Lie algebra and E a finite-dimensional vector space.

1. A linear representation (respectively, an affine representation) of the Lie group G in the

vector space E is a Lie groups homomorphism R : G → GL(E) of G in the Lie group GL(E) of

linear transformations of E (respectively, a Lie groups homomorphism A : G → Aff(E) of G in

the Lie group Aff(E) of affine transformations of E).

2. A linear representation (respectively, an affine representation) of the Lie algebra G in the

vector space E is a Lie algebras homomorphism r : G → gl(E) of the Lie algebra G in the Lie

algebra gl(E) of the group of linear transformations of E (resp, a Lie algebras homomorphism

a :G→ aff(E) of the Lie algebra G in the Lie algebra aff(E) of the group of affine transformations

of E).

Examples 4.2.4. Let G be a Lie group. The adjoint representation of G is the linear repre-

sentation of G in its Lie algebra G which associates, to each g ∈ G, the linear isomorphism

Adg ∈ GL(G)
Adg(X) = T Lg ◦T Rg−1(X) , (X ∈ G) .

The coadjoint representation of G is the contragredient of the adjoint representation. It associates

to each g∈G the linear isomorphism Ad∗
g−1 ∈GL(G∗), which satisfies, for each ζ ∈G∗ and X ∈G,

〈
Ad∗

g−1(ζ ),X
〉
=
〈
ζ ,Adg−1(X)

〉
.

The adjoint representation of the Lie algebra G is the linear representation of G into itself which

associates, to each X ∈ G, the linear map adX ∈ gl(G)

adX(Y ) = [X ,Y ] , (Y ∈ G) .

The coadjoint representation of the Lie algebra G is the contragredient of the adjoint representa-

tion. It associates, to each X ∈ G, the linear map ad∗−X ∈ gl(G∗) which satisfies, for each ζ ∈ G∗

and X ∈ G, 〈
ad∗−X ζ ,Y

〉
=
〈
ζ , [−X ,Y ]

〉
.

The adjoint representation (respectively, the coadjoint representation) of G is the Lie algebra

representation associated to the adjoint representation (respectively, the coadjoint representation)

of the Lie group G, in the sense recalled below in the proof of 4.2.7.

Proposition 4.2.5. Let G be a Lie group and E a finite-dimensional vector space. A map A : G →
Aff(E) always can be written as

A(g)(x) = R(g)(x)+θ(g) , with g ∈ G , x ∈ E ,

where the maps R : G → GL(E) and θ : G → E are determined by A. The map A is an affine

representation of G in E if and only if the following two properties are satisfied:
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• R : G → GL(E) is a linear representation of G in the vector space E,

• the map θ : G → E is a one-cocycle of G with values in E, for the linear representation R;

it means that θ is a smooth map which satisfies, for all g and h ∈ G,

θ(gh) = R(g)
(
θ(h)

)
+θ(g) .

When these two properties are satisfied, the linear representation R is called the linear part

of the affine representation A, and θ is called the one-cocycle of G associated to the affine

representation A.

Proof. Since Aff(E) = GL(E)×E, for each g ∈ G and x ∈ E, we have

A(g)(x) = R(g)(x)+θ(g) ,

where the maps R : G → GL(E) and θ : G → E are determined by A. By comparing A(gh) and

A(g) ◦A(h), for g and h ∈ G, using the composition law of Aff(E) recalled in subsection 4.2.1,

we easily check that A is an affine representation, which means that it is smooth and satisfies,

for all g and h ∈ G, A(gh) = A(g) ◦A(h), and A(e) = idE , if and only if the two above stated

properties are satisfied.

For linear and affine representations of a Lie algebra, we have the following infinitesimal ana-

logue of Proposition 4.2.5.

Proposition 4.2.6. Let G be a Lie algebra and E a finite-dimensional vector space. A linear map

a : G→ aff(E) always can be written as

a(X)(x) = r(X)(x)+Θ(X) , with X ∈ G , x ∈ E ,

where the linear maps r : G→ gl(E) and Θ : G→ E are determined by a. The map a is an affine

representation of G in E if and only if the following two properties are satisfied:

• r : G→ gl(E) is a linear representation of the Lie algebra G in the vector space E,

• the linear map Θ : G→ E is a one-cocycle of G with values in E, for the linear representa-

tion r; it means that Θ satisfies, for all X and Y ∈ G,

Θ
(
[X ,Y ]

)
= r(X)

(
Θ(Y )

)
− r(Y )

(
Θ(X)

)
.

When these two properties are satisfied, the linear representation r is called the linear part of

the affine representation a, and Θ is called the one-cocycle of G associated to the affine repre-

sentation a.

Proof. Since aff(E) = gl(E)×E = L(E,E)×E, for each X ∈ G and x ∈ E, we have

a(X)(x) = r(X)(x)+Θ(X) ,

where the linear maps r : G→ gl(E) = L(E,E) and Θ : G→ E are determined by a. By compar-

ing a
(
[X ,Y ]

)
and

[
a(X),a(Y)

]
, for X and Y ∈ G, using the expression of the bracket of aff(E)

recalled in subsection 4.2.1, we easily check that A is an affine representation, which means that

it is smooth and satisfies, for all X and Y ∈ G, a
(
[X ,Y ]

)
=
[
a(X),a(Y)

]
if and only if the two

above stated properties are satisfied.
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Proposition 4.2.7. Let A : G → Aff(E) be an affine representation of a Lie group G in a finite-

dimensional vector space E, and G be the Lie algebra of G. Let R : G → GL(E) and θ : G → E

be, respectively, the linear part and the associated cocycle of the affine representation A. Let

a : G→ aff(E) be the affine representation of the Lie algebra G associated (in the sense recalled

below in the proof) to the affine representation A : G → Aff(E) of the Lie group G. The linear

part of a is the linear representation r : G → gl(E) associated to the linear representation R :

G → GL(E), and the associated cocycle Θ : G→ E is related to the one-cocycle θ : G → E by

Θ(X) = Teθ
(
X(e)

)
, (X ∈ G) .

Proof. We recall that when we have a Lie groups homomorphism A : G → H of a Lie group G

into another Lie group H, the associated Lie algebras homomorphism a : G→H of Lie algebras

associates, to each X ∈ G (seen as the space of left-invariant vector fields on G) the left-invariant

vector field a(X) on H whose value at the neutral element is TeA
(
X(e)

)
. Let X ∈ G. For each

t ∈ R and x ∈ E, we have

A
(
exp(tX)

)
(x) = R

(
exp(tX)

)
(x)+θ

(
exp(tX)

)
.

By taking the derivative of both sides of this equality with respect to t, then setting t = 0, we get

a(X)(x) = r(X)(x)+Teθ(X) .

Therefore the affine representation a has r as linear part and Θ = Teθ as associated one-cocycle.

Remark 4.2.8. Let A : G → Aff(E) be an affine representation of a Lie group G in a finite-

dimensional vector space E. The map Ã : G×E → E,

Ã(g,x) = A(g)(x) , g ∈ G , x ∈ E ,

is an action on the left of G on E. Proposition 4.2.7 shows that a : G→ aff(E) is a Lie algebras

homomorphism, the Lie algebra structure of aff(E) being the structure defined in 4.2.1. For

each X ∈ G, the element a(X) ∈ aff(E), when considered as an affine vector field on E, is the

fundamental vector field associated to X , for the action on the left Ã of G on E. We have seen

(4.1.6) that for an action on the left of G on E, the map which associates to each X ∈ G the

corresponding fundamental vector field on E is a Lie algebras homomorphism of the Lie algebra

of right invariant vector fields on G into the Lie algebra of smooth vector fields on E. This

explains why, as was observed in 4.2.2, the Lie algebra structure of aff(E) defined in 4.2.1 is the

opposite of the Lie algebra structure which exists on the space of affine vector fields on E. Of

course, this remark is also valid for a linear representation R : G → GL(E), since GL(E) is a Lie

subgroup of Aff(E).

Definitions 4.2.9.

1. Let R : G → GL(E) be a linear representation of a Lie group G in a finite-dimensional

vector space E. A one-coboundary of G with values in E, for the linear representation R, is a

map θ : G → E which can be expressed as

θ(g) = R(g)(c)− c , (g ∈ G) ,

where c is a fixed element in E.

2. Ler r : G→ gl(E) be a linear representation of a Lie algebra G in a finite-dimensional vector

space E. A one-coboundary of G with values in E, for the linear representation r, is a linear map

Θ : G→ E which can be expressed as

Θ(X) = r(X)(c) , (X ∈ G) ,

where c is a fixed element in E.
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Remark 4.2.10. The reader will easily check the following properties. A one-coboundary of

a Lie group G with values in a finite-dimensional vector space E for a linear representation

R : G→GL(E), automatically is a one-cocycle in the sense of 4.2.5. Similarly, a one-coboundary

of a Lie algebra G with values in E for the linear representation r : G→ gl(E), automatically is a

one-cocycle of G in the sense of 4.2.6. When a Lie group one-cocycle θ : G → E is in fact a one-

coboundary, the associated Lie algebra one-cocycle Θ = Teθ is a Lie algebra one-coboundary.

Proposition 4.2.11. Let A : G → Aff(E) be an affine representation of a Lie group G in a finite-

dimensional vector space E, R : G → GL(E) be its linear part and θ : G → E be the associated

Lie group one-cocycle. The following properties are equivalent.

1. There exists an element c ∈ E such that, for all g ∈ G and x ∈ E,

A(g)(x) = R(g)(x+ c)− c .

2. The one-cocycle θ : G → E is in fact a 1-coboudary, whose expression is

θ(g) = R(g)(c)− c .

Proof. Since for each g ∈ G R(g) is linear, Property 1 can be written

A(g)(x) = R(g)(x)+
(
R(g)(c)− c

)
.

Therefore Property 1 is true if and only if θ(g) = R(g)(c)− c, in other words if and only if

Property 2 is true.

The following Proposition is the infinitesimal analogue, for affine representations of a Lie

algebra, of Proposition 4.2.11.

Proposition 4.2.12. Let a : G→ aff(E) be an affine representation of a Lie algebra G in a finite-

dimensional vector space E, r : G→ gl(E) be its linear part and Θ : G→ E be the associated Lie

algebra one-cocycle. The following properties are equivalent.

1. There exists an element c ∈ E such that, for all X ∈ G and x ∈ E,

a(X)(x) = r(X)(x+ c) .

2. The one-cocycle Θ : G→ E is in fact a 1-coboudary, whose expression is

Θ(X) = r(X)(c) .

Proof. Since for each X ∈ G r(X) is linear, Property (i) can be written

a(X)(x) = r(X)(x)+ r(X)(c) .

Therefore Property 1 is true if and only if Θ(X) = r(X)(c), in other words if and only if Property

2 is true.

Remark 4.2.13. Let us say that an affine representation A : G → Aff(E) of a Lie group G in a

finite-dimensional vector space E is equivalent to its linear part R : G → GL(E) if there exists a

translation T : E → E such that, for all g ∈ G and x ∈ E,

A(g)(x) = T−1 ◦R(g)◦T(x) .

Proposition 4.2.11 expresses the fact that the affine representation A is equivalent to its linear part

R if and only if its associated Lie group cocycle θ is a one-coboundary. The reader will easily

formulate a similar interpretation of Proposition 4.2.12.
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Proposition 4.2.14. Let G be a connected and simply connected Lie group, R : G → GL(E) be

a linear representation of G in a finite-dimensional vector space E, and r : G → gl(E) be the

associated linear representation of its Lie algebra G. For any one-cocycle Θ : G→ E of the Lie

algebra G for the linear representation r, there exists a unique one-cocycle θ : G → E of the

Lie group G for the linear representation R such that Θ = Teθ , in other words, which has Θ as

associated Lie algebra one-cocycle. The Lie group one-cocycle θ is a Lie group one-coboundary

if and only if the Lie algrebra one-cocycle Θ is a Lie algebra one-coboundary.

Proof. If θ : G → E is a Lie group one-cocycle such that Teθ = Θ we have, for any g ∈ G and

X ∈ G,

θ
(
gexp(tX)

)
= θ(g)+R(g)

(
θ
(
exp(tX)

))
.

By taking the derivative of both sides of this equality with respect to t, then setting t = 0, we see

that

Tgθ
(
T Lg(X)

)
= R(g)

(
Θ(x)

)
,

which proves that if it exists, the Lie group one-cocycle θ such that Teθ = Θ is unique.

For each g ∈ G let η(g) : TgG → E be the map

η(g)(X) = R(g)◦Θ◦TLg−1(X) , X ∈ TgG .

The map η is an E-valued differential one-form on G. Let us calculate its exterior differential

dη , which is an E-valued differential two-form on G (if the reader does not feel at ease with

E-valued differential forms on G, he can consider separately the components of η in a basis of

E, which are ordinary real-valued one-forms). Let X and Y be two left-invariant vector fields on

G. We have, for each g ∈ G,

dη(g)
(
X(g),Y(g)

)
= L(X)

(
〈η,Y 〉(g)

)
−L(Y )

(
〈η,X〉(g)

)
−
〈
η, [X ,Y ]

〉
(g) .

But

〈η,Y 〉(g) = R(g)◦Θ(Y) , 〈η,X〉(g) = R(g)◦Θ(X) ,

therefore

L(X)
(
〈η,Y 〉(g)

)
=

d

dt

(
R
(
gexp(tX)

)
◦Θ(Y )

) ∣∣∣
t=0

= R(g)◦ r(X)◦Θ(Y) .

Similarly

L(Y )
(
〈η,X〉(g)

)
= R(g)◦ r(Y)◦Θ(X) ,

and 〈
η, [X ,Y ]

〉
(g) = R(g)◦Θ

(
[X ,Y ]

)
,

Since the condition which expresses that Θ is a Lie algebra one-cocycle for the linear represen-

tation r asserts that

r(X)◦Θ(Y)− r(Y )◦Θ(X)−Θ
(
[X ,Y ]

)
= 0 ,

we conclude that the one-form η is closed, i.e. satisfies dη = 0. Since G is assumed to be simply

connected, the one-form η is exact, and since G is assumed to be connected, for any g in G, there

exists a smooth parametrized curve γ : [0,T ]→ G such that γ(0) = e and γ(T ) = g. Let us set

θ(g) =

∫ T

0
η

(
dγ(t)

dt

)
dt .
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Since η is exact, the right hand side of the above equality only depends on the end points γ(0)= e

and γ(T ) = g of the parametrized curve γ , which allows us to define θ(g) by that equality. So

defined, γ : G → E is a smooth map. Its very definition shows that Teθ = Θ. If g and h are two

elements in G, let γ : [0,T2]→ G be a smooth parametrized curve such that 0 < T1 < T2, γ(0) = e,

γ(T1) = g and γ(t2) = gh. We have

θ(gh) =
∫ T2

0
η

(
dγ(t)

dt

)
dt =

∫ T1

0
η

(
dγ(t)

dt

)
dt +

∫ T2

T1

η

(
dγ(t)

dt

)
dt .

Observe that ∫ T2

0
η

(
dγ(t)

dt

)
dt = θ(g)

and that

∫ T2

T1

η

(
dγ(t)

dt

)
dt = R(g)◦

∫ T2

T1

η

(
d
(
Lg−1 ◦ γ(t)

)

dt

)
dt = R(g)

(
θ(h)

)
,

which proves that θ is a Lie group one-cocycle.

We already know that if θ is a Lie group one-coboundary, Θ= Teθ is a Lie algebra coboundary.

Conversely let us assume that Θ is a Lie algebra one-coboundary. We have, for each X ∈ G,

Θ(X) = r(X)(c) ,

where c is a fixed element in E. Let g ∈ G and let γ : [0,T ]→ G be a smooth parametrized curve

in G such that γ(0) = e and γ(T ) = g. We have

θ(g) =
∫ T

0
η

(
dγ(t)

dt

)
dt =

∫ t

0
R
(
γ(t)

)
◦ r

(
T L(

γ(t)
)−1

dγ(t)

dt

)
(c)dt .

But by taking the derivative with respect to t of the two sides of the equality

R
(
gexp(tX)

)
= R(g)◦R

(
exp(tX)

)

and then setting t = 0, we see that

d

dt
R
(
γ(t)

)
= R

(
γ(t)

)
◦ r

(
T L(

γ(t)
)−1

dγ(t)

dt

)
.

Therefore θ is a Lie group one-coboundary since we have

θ(g) =

∫ T

0

dR
(
γ(t)

)

dt
(c)dt = R(g)(c)−R(e)(c) = R(g)(c)− c .

4.3 Poisson, symplectic and Hamiltonian actions

Definitions 4.3.1.

1. An action ϕ of a Lie algebra G on a Poisson manifold (M,Λ) is called a Poisson action if for

any X ∈ G the corresponding vector field ϕ(X) is a Poisson vector field. When the Poisson man-

ifold is in fact a symplectic manifold (M,ω), Poisson vector fields on M are locally Hamiltonian

vector fields and a Poisson action is called a symplectic action.
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2. An action Φ (either on the left or on the right) of a Lie group G on a Poisson manifold

(M,Λ) is called a Poisson action when for each g ∈ G,

(Φg)∗Λ = Λ .

When the Poisson manifold (M,Λ) is in fact a symplectic manifold (M,ω), a Poisson action is

called a symplectic action; the fibre bundles isomorphism Λ♯ : T ∗M → T M being the inverse of

ω♭ : T M → T ∗M, we also can say that an action Φ of a Lie group G on a symplectic manifold

(M,ω) is called a symplectic action when for each g ∈ G,

(Φg)
∗ω = ω .

Proposition 4.3.2. We assume that G is a connected Lie group which acts by an action Φ, either

on the left or on the right, on a Poisson manifold (M,Λ), in such a way that the corresponding

action of its Lie algebra G is a Poisson action. Then the action Φ itself is a Poisson action.

Proof. Let X ∈ G. For each x ∈ M, the parametrized curve s 7→ Φexp(sX)(x) is the integral curve

of the fundamental vector field XM which takes the value x for s = 0. In other words, the reduced

flow of the vector field XM is the map, defined on R×M and taking its values in M,

(s,x) 7→ Φexp(sX)(x) .

According to a formula which relates inverse images of multivectors or differential forms with

respect to the flow of a vector field, with their Lie derivatives with respect to that vector field (see

for example [44], Appendix 1, section 3.4, page 351), for any s0 ∈ R

d

ds

((
(Φexp(sX))

∗(Λ)
)
(x)
) ∣∣∣

s=s0

=
(
(Φexp(s0X))

∗(L(XM)Λ
))

(x) = 0 ,

since L(XM)Λ = 0. Therefore for any s ∈ R,

(Φexp(sX))
∗Λ = (Φexp(−sX))∗Λ = Λ .

The Lie group G being connected, any g ∈ G is the product of a finite number of exponentials,

so (Φg)∗Λ = Λ.

4.3.3 Other characterizations of Poisson actions

Let Φ be an action, either on the left or on the right, of a Lie group G on a Poisson manifold

(M,Λ). The reader will easily prove that the following properties are equivalent. Therefore any

of these properties can be used as the definition of a Poisson action.

1. For each g ∈ G,

(Φg)∗Λ = Λ .

2. For each g ∈ G and f ∈C∞(M,R),

(Φg)∗(X f ) = X(Φg)∗( f ) .

3. For each g ∈ G, Φg : M → M is a Poisson map, which means that for each pair ( f1, f2) of

smooth functions on M,

{
(Φg)

∗ f1,(Φg)
∗ f2

}
= (Φg)

∗({ f1, f2}
)

;
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4. In the special case when the Poisson manifold (M,Λ) is in fact a symplectic manifold

(M,ω), for each g ∈ G,

(Φg)
∗ω = ω .

The reader will easily prove that when these equivalent properties are satisfied, the action of

the Lie algebra G of G which associates, to each X ∈ G, the fundamental vector field XM on M, is

a Poisson action.

Definitions 4.3.4.

1. An action ϕ of a Lie algebra G on a Poisson manifold (M,Λ) is called a Hamiltonian action

if for every X ∈ G the corresponding vector field ϕ(X) is a Hamiltonian vector field on M.

2. An action Φ (either on the left or on the right) of a Lie group G on a Poisson manifold (M,Λ)
is called a Hamiltonian action if it is a Poisson action (or a symplectic action when the Poisson

manifold (M,Λ) is in fact a symplectic manifold(M,ω)) and if, in addition, the associated action

ϕ of its Lie algebra is a Hamiltonian action.

Remarks 4.3.5.

1. A Hamiltonian action of a Lie algebra on a Poisson manifold is automatically a Poisson

action.

2. An action Φ of a connected Lie group G on a Poisson manifold such that the corresponding

action of its Lie algebra is Hamiltonian, automatially is a Hamiltonian action.

3. Very often, Hamiltonian actions of a Lie algebra (or of a Lie group) on the cotangent bundle

T ∗N to a smooth manifold N encountered in applications come from an action of this Lie algebra

(or of this Lie group) on the manifold N itself. Proposition 4.3.6 explains how an action on N

can be lifted to T ∗N into a Hamiltonian action.

Proposition 4.3.6. Let ϕ : G → A1(N) be an action of a finite-dimensional Lie algebra G on

a smooth manifold N. Let ϕ̂ : G → A1(T ∗N) be the map wich associates to each X ∈ G the

canonical lift to T ∗N of the vector field ϕ(X) on N (2.4.8). The map ϕ̂ is a Hamiltonian action

of G on (T ∗N,dηN) (where ηN is the Liouville form and dηN the canonical symplectic form on

T ∗N). For each X ∈ G, the smooth function fX : T ∗N → R

fX(ξ ) =
〈

ξ ,ϕ(X)
(
πN(ξ )

)〉
= i
(
ϕ̂(X)

)
ηN(ξ ) , ξ ∈ T ∗N ,

is a Hamiltonian for the vector field ϕ̂(X). Moreover, for each pair (X ,Y ) of elements in G,

{ fX , fY}= f[X ,Y ] .

Proof. Proposition 2.4.11 proves that for each X ∈ G the vector field ϕ̂(X) is Hamiltonian and

admits the function fX as Hamiltonian. This Proposition also shows that fX is given by the two

equivalent expressions

fX(ξ ) =
〈

ξ ,ϕ(X)
(
πN(ξ )

)〉
= i
(
ϕ̂(X)

)
ηN(ξ ) , ξ ∈ T ∗N .

Let (X ,Y) be a pair of elements in G. Since the vector fields ϕ̂(X) and ϕ̂(Y ) admit fX and fY as

Hamiltonians, Lemma 2.5.2 shows that
[
ϕ̂(X), ϕ̂(Y )

]
admits { fX , fY} as Hamiltonian. We have

{ fX , fY}= L
(
ϕ̂(X)

)
fY = L

(
ϕ̂(X)

)
◦ i
(
ϕ̂(Y )

)
ηN = i

[
ϕ̂(X), ϕ̂(Y )

]
ηN
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since, using 2.4.10, we see that L
(
ϕ̂(X)

)
ηN = 0. Therefore, for each ξ ∈ T ∗N,

{ fX , fY}(ξ ) =
〈

ξ ,TπN

(
[ϕ̂(X), ϕ̂(Y )](ξ )

)〉
=
〈
ξ , [X ,Y ]◦πN(ξ )

〉
= f[X ,Y ](ξ )

since T πN

(
[ϕ̂(X), ϕ̂(Y )](ξ )

)
= [X ,Y ]◦πN(ξ ). Since { fX , fY}= f[X ,Y ], the corresponding Hamil-

tonian vector fields
[
ϕ̂(X), ϕ̂(Y )

]
and ϕ̂

(
[X ,Y ]

)
are equal. In other words, ϕ̂ is a Lie algebra

action of G on (T ∗N,dηN).

Proposition 4.3.7. Let ϕ be a Hamiltonian action of a Lie algebra G on a Poisson manifold

(M,Λ). Let G∗ be the dual space of G. There exists a smooth map J : M → G∗ such that for each

X ∈ G the corresponding Hamiltonian vector field XM has the function JX : M → R, defined by

JX(x) =
〈
J(x),X

〉
, with x ∈ M ,

as Hamiltonian.

Such a map J : M → G∗ is called a momentum map for the Hamiltonian Lie algebra action ϕ .

When ϕ is the Lie algebra action associated to a Hamiltonian action Φ of a Lie group G on the

Poisson manifold (M,Λ), J is called a momentum map for the Hamiltonian Lie group action Φ.

Proof. Let (e1, . . . ,ep) be a basis of the Lie algebra G and(ε1, . . . ,ε p) be the dual basis of G∗.

Since ϕ is Hamiltonian, for each i (1 ≤ i ≤ p) there exists a Hamiltonian Jei
: M → R for the

Hamiltonian vector field ϕ(ei). The map J : M → G defined by

J(x) =
p

∑
i=1

Jei
ε i , x ∈ M ,

is a momentum map for ϕ .

The momentum map was introduced by Jean-Marie Souriau [60] and, in the Lagrangian for-

malism, by Stephen Smale [58].

4.4 Some properties of momentum maps

Proposition 4.4.1. Let ϕ be a Hamiltonian action of a Lie algebra G on a Poisson manifold

(M,Λ), and J : M → G∗ be a momentum map for that action. For any pair (X ,Y) ∈ G×G, the

smooth function Θ̃(X ,Y ) : M → R defined by

Θ̃(X ,Y ) = {JX ,JY}− J[X ,Y ]

is a Casimir of the Poisson algebra C∞(M,R), which satisfies, for all X, Y and Z ∈ G,

Θ̃
(
[X ,Y ],Z

)
+ Θ̃

(
[Y,Z],X

)
+ Θ̃

(
[Z,X ],Y

)
= 0 . (1)

When the Poisson manifold (M,Λ) is in fact a connected symplectic manifold (M,ω), for any

pair (X ,Y ) ∈ G×G the function Θ̃(X ,Y) is constant on M, and the map Θ̃ : G×G → R is a

skew-symmetric bilinear form, which satisfies the above identity (1).

Proof. Since JX and JY are Hamiltonians for the Hamiltonian vector fields ϕ(X) and ϕ(Y ), the

Poisson bracket {JX ,JY} is a Hamiltonian for
[
ϕ(X),ϕ(Y )]. Since ϕ : G → A1(M) is a Lie

algebras homomorphism,
[
ϕ(X),ϕ(Y )] = ϕ

(
[X ,Y ]

)
, and J[X ,Y ] is a Hamiltonian for this vector

33



field. We have two different Hamiltonians for the same Hamiltonian vector field. Their difference

Θ̃(X ,Y ) is therefore a Casimir of the Poisson algebra C∞(M,R).

Let X , Y and Z be three elements in G. We have

Θ̃
(
[X ,Y ],Z

)
= {J[X ,Y ],JZ}− J[

[X ,Y ],Z
]

=
{
{JX ,JY}− Θ̃(X ,Y ),JZ

}
− J[

[X ,Y ],Z
]

=
{
{JX ,JY},JZ

}
− J[

[X ,Y ],Z
]

since Θ̃(X ,Y) is a Casimir of the Poisson algebra C∞(M,R). Similarly

Θ̃
(
[Y,Z],X

)
=
{
{JY ,JZ},JX

}
− J[

[Y,Z],X
] ,

Θ̃
(
[Z,X ],Y

)
=
{
{JZ,JX},JY

}
− J[

[Z,X ],Y
] .

Adding these three terms and using the fact that the Poisson bracket of functions and the bracket

in the Lie algebra G both satisfy the Jacobi identity, we see that Θ̃ satisfies (1).

When (M,Λ) is in fact a connected symplectic manifold (M,ω), the only Casimirs of the

Poisson algebra C∞(M,R) are the constants, and Θ̃ becomes a bilinear skew-symmetric form on

G.

Definition 4.4.2. Under the assumptions of Proposition 4.4.1, the skew-symmetric bilinear map

Θ̃, defined on G× G and taking its values in the space of Casimirs of the Poisson algebra

C∞(M,R) (real-valued when the Poisson manifold (M,Λ) is in fact a connected symplectic man-

ifold (M,ω)), is called the symplectic cocycle of the Lie algebra G associated to the momentum

map J.

Remark 4.4.3. Under the assumptions of Proposition 4.4.1, let us assume in addition that the

Poisson manifold (M,Λ) is in fact a connected symplectic manifold (M,ω). The symplectic

cocycle Θ̃ is then a real-valued skew-symmetric bilinear form on G. Therefore it is a symplectic

cocycle in the sense of 3.4.3. Two different interpretations of this cocycle can be given.

1. Let Θ : G→ G∗ be the map such that, for all X and Y ∈ G
〈
Θ(X),Y

〉
= Θ̃(X ,Y) .

Written for Θ, Equation (1) of 4.4.1 becomes

Θ
(
[X ,Y ]

)
= ad∗−X

(
Θ(Y )

)
− ad∗−Y

(
Θ(X)

)
, X and Y ∈ G .

The map Θ is therefore the one-cocycle of the Lie algebra G with values in G∗, for the

coadjoint representation (4.2.4) X 7→ ad∗−X of G, associated to the affine action of G on its

dual

aΘ(X)(ζ ) = ad∗−X(ζ )+Θ(X) , X ∈ G , ζ ∈ G
∗ ,

in the sense of 4.2.6. The reader is referred to the book [32] for a more thorough discussion

of the cohomology theories of Lie groups and Lie algebras.

2. Let G be a Lie group whose Lie algebra is G. The skew-symmetric bilinear form Θ̃ on

G = TeG can be extended, either by left translations or by right translations, into a left

invariant (or a right invariant) closed differential two-form on G, since the identity (1) of

4.4.1 means that its exterior differential dΘ̃ vanishes. In other words, Θ̃ is a 2-cocycle

for the restriction of the de Rham cohomology of G to left (or right) invariant differential

forms.
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Proposition 4.4.4. Let ϕ : G→ A1(N) be an action of a finite-dimensional Lie algebra G on a

smooth manifold N, and let ϕ̂ : G → A1(T ∗N) be the Hamiltonian action of G on (T ∗N,dηN)
introduced in Proposition 4.3.6. The map J : T ∗N → G∗ defined by

〈
J(ξ ),X

〉
= i
(
ϕ̂(X)

)
ηN(ξ ) , X ∈ G , ξ ∈ T ∗N ,

is a momentum map for the action ϕ̂ which satisfies, for all X and Y ∈ G,

{
JX ,JY

}
= J[X ,Y ] .

In other words, the symplectic cocycle of G associated to J, in the sense of 4.4.2, identically

vanishes.

Proof. These properties immediately follow from 4.3.6.

Theorem 4.4.5 (First Emmy Noether’s theorem in Hamiltonian form). Let ϕ be a Hamiltonian

action of a Lie algebra G on a Poisson manifold (M,Λ), J : M → G∗ be a momentum map for ϕ
and H : M → R be a smooth Hamiltonian. If the action ϕ leaves H invariant, that means if

L
(
ϕ(X)

)
H = 0 for any X ∈ G ,

the momentum map J is a G∗-valued first integral (3.3.4) of the Hamiltonian vector field Λ♯(dH),
which means that it keeps a constant value along each integral curve of that vector field.

Proof. For any X ∈ G, let JX : M →R be the function x 7→
〈
J(x),X

〉
. Let t 7→ ψ(t) be an integral

curve of the Hamiltonian vector field Λ♯(dH). We have

d

dt

(
JX

(
ψ(t)

))
= L

(
Λ♯(dH)

)(
JX

)(
ψ(t)

)
= Λ

(
dH,dJX

)
(ψ(t))

=−L

(
Λ♯
(
dJX

))
H =−L

(
ϕ(X)

)
H = 0 .

Therefore, for any X ∈ G, the derivative of 〈J,X〉
(
ψ(t)

)
with respect to the parameter t of the

parametrized curve t 7→ ψ(t) vanishes identically, which means that J keeps a constant value

along that curve.

The reader will find in the book by Yvette Kosmann-Schwarzbach [37] a very nice exposition

of the history and scientific applications of the Noether’s theorems.

Proposition 4.4.6. Let ϕ be a Hamiltonian action of a Lie algebra G on a Poisson manifold

(M,Λ) and J : M → G∗ be a momentum map for that action. Let S be a symplectic leaf of (M,Λ)
and ωS be its symplectic form.

1. For each x∈ S, in the symplectic vector space
(
TxS,ωS(x)

)
, each of the two vector subspaces

TxS∩ker(TxJ) and
{

ϕ(X)(x) ; X ∈ G} is the symplectic orthogonal of the other.

2. For each x∈ S, TxJ(TxS) is the annihilator of the isotropy subalgebraGx =
{

X ∈G;φ(X)(x)=
0
}

of x.

Proof. Let v ∈ TxS. For each X ∈ G we have

ωS

(
v,ϕ(X)(x)

)
=
〈

d〈J,X〉(x),v
〉
=
〈
TxJ(v),X

〉
.

Therefore a vector v ∈ TxS belongs to orth
{

ϕ(X)(x) ; X ∈ G} if and only if TxJ(v) = 0. In other

words, in the symplectic vector space
(
TxS,ωS(x)

)
, TxS∩ker(TxJ) is the symplectic orthogonal

of
{

ϕ(X)(x) ; X ∈ G}. Of course, conversely
{

ϕ(X)(x) ; X ∈ G} is the symplectic orthogonal of

TxS∩ker(TxJ).

The same formula shows that
〈
TxJ(v),X

〉
= 0 for all v ∈ TxS if and only if X ∈ Gx.
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Remark 4.4.7. Under the assumptions of 4.4.6, when ϕ is the Lie algebra action associated to a

Hamiltonian action Φ of a Lie group G, the vector space
{

ϕ(X)(x) ; X ∈ G} is the space tangent

at x to the G-orbit of this point.

Corollary 4.4.8. Let ϕ be a Hamiltonian action of a Lie algebra G on a symplectic manifold

(M,ω) and J : M → G∗ be a momentum map for that action.

1. For each x ∈ M, in the symplectic vector space
(
TxM,ω(x)

)
each of the two vector sub-

spaces ker(TxJ) and
{

ϕ(X)(x) ; X ∈ G} is the symplectic orthogonal of the other.

2. For each x∈M, TxJ(TxM) is the annihilator of the isotropy subalgebraGx = {X ∈G;ϕ(X)(x)=
0} of x.

Proof. These assertions both follow immediately from 4.4.6 since the symplectic leaves of (M,ω)
are its connected components.

Proposition 4.4.9. Let Φ be a Hamiltonian action of a Lie group G on a connected symplectic

manifold (M,ω) and J : M → G∗ be a momentum map for that action. There exists a unique

action A of the Lie group G on the dual G∗ of its Lie algebra for which the momentum map J is

equivariant, that means satisfies for each x ∈ M and g ∈ G

J
(
Φg(x)

)
= Ag

(
J(x)

)
.

The action A is an action on the left (respectively, on the right) if Φ is an action on the left

(respectively, on the right), and its expression is

{
A(g,ξ ) = Ad∗

g−1(ξ )+θ(g) if Φ is an action on the left,

A(ξ ,g) = Ad∗g(ξ )−θ(g−1) if Φ is an action on the right,
g ∈ G , ξ ∈ G∗ .

The map θ : G → G∗ is called the symplectic cocycle of the Lie group G associated to the

momentum map J.

Proof. Let us first assume that Φ is an action on the left. For each X ∈ G the associated funda-

mental vector field XM is Hamiltonian and the function JX : M →R defined by

JX(x) =
〈
J(x),X

〉
, x ∈ M ,

is a Hamiltonian for XM. We know by the characterizations 4.3.3 of Poisson actions that (Φg−1)∗(XM),
the direct image of XM by the diffeomorphism Φg−1 , is a Hamiltonian vector field for which the

function JX ◦Φg is a Hamiltonian. Proposition 4.1.7 shows that (Φg−1)∗(XM) is the fundamental

vector field associated to Adg−1(X), therefore has the function

x 7→
〈
J(x),Adg−1(X)

〉
=
〈
Ad∗

g−1 ◦J(x),X
〉

as a Hamiltonian. The difference between these two Hamiltonians for the same Hamiltonian

vector field is a constant since M is assumed to be connected. Therefore the expression

〈
J ◦Φg(x)−Ad∗

g−1 ◦J(x),X
〉

does not depend on x ∈ M, and depends linearly on X ∈ G (and of course smoothly depends on

g ∈ G). We can therefore define a smooth map θ : G → G∗ by setting

θ(g) = J ◦Φg −Ad∗
g−1 ◦J , g ∈ G .
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It follows that the map a : G×G∗ → G∗,

a(g,ξ ) = Ad∗
g−1(ξ )+θ(g)

is an action on the the left of the Lie group G on the dual G∗ of its Lie algebra, which renders the

momentum map J equivariant.

The case when Φ is an action on the right easily follows by observing that (g,x) 7→ Φ(x,g−1)
is a Hamiltonian action on the left whose momentum map is the opposite of that of Φ.

Proposition 4.4.10. Under the same assumptions as those of Proposition 4.4.9, the map θ : G →
G∗ satisfies, for all g and h ∈ G,

θ(gh) = θ(g)+Ad∗
g−1

(
θ(h)

)
.

Proof. In Proposition 4.4.9, the cocycle θ introduced for an action on the right Ψ : M×G → M

was the cocycle of the corresponding action on the left Φ : G×M → M defined by Φ(g,x) =
Ψ(x,g−1). We can therefore consider only the case when Φ is an action on the left.

Let g and h ∈ G. We have

θ(gh) = J
(
Φ(gh,x)

)
−Ad∗(gh)−1 J(x)

= J
(

Φ
(
g,Φ(h,x)

))
−Ad∗

g−1 ◦Ad∗
h−1 J(x)

= θ(g)+Ad∗
g−1

(
J
(
Φ(h,x)

)
−Ad∗

h−1 J(x)
)

= θ(g)+Ad∗
g−1 θ(h) .

Proposition 4.4.11. Let Φ be a Hamiltonian action of a Lie group G on a connected symplectic

manifold (M,ω) and J : M → G∗ be a momentum map for that action. The symplectic cocycle

θ : G → G∗ of the Lie group G introduced in Proposition 4.4.9 and the symplectic cocycle Θ :

G→ G∗ of its Lie algebra G introduced in Definition 4.4.2 and Remark 4.4.3 are related by

Θ = Teθ ,

where e is the neutral element of G, the Lie algebra G being identified with TeG and the tangent

space at G∗ at its origin being identified with G∗. Moreover J is a Poisson map when G∗ is

endowed with

• its canonical Poisson structure modified by the symplectic cocycle Θ (defined in 3.4.3) if Φ
is an action on the right,

• the opposite of this Poisson structure if Φ is an action on the left.

Proof. As in the proof of Proposition 4.4.10, whe have only to consider the case when Φ is an

action on the left. The map which associates to each X ∈ G the fundamental vector field XM is a

Lie algebras homomorphism when G is endowed with the Lie algebra structure of right invariant

vector fields on the Lie group G. We will follow here the more common convention, in which G is

endowed with the Lie algebra structure of left invariant vector fields on G. With this convention

the map X 7→XM is a Lie algebras antihomomorphism and we must change a sign in the definition

of Θ̃ given in Proposition 4.4.1 and take

Θ̃(X ,Y ) =
〈
Θ(X),Y

〉
= {JX ,JY}+ J[X ,Y ] , X and Y ∈ G .
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We have, for any x ∈ M,

{JX ,JY}(x) = ω(XM,YM)(x) = i(XM)d
(
〈J,Y 〉

)
(x)

=
d

dt

〈
J
(
Φ(exp(tX),x

)
,Y
〉∣∣∣

t=0

=
d

dt

〈
Ad∗exp(−tX) J(x)+θ

(
exp(tX)

)
,Y
〉∣∣∣

t=0

=
〈
J(x),−[X ,Y ]

〉
+
〈
Teθ(X),Y

〉

=−J[X ,Y ](x)+
〈
Teθ(X),Y

〉
.

We see that Θ = Teθ . Moreover, the elements X and Y in G can be considered as linear functions

on G∗. Their Poisson bracket, when G∗ is equipped with its canonical Poisson structure modified

by Θ̃, is

{X ,Y}
Θ̃
(ξ ) =

〈
ξ , [X ,Y ]

〉
− Θ̃(X ,Y) .

The formula {JX ,JY}(x) =−J[X ,Y ](x)+ Θ̃(X ,Y ) can be read as

{X ◦ J,Y ◦ J}(x) =−{X ,Y}
Θ̃
◦ J(x) .

Since the value taken at a point by the Poisson bracket of two functions only depends on the

values of the differentials of these two functions at that point, this result proves that J is a Poisson

map when G∗ is equipped with the opposite of the Poisson bracket { , }
Θ̃

.

Remarks 4.4.12. Let Φ be a Hamiltonian action on the left of a Lie group G on a connected

symplectic manifold (M,ω), J : M → G∗ be a momentum map for that action and θ : G → G∗ be

the symplectic cocycle of the Lie group G introduced in Proposition 4.4.9.

1. The symplectic cocycle θ : G → G∗ is the Lie group one-cocycle with values in G∗, for the

coadjoint representation, associated to the affine representation A : G → Aff(G∗),

A(g)(ζ ) = Ad∗
g−1(ζ )+θ(g) , ζ ∈ G∗ ,

in the sense of 4.2.5.

2. If instead of J we take for momentum map

J′(x) = J(x)− c , x ∈ M ,

where c ∈ G∗ is constant, the symplectic cocycle θ is replaced by

θ ′(g) = θ(g)+Ad∗
g−1(c)− c .

The map θ ′ − θ is a one-coboundary of G with values in G∗ for the coadjoint representation

(4.2.9). Therefore the cohomology class of the symplectic cocycle θ only depends on the Hamil-

tonian action Φ, not on the choice of its momentum map J. This property is used by Jean-Marie

Souriau ([60], chapter III, p. 153) to offer a very nice cohomological interpretation of the total

mass of a classical (non-relativistic) isolated mechanical system. He proves that the space of

all possible motions of the system is a symplectic manifold on which the Galilean group acts

by a Hamiltonian action. The dimension of the symplectic cohomology space of the Galilean

group (the quotient of the space of symplectic one-cocycles by the space of symplectic one-

coboundaries) is equal to 1. The cohomology class of the symplectic cocycle associated to a

momentum map of the action of the Galilean group on the space of motions of the system is

interpreted as the total mass of the system.
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4.4.13 Other properties of the momentum map

The momentum map has several other very remarkable properties. Michael Atiyah [8], Victor

Guillemin and Shlomo Sternberg [24, 25] have shown that the image of the momentum map of

a Hamiltonian action of a torus on a compact symplectic manifold is a convex polytope. Frances

Kirwan [36] adapted this result when the torus is replaced by any compact Lie group. Thomas

Delzant [16] has shown that the convex polytope which is the image of a Hamiltonian action of

a torus on a compact symplectic manifold determines this manifold.

4.5 Actions of a Lie group on its cotangent bundle

In this section G is a Lie group, G is its Lie algebra and G∗ is the dual space of G. The Liouville

one-form on T ∗G is denoted by ηG.

The group composition law m : G×G→G, m(g,h)= gh, can be seen as an action of G on itself

either on the left, or on the right. For each g ∈ G we will denote by Lg : G → G and Rg : G → G

the diffeomorphisms

Lg(h) = gh , Rg(h) = hg , h ∈ G .

called, respectively, the left translation and the right translation of G by g.

Definitions 4.5.1. The canonical lifts to the tangent bundle T G of the actions of G on itself by

left translations (respectively, by right translations) are, repectively, the maps L : G×T G → T G

and R : T G×G → T G

L(g,v) = T Lg(v) , R(v,g) = T Rg(v) , g ∈ G , v ∈ T G .

The canonical lifts to the cotangent bundle T ∗G of the actions of G on itself by left translations

(respectively, by right translations) are, respectively, the maps L̂ : G×T ∗G → T ∗G and R̂ : T ∗G×
G → T ∗G

L̂(g,ξ ) =
(
T Lg−1

)T
(ξ ) , R̂(ξ ,g) =

(
T Rg−1

)T
(ξ ) , g ∈ G , ξ ∈ T ∗G .

We have denoted by
(
T Lg−1

)T
and

(
T Rg−1

)T
the transposes of the vector bundles morphisms

T Lg−1 and T Rg−1 , respectively.

Proposition 4.5.2. The canonical lifts to the tangent bundle and to the cotangent bundle of the

actions of the Lie group G on itself by left translations (respectively, by right translations) are

actions on the left (respectively, on the right) of G on its tangent bundle and on its cotangent

bundle, which project onto the actions of G on itself by left translations (respectively, by right

translations). It means that for all g ∈ G and v ∈ T G

τG

(
L(g,v)

)
= Lg

(
τG(v)

)
, τG

(
R(v,g)

)
= Rg

(
τG(v)

)
,

and that for all g ∈ G and ξ ∈ T ∗G

πG

(
L̂(g,ξ )

)
= Lg

(
πG(ξ )

)
, πG

(
R̂(ξ ,g)

)
= Rg

(
πG(ξ )

)
.

Proof. It is an easy verification that the properties of actions are indeed satisfied by the maps L,

R, L̂ and R̂, which is left to the reader.
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Theorem 4.5.3. The canonical lifts to the cotangent bundle L̂ and R̂ of the actions of the Lie

group G on itself by translations on the left and on the right are two Hamiltonian actions of G

on the symplectic manifold (T ∗G,dηG). The maps JL : T ∗G → G∗ and JR : T ∗G → G∗ defined,

for each ξ ∈ T ∗G, by

JL(ξ ) = R̂
(
ξ ,πG(ξ )

−1
)
, JR(ξ ) = L̂

(
πG(ξ )

−1,ξ
)

are momentum maps for the actions L̂ and R̂, respectively.

Moreover, the map JL is constant on each orbit of the action R̂, the map JR is constant on

each orbit of the action L̂ and for each ξ ∈ T ∗G each of the tangent spaces at ξ to the orbits

L̂(G,ξ ) and R̂(ξ ,G) is the symplectic orthogonal of the other. The maps JL : T ∗G → G∗ and

JR : T ∗G → G∗ are Poisson maps when T ∗G is equipped with the Poisson structure associated

to its canonical symplectic structure and when G∗ is equipped, respectively, with its canonical

Poisson structure (3.4.2) and with the opposite of its canonical Poisson structure.

Proof. For each X ∈ G, let XL
G and XR

G be the fundamental vector fields on G associated to X for

the actions of G on itself, respectively by left and by right translations. Similarly, let XL
T∗G and

XR
T ∗G be the fundamental vector fields on T ∗G associated to X for the actions L̂ and R̂ of G on

T ∗G defined in 4.5.1. The reduced flows of XL and of XR are the maps

ΦXL

(t,g) = exp(tX)g , ΦXR

(t,g) = gexp(tX) , t ∈ R , g ∈ G .

Therefore

XL(g) = T Rg(X) , XR(g) = T Lg(X) , g ∈ G ,

and we see that the fundamental vector fields XL
T ∗G and XR

T ∗G on T ∗G are the canonical lifts to the

cotangent bundle of the vector fields XL
G and XR

G on the Lie group G. Proposition 2.4.11 proves

that XL
T∗G and XR

T∗G are Hamiltonian vector fields which admit as Hamiltonians, respectively, the

maps

JL
X(ξ ) =

〈
ξ ,XL

G

(
πG(ξ )

)〉
, JR

X(ξ ) =
〈

ξ ,XR
G

(
πG(ξ )

)〉
, ξ ∈ T ∗G .

Replacing XL
G and XR

G by their expressions given above and using the definitions of R̂ and L̂, we

easily get the stated expressions for JL and JR. These expressions prove that JL is constant on

each orbit of the action R̂, and that JR is constant on each orbit of the action L̂.

The actions L̂ and R̂ being free, each of their orbits is a smooth submanifold of T ∗G of di-

mension dimG. The ranks of the maps JL and JR are everywhere equal to dimG since their

restrictions to each fibre of T ∗G is a diffeomorphism of that fibre onto G∗. Therefore, for each

ξ ∈ T ∗G,

kerTξ JL = Tξ

(
R̂(ξ ,G)

)
, kerTξ JR = Tξ

(
L̂(ξ ,G)

)
.

Corollary 4.4.8 proves that for each ξ ∈ T ∗G each of the two vector subspaces of Tξ (T
∗G):

Tξ

(
L̂(G,ξ )

)
and Tξ

(
R̂(ξ ,G)

)

is the symplectic orthogonal of the other.

Finally, the fact that JL and JR are Poisson maps when G is equipped with its canonical Poisson

structure or its opposite is an easy consequence of Proposition 3.3.7.

In [44], Chapter IV, Section 4, we proposed a generalization of Proposition 4.5.3 taking into

account a symplectic cocycle θ : G → G∗ in which the action L̂ : G× T ∗G → T ∗G remained
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unchanged while the action R̂ : T ∗G×G → T ∗G was modified. Below we propose a more gen-

eral and more symmetrical generalization. The symplectic form on T ∗G will be the sum of its

canonical symplectic form dηG and of the pull-back by the canonical projection πG : T ∗G → G

of a suitable closed two-form on G, deduced from θ . The actions L̂ : G× T ∗G → T ∗G and

R̂ : T ∗G×G → T ∗G will be modified in the following way: for each g ∈ G, the map L̂g : T ∗G →
T ∗G will be composed with a translation in the fibres of T ∗G, determined by addition of a right-

invariant one-form on G depending of the element g ∈ G, deduced from θ ; similarly, the map

R̂g : T ∗G → T ∗G will be composed with a translation in the fibres of T ∗G, determined by addi-

tion of a left-invariant one-form on G depending of the element g ∈ G, deduced from θ . As the

reader will see, it is possible to modify the action L̂ and to keep R̂ unchanged, or to modify the

action R̂ and to keep L̂ unchanged; in the first case, the momentum map JL : T ∗G → G∗ remains

unchanged, while JR : T ∗G→ G∗ must be modified; in the second case, it is JR : T ∗G → G∗ which

remains unchanged while JL : T ∗G → G∗ must be modified. It is even possible to simultaneously

modify both the actions L̂ and R̂; then we get a pair of actions of G on T ∗G depending on two

real parameters.

Theorem 4.5.4. Let G be a Lie group, θ : G→ G∗ be a symplectic cocycle of G, Θ= Teθ : G→G∗

be the associated symplectic cocycle of its Lie algebra G, and Θ̃ : G× G → R be the skew-

symmetric bilinear form Θ̃(X ,Y) =
〈
Θ(X),Y

〉
. Let Θ̃L and Θ̃R be the differential two-forms on

G, respectively left-invariant and right-invariant, whose value at the neutral element is Θ̃. The

differential two-form on T ∗G

ωT ∗G = dηG +π∗
G(λLΘ̃L −λRΘ̃R) ,

where λL and λR are real constants and where ηG is the Liouville form on T ∗G, is a symplectic

form on T ∗G. The formulae, in which g ∈ G, ξ ∈ T ∗G,

ΦL(g,ξ ) = L̂g(ξ )+λRR̂gπG(ξ )

(
θ(g)

)
,

ΦR(ξ ,g) = R̂g(ξ )+λLL̂πG(ξ )g

(
θ(g−1)

)

define two Hamiltonian actions ΦL : G×T ∗G → T ∗G and ΦR : T ∗G×G → T ∗G of G on the

symplectic manifold (T ∗G,ωT ∗G), respectively on the left and on the right. The maps JL,λL :

T ∗G → G∗ and JR,λR : T ∗G → G∗ defined, for each ξ ∈ T ∗G, by

JL,λL(ξ ) = R̂(
πG(ξ )

)−1(ξ )+λLθ
(
πG(ξ )) ,

JR,λR(ξ ) = L̂(
πG(ξ )

)−1(ξ )+λRθ
((

πG(ξ )
)−1
)

are momentum maps for the actions ΦL and ΦR, respectively.

Moreover, the map JL,λL is constant on each orbit of the action ΦR, the map JR,λR is constant

on each orbit of the action ΦL and for each ξ ∈ T ∗G each of the tangent spaces at ξ to the orbits

ΦL(G,ξ ) and ΦR(ξ ,G) is the symplectic orthogonal of the other (with respect to the symplectic

form ωT ∗G). The maps JL,λL : T ∗G → G∗ and JR,λR : T ∗G → G∗ are Poisson maps when T ∗G

is equipped with the Poisson structure associated to the symplectic form ωT ∗G and when G∗ is

equipped, respectively, with its canonical Poisson structure modified by the cocycle (λL +λR)Θ̃
(3.4.3)

{ f ,g}
(λL+λR)Θ̃

(ζ ) =
〈

ζ ,
[
d f (ζ ),dg(ζ )

]〉
− (λL +λR)Θ̃

(
d f (ζ ),dg(ζ )

)

and with the opposite of this Poisson structure.
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Proof. The sum of the canonical symplectic form on T ∗G with the pull-back of any closed two-

form on G always is nondegenerate, therefore symplectic. So ωT ∗G is symplectic. For g and

h ∈ G, ξ ∈ T ∗G, let us calculate

ΦL
(
g,ΦL(h,ξ )

)
−ΦL(gh,ξ ) and ΦR

(
ΦR(ξ ,g),h

)
−ΦR(ξ ,gh) .

We get

ΦL
(
g,ΦL(h,ξ )

)
−ΦL(gh,ξ ) = λRR̂ghπG(ξ )

(
Ad∗

g−1

(
θ(h)

)
+θ(g)−θ(gh)

)

= 0

since θ is a one-cocycle. The map ΦL is therefore an action on the left of G on T ∗G. Similarly

ΦR
(
ΦR(ξ ,g),h

)
−ΦR(ξ ,gh) = λLL̂πG(ξ )gh

(
Ad∗h θ(g−1)+θ(h−1)

−θ(h−1g−1)
)

= 0

for the same reason. The map ΦR is therefore an action on the right of G on T ∗G.

Let X ∈ G and ξ = T ∗G. By calculating the derivative with respect to t of ΦL
(
exp(tX),ξ

)

and of ΦR
(
ξ ,exp(tX)

)
, then setting t = 0, we get the following expressions for the fundamental

vector fields on T ∗G associated to the actions ΦL and ΦR:

X
L,λR

T∗G (ξ ) = XL
T ∗G(ξ )+λRT R̂πG(ξ )Θ(X) ,

X
R,λL

T∗G (ξ ) = XR
T ∗G(ξ )−λLT L̂πG(ξ )Θ(X) ,

the vector fields XL
T∗G and XR

T∗G being, as in the proof of 4.5.3, the canonical lifts to T ∗G of the

fundamental vector fields XL and XR on G, for the actions of G on itself by translations on the

left and on the right, respectively. Using these expressions, we easily check that

i(XL,λR

T∗G )ωT ∗G =−dJ
L,λL

X , i(XR,λL

T∗G )ωT ∗G =−dJ
R,λR

X ,

which means that the actions ΦL and ΦR are Hamiltonian and have, respectively, JL,λL and JR,λR

as momentum maps.

The facts that JR,λR is constant on each orbit of ΦL and that JL,λL is constant on each orbit of

ΦR directly follow from the expressions of ΦL, ΦR, JL,λL and JR,λR .

Finally, let X and Y ∈ G. When considered as linear functions on G∗, their Poisson bracket for

the Poisson structure on G∗ for which JL,λL is a Poisson map is easily determined by calculating

the Poisson bracket {JL,λL ◦X ,JL,λL ◦Y}= {J
L,λL

X ,JL,λL

Y }, for the Poisson structure on T ∗G asso-

ciated to the symplectic form ωT ∗G. This calculation fully determines the Poisson structure on G∗

for which JL,λL is a Poisson map, and proves that it is indeed the canonical Poisson structure on

T ∗G modified by the symplectic cocycle (λL+λR)Θ̃, in the sense of 3.4.3. A similar calculation

shows that JR,λR is a Poisson map when G∗ is equipped with the opposite Poisson structure.

Proposition 4.5.5. Under the assumptions and with the notations of 4.5.4, the momentum map

JL,λL : T ∗G → G∗ is equivariant when G acts on the left on T ∗G by the action ΦL and on G∗ by

the action

(g,ζ ) 7→ Ad∗
g−1(ζ )+θ(g) , (g,ζ ) ∈ G×G∗ .

Similarly, the momentum map JR,λR : T ∗G → G∗ is equivariant when G acts on the right on T ∗G

by the action ΦR and on G∗ by the action

(ζ ,g) 7→ Ad∗g(ζ )+θ(g−1) , (ζ ,g) ∈ G
∗×G .
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Proof. Let g ∈ G and ξ ∈ T ∗G. Using the expressions of JL,λL and of ΦL, we obtain

JL,λL
(
ΦL(g,ξ )

)
= Ad∗

g−1

(
JL,λL(ξ )

)
+(λL +λR)θ(g) ,

JR,λR
(
ΦR(ξ ,g)

)
= Ad∗g

(
JR,λR(ξ )

)
+(λL +λR)θ(g

−1) ,

which proves that JL,λL and JR,λR are equivariant with respect to the indicated actions, respec-

tively on the left and on the right, of G on T ∗G and on G∗.

5 Reduction of Hamiltonian systems with symmetries

Very early, many scientists (Lagrange, Jacobi, Poincaré, . . .) used first integrals to facilitate the

determination of integral curves of Hamiltonian systems. It was observed that the knowledge

of one real-valued first integral often allows the reduction by two units of the dimension of the

phase space in which solutions are searched for.

J. Sniatycki and W. Tulczyjew [59] and, when first integrals come from the momentum map

of a Lie group action, K. Meyer [53], J. Marsden and A. Weinstein [52], developed a geometric

presentation of this reduction procedure, widely known now under the name “Marsden-Weinstein

reduction”.

Another way in which symmetries of a Hamiltonian system can be used to facilitate the deter-

mination of its integral curves was discovered around 1750 by Leonard Euler (1707–1783) when

he derived the equations of motion of a rigid body around a fixed point. In a short Note published

in 1901 [57], Henri Poincaré formalized and generalized this reduction procedure, often called

today, rather improperly, “Lagrangian reduction” while the equations obtained by its application

are called the “Euler-Poincaré equations” [11, 12].

We present in the following sections these two reduction procedures.

5.1 The Marsden-Weinstein reduction procedure

Theorem 5.1.1. Let (M,ω) be a connected symplectic manifold on which a Lie group G acts by

a Hamiltonian action Φ, with a momentum map J : M → G∗. Let ξ ∈ J(M) ⊂ G∗ be a possible

value of J. The subset Gξ of elements g ∈ G such that Φg

(
J−1(ξ )

)
= J−1(ξ ) is a closed Lie

subgroup of G.

If in addition ξ is a weakly regular value of J in the sense of Bott [10], J−1(ξ ) is a submanifold

of M on which Gξ acts, by the action Φ restricted to Gξ and to J−1(ξ ), in such a way that all

orbits are of the same dimension. For each x ∈ J−1(ξ ) the kernel of the two-form induced by ω
on J−1(ξ ) is the space tangent at this point to its Gξ -orbit. Let Mξ = J−1(ξ )/Gξ be the set of

all these orbits. When Mξ has a smooth manifold structure for which the canonical projection

πξ : J−1(ξ )→ Mξ is a submersion, there exists on Mξ a unique symplectic form ωξ such that

π∗
ξ ωξ is the two-form induced on J−1(ξ ) by ω . The symplectic manifold (Mξ ,ωξ ) is called

the reduced symplectic manifold (in the sense of Marsden an Weinstein) for the value ξ of the

momentum map.

Proof. Proposition 4.4.9 shows that there exists an affine action a of G on G∗ for which the

momentum map J is equivariant. The subset Gξ of G is therefore the isotropy subgroup of ξ for

the action a, which proves that it is indeed a closed subgroup of G. A well known theorem due

to Élie Cartan allows us to state that Gξ is a Lie subgroup of G.

43



When ξ is a weakly regular value of J, J−1(ξ ) is a submanifold of M and, for each x ∈ J−1(ξ ),
the tangent space at x to this submanifold is kerTxJ (it is the definition of a weakly regular value

in the sense of Bott). Let N = J−1(ξ ) and let iN : N → M be the canonical injection. For all

x ∈ N, the vector spaces kerTxJ all are of the same dimension dimN, and dim
(
TxJ(TxM)

)
=

dimM − dimN. Corollary 4.4.8 shows that TxJ
(
TxM

)
is the annihilator of Gx. Therefore for

all x ∈ N the isotropy subalgebras Gx are of the same dimension dimG− dimM + dimN. The

Gξ -orbits of all points x ∈ N are all of the same dimension dimGξ −dimGx.

Corollary 4.4.8 also shows that orth(kerTxJ) = orth(TxN) = Tx

(
Φ(G,x)

)
. Therefore, for each

x ∈ N,

ker(i∗Nω)(x) = TxN ∩orth(TxN) = TxN ∩Tx

(
Φ(G,x)

)
= Tx

(
Φ(Gξ ,x)

)
.

It is indeed the space tangent at this point to its Gξ -orbit. When Mξ = N/Gξ has a smooth

manifold structure such that the canonical projection πξ : N → Mξ is a submersion, for each

x ∈ N the kernel of Txπξ is ker(i∗Nω)(x), and the existence on Mξ of a symplectic form ωξ such

that π∗
ξ (ωξ ) = i∗Nω easily follows.

Proposition 5.1.2. The assumptions made here are the strongest of those made in Theorem

5.1.1: the set J−1(ξ )/Gξ has a smooth manifold structure such that the canonical projection

πξ : J−1(ξ )/Gξ is a submersion. Let H : M → R be a smooth Hamiltonian, invariant under the

action Φ. There exists an unique smooth function Hξ : Mξ → R such that Hξ ◦πξ is equal to the

restricton of H to J−1(ξ ). Each integral curve t 7→ ϕ(t) of the Hamiltonian vector field XH which

meets J−1(ξ ) is entirely contained in J−1(ξ ), and in the reduced symplectic manifold (Mξ ,ωξ )
the parametrized curve t 7→ πξ ◦ϕ(t) is an integral curve of XHξ

.

Proof. As in the proof of Theorem 5.1.1, we set N = J−1(ξ ) and denote by iN : N → M the

canonical injection. Let ωN = i∗Nω . Since H is invariant under the action Φ, it keeps a constant

value on each orbit of Gξ contained in N, so there exists on Mξ an unique function Hξ such that

Hξ ◦ πξ = H ◦ iN . The projection πξ being a surjective submersion, Hξ is smooth. Noether’s

theorem (4.4.5) proves that the momentum map J remains constant on each integral curve of the

Hamiltonian vector field XH . So if one of these integral curves meets N it is entirely contained in

N, and we see that the Hamiltonian vector field XH is tangent to N. We have, for each x ∈ N,

π∗
ξ

(
i
(

Txπξ

(
XH(x)

))
ωξ

(
πξ (x)

))
= i
(
XH(x)

)(
i∗Nω(x)

)
=−d(i∗NH)(x)

=−π∗
ξ

(
dHξ

)
(x) = π∗

ξ

(
i(XHξ

)ωξ

)
(x) .

Since πξ is a submersion and ωξ a non-degenerate two-form, this implies that for each x ∈ N,

Txπξ

(
XH(x)

)
= XHξ

(
πξ (x)

)
. The restriction of XH to N and XHξ

are therefore two vector fields

compatible with respect to the map πξ : N → Mξ , which implies the stated result.

Remark 5.1.3. Theorem 5.1.1 and Proposition 5.1.2 still hold when instead of the Lie group

action Φ we have an action ϕ of a finite-dimensional Lie algebra. The proof of the fact that the

Gξ -orbits in J−1(ξ ) all are of the same dimension can easily be adapted to prove that for all

x ∈ J−1(ξ ), the vector spaces {ϕ(X)(x);X ∈ Gξ} all are of the same dimension and determine a

foliation of J−1(ξ ). We have then only to replace the Gξ -orbits by the leaves of this foliation.

5.1.4 Use of the Marsden-Weinstein reduction procedure

Theorem 5.1.1 and Proposition 5.1.2 are used to determine the integral curves of the Hamiltonian

vector field XH contained in J−1(ξ ) in two steps:
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• their projections on Mξ are first determined: they are integral curves of the Hamiltonian

vector field XHξ
; this step is often much easier than the full determination of the integral

curves of XH , since the dimension of the reduced symplectic manifold Mξ is smaller than

the dimension of M;

• then these curves themselves are determined; this second step, called reconstruction, in-

volves the resolution of a differential equation on the Lie group Gξ .

Many scientists (T. Ratiu, R. Cushman, J. Sniatycki, L. Bates, J.-P. Ortega, . . .) generalized

this reduction procedure in several ways: when M is a Poisson manifold instead of a symplectic

manifold, when ξ is not a weakly regular value of J, . . . The reader will find more results on

the subject in the recent book Momentum maps and Hamiltonian reduction by J.-P. Ortega and

T.S. Ratiu [56].

Reduced symplectic manifolds occur in many applications other than the determination of inte-

gral curves of Hamiltonian systems. The reader will find such applications in the book Symplectic

techniques in Physics by V. Guillemin and S. Sternberg [26] and in the papers on the phase space

of a particle in a Yang-Mills field [62, 65]).

5.2 The Euler-Poincaré equation

In his Note [57], Henri Poincaré writes the equations of motion of a Lagrangian mechanical sys-

tem when a finite-dimensional Lie algebra acts on its configuration space by a locally transitive

action. Below we adapt his results to the Hamiltonian formalism.

Proposition 5.2.1. Let G be a finite-dimensional Lie algebra which acts, by an action ϕ : G→
A1(N), on a smooth manifold N. The action ϕ is assumed to be locally transitive, which means

that for each x ∈ N,
{

ϕ(X)(x) ;X ∈ G
}
= TxN. Let ϕ̂ : G→ A1(T ∗N) be the Hamiltonian action

of G on (T ∗N,dηN) which associates, to each X ∈ G, the canonical lift to T ∗N of the vector field

ϕ(X) on N (4.3.6), and let J : T ∗N → G∗ be the the momentum map of ϕ̂ given by the formula

(4.4.4) 〈
J(ξ ),X

〉
= i
(
ϕ̂(X)

)
ηN(ξ ) , X ∈ G , ξ ∈ T ∗N .

Let H : T ∗N → R be a smooth Hamiltonian, which comes from a hyper-regular Lagrangian

L : T N → R (hyper-regular means that the associated Legendre map L : T N → T ∗Nis a diffeo-

morphism). Let ψ : I → T ∗N be an integral curve of the Hamiltonian vector field XH defined on

an open interval I and V : I → G be a smooth parametrized curve in G which satisfies, for each

t ∈ I,

ϕ
(
V (t)

)(
πN ◦ψ(t)

)
=

d
(
πN ◦ψ(t)

)

dt
. (1)

The curve J ◦ψ : I → G∗, obtained by composition with J of the integral curve ψ of the Hamilto-

nian vector field XH , satisfies the differential equation in G∗

(
d

dt
− ad∗V (t)

)(
J ◦ψ(t)

)
= J
(

d1L
(
πN ◦ψ(t),V(t)

))
. (2)

We have denoted by L : N ×G→ R the map

(x,X) 7→ L(x,X) = L
(
ϕ(X)(x)

)
, x ∈ N , X ∈ G ,

and by d1L : N ×G→ T ∗N the partial differential of L with respect to its first variable.

Equation (2) is called the Euler-Poincaré equation, while Equation (1) is called the compati-

bility condition.
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Proof. For each ξ ∈ T ∗N and each X ∈ G

〈
J(ξ ),X

〉
= ϕ(X)

(
πN(ξ )

)
,

therefore 〈 d

dt

(
J ◦ψ(t)

)
,X
〉
=

d

dt

〈
ψ(t),ϕ(X)

(
πN ◦ψ(t)

)〉
.

Let (x1, . . . ,xn) be local coordinates on N, and (x1, . . . ,xn, p1, . . . , pn) be the associated local

coordinates on T ∗N. The smooth curves ψ and πN ◦ψ can be expressed as

t 7→
(
yi(t),ϖi(t)

)
and t 7→

(
yi(t)

)
, (1 ≤ i ≤ n) ,

so we can write

〈 d

dt

(
J ◦ψ(t)

)
,X
〉
=

d

dt

(
n

∑
i=1

ϖi(t)
(
ϕ(X)

)i(
y1(t), . . . ,yn(t)

)
)

.

We have denoted by
(
ϕ(X)

)i
(x1, . . . ,xn) the value of the i-th component of the vector field ϕ(X),

expressed as a function of the local coordinates xi (1 ≤ i ≤ n).

The compatibility condition (1) becomes

dyk(t)

dt
=
(

ϕ
(
V (t)

))k(
y1(t), . . . ,yn(t)

)
.

In what follows we write yi for yi(t), ϖi for ϖi(t), (y) for
(
y1(t), . . . ,yn(t)

)
and (y,ϖ) for(

y1(t), . . . ,yn(t),ϖ1(t),ϖn(t)
)
. We have

〈 d

dt

(
J ◦ψ(t)

)
,X
〉
=

n

∑
i=1

dϖi

dt

(
ϕ(X)

)i
(y)

+
(n,n)

∑
(i,k)=(1,1)

ϖi

∂
(
ϕ(X)

)i
(y)

∂xk

(
ϕ
(
V (t)

))k

(y) .

By using the local expression of the bracket of vector fields

[
ϕ
(
V (t)

)
,ϕ(X)

]i

(x) =
n

∑
k=1

(
ϕ
(
V (t)

))k

(x)
∂
(
ϕ(X)

)i
(x)

∂xk

−
n

∑
k=1

(
ϕ(X)

)k
(x)

∂
(

ϕ
(
V (t)

))i

(x)

∂xk

and taking into account the fact that, ϕ being a Lie algebras homomorphism,

[
ϕ
(
V (t)

)
,ϕ(X)

]
= ϕ

([
V (t),X ]

)
,

we get

〈 d

dt

(
J ◦ψ(t)

)
,X
〉
=
〈

ψ(t),ϕ
([

V (t),X
])〉

+
n

∑
i=1

(
ϕ(X)

)i
(y)

(
dϖi

dt
+

n

∑
k=1

ϖk

∂
(

ϕ
(
V (t)

))k

(y)

∂xi

)
.
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The first term in the right hand side can be written

〈
ψ(t),ϕ

([
V (t),X

])〉
=
〈

J ◦ψ(t),
[
V (t),X

]〉
=
〈

ad∗V (t)

(
J ◦ψ(t)

)
,X
〉
.

For all (x,X) ∈ N ×G we have

L(x,X) = L
(
ϕ(X)(x)

)
.

For any point x ∈ N and any vector w ∈ TxN, there exists a smooth curve s 7→ z(s) in N such

that z(0) = x and
dz(s)

ds

∣∣
s=0

= w. We easily obtain
〈

d1L
(
x,V (t)

)
,w
〉

by taking the derivative of

L
(
x(s),V (t)

)
with respect to s (t remaining fixed), then making s = 0. We obtain

〈
d1L
(
x,V (t)

)
,w
〉
=

n

∑
i=1

wi

(
∂L(x,v)

∂xi
+

n

∑
k=1

∂L(x,v)

∂vk

∂
(

ϕ
(
V (t)

))k

(x)

∂xi

)
.

Let us set x = πN ◦ψ(t), w = ϕ(X)
(
πN ◦ψ(t)

)
. We observe that

〈
d1L
(
πN ◦ψ(t),V(t)

)
,ϕ(X)

(
πN ◦ψ(t)

)〉
=
〈

J
(

d1L
(
πN ◦ψ(t),V(t)

))
,X
〉
.

Now we take into account the well known relations which exist between the partial derivatives

of the Lagrangian and of the Hamiltonian expressed in local coordinates

∂L(x,v)

∂xi
=−∂H(x, p)

∂xi
=

dϖi

dt
,

∂L(x,v)

∂vk
= ϖk ,

and we obtain

〈
J
(

d1L
(
πN ◦ψ(t),V(t)

))
,X
〉
=

n

∑
i=1

(
ϕ(X)

)i
(y)

(
dϖi

dt
+

n

∑
k=1

ϖk

∂
(

ϕ
(
V (t)

))k

(y)

∂xi

)
.

Since X can be any element in G, the Euler-Poincaré equation follows.

Remark 5.2.2. The assumptions made by Poincaré in [57] are less restrictive than those made

in 5.2.1: he uses the Lagrangian formalism for a smooth Lagrangian L : T N → R which is not

assumed to be hyper-regular. The associated Legendre map L : T N →T ∗N still exists as a smooth

map (it is the vertical differential of L, see for example [19]), but may not be a diffeomorphism.

Of course the momentum map J : T ∗N → G∗ still exists and can be used, together with the

Legendre map, to express Poincaré’s results intrinsically [51], independently of any choice of

local coordinates. Poincaré proves that if a smooth parametrized curve γ : [t0, t1] → N is an

extremal of the action functional

I(γ) =
∫ t1

t0

L

(
dγ(t)

dt

)
dt

for infinitesimal variations of γ with fixed end points, and if V : [t0, t1]→G is a smooth parametrized

curve which satisfies, for each t ∈ [t0, t1], the compatibility condition

ϕ
(
V (t)

)(
γ(t)

)
=

d
(
γ(t)

)

dt
, (1)
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the parametrized curve t 7→ J ◦L◦ dγ(t)

dt
satisfies the Euler-Poincaré equation

(
d

dt
− ad∗V (t)

)(
J ◦L◦ dγ(t)

dt

)
= J
(

d1L
(
γ(t),V(t)

))
. (2)

The Euler-Poincaré equation can be written under a slightly different form in which, instead

of the Legendre map L : T N → T ∗N, the partial differential d2L : N ×G → G∗ of the map L :

N ×G→ R with respect to its second variable is used. We have indeed, for all x ∈ N and X ∈ G,

d2L(x,X) = J ◦L
(
ϕ(X)(x)

)
,

which allows to write the Euler-Poincaré equation under the form

(
d

dt
− ad∗V (t)

)(
d2L
(
γ(t),V(t)

))
= J
(

d1L
(
γ(t),V(t)

))
. (3)

5.2.3 Use of the Euler-Poincaré equation for reduction

Poincaré observes in his Note [57] that the Euler-Poincaré equation can be useful mainly when

its right hand side vanishes and when it reduces to an autonomous differential equation on G∗

for the parametrized curve t 7→ J ◦ψ(t). We will see in Section 6.4 that the first condition is

satisfied when the Hamiltonian system under consideration describes the motion of a rigid body

around a fixed point in the absence of external forces (Euler-Poinsot problem). The second

condition generally is not satisfied, since the Euler-Poincaré equation involves the parametrized

curve t 7→V (t) in G, whose dependence on J ◦ψ(t) is complicated.

This simplification occurs when there exists a smooth function h : G∗ → R such that

H = h◦ J ,

which implies that H is constant on each level set of J. Then it can be shown that the Euler-

Poincaré equation becomes the Hamilton equation on G∗ for the Hamiltonian h and its canonical

Poisson structure.

If we assume that the manifold N is a Lie group G and that the action ϕ : G→ A1(G) of its Lie

algebra is the action associated to the action of G on itself by translations on the left (respectively,

on the right), ϕ̂ is the Lie algebra action associated to the canonical lift to T ∗G of the canonical

action of G on itself by translations on the left (respectively, on the right). The conditions under

which the Euler-Poincaré equation can be used for reduction are exactly the same as those under

which the Marsden-Weinstein reduction method can be applied, but for the canonical lift to T ∗G

of the action of G on itself by translations on the right (respectively, on the left). Moreover,

applications of these two reduction methods lead to essentially the same equations: the only

difference is that the Euler-Poincaré reduction method leads to a differential equation on G∗,

while the Marsden-Weinstein reduction method leads, for each value of the momentum map, to

the same differential equation restricted to a coadjoint orbit of G∗. The reader will find the proof

of these assertions in [48, 51].

6 Examples of Hamiltonian dynamical systems

We present in this section three classical examples of Hamiltonian dynamical systems in which

the previously discussed concepts (symmetry groups, momentum maps and first integrals, reduc-

tion methods) are illustrated. The configuration space of the first system (the spherical pendulum)
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is a sphere embedded in physical space; each point of the sphere is a possible position of a ma-

terial point which moves on that sphere. The third example (the Kepler problem) deals with the

motion of a material point in the acceleration field created by an attracting centre; the configu-

ration space is the physical space minus one point (the attractive centre). In the second example

(the motion of a rigid body around a fixed point) the configuration space is a little more compli-

cated: it is the set of all maps which send the material body onto one of its possible positions in

space.

6.1 The mathematical description of space and time

The framework in which the motions of material bodies occur is the physical space-time. It will

be mathematically described here as it is usually done in classical (non-relativistic) Mechanics.

In a Galilean reference frame, once units of length and of time are chosen, the physical space and

the physical time are mathematically described by affine Euclidean spaces E and T , respectively

three-dimensional and one-dimensional. We will consider E and T as oriented: T has a natural

orientation (towards the future), while by convention, an arbitrary orientation of E is chosen. The

choice of a particular element of T as origin will allow us to identify T with the real line R.

In the three examples treated below there exists a privileged element of E (the centre of the

sphere, the fixed point and the attractive centre, respectively in the first, second and third exam-

ples) which will be taken as origin. The space E will therefore be considered as an Euclidean

three-dimensional vector space. For the same reason the abstract space S of material points used

in the second example will be considered too as an Euclidean three-dimensional vector space.

In our three examples, the configuration space of the system will be denoted by N: therefore in

the first example N is the sphere embedded in E centered on the origin on which the material point

is moving; in the third example N = E\{O}, where O is the attractive centre; and we will see that

in the second example, N = Isom(S,E) is the space of orientation preserving linear isometries

of an abstract three-dimensional Euclidean vector space S (the space of material points) onto the

physical space E.

6.2 Vector calculus in a three-dimensional oriented Euclidean vector space

The group SO(E) of orientation preserving linear isometries of E, isomorphic to SO(3), acts on

the space E, and so does its Lie algebra so(E), isomorphic to so(3), by the associated action.

The Euclidean vector space E being three-dimensional and oriented, there exists an isomorphism

of so(E) onto the space E itself widely used in elementary vector calculus, in which an element

X ∈ so(E), which is a linear map E → E represented, in some orthonormal positively oriented

basis (
−→
e 1,

−→
e 2,

−→
e 3) of E, by the skew-symmetric 3×3-matrix




0 −c b

c 0 −a

−b a 0




is identified with the vector
−→
X = a

−→
e 1 + b

−→
e 2 + c

−→
e 3. With this identification, the bracket in

so(E), in other words the map (X ,Y ) 7→ [X ,Y ] = X ◦Y −Y ◦X , corresponds to the vector product

(
−→
X ,

−→
Y ) 7→ −→

X ×−→
Y . Expressed in terms of the vector product, the Jacobi identity becomes

−→
X × (

−→
Y ×−→

Z )+
−→
Y × (

−→
Z ×−→

X )+
−→
Z × (

−→
X ×−→

Y ) = 0 . (1)
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Let us recall another very useful formula which expresses, in terms of the scalar and vector

products, the ad-invariance of the pairing between so(E) and its dual by means of the scalar

product. For any triple (
−→
u ,

−→
v ,

−→
w ) ∈ E ×E ×E, we have

−→
u .(

−→
v ×−→

w ) =
−→
v .(

−→
w ×−→

u ) =
−→
w .(

−→
u ×−→

v ) . (2)

The map (
−→
u ,

−→
v ,

−→
w ) 7→ −→

u .(
−→
v ×−→

w ) is therefore a skew-symmetric trilinear form on E some-

times called the mixed product.

The dual E∗ of E will be identified with E, with the scalar product (
−→
u ,

−→
v ) 7→

−→
u .

−→
v as pairing

by duality. The tangent and cotangent bundles T E and T ∗E will therefore both be identified with

E ×E, the canonical projections τE : T E → E and πE : T ∗E → E both being the projection of

E ×E onto its first factor. The Lie algebra action of so(E) on E associates, to each
−→
X ∈ so(E)≡

E, the vector field
−→
XE on E whose value at an element

−→
x ∈ E is

−→
XE(

−→
x ) = (

−→
x ,

−→
X ×

−→
x ) . (3)

Since we have identified so(E) with E, its dual space so(E)∗ is identified with E∗, which we

have identified with E by means of the scalar product. Therefore so(E)∗ too will be identified

with E.

The canonical lift to the cotangent bundle of the action of SO(E) on E is a Hamiltonian action

(4.3.6) whose momentum map JE : T ∗E ≡ E × E → so(E)∗ ≡ E can easily be expressed in

terms of the vector product. Indeed the map JE must satisfy, for each
−→
X ∈ so(E) ≡ E and each

(
−→
x ,

−→
p ) ∈ T ∗E ≡ E ×E,

〈
JE(

−→
x ,

−→
p ),X

〉
=
〈
(
−→
x ,

−→
p ),

−→
XE(

−→
x )
〉
=

−→
p .(

−→
X ×

−→
x ) =

−→
X .(

−→
x ×

−→
p ) ,

the last equality being obtained by using the above formula (2). We therefore see that

JE(
−→
x ,

−→
p ) =

−→
x ×

−→
p . (4)

Expressed in terms of the vector product, the adjoint and coadjoint actions become

ad−→
X

−→
Y =

−→
X ×

−→
Y , ad∗−→

X

−→
ξ =−

−→
X ×

−→
ξ =

−→
ξ ×

−→
X , (5)

where
−→
X and

−→
Y ∈ so(E)≡ E and

−→
ξ ∈ so(E)∗ ≡ E.

Of course all the above properties hold for the three-dimensional Euclidean oriented vector

space S of material points which is used in the second example, for the group SO(S) of its linear

orientation preserving isometries and for its Lie algebra so(S).

6.3 The spherical pendulum

6.3.1 Mathematical description of the problem

Let us consider a heavy material point of mass m constrained, by an ideal constraint, on the

surface of a sphere N of centre O and radius R embedded in the physical space E. Since the

action of SO(E) on E maps N onto itself, SO(E) acts on N on the left, and so does its Lie algebra

so(E) by the associated action, which is locally (and globally) transitive. The configuration space
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N is the set of vectors
−→
x ∈ E which satisfy

−→
x .

−→
x = R2 and its tangent bundle T N is the subset

of T E ≡ E ×E of pairs (
−→
x ,

−→
v ) of vectors which satisfy

−→
x .

−→
x = R2 ,

−→
x .

−→
v = 0 .

We assume that the material point is submitted to a constant acceleration field
−→
g (which, in

most applications, will be the vertical gravity field directed downwards). The Lagrangian of the

system is

L(
−→
x ,

−→
v ) =

m‖
−→
v ‖2

2
+m

−→
g .

−→
x .

The Legendre map L : T N → T ∗N is expressed as

L(
−→
x ,

−→
v ) = (

−→
x ,

−→
p ) with

−→
p = m

−→
v .

The Hamiltonian of the system is therefore

H(
−→
x ,

−→
p ) =

‖
−→
p ‖2

2m
−m

−→
g .

−→
x .

The momentum map JE of the canonical lift to the cotangent bundle of the Lie algebra action ϕ ,

expressed in terms of the vector product, is given by Formula (4) in Section 6.2.

6.3.2 The Euler-Poincaré equation

The map ϕ̃ : N × so(E)→ T N defined by ϕ̃(
−→
x ,

−→
X ) =

−→
XN(

−→
x ), expressed, in terms of the vector

product, is ϕ̃(
−→
x ,

−→
X ) = (

−→
x ,

−→
X ×

−→
x ). Using Formula (2) of 6.2, we easily obtain the expression

of L = L◦ ϕ̃ : N × so(E)→ R:

L(
−→
x ,

−→
X ) =

mR2

2

(
‖
−→
X ‖2 − (

−→
X .

−→
x )2

R2

)
+m

−→
g .

−→
x .

The partial differentals of L with respect to its first and second variables are

d1L(
−→
x ,

−→
X ) =

(
−→
x ,m

(−→
g − (

−→
X .

−→
x )

−→
X +

(
−→
x .

−→
X )2 −−→

g .
−→
x

R2

−→
x
))

,

d2L(
−→
x ,

−→
X ) = m

(
R2

−→
X − (

−→
X .

−→
x )

−→
x
)
.

Let t 7→
−→
x(t) be a smooth curve in N, parametrized by the time t, solution of the Euler-Lagrange

equation for the Lagrangian L. The compatibility condition (1) of 5.2.2 becomes, for a smooth

map t 7→V (t) in so(E),

d
−→
x(t)

dt
=

−→
V (t)×

−→
x(t) ,

and the Euler-Poincaré equation (3) of 5.2.2 is

d

dt

(
mR2−→V (t)−m

(−→
x(t).

−→
V (t)

)−→
x(t)
)
= m

−→
x(t)×−→

g .

This equation can easily be obtained by much more elementary methods: it expresses the fact

that the time derivative of the angular momentum at the origin is equal to the moment at that
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point of the gravity force (since the moment at the origin of the constraint force which binds the

material point to the surface of the sphere vanishes).

The Euler-Poincaré equation allows a reduction of the problem if and only if its right hand side

vanishes, which occurs if and only if
−→
g = 0. When that condition is satisfied, it can be written

as

m
d

dt

(
−→
x(t)× d

−→
x(t)

dt

)
= 0 ,

which implies that the material point moves on a great circle of the sphere N, in the plane through

its centre orthogonal to the constant vector
−→
x(t)× d

−→
x(t)

dt
. Using the conservation of energy H, we

see that ‖
−→
v (t)‖ remains constant during the motion.

6.3.3 Reduction by the use of first integrals

Equation (4) of Section 6.2 shows that the map

J(
−→
x ,

−→
p ) =

−→
x ×

−→
p , with (

−→
x ,

−→
p ) ∈ T ∗N ≡ N ×E ,

is a momentum map for the canonical lift to T ∗N of the action of SO(E) on N. When
−→
g 6= 0

that action does not leave invariant the Hamiltonian H, but its restriction to the subgroup G1

of rotations around the vertical line through the centre of the sphere N does leave H invariant.

The Lie algebra of G1 and its dual being identified with R, the momentum map of this restricted

action is

J1(
−→
x ,

−→
p ) =

−→
e g.(

−→
x ×−→

p )

where
−→
e g is the unit vector such that

−→
g = g

−→
e g, with g > 0. The only singular value of J1 is 0.

It is reached when the three vectors
−→
x ,

−→
p and

−→
e g lie in the same vertical plane. Therefore, for

any ζ 6= 0, J−1
1 (ζ ) is a three-dimensional submanifold of T ∗N which does not contain T ∗

R
−→
e g

N ∪
T ∗
−R

−→
e g

N and which remains invariant under the action of G1. The set of orbits of this action is the

Marsden-Weinstein reduced symplectic manifold for the value ζ of the momentum map. On this

two-dimensional reduced symplectic manifold all the integral curves of the Hamiltonian vector

field associated to the reduced Hamiltonian Hζ are periodic.

6.4 The motion of a rigid body around a fixed point

6.4.1 Mathematical description of the problem

We consider the motion of a rigid body containing at least three non-aligned material points.

A configuration of the body in space is mathematically represented by an affine, isometric and

orientation preserving map defined on an abstract Euclidean three-dimensional oriented affine

space S (called the space of material points), with values in E, the three-dimensional Euclidean

oriented affine space which mathematically describes the physical space. When the configuration

of the body is represented by the map x : S → E, the position in space of the material point of the

body represented by z ∈ S is x(z).

We assume that one geometric point of the rigid body is constrained, by an ideal constraint, to

keep a fixed position in the physical space. By using this fixed point as origin, both for S and for

E, we can now consider these spaces as vector spaces. Each configuration of the body in space
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is therefore represented by a linear isometry. The set N of all possible configurations of the

material body in space is therefore Isom(S,E), the set of linear orientation-preserving isometries

of S onto E.

The Lie groups SO(S) and SO(E) of linear orientation-preserving isometries, respectively of

S and of E, both isomorphic to SO(3), act on N, respectively on the left and on the right, by the

two commuting actions ΦS and ΦE

ΦS(x,gS) = x◦gS , ΦE(gE ,x) = gE ◦ x , gE ∈ SO(E) , gS ∈ SO(S) , x ∈ N .

The values at x∈N of the fundamental vector fields on N associated to X ∈ so(S) and Y ∈ so(E)
are

XN(x) =
d
(
x◦ exp(sX)

)

ds

∣∣∣
s=0

, YN(x) =
d(exp(sY )◦ x)

ds

∣∣∣
s=0

.

The Lie algebra actions ϕS : so(S)→ A1(N) and ϕE : so(E)→ A1(N) associated to the Lie group

actions ΦS and ΦE are, respectively, the maps

ϕS(X) = XN , ϕE(Y ) = YN , X ∈ so(S) , Y ∈ so(E) .

One should be careful with signs: since ΦS is an action of SO(S) on the right, the bracket of

elements in the Lie algebra so(S) for which ϕS is a Lie algebras homomorphism is the bracket

of left-invariant vector fields on the Lie group SO(S); similarly, since ΦE is an action of SO(E)
on the left, the bracket of elements in the Lie algebra so(E) for which ϕE is a Lie algebras

homomorphism is the bracket of right-invariant vector fields on the Lie group SO(E).

Let ϕ̃S : N × so(S)→ T N and ϕ̃E : N × so(E)→ T N be the vector bundles isomorphisms

ϕ̃S(x,X) = ϕS(X)(x) , ϕ̃E(x,Y ) = ϕE(Y )(x) .

Let ΩS : T N → so(S) and ΩE : T N → so(E) be the vector bundles maps (so(S) and so(E) being

considered as trivial vector bundles over a base reduced to a singleton)

ΩS(v) = πso(S) ◦ ϕ̃−1
S (v) , ΩE(v) = πso(E) ◦ ϕ̃−1

E (v) , v ∈ T N ,

where πso(S) : N × so(S) → so(S) and πso(E) : N × so(E) → so(E) are the projections of these

two products on their respective second factor.

A motion of the rigid body during a time interval [t0, t1] is mathematically described by a

smooth parametrized curve γ : [t0, t1] → N. In his beautiful paper [3], Vladimir Arnold clearly

explained the physical meaning, for each t ∈ [t0, t1], of
dγ(t)

dt
, ΩS

(
dγ(t)

dt

)
and ΩE

(
dγ(t)

dt

)
:

•
dγ(t)

dt
∈ Tγ(t)N is the value, at time t, of the true angular velocity of the body,

• ΩS

(
dγ(t)

dt

)
is the value, at time t, of the angular velocity of the body seen by an observer

bound to the moving body and moving with it,

• and ΩE

(
dγ(t)

dt

)
is the value, at time t, of the angular velocity of the body seen by an

observer bound to the Galilean reference frame in which the motion is studied and at rest

with respect to that reference frame.
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The following comments may be useful to explain Arnold’s assertions. To shorten the nota-

tions, let us state, for some time t ∈ [t0, t1], x = γ(t) ∈ N, v =
dγ(t)

dt
∈ TxN, X = ΩS(v) ∈ so(S)

and Y = ΩE(v) ∈ so(E). We have

ϕ̃S(x,X) = ϕ̃E(s,Y ) = v .

Let z ∈ S be some material point of the moving body. Its position at time t is x(z) ∈ E and its

velocity is
d

dt

(
γ(t)(z)

)
∈ Tx(z)E. It depends only of v =

dγ(t)

dt
∈ TxN, not of the whole curve γ .

We can therefore replace γ by the parametrized curve s 7→ exp(sY )◦ x, since we have

d
(
exp(sY )◦ x)

ds

∣∣∣
s=0

= YN(x) = v .

Therefore the velocity at time t of the material point z ∈ S is

d
(
exp(sY )◦ x(z)

)

ds

∣∣∣
s=0

= YE

(
x(z)

)
=
(−−→
x(z),

−→
Y ×

−−→
x(z)) ∈ T E ≡ E ×E ,

where we have denoted by YE the fundamental vector field on E associated to Y ∈ so(E)for the

action ΦE , and used Formula (3) of Section 6.2. This proves that the fundamental vector field YE

is the velocity field of the rigid body as it appears in space E at time t, and explains why Arnold

calls Y the angular velocity of the body seen by an observer bound to the Galilean frame in which

the motion is studied.

Since
dγ(t)

dt
=

d
(
x◦ exp(sX)

)

ds

∣∣∣
s=0

, the value at x(z) ∈ E of the fundamental vector field YE is

also given by
d
(
x◦ exp(sX)(z)

)

ds

∣∣∣
s=0

. The pull-back x∗(YE) by the isomorphism x : S → E of the

fundamental vector field YE , i.e. of the velocity field of the moving body in space E at time t, is

the vector field on S whose value at z ∈ S is

x∗(YE)(z) =
d
(
exp(sX)(z)

)

ds

∣∣∣
s=0

= XS(z) = (
−→
z ,

−→
X ×

−→
z ) ∈ T S ≡ S×S ,

where we have again used Formula (3) of Section 6.2. The pull-back x∗(YE) of the velocity

field of the moving body in space E at time t, by the isomorphism x : S → E, is therefore the

fundamental vector field XS associated to X ∈ so(S), for the action ΦS. That explains why Arnold

calls X the angular velocity of the body seen by an observer bound to the moving body.

The above observations prove that for any x ∈ N and v ∈ TxN,

x
(−−−→
ΩS(v)

)
=
−−−→
ΩE(v) , (1)

the arrows over ΩS(v) ∈ so(S) and ΩE(v) ∈ so(E) indicating that they are here considered as

vectors in S and in E, respectively.

When the true angular velocity of the body is v ∈ T N, its kinetic energy is

T(v) =
1

2
I
(
ΩS(v),ΩS(v)

)
,

where I : so(S)× so(S)→ R is a symmetric, positive definite bilinear form which describes the

inertia properties of the body. The assumed rigidity of the body is mathematically described by
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the fact that the bilinear form I does not depend on time, nor on the configuration τN(v) of the

body. Let us set, for each pair (v,w) of vectors in T N such that τN(v) = τN(w),

T̃(v,w) =
1

2
I
(
ΩS(v),ΩS(w)

)
, so we can write T(v) = T̃(v,v) .

The symmetric bilinear form T̃ is a Riemannian metric on the manifold N. Let us consider the

effects on T̃ of the canonical lifts to T N of the actions ΦE and ΦS on the manifold N. For each gE

in SO(E), gS ∈ SO(S), we denote by ΦE gE
: N → N and by ΦSgS

: N → N the diffeomorphisms

ΦE gE
(x) = ΦE(gE ,x) = gE ◦ x , ΦSgS

(x) = ΦS(x,gS) = x◦gS , x ∈ N .

For each v ∈ T N, with τN(v) = x ∈ N, we have of course

ϕ̃S

(
x,ΩS(v)

)
= v .

Since the actions ΦE and ΦS commute we have, for any gE ∈ SO(E), v ∈ T N, t ∈ R and x =
τN(v) ∈ N,

ΦE

(
gE ,x◦ exp

(
tΩS(v)

))
= gE ◦ x◦ exp

(
tΩS(v)

)
= ΦS

(
gE ◦ x,exp

(
tΩS(v)

))
.

By taking the derivative with respect to t, then setting t = 0, we get

T ΦE gE
(v) = ϕ̃S

(
gE ◦ x,ΩS(v)

)
,

which means that

ΩS

(
T ΦE gE

(v)
)
= ΩS(v) .

The Riemannian metric T̃ therefore satisfies, for each gE ∈ SO(E) and each pair (v,w) of vectors

in T N which satisfy τN(v) = τN(w),

T̃
(
T ΦE gE

(v),TΦE gE
(w)
)
= T̃(v,w) .

This result means that the Riemannian metric T̃ remains invariant under the canonical lift to T N

of the action ΦE .

A similar calculation, in which gE ∈ SO(E) is replaced by gS ∈ SO(S), proves that, for each

v ∈ T N,

ΩS

(
T ΦSgS

(v)
)
= Ad

g−1
S

(
ΩS(v)

)
,

so we have, for v and w ∈ T N satisfying τN(v) = τN(w),

T̃
(
T ΦSgS

(v),TΦSgS
(w)
)
=

1

2
I
(
Ad

g−1
S
◦ΩS(v),Ad

g−1
S
◦ΩS(w)

)
.

For a general rigid body, the kinetic energy T and the Riemannian metric T̃ do not remain in-

variant under the canonical lift to T N of the action ΦS. However, let us define an action on the

left of GS on the vector space of bilinear forms forms on so(S) by setting, for each such bilinear

form B and each gS ∈ GS

(gS.B)(XS,YS) = B
(
Ad

g−1
S
(XS),Ad

g−1
S
(YS)

)
, XS and YS ∈ so(S) .

We see that the kinetic energy T and the Riemannian metric T̃ remain invariant under the action

of an element gS ∈ GS if and only if gS.I = I, i.e. if and only if gS is an element of the isotropy
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subgroup if I for the above defined action of GS on the space of bilinear forms on so(S). This

happens, for example, when the body has a symmetry axis, the isotropy subgroup of I being the

group of rotations around that axis.

When the configuration of the body is x ∈ N, its potential energy is

U(x) =−
〈
P,x(

−→
a )
〉
,

where
−→
a ∈ S is the vector whose origin is the fixed point OS and extremity the centre of mass

of the body, and P ∈ E∗ is the gravity force. Since E is identified with its dual E∗, the pairing

by duality being the scalar product, P can be seen as a fixed vertical vector
−→
P ∈ E directed

downwards, equal to the weight of the body (product of its mass with the gravity acceleration),

and the potential energy can be written

U(x) =−
−→
P .

−−→
x(a) =−

−−−−→
x−1(P).

−→
a ,

where we have written
−−→
x(a) for x(

−→
a ) and

−−−−→
x−1(P) for x−1(

−→
P ) to stress the fact that they are

vectors, elements of E and of S, respectively. We also used the fact that the transpose xT : E∗→ S∗

of the orthogonal linear map x : S → E is expressed, when S and E are identified with their dual

spaces by means of the scalar product, as x−1 : E → S.

When either
−→
a = 0 or

−→
P = 0 the potential energy vanishes, therefore remains invariant under

the actions ΦE of GE and ΦS of GS on the manifold N. When both
−→
a 6= 0 and

−→
P 6= 0, the above

formulae show that the potential energy remains invariant by the action of an element gE ∈ SO(E)

if and only if
−−−→
gE(P) =

−→
P , which means if and only if gE is an element of the isotropy group of

−→
P

for the natural action of GE on E. This isotropy subgroup is the group of rotations of E around

the vertical straight line through the fixed point. Simlilarly, the potential energy remains invariant

by the action of an element gS ∈ SO(S) if and only if
−−−→
gS(a) =

−→
a , which means if and only if gS is

an element of the isotropy group of
−→
a for the natural action of GS on S. This isotropy subgroup

is the group of rotations of S around the straight line which joins the fixed point and the centre of

mass of the body.

The motion of the rigid body can be mathematically described by a Lagrangian system whose

Lagrangian L : T N → R is given, for v ∈ T N, by

L(v) = T̃(v,v)+
−→
P .

−−−−−→
τN(v)(a) = T̃(v,v)+

−−−−−−−−−→(
τN(v)

)−1
(P).

−→
a .

We denote by T̃♭ : T N → T ∗N the map determined by the equality, in which v and w∈ T N satisfy

τN(v) = τN(w), 〈
T̃
♭(v),w

〉
= T̃(v,w) .

The Legendre map L : T N → T ∗N determined by the Lagrangian L is

L= 2T̃♭ .

Its linearity and the positive definiteness of I ensure that it is a vector bundles isomorphism. The

motion of the rigid body can therefore be described by a Hamiltonian system whose Hamiltonian

H : T ∗N → R is given, for p ∈ T ∗N, by

H(p) =
1

4

〈
p,(T̃♭)−1(p)

〉
−
−→
P .

−−−−−→
πN(p)(a) =

1

4

〈
p,(T̃♭)−1(p)

〉
−
−−−−−−−−−→(
πN(p)

)−1
(P).

−→
a .
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6.4.2 The Hamiltonian in terms of momentum maps

Let x ∈ N be fixed. The maps

ΩSx = ΩS

∣∣
TxN

: TxN → so(S) and ΩEx = ΩE

∣∣
TxN

: TxN → so(E)

are vector spaces isomorphisms. Their transpose

ΩT
Sx : so(S)∗ → T ∗

x N and ΩT
Ex : so(E)∗ → T ∗

x N

are too vector spaces isomorphisms. Their inverses are closely linked to the momentum maps

JS : T ∗N → so(S)∗ and JE : T ∗N → so(E)∗ of the canonical lifts to T ∗N of the actions ΦS of GS

and ΦE of GE , respectively, on the manifold N. We have indeed, for any x ∈ N,

JS

∣∣
T ∗

x N
= (ΩT

Sx)
−1 , JE

∣∣
T ∗

x N
= (ΩT

Ex)
−1 .

As above, let x ∈ E be fixed and let v and w ∈ TxN. The Legendre map L : T N → T ∗N satisfies

〈
L(v),w

〉
=

1

2

d

ds
I
(
ΩS(v+ sw),ΩS(v+ sw)

) ∣∣
s=0

= I
(
ΩS(v),ΩS(w)

)

=
〈
I♭ ◦ΩS(v),ΩS(w)

〉

=
〈
ΩT

Sx ◦ I♭ ◦ΩS(v),w
〉
,

where I♭ : so(S)→ so(S)∗ is the map defined by

〈
I♭(XS),YS

〉
= I(XS,YS) , XS and YS ∈ so(S) .

So we can write

L
∣∣
TxN

= ΩT
Sx ◦ I♭ ◦ΩS

∣∣
TxN

,

which shows that the momentum map JS composed with the Legendre map L has the very simple

expression

JS ◦L= I♭ ◦ΩS .

The momentum map JE composed with L has a slightly more complicated expression, valid for

each x ∈ N,

JE ◦L
∣∣
TxN

= (ΩT
Ex)

−1 ◦ΩT
Sx ◦ I♭ ◦ΩS

∣∣
TxM

.

Let I∗ : so(S)∗× so(S)∗ → R be the symmetric, positive definite bilinear form on G∗

I∗(ξ ,η) = I
(
(I♭)−1(ξ ),(I♭)−1(η)

)
=
〈
ξ ,(I♭)−1(η)

〉
=
〈
η,(I♭)−1(ξ )

〉
.

The above expression of JS ◦L and the bilinear form I∗ allow us to write the Hamiltonian H as

H(p) =
1

2
I∗
(
JS(p),JS(p)

)
−
−−−−−−−→
πN(p)−1(P).

−→
a , p ∈ T ∗N .

Although the kinetic energy remains invariant under the canonical lift to T ∗N of the action ΦE ,

the expression of H in terms of the other momentum map JE is too complicated to be useful.
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6.4.3 The Euler-Poincaré equation

We use the vector bundles isomorphism ϕ̃S : N×so(S)→ T N to derive the Euler-Poincaré equa-

tion. The map L = L◦ ϕ̃S : N × so(S)→ R is

L(x,X) =
1

2
I(X ,X)+

−→
P .

−−→
x(a) , X ∈ so(S) , x ∈ N .

Its partial differential d2L with respect to its second variable is

d2L(x,X) = I♭(X) ∈ so(S)∗ ≡ S .

A calculation similar to those of Section 6.4.2 leads to the following expression of JS composed

with the partial differential of L with respect to its first variable:

JS ◦d1L(x,X) =
−→
a ×

−−−−→
x−1(P) ∈ so(S)∗ ≡ S .

Let t 7→ x(t) be a smooth curve in N solution of the Euler-Lagrange equation for the Lagrangian

L, and t 7→ X(t) a smooth curve in so(S) which satisfies the compatibility condition (1) of 5.2.2

dx(t)

dt
= ϕ̃S

(
x(t),X(t)

)
. (1)

The Euler-Poincaré equation (3) of 5.2.2, satisfied by the smooth curve t 7→
(
x(t),X(t)

)
in N ×

so(S), is (
d

dt
− ad∗X(t)

)(
I♭
(
X(t)

))
=

−→
a ×

−−−−→
x−1(P) .

Using the expression of ad∗ given by Formula (4) of 6.2, we can write the Euler-Poincaré equa-

tion as
d

dt

−−−−−→
I♭
(
X(t)

)
−
−−−−−→
I♭
(
X(t)

)
×−−→

X(t) =
−→
a ×−−→

PS(t) , (2)

where we have set
−−→
PS(t) =

−−−−−−→
x(t)−1(P). The physical meaning of the quantities which appear in

this equation is the following:
−−→
X(t) is the angular velocity,

−−−−−→
I♭
(
X(t)

)
the angular momentum and

−−→
PS(t) the weight of the moving body, all three a time t and seen by an observer bound to the body,

therefore considered as vectors in S. We recognize the classical Euler equation for the motion of

a rigid body around a fixed point.

Of course x(t)
(−−→
PS(t

)
=

−→
P is a constant vector in E, therefore

d
(

x(t)
(−−→
PS(t

))

dt
=

dx(t)

dt

(−−→
PS(t

)
+ x(t)

(
d
−−→
PS(t

dt

)
= 0 .

The first term in the right hand side,
dx(t)

dt

(−−→
PS(t

)
, is the value at

−→
P ∈ E of the velocity field in E

of the moving body. Therefore

dx(t)

dt

(−−→
PS(t

)
=
−−−→
ΩE(v)×

−→
P , with v =

dx(t)

dt
∈ Tx(t)N .

Therefore we have

d
−−→
PS(t)

dt
=−x(t)−1

(−−−→
ΩE(v)×

−→
P
)
=−

−−→
X(t)×

−−→
PS(t) ,

58



since, by Formula (1) of 6.4.1, x(t)−1
(−−−→
ΩE(v)

)
=
−−−→
ΩS(v) =

−−→
X(t). The compatibility condition and

the Euler-Poincaré equation (Equations (1) and (2) of this Section) have lead us to the differential

equation on S×S, for the unknown parametrized curve t 7→
(−−→
X(t),

−−→
PS(t

)
,





d
−−−−−→
I♭
(
X(t)

)

dt
=

−−−−−→
I♭
(
X(t)

)
×
−−→
X(t)+

−→
a ×

−−→
PS(t) ,

d
−−→
PS(t)

dt
=−

−−→
X(t)×

−−→
PS(t) .

(3)

When the right hand side of equation (2) vanishes, which occurs when the fixed point is the

centre of mass of the body (
−→
a = 0) or when there is no gravity field (

−→
P = 0), the Euler-Poincaré

equation yields an important reduction, since the first equation of (3) becomes an autonomous

differential equation on the three-dimensional vector space S for the smooth curve t 7→
−−−−−→
I♭
(
XS(t)

)
,

while the Euler-Lagrange equation or the Hamilton equation live on the six-dimensional mani-

folds T N or T ∗N, respectively. Under these assumptions, the study of all possible motions of the

rigid body is is known in Mechanics as the Euler-Poinsot problem. The reader will find in [14] a

very nice and thorough geometric presentation of the phase portrait of this problem.

When
−→
a 6= 0 and

−→
P 6= 0, the first equation of (3) is no more autonomous: one has to solve

(3) on the six-dimensional vector space S×S. The use of the Euler-Poincaré equation does not

allow a reduction of the dimension of the phase space, but (3) may be easier to solve than the

Euler-Lagrange equation or the Hamilton equation, because it lives on a vector space instead of

on the tangent or cotangent bundle to a manifold.

6.4.4 Use of the Lie algebra of Euclidean displacements

As explained for example in Theorem 4.1 of [48] or in Proposition 13 and Example 14 of [51],

there exists a Hamiltonian action on T ∗N of the semi-direct product GS × S, (the group of Eu-

clidean displacements, generated by rotations and translations, of the Euclidean affine space

S) which extends the canonical lift to T ∗N of the action ΦS, such that the Hamiltonian H

can be expressed as composed of the momentum map of that action with a smooth function

h : so(S)∗×S∗ → R. We briefly explain below the construction of that action.

For each
−→
b ∈ S, let f−→

b
: N → R be the smooth function

f−→
b
(x) =

〈
xT (P),

−→
b
〉
=

−→
b .

−−−−→
x−1(P) , x ∈ N .

The map Ψ : T ∗N ×S → T ∗N defined by

Ψ(p,
−→
b ) = p−d f−→

b
◦πN(p) , p ∈ T ∗N ,

−→
b ∈ S ,

is a Hamiltonian action of S on the symplectic manifold (T ∗N,dηN): the Lie algebra of S can

indeed be identified with S, the exponential map becoming the identity of S, and for each
−→
b ∈ S,

the vector field on T ∗N whose flow is the one-parameter group of transformations of T ∗N

{
p 7→ p− td f−→

b

(
πN(p)

)
; t ∈ R

}

is Hamiltonian an admits as Hamiltonian the function

p 7→ f−→
b
◦πN(p) ==

−→
b .

−−−−−−−→
πN(p)−1(P) , p ∈ T ∗N.
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This formula proves that Ψ is a Hamiltonian action which admits

JΨ : T ∗N → S∗ ≡ S , JΨ(p) =
−−−−−−−→
πN(p)−1(P)

as a momentum map. Gluing together Ψ with the canonical lift Φ̂S of ΦS to the cotangent bundle,

we obtain a Hamiltonian action on the right Ξ of the semi-direct product GS×S on the symplectic

manifold (T ∗N,dηN):

Ξ
(

p,(gS,
−→
b )
)
= Ψ(Φ̂S(p,gS),

−→
b )

with (JS,Jψ) : T ∗N → so(S)∗×S∗ ≡ S×S as a momentum map. The function h : so(S)∗×S∗ ≡
S×S →R

h(
−→
η ,

−→
ζ ) =

1

2
I∗(

−→
η ,

−→
η )−

−→
ζ
−→
η

is such that the Hamiltonian H : T ∗N → R can be written as H = h ◦ (JS,JΨ), and Equation (3)
of Section 6.4.3 is the Hamilton equation on so(S)∗× S∗ ≡ S× S (endowed with its canonical

Poisson structure) for the Hamiltonian h. This result is in agreement with the fact that (JS,JΨ) is

an ad∗-invariant Poisson map (4.4.11).

6.4.5 Reduction by the use of first integrals

The effects on the kinetic and potential energies of the Hamiltonian actions Φ̂E and Φ̂S were

discussed in Section 6.4.1. When
−→
a 6= 0 and

−→
P 6= 0, the Hamiltonian H remains invariant under

the restriction of the action Φ̂E to the subgroup of rotations around the vertical axis through

the fixed point. The corresponding momentum map, which is the orthogonal projection of the

momentum map JE on the vertical direction, is therefore a first integral. Another first integral

is the total energy, i.e. the Hamiltonian H itself. For a general rigid body, no other independent

first integrals are known. However, in two special cases of particular rigid bodies, there exists

another independent first integral.

The first case, known as the Euler-Lagrange problem in Mechanics, is when the straight line

which joins the fixed point and the centre of mass of the body is an axis of symmetry for the

inertia properties of the body. The Hamiltonian H remains then invariant under the restriction of

the action Φ̂S to the subgroup of SO(S) of rotations around this straight line. The corresponding

momentum map is the orthogonal projection of the momentum map JS on the direction of the

symmetry axis.

The second case, discovered by the Russian mathematican Sonya Kovalevskaya (1850–1891)

[41] is when two of the principal moments of inertia of the body are equal to twice the third

and when the centre of mass of the body lies in the plane of the two equal moments of inertia.

The explanation of the existence, in this very special case, of an additional integral is much

more complicated than that of the existence of an additional integral for the Euler-Lagrange

problem, and involves mathematical tools which are not discussed in the present paper. The

reader is referred to the book by Michèle Audin [6] for a discussion of these tools and to the

beautiful other book by the same author [7] for a very moving presentation of the life of Sonya

Kovalevskaya.

When
−→
a = 0 or

−→
P = 0 (the Euler-Poinsot problem) the Hamiltonian H remains invariant under

the action Φ̂E of the full group SO(E), so the corresponding momentum map JE is (as already

seen in Section 6.4.3) a (vector valued) first integral.
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6.5 The Kepler problem

6.5.1 Mathematical description of the problem

We consider the motion in space of a material point of mass m submitted to the gravitational

field created by an attractive centre O. Taking O as origin allows us to consider E as a vector

Euclidean three-dimensional oriented space. The configuration space, i.e. the set of all possible

positions of the material point, is N = E\{O}. The tangent bundle T N and the cotangent bundle

T ∗N will both be identified with N ×E. An element of T N is therefore a pair (
−→
x ,

−→
v ) ∈ E ×E

satisfying
−→
x 6= 0. Similarly an element of T ∗N is a pair (

−→
x ,

−→
p ) ∈ E ×E satisfying

−→
x 6= 0.

The kinetic energy T : T N ≡ N ×E →R and the potential energy U : N → R are

T(
−→
x ,

−→
v ) =

1

2
m‖−→v ‖2 , U(

−→
x ) =

mk

‖
−→
x ‖

.

The Lagrangian L : T N ≡ N ×E → R of the Kepler problem is therefore

L(
−→
x ,

−→
v ) =

1

2
m‖

−→
v ‖2 +

mk

‖−→x ‖
.

The Legendre map L : T N ≡ N ×E → T ∗N ≡ N ×E is

L(
−→
x ,

−→
v ) = (

−→
x ,

−→
p ) , with

−→
p = m

−→
v .

The Kepler problem can therefore be mathematically formulated as a Hamiltonian dynamical

system on T ∗N ≡ N ×E, with the Hamiltonian

H(
−→
x ,

−→
p ) =

1

2m
‖
−→
p ‖2 − mk

‖
−→
x ‖

.

The natural action ΦE of SO(E) on E leaves invariant N = E\{O}, therefore is an action of

SO(E) on N. With the identifications of T N and T ∗N with N ×E which we have made, the

canonical lifts ΦE and Φ̂E of that action to the tangent and cotangent bundles, respectively, are

expressed as

ΦE

(
gE ,(

−→
x ,

−→
v )
)
=
(
gE(

−→
x ),gE(

−→
v )
)
, Φ̂E

(
gE ,(

−→
x ,

−→
p )
)
=
(
gE(

−→
x ),gE(

−→
p )
)
.

Since the norm of a vector in E remains invariant under the action ΦE , the Lagrangian L and the

Hamiltonian H remain invariant under the actions ΦE and Φ̂E , respectively. The action Φ̂E is

Hamiltonian, and we know (Formula (4) of 6.2) that its momentum map JE : T ∗N ≡ N ×E →
so(E)∗ ≡ E is

JE(
−→
x ,

−→
p ) =

−→
x ×−→

p .

The map JE is the angular momentum of the moving material point with respect to the attractive

centre. Noether’s theorem (4.4.5) shows that it is a first integral of the Kepler problem. Another

first integral of the Kepler problem is the total energy H, as shown by 3.3.4.

6.5.2 The Euler-Poincaré equation

The Lie group SO(E) does not act transitively on N by the action ΦE , since the orbits of this

action are spheres centered on O. However, extending this action by homotheties of strictly

positive ratio, we obtain a transitive action on N of the direct product SO(E)× ]0,+∞[

ΨE

(
(gE ,r),

−→
x
)
= rgE(

−→
x ) , gE ∈ SO(E) , r ∈ ]0,+∞[ ,

−→
x ∈ N .
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Let ψE : so(E)×R → A1(N) be the associated action of the Lie algebra so(E)×R. The map

ψ̃E : N ×
(
so(E)×R

)
→ T N, ψ̃E

(−→
x ,(

−→
X ,λ )

)
= ψE(

−→
X ,λ )(

−→
x ), can be written, with the identi-

fications of so(E) with E and of T N with N ×E,

ψ̃E

(−→
x ,(

−→
X ,λ )

)
=
(−→

x ,
−→
X ×−→

x +λ
−→
x ) .

The function L = L◦ ψ̃E is therefore

L
(−→

x ,(
−→
X ,λ )

)
=

1

2
m‖

−→
x ‖2

(
‖
−→
X ‖2 +λ 2

)
− 1

2
m(

−→
X .

−→
x )2 +

mk

‖
−→
x ‖

.

Its partial differentials d1L and d2L with respect to its first variable
−→
x and to its second variable

(
−→
X ,λ ) are, with the identifications of E∗ and

(
so(E)×R)∗ with, respectively, E and E ×R,

d1L
(−→

x ,(
−→
X ,λ )

)
=

(
m(‖

−→
X ‖2 +λ 2)− mk

‖
−→
x ‖3

)
−→
x −m(

−→
X .

−→
x )

−→
X ,

d2L
(−→

x ,(
−→
X ,λ )

)
=
(
m‖−→x ‖2−→X −m(

−→
X .

−→
x )

−→
x ,m‖−→x ‖2λ

)
.

The canonical lift Ψ̂E of ΨE to the cotangent bundle is a Hamiltonian action, whose momentum

map (JE ,KE) : T ∗N → so(E)∗×R has JE as first component. Its second component is

KE(
−→
x ,

−→
p ) =

−→
x .

−→
p .

Let t 7→ −→
x(t) be a smooth curve in N, parametrized by the time t, solution of the Euler-Lagrange

equation for the Lagrangian L. The compatibility condition (1) of 5.2.2, for a smooth map

t 7→
(−→
x(t),λ (t)

)
in so(E)×R, can be written as

d
−→
x(t)

dt
=

−→
x(t)×

−→
x(t)+λ (t)

−→
x(t) . (1)

This equation does not involve the component of
−→
x(t) parallel to

−→
x(t), since the vector product of

this component with
−→
x(t) vanishes.

The Euler-Poincaré equation (3) of 5.2.2 has now two components, on so(E)∗ and on R∗

identified, respectively, with E and with R. With the above expressions of d1L, d2L, JE and KE ,

we obtain for its first component

d

dt

(
m‖

−→
x(t)‖2

(
−→
x(t)−

−→
x(t).

−→
x(t)

‖
−→
x ‖2

−→
x(t)

))

= m
(−→
x(t).

−→
x(t)
)−→
x(t)×−→

x(t)−m
(−→
x(t).

−→
x(t)
)

ad∗−→
x(t)

−→
x(t) = 0 ,

where we have used Formula (4) of 6.2. Its second component is

d

dt

(
m‖

−→
x(t)‖2λ

)
= m

(
‖
−→
x(t)‖2 +λ 2 −

(−→
x(t).

−→
x(t)
)2

‖
−→
x ‖2

)
‖
−→
x(t)‖2 − mk

‖
−→
x(t)‖

.

The vector
−−→
X(t) is the sum of two components

−−→
X1(t) orthogonal to

−→
x(t) and

−−→
X2(t) parallel to

−→
x(t).

Since

−−→
X1(t) =

−−→
X(t)−

−−→
X(t).

−→
x(t)

‖−→x(t)‖2

−→
x(t) ,
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the two components of the Euler-Poincaré equation become





d

dt

(
m‖−→x(t)‖2−−→X1(t)

)
= 0 ,

d

dt

(
m‖

−→
x(t)‖2λ

)
= m

(
‖
−−→
X1(t)‖2 +λ 2

)
‖
−→
x(t)‖2 − mk

‖−→x(t)‖
.

The first equation expresses the fact that JE is a first integral of the Kepler problem, since we

have

m‖
−→
x(t)‖2

−−→
X1(t) =

−→
x(t)×

−−→
p(t) = JE

(−→
x(t),

−−→
p(t)

)
.

Similarly, the second equation can be written

d

dt

(−−→
p(t).

−→
x(t)
)
=

‖
−−→
p(t)‖2

m
− km

‖
−→
x ‖

,

which is a direct consequence of Hamilton’s equations for the Hamiltonian H of the Kepler

problem.

Neither the Euler-Poincaré equation nor the compatibility condition involve the component−−→
X2(t) of

−−→
X(t) parallel to

−→
x(t). This illustrates the fact that the system made by these equations in

underdetermined when the dimension of the Lie algebra which acts on the configuration space is

strictly larger than the dimension of this space.

6.5.3 Hamilton’s method of solving the Kepler problem

The Hamiltonian H of the Kepler problem remains invariant under the canonical lift to T ∗N of

the action of SO(E). Noether’s theorem (4.4.5) shows that the corresponding momentum map JE

is a first integral. Of course the total energy, i.e. the Hamiltonian H, is too a first integral (3.3.4).

Following the method due to Hamilton [29], we explain below how the three Kepler laws can

easily be deduced from the first integrals JE and H.

Let us assume that at a particular time t0,
−−→
x(t0) and

−−→
p(t0) are not collinear. The vector

−→
Ω =

JE

(−→
x(t),

−−→
p(t)

)
=

−→
x(t)×

−−→
p(t) does not depend on t since JE is a first integral, and is 6= 0 since

for t = t0,
−→
x(t) and

−−→
p(t) are not collinear. We choose an orthonormal positively oriented basis

(
−→
ex ,

−→
ey ,

−→
ez ) of E such that

−→
Ω = Ω

−→
ez , with Ω > 0. The vectors

−→
x(t) and

−−→
p(t) remain for all times

in the two-dimensional vector subspace F spanned by (
−→
ex ,

−→
ey ). Let θ(t) be the polar angle made

by
−→
x(t) with

−→
ex . We have

−→
x(t) = r(t)cosθ(t)

−→
ex + r(t)sinθ(t)

−→
ey ,

−−→
p(t) = m

(
dr(t)

dt
cosθ(t)− r(t)

dθ(t)

dt
sinθ(t)

)−→
ex

+m

(
dr(t)

dt
sinθ(t)+ r(t)

dθ(t)

dt
cosθ(t)

)−→
ey

−→
Ω = mr2 dθ(t)

dt

−→
ez .

Therefore

mr2 dθ

dt
= Ω = Constant .
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This is the second Kepler law, also called law of areas, since
Ω

2m
is the area swept by the straight

line segment joining the moving material point to the attractive centre during an unit time. Since

t 7→ θ(t) is a strictly increasing function whose derivative never vanishes, we can take θ instead

of time t as independent variable. Using Hamilton’s equation (or Newton’s equation), we can

write

d
−→
p (θ)

dθ
=

d
−−→
p(t)

dt

dt

dθ
=

mr(θ)2

Ω

(
− mk

r(θ)3

−−→
x(θ)

)
=−m2k

Ω
(cosθ

−→
ex + sinθ

−→
ey ) .

This ordinary differential equation for the unknown
−→
p (θ), which no more involves

−−→
x(θ), can be

readily integrated:
−→
p (θ) =

m2k

Ω
(−sinθ

−→
ex + cosθ

−→
ey )+

−→
c ,

where
−→
c is a (vector) integrating constant. We will choose

−→
ey such that

−→
c = c

−→
ey , where c is a

numeric constant which satisfy c ≥ 0.

With O as origin let us draw two vectors in the plane xOy, the first one (constant) being equal

to
−→
c , and the second one (which varies with θ ) equal to

−→
p . The end point of that second

vector moves on a circle whose centre is the end point of the vector equal to
−→
c , and whose

radius is R =
m2k

Ω
. The part of this circle swept by the end point of this second vector is (up

to multiplication by m) the hodograph of the Kepler problem. A short calculation leads to the

following very simple relation between the energy H of a motion, the radius R of its hodograph

and the distance c from the attracting centre O to the centre of the hodograph:

2mH = c2 −R2 .

The right-hand side c2 −R2 is the power1 of O with respect to the hodograph.

We also obtain r = ‖−→x ‖ as a function of θ

r(θ) =
Ω2

m2k+Ωccosθ
=

Λ

1+ ε cosθ
, with Λ =

Ω2

m2k
, ε =

Ωc

m2k
.

It is the polar equation of a conic section with O as focus point and ε as eccentricity. This conic

section (or, when ε > 1, the arc of this conic swept by the moving material point) is the orbit in

E of the moving material point. This result is the first Kepler law.

The modulus Ω of the angular momentum, the total energy H and the eccentricity ε satisfy

ε2 −1 =
2Ω2H

m3k2
.

This formula shows that the orbit in E of the moving material point is an ellipse (0 ≤ ε < 1) if

H < 0, a parabola (ε = 1) if E = 0 and a connected component of a hyperbola (ε > 1) if H > 0.

When H < 0, the orbit in E of the moving point is an ellipse and its motion is periodic. The

period T is easily obtained by writing that the area swept in a time T by the straight line segment

which joins the moving point to the attractive centre is the area A delimited by the orbit:

T =
2mA

Ω
=

2πma2
√

1− ε2

Ω

1In plane Euclidean geometry, the power of a point O with respect to a circle C is the real number
−→
OA.

−→
OB, where

A and B are the two intersection points of C with a straight line D through O. That number does not depend on D

and is equal to ‖−→OC‖2 −R2, where C is the centre and R the radius of C.
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where a is the length of the half major axis of the orbit. By using the formula

Ω2 = m2ka
√

1− ε2

we obtain

T 2 =
4π2

k
a3 .

We conclude that the square of the period is proportional to the third power of the length of the

half major axis. This result is the third Kepler law.

Hamilton’s method of solving the Kepler problem is much easier than the Marsden-Weinstein

reduction procedure, to which it is only very loosely related. A non-zero vector
−→
Ω is a regular

value of JE , so J−1
E (

−→
Ω) is a smooth three-dimensional submanifold of T ∗N: it is the set of

pairs of vectors (
−→
x ,

−→
p ) ∈ F ×F such that

−→
x ×−→

p =
−→
Ω , where F is the two-dimensional vector

subspace of E orthogonal to
−→
Ω . This submanifold remains invariant under the action on T ∗N

of the one-dimensional subgroup of SO(E), isomorphic to the circle S1, of rotations around the

straight line through O parallel to
−→
Ω . The reduced Marsden-Weinstein symplectic manifold is

the set of orbits of this action. It is isomorphic to the open half-plane
{
(r,λ ) ∈ R2;r > 0

}
, and

the projection of J−1(
−→
Ω) onto the reduced symplectic manifold is the map (

−→
x ,

−→
p ) 7→ (r,λ ),

with r = ‖
−→
x ‖, λ =

−→
x .

−→
p . The reduced symplectic form and Hamiltonian are, respectively,

ω−→
Ω
=

1

r
dλ ∧dr , H−→

Ω
=

m(Ω2 +λ 2)

2r2
− mk

r
.

Instead of using this reduced symplectic manifold and this reduced Hamiltonian, Hamilton’s

method uses a clever choice of independent and dependent variables on J−1
E (

−→
Ω) which leads to

an easy to solve autonomous differential equation for
−→
p as a function of the polar angle θ of−→

x . It is successful essentially because the hodograph of the Kepler problem is a circle (or, when

H ≥ 0, a part of a circle).

6.5.4 The eccentricity vector

There exists still another vector valued first integral
−→
ε of the Kepler problem called the ec-

centricity vector, discovered by Jakob Hermann (1678–1753) three centuries ago [9, 31], often

improperly called the Laplace vector or the Ruge-Lenz vector, whose expression is

−→
ε =−

−→
x

‖−→x ‖
+

−→
p × (

−→
x ×

−→
p )

m2k
=

(
‖
−→
p ‖2

m2k
− 1

‖−→x ‖

)
−→
x −

−→
p .
−→
x

m2k

−→
p .

For each motion of the moving material point, the eccentricity vector
−→
ε is a dimensionless vector

parallel to the straight line segment which joins the attractive centre O to the perihelion of the

orbit (i.e. the point of the orbit which is the nearest to the attractive centre), of length numerically

equal to the eccentricity ε of the orbit. When the orbit is a circle, the perihelion is undetermined

and
−→
ε = 0. We briefly explain below the group theoretical origin of the eccentricity vector. A

more detailed explanation can be found for example in [50]. Many other interesting results about

the Kepler problem can be found in the excellent books [13, 27, 14, 20, 23].

Motions t 7→ (
−→
x(t),

−−→
p(t)) of the Kepler problem in which

−→
x(t) and

−−→
p(t) are parallel are not

defined for all values of the time t: the curves drawn in E by the vectors
−→
x(t) and

−−→
p(t) both
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are supported by the same straigh line through the attractive centre O, so the motion finishes,

or begins, at a finite time, when
−→
x(t) reaches 0, i.e. when the moving point collides with the

attractive centre or is expelled by it. When t tends towards that final (or initial) instant, ‖
−→
p (t)‖

tends towards +∞. This fact complicates the study of the global topological properties of the set

of all possible motions of the Kepler problem.

For any motion t 7→ (
−→
x(t),

−−→
p(t)), the curves drawn in E by the vectors

−→
x(t) and

−−→
p(t) are, re-

spectively, the orbit and the hodograph of the motion. The exchange (
−→
x ,

−→
p ) 7→ (

−→
p ,

−→
x ) is an

anti-symplectic map, which allows us, at the price of a change of sign of the symplectic form,

to consider the curve drawn by
−−→
p(t) as the orbit of some Hamiltonian dynamical system and the

curve drawn by
−→
x(t) as the corresponding hodograph. This remark offers a way of studying the

global properties of the set of all possible motions: for a motion t 7→ (
−→
x(t),

−−→
p(t)) which starts

or ends at finite instant by a collision with the attractive centre or an ejection by that point, the

curve drawn by
−−→
p(t), now considered as an orbit rather than a hodograph, goes to infininy when

t tends towards this limit instant. By a inverse stereographic projection, E can be mapped on

a three-dimensional sphere Q minus a point (the pole of the stereographic projection), and the

curve drawn by
−−→
p(t) is mapped onto a curve which tends towards the pole P of the stereographic

projection. The canonical prolongation of the inverse stereographic projection to the cotangent

bundles allows us to map the phase space of the Kepler problem onto the open subset of T ∗Q

complementary to the fibre T ∗
P Q over the pole of the stereographic projection. On T ∗Q, motions

which reach T ∗
P Q can be prolongated and no more appear as starting, or ending, at a finite instant

of time. This idea, due to Fock [21] who applied it to the study of the hydrogen atom in quantum

mechanics, was used by Moser [55] for the regularization of the Kepler problem for negative

values of the Hamioltonian H. Györgyi [28] used a similar idea. Since the inverse stereographic

projection maps circles onto circles, the image of
−−→
p(t) draws a circle on the three-dimensional

sphere Q and, for a particular value of the total energy H, this circle is a great circle, i.e. a

geodesic of Q. Györgyi [28] proved that the cylindrical projection onto E of these great circles

are ellipses centered on O whose eccentricity is the same as those of the orbits drawn on E by

the corresponding vector
−→
x(t). The group SO(4) acts on the three-dimensional sphere Q and, by

the canonical lift to the cotangent bundle, on T ∗Q by a Hamiltonian action. The transformed

Hamiltonian is not really invariant under that action and some more work (a reparametrization

of time) is still needed, but finally Noether’s theorem can be used. The eccentricity vector
−→
ε is

(modulo the identification of the phase space of the Kepler problem with an open subset of T ∗Q)

the momentum map of that action, which explains why it is a first integral.

For motions with a positive value of the total energy, there exists a similar construction in

which instead of a three-dimensional sphere, Q is a two-sheeted revolution three-dimensional

hyperboloid. The symmetry group is the Lorentz group SO(3,1); the eccentricity vector
−→
ε still

is the momentum map of its action on T ∗Q [54, 2]. For a motion with a zero value of H, the

circle drawn in E by the vector
−−→
p(t) contains the attractive centre O, so an inversion with O

as pole transforms this circle into a straight line, i.e. a geodesic of E. The symmetry group is

then the group of Euclidean displacements in E (generated by rotations and translations); the

eccentricity vector
−→
ε still is the momentum map of its action on T ∗E.

Ligon ans Schaaf [47] used these results to construct a global symplectic diffeomorphism of

the phase space of the Kepler problem (for negative values of H) onto an open subset of the

cotangent bundle to a three-dimensional sphere. Györgyi had done that earlier [28] but it seems

that his work was not known by mathematicians. Later several other authors pursued these

studies [15, 30].
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Souriau [61] used a totally different approach. He built the regularized manifold of motions

of the Kepler problem in a single step, for all values of the energy, by successive derivations of

the equations of motion and analytic prolongation, calculated its symplectic form and directly

determined its symmetry groups. The eccentricity vector appears again as a momentum map for

the Hamiltonian actions of these groups.
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Mécanique”, Journal of Geometry and Symmetry in Physics, 29 (2013) 1–38.

[52] Marsden J.E. and Weinstein A., Reduction of symplectic manifolds with symmetry, Reports

on Mathematical Physics 5 (1974) 121–130.

[53] Meyer K., Symmetries and integrals in mechanics, in Dynamical systems (M. Peixoto, ed.),

Academic Press 1973, 259–273.

[54] Milnor J., On the geometry of the Kepler problem, Amer. Math. Monthly, 90 (1983), 353–

365.

[55] Moser J., Regularization of Kepler’s problem and the averaging method on a manifold,

Commun. Pure Appl. Math., 23 (1970), 609–636.

[56] Ortega J.-P. and Ratiu T.S., Momentum Maps and Hamiltonian Reduction, Birkhäuser,
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