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DECOMPOSITION THEOREM AND RIESZ BASIS FOR

AXISYMMETRIC POTENTIALS IN THE RIGHT

HALF-PLANE.

SLAH CHAABI, STEPHANE RIGAT

Abstract. The Weinstein equation with complex coefficients is the
equation governing generalized axisymmetric potentials (GASP) which
can be written as Lm[u] = ∆u+(m/x) ∂xu = 0, where m ∈ C. We gen-
eralize results known for m ∈ R to m ∈ C. We give explicit expressions
of fundamental solutions for Weinstein operators and their estimates
near singularities, then we prove a Green’s formula for GASP in the
right half-plane H

+ for Re m < 1. We establish a new decomposition
theorem for the GASP in any annular domains for m ∈ C, which is in
fact a generalization of the Bôcher’s decomposition theorem. In par-
ticular, using bipolar coordinates, we prove for annuli that a family of
solutions for GASP equation in terms of associated Legendre functions
of first and second kind is complete. For m ∈ C, we show that this
family is even a Riesz basis in some non-concentric circular annulus.

1. Introduction

In this article, we study the Weinstein differential operator

Lm = ∆+
m

x

∂

∂x

with m ∈ C, well-defined on the right half-plane H+ = {(x, y) ∈ R2, x >
0} = {z ∈ C, Re z > 0}. This class of operators is also called operators
governing axisymmetric potentials, they have been studied quite intensively
in cases m ∈ N or m ∈ R in [52, 51, 50, 53, 54, 55, 58, 57, 56, 60, 59, 61, 62,
63, 64, 47, 48, 49, 30, 12, 13, 14, 34, 35, 36, 18, 20, 19, 8, 9, 10, 7, 26, 27, 28,
29, 38]. In this paper, we focus exclusively on case m ∈ C and some results
for integer values of m is recalled. The Weinstein equation is written

Lmu = 0. (1.1)

Date: February 3, 2014.
2010 Mathematics Subject Classification. 35B07, 33E05, 35J15, 35E05, 42C15.
Key words and phrases. Axially symmetric solutions, Fundamental solutions, Riesz

Basis, Elliptic functions and integrals.
Acknowledgements. Both of the authors wish to thank Laurent Baratchart and Alexan-

der Borichev for very useful discussions and remarks on a preliminary version of this paper.

1



2 S. CHAABI, S. RIGAT

In the sequel, the sense in which the solutions are studied will be specified.
We will also look at solutions to the equation in the sense of distributions

Lmu = δ(x,y),

where δ(x,y) denotes the Dirac mass at (x, y) ∈ H+.
Here, we deliberately restrict to the case of dimension 2, but many results
can be extended directly to the case of higher dimension, i.e. for the oper-
ators

n∑

k=1

∂x2
i
+

m

xn
∂xn

on the half-space H+
n = {x ∈ Rn, xn > 0}.

This is Weinstein who was the first to introduce this class of operators in
1948 in [50], he studied the case where m ∈ N∗. In particular, he obtained
the following mean-value formula for axisymmetric potentials which can be
extended continuously to H+

u(0, 0)

∫ π
2

−π
2

sinm θdθ =

∫ π
2

−π
2

u(reiθ) sinm θdθ (PM)

and he first gave an expression of a fundamental solution in terms of Bessel
functions and then in terms of elliptic integrals where the singular point is
taken on the y-axis. He also established the link between the axisymmetric
potentials for m ∈ N∗ and the harmonic functions on Rm+2, that we will
recall in the proposition 2.4.
In [54, 55, 16], Weinstein and Diaz-Weinstein established the correspondence
principle that we will recall between axisymmetric potentials corresponding
to m and those corresponding to 2−m (proposition 2.3). They deduced an
expression of a fundamental solution (where the singular point is taken on
the y- axis) for m ∈ R and they made a link between the Weinstein equation
and Tricomi equations and their fundamental solutions.
In [35], Huber obtained a Poisson-type formula which generalizes (PM). He
also dealt with the extensions of GASP in the whole complex plane. He
was also interested in removal properties of singularities for GASP in [36],
and he gave an abstract representation formula of nonnegative GASP that
Brelot generalized in [8, 7].
Moreover, Vekua gave means to express fundamental solutions of elliptic
equations with analytic coefficients by using the Riemann functions, intro-
duced in the past (see eg [25]) in the real hyperbolic context, he generalized
to elliptic equations through the complex operators ∂z et ∂z in [45]. In
heuristic words, in the same way that we can say a harmonic function is the
real part of a holomorphic function, or the sum of a holomorphic and an
anti-holomorphic function, Vekua expressed the fact that solutions of ellip-
tic equations, and therefore especially GASP, are written as a sum of two
functional, one applied to an arbitrary holomorphic function and functiun
applied to an anti-holomorphic functiun also arbitrary. The functional write
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can explicitly in terms of Riemann function, which are obtained by using
the hypergeometric functions ([45]) or using fractional derivations ([12]). In
[31], Henrici gave a very interesting introduction to the work of Vekua.
More recently, by using the work of Vekua in [41], Savina gave a series repre-

sentation of fundamental solutions for the operator L̂u = ∆u+a∂xu+b∂yu+
cu and she studied the convergence of this series. She gave an application
of the Helmholtz equation.
In [28], Gilbert studied the non-homogeneous Weinstein equation m ≥ 0, he
gave an integral formula for this class of equations, in particular, an explicit
solution is given when the second member depends only of one variable.
Some Dirichlet problems can be found in [38] in [24] in special geometry
(”geometry with separable variable”).
Even if some results presented in this paper are known for real values of m,
we make a totally self-contained presentation with elementary technics not
usually used in the previous quoted papers. For instance, usual arguments
involving estimates of hypergeometric integrals are replaced by arguments
using Lebesgue dominated convergence theorem. The main result is a de-
composition theorem for axisymmetric potentials which is new also for real
values of m. We obtain a Liouville-type result for the solutions of Weinstein
equation on H+, the interesting side of this result is the fact that there is
a lost of strict ellipticity of the Weinstein operator on the boundary of H+.
An application of the decomposition theorem is given by showing that an
explicit family of axisymmetric potentials constructed with the introduction
of bipolar coordinates is a Riesz basis in a some annulus. [11]

2. Notations and preliminaries

Throughout the following, H+ = {(x, y) ∈ R2, x > 0} will denote the right
half-plane. All scalar functions will be complex valued. If Ω is an open set of
Rn with n ∈ N∗, D(Ω) will designate the space of C∞ functions compactly
supported on Ω and the support of an arbitrary function f defined on Ω is
supp f := {x ∈ Ω, f(x) 6= 0}.
Let K be a compact set of Ω, DK(Ω) is the set of functions ϕ ∈ D(Ω) such
that supp ϕ ⊂ K.
The partial derivatives of a differentiable function u on an open set Ω ⊂ Rn

will be denoted ∂u
∂xi

or ∂xi
u, or sometimes uxi

with i ∈ J1, nK (for a < b ∈ N,

Ja, bK denotes the set of all integers between a and b).
If α = (α1, . . . , αn) ∈ Nn is a multi-index, we will denote

∂α := ∂α1
x1

· · · ∂αn
xn

=
∂|α|

∂xα1
1 · · · ∂xαn

n

with |α| = α1 + · · ·+ αn.
It is assumed that the reader is familiar with the terminology of distributions
and we refer to [32].
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Let L be a linear differential operator on Ω,

L =
∑

|α|≤N

aα∂
α

where N ∈ N, the previous summation is performed on the multi-indices α
of length |α| ≤ N , aα are C∞(Ω) functions.
By definition, if T is a distribution, LT will be the distribution : LT =
∑

|α|≤N aα∂
αT .

L⋆ will designate the adjoint operator of L in the sense of distributions,
namely if T is a distributions,

L⋆T =
∑

|α|≤N

(−1)|α|∂α(aαT ).

It is noticed that if f, g ∈ D(Ω), we have

〈Lf, g〉 = 〈f, L⋆g〉 .
Let a ∈ Ω and L be a differential operator on Ω. A fundamental solution of
L on Ω at a ∈ Ω is a distribution Ta such that

LTa = δa,

where the previous equality is taken in the sense of distributions on Ω.
This equality can be rewritten

∀ϕ ∈ D(Ω), ϕ(a) = 〈LTa, ϕ〉 = 〈Ta, L
⋆ϕ〉 .

In particular, if a ∈ Ω and if Ta is a fundamental solution of L⋆ at a on Ω
and if g ∈ D(Ω) is such that g = L(ϕ) with ϕ ∈ D(Ω), then

∀a ∈ Ω, ϕ(a) = 〈Ta, g〉 .
Indeed, we have

∀a ∈ Ω, ϕ(a) = 〈δa, ϕ〉 = 〈L∗Ta−, ϕ〉 = 〈Ta, Lϕ〉 = 〈Ta, g〉 .
These fundamental solutions is therefore a good tool for solving Lϕ = g on
D(Ω) if g ∈ D(Ω).

If m ∈ N∗, the Laplacian in Rm will be denoted ∆m, or ∆ when m = 2. For
m ∈ C, Lm denotes the Weinstein operator : ∀(x, y) ∈ H+,

Lmu(x, y) = ∆u(x, y) +
m

x

∂u

∂x
(x, y), where u ∈ C2(H+).

The following notation will be sometimes used : if f(x, y) = (f1(x, y), f2(x, y))
is a C1 vector function on an open set of R2 and C2 valued, then

div (f) :=
∂f1
∂x

+
∂f2
∂y

.

Similarly, if f : R2 → C is a C1 scalar function on an open set of R2 and C

valued, then

∇f :=

(
∂f

∂x
,
∂f

∂y

)

.
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With these notations, the operator Lm can be written as follows : if u ∈
C2(H+), then

Lmu(x, y) = x−mdiv(xm∇u)(x, y).

It is clear from the Schwarz rule that if u is a function defined on a connected
open set of H+ such that div(σ∇u) = 0 where σ : H+ → R+

∗ is a C1 function,
then there is a function v which satisfies the well-known generalized Cauchy-
Riemann system of equations :







∂v

∂x
= −σ

∂u

∂y

∂v

∂y
= σ

∂u

∂x

and v satisfies the conjugate equation div( 1σ∇v) = 0 (see for exemple [6]).
This observation justifies the fact that we call L−m withm ∈ C the conjugate
operator of Lm.
L⋆
m denotes adjoint operator of Lm : for all u ∈ C2(H+) and for all (x, y) ∈

H+,

L⋆
mu(x, y) = ∆u(x, y)− ∂

∂x

(
mu(x, y)

x

)

= ∆u(x, y)−m

x

∂u

∂x
(x, y)+

m

x2
u(x, y)

This definition is given on H+ but it is easily transposed to the case of an
open set Ω of H+.
In the case where the functions involved do not depend only of x and y, we
will write Lm,x,y instead of Lm, which means that the partial derivatives are
related to the variables x and y, and all other variables are considered to be
fixed.
If u ∈ D(H+), we define Smu ∈ D(H+) by

(Smu)(x, y) = x−mu(x, y).

If u ∈ D(H+), we define Du ∈ D(H+) by

(Du)(x, y) =
∂u

∂x
(x, y).

These operators satisfy the following proposition :

Proposition 2.1. Sm conjugates L⋆
m and Lm, D conjugates L⋆

−m and Lm,
which means that

SmL⋆
m = LmSm, L⋆

−mD = DLm.

Proof. Straightforward computations. �

Remark 2.2. (1) Let m ∈ C, Sm and LmSm are auto-adjoints opera-
tors, ie. Sm = S⋆

m and LmSm = (LmSm)⋆.
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(2) There is a result, which generalizes the first point of this remark
about the conjugation of operators Lm and L⋆

m.
Let σ : Ω → C be a C1 function which does not vanish, the

operator defined on C2(Ω) by : for u ∈ C2(Ω),

Pσu(x, y) =
1

σ(x, y)
div (σ(x, y)∇u(x, y)) ,

where Ω is an open set of R2.
Then

P ⋆
σ = div

(

σ∇
( ·
σ

))

.

Indeed, if u, v ∈ D(Ω), then we have by using the derivation in the
sense of distributions,

〈Pσu, v〉 =
∫

Ω

1

σ(x, y)
div (σ(x, y)∇u(x, y)) v(x, y) dxdy

= −
∫

Ω
σ∇u · ∇

( v

σ

)

dxdy

=

∫

Ω
udiv

(

σ∇
( v

σ

))

= 〈u, P ⋆
σv〉

We define Sσ the operator such that for u ∈ C2(Ω),

(Sσu)(x, y) =
1

σ(x, y)
u(x, y).

Thus, Sσ conjugates Pσ and P ⋆
σ , where P ⋆

σ = div
(
σ∇

( ·
σ

))
because,

in an obviously way, we have SσP
⋆
σ = PσSσ.

If m is a positive integer, we introduce the operator Tm : u 7→ v defined as
follows :
for a function u defined on an open set Ω of H+, the function v is defined

on {x ∈ Rm+2, (
√

x21 + · · · + x2m+1, xm+2) ∈ Ω} by

v(x1, . . . , xm+2) = u(
√

x21 + · · · + x2m+1, xm+2).

The two following propositions can be found in Weinstein work ([55]) and
will be useful in the sequel (the (short) proofs are just direct computations):

Proposition 2.3. (Weinstein principle [55]) Let Ω be a relatively com-
pact open set of H+, if u : Ω → C is C2, then for all m ∈ C,

Lmu = x1−mL2−m[xm−1u].

Proposition 2.4. ([50]) Let Ω be a relatively compact open set of H+. For
u ∈ C2(Ω)and if m ∈ N, then ∆m+2(Tmu) = Tm(Lmu).



DECOMPOSITION THEOREM AND RIESZ BASIS FOR AXISYMMETRIC POTENTIALS 7

The two previous propositions will allow us to calculate fundamental solu-
tions for Lm and L⋆

m with m ∈ N in a first step, and thereafter, for m ∈ Z.
Finally, estimates of these expressions will show that the expressions ob-
tained actually provide fundamental solutions of Lm and L⋆

m with m ∈ C.

3. Integral expressions of fundamental solutions for integer

values of m.

We recall the definition of the Dirac mass in a point : if (x, y) ∈ R2, δ(x,y)
is the distribution defined by

∀ϕ ∈ D(R2), 〈δ(x,y), ϕ〉 = ϕ(x, y).

Let m be a positive integer.

Proposition 3.1. (partially in [16, 49, 50]) Let m ∈ N⋆. For (x, y) ∈ H+

and (ξ, η) ∈ H+,

Em(x, y, ξ, η) = −ξm

2π

∫ π

θ=0

sinm−1 θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]m/2

is a fundamental solution on H+ for the operator L⋆
m,ξ,η at the fixed point

(x, y) ∈ H+, which means that in the sense of distributions, we have H+ :

L⋆
m,ξ,ηEm(x, y, ξ, η) = δ(x,y)(ξ, η).

Moreover, if (ξ, η) ∈ H+ is fixed, then in the sense of distributions on H+,
we have

Lm,x,yEm(x, y, ξ, η) = δ(ξ,η)(x, y),

which means that Em is a fundamental solution on H+ of the operator Lm,x,y

at the fixed point (ξ, η) ∈ H+.

Proof. Let m ∈ N∗. We recall that

E(x) = − 1

mωm+2‖x‖m
, x ∈ R

m+2,

is a fundamental solution for the Laplacian on Rm+2 i. e. that in the sense
of distributions, ∆m+2E = δ0, where ωm+2 is the area of the unit sphere
Rm+2. Thus, for all v ∈ D(Rm+2),

v(t1, ..., tm+2) = − 1

mωm+2

∫

τ∈Rm+2

∆m+2v(τ)
dτ1dτ2...dτm+2

((τ1 − t1)2 + · · · + (τm+2 − tm+2)2)
m/2

where τ = (τ1, ..., τm+2).
Applying this relation to the function v = Tmu where u ∈ D(H+) and due
to the proposition 2.4, we have for all (x, y) ∈ H+,

u(x, y) = − 1

mωm+2

∫

Rm+2

(Lmu)(
√

ξ21 + · · ·+ xi2m+1, ξm+2) dξ1 · · · dξm+2

(
(ξ1 − x)2 + ξ22 + · · ·+ ξ2m+1 + (ξm+2 − y)2

)m/2
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We will simplify this integral expression. For this, we will consider the
following hyper-spherical coordinates :

ξ1 = ξ cos θ1

ξ2 = ξ sin θ1 cos θ2

... =
...

ξm−1 = ξ sin θ1 · · · sin θm−2 cos θm−1

ξm = ξ sin θ1 · · · sin θm−1 cos θm

ξm+1 = ξ sin θ1 · · · sin θm
where ξ2 = ξ21 + · · · + ξ2m+1, θm ∈ ]−π, π[ and θ1, . . . , θm−1 ∈ ]0, π[. The
absolute value of the determinant of the Jacobian matrix defined by this
system of coordinates is

ξm sin θm−1 sin
2 θm−2 · · · sinm−1 θ1

Then we have for all (x, y) ∈ H+,

u(x, y) =

∫ ∞

η=−∞

∫ ∞

ξ=0
Lm(u)(ξ, η)Em(x, y, ξ, η)dξdη (3.1)

with

Em(x, y, ξ, η) = − ξm

mωm+2

∫ π

θm=−π

∫ π

θ1,...,θm−1=0

sin θm−1 sin
2 θm−2 · · · sinm−1 θ1 dθ1 . . . dθm

(ξ2 − 2xξ cos θ1 + x2 + (y − η)2)m/2

Since I :=
∫ π
θm=−π

∫ π
θ2,...,θm−1=0 sin θm−1 sin

2 θm−2 · · · sinm−2 θ2 dθ2 . . . dθm−1dθm
is the area of the unit sphere on Rm because

ωm =

∫

Sm

1 dσ =

∫ π

θm−1=−π

∫ π

θ1,...,θm−2=0
sin θm−2 sin

2 θm−3 · · · sinm−2 θ1 dθ2 . . . dθm−1,

Em can be written as :

Em(x, y, ξ, η) = − ωmξm

mωm+2

∫ π

θ=0

sinm−1 θ dθ

(ξ2 − 2xξ cos θ + x2 + (y − η)2)m/2
.

Using the fact that ωm = 2π
m
2

Γ(m
2 )

, we get

Em(x, y, ξ, η) = −ξm

2π

∫ π

θ=0

sinm−1 θ dθ
(
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

)m/2

and we have proved moreover thanks to (3.1) that

L∗
m,ξ,ηEm(x, yξ, η) = δ(x,y)(ξ, η).

Moreover, since for all (x, y) ∈ H+ and for all (ξ, η) ∈ H+, we have

Em(x, y, ξ, η) =

(
x

ξ

)−m

Em(ξ, η, x, y)
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and thanks to the Proposition 2.1, Sm conjugates L⋆
m and Lm, we have in

the sense of distributions

Lm,x,yEm(x, y, ξ, η) = Lm,x,y

((
x

ξ

)−m

Em(ξ, η, x, y)

)

=

(
x

ξ

)−m

L⋆
m,x,yEm(ξ, η, x, y),

then

Lm,x,yEm(x, y, ξ, η) =

(
x

ξ

)−m

δ(ξ,η)(x, y) = δ(ξ,η),

and this completes the proof.
�

For m ∈ Z \ N, the previous proposition and the Weinstein principle gives
us the following proposition :

Proposition 3.2. (partially in [16, 49, 50]) Let m ∈ Z \N∗. For (x, y) ∈
H+ and (ξ, η) ∈ H+,

Em(x, y, ξ, η) =

(
ξ

x

)m−1

E2−m(x, y, ξ, η)

= −ξx1−m

2π

∫ π

θ=0

sin1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]1−m
2

is a fundamental solution on H+ for the operator L⋆
m,ξ,η at the fixed point

(x, y) ∈ H+ and it is also a fundamental solution on H+ of the operator
Lm,x,y at the fixed point (ξ, η) ∈ H+.

Proof. We have for all m ∈ N∗, u ∈ D(H+) and (x, y) ∈ H+,

u(x, y) =

∫

(ξ,η)∈H+

(Lmu)Em(x, y, ξ, η) dξdη,

and by the Weinstein principle (proposition 2.3), we have

u(x, y) =

∫

H+

ξ1−mL2−m(ξm−1u)Em(x, y, ξ, η) dξdη.

Denoting v(x, y) = xm−1u(x, y), we obtain

x1−mv(x, y) =

∫

H+

ξ1−m(L2−mv)Em(x, y, ξ, η) dξdη,

then, for all m′ ∈ Z \ N∗, v ∈ D(H+) and (x, y) ∈ H+, putting m = 2−m′,
we have

v(x, y) =

∫

H+

(Lm′v)

(
ξ

x

)m′−1

E2−m′(x, y, ξ, η) dξdη.

The proof of the second point is totally similar. �
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4. Fundamental solutions for the Weinstein equation with

complex coefficients

In this section, we will generalize the result obtained in the previous section
for m ∈ Z to m ∈ C.
More precisely, if Re m ≥ 1, then

Em = −ξm

2π

∫ π

θ=0

sinm−1 θ dθ

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]m/2

is suitable, and if Re m < 1, then

Em = −ξx1−m

2π

∫ π

θ=0

sin1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]1−m
2

is suitable.

In the sequel, Em will always designate the corresponding formula (depend-
ing of Re m ≥ 1 or Re m < 1).

Proposition 4.1. For m ∈ C and (ξ, η) ∈ H+ fixed, we have

∀(x, y) ∈ H
+ \ {(ξ, η)} Lm,x,yEm(x, y, ξ, η) = 0.

and for (x, y) ∈ H+ fixed, we have

∀(ξ, η) ∈ H
+ \ {(x, y)} L⋆

m,ξ,ηEm(x, y, ξ, η) = 0.

Proof. For convenience in the calculations, it should be denoted

fm(x, y, ξ, η, θ) =
1

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2

.

To prove the first equality of the proposition, it suffices to show that
∫ π

θ=0
Lm,x,yfm(x, y, ξ, η, θ) sinm−1 θ dθ = 0.

Let’s compute the derivatives of the function fm :

∂xfm =
−m

2

2(x− ξ) + 4ξ sin2 θ
2

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+1

(= −m(x− ξ cos θ)fm+2)

and

∂xxfm =
−m

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+1

+

+
m

2

(m

2
+ 1
) (2(x − ξ) + 4ξ sin2 θ

2)
2

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+2

and

∂yyfm =
−m

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+1

+
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+
m

2

(m

2
+ 1
) (2(y − η))2

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+2

We then have

∆fm =
−2m

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+1

+

+
m

2

(m

2
+ 1
) (2(x − ξ) + 4ξ sin2 θ

2)
2 + (2(y − η))2

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+2

.

However
(

2(x− ξ) + 4ξ sin2
θ

2

)2

+(2(y − η))2 = 4

[

(x− ξ)2 + 4xξ sin2
(
θ

2

)

+ (y − η)2
]

−4ξ2 sin2 θ

then

∆fm =
m2

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+1

− m(m+ 2)ξ2 sin2 θ

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+2

.

Noting that

∂fm+2

∂θ
= −(m+ 2)

xξ sin θ

[(x − ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]

m
2
+2

,

we have

∆fm = m2fm+2 +m
ξ

x
sin θ

∂fm+2

∂θ
and by integration by parts, we have :
∫ π

θ=0
∆fm sinm−1 θ dθ = m2

∫ π

θ=0
fm+2 sin

m−1 θ dθ+m
ξ

x

∫ π

θ=0

∂fm+2

∂θ
sinm θ dθ

=
m

x

∫ π

θ=0
m (x− ξ cos θ) fm+2 sin

m−1 θ dθ

= −m

x

∫ π

θ=0
∂xfm sinm−1 θ dθ,

and the result is deduced in the case Re m ≥ 1. The proof is totally
similar if Re m < 1. The second equality of the proposition can be deduced
immediately of the fact that Sm conjugates L⋆

m and Lm (see proposition
2.1). �

In the sequel, we will denote

d2 = (x− ξ)2 + (y − η)2 and k =
4xξ

d2
.

The following proposition gives the behavior of these functions near their
singularity. And it will be useful to show that they are indeed fundamental
solutions for m ∈ C and not only for integer values of m. In particular, we
show that the behavior of the fundamental solutions is close to the behavior
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of fundamental solutions for the Laplacian. This fact is well known for ellip-
tic operators. But we emphasize here that in the proof of this proposition,
the estimates of elliptic integrals are totally elementary estimates (using the
dominated convergence theorem) and here we do not use estimates arising
from classical estimates of hypergeometric functions. From those integral
expressions, we deduce the following estimations :

Proposition 4.2. Let m ∈ C. For (x, y) ∈ H+ fixed,

Em(x, y, ξ, η) ∼
(ξ,η)→(x,y)

1

2π
ln
√

(x− ξ)2 + (y − η)2

Proof. We start with Re m ≥ 1.
In this case, we have :

Em(x, y, ξ, η) = −ξm

2π

∫ π

θ=0

sinm−1 θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]m/2

= − 1

2π

(
ξ

d

)m ∫ π

θ=0

sinm−1 θ dθ

(1 + k sin2 θ
2)

m/2
.

Note that when d → 0, k → +∞.
We have the following proposition :

Proposition 4.3. When k → +∞ and m ∈ C,
∫ π

θ=0

sinm−1 θ dθ

(1 + k sin2 θ
2)

m/2
∼

k→+∞
2m−1

km/2
ln k.

Proof. Putting u = sin θ
2 , this integral is equal to

2m
∫ 1

0

um−1(1− u2)
m−2

2 du

(1 + ku2)m/2
=

2m

km/2

∫ 1

0

um−1(1− u2)
m−2

2 du

( 1k + u2)m/2
.

However
∫ 1

0

um−1(1− u2)
m−2

2 du

( 1k + u2)m/2
−
∫ 1

0

um−1du

( 1k + u2)m/2
= −

∫ 1

0

um−1

(
1
k + u2

)m/2
(1−(1−u2)

m−2
2 )du

and by monotone convergence, we obtain

−→
k→+∞

−
∫ 1

0

um−1

(u2)m/2
(1− (1− u2)

m−2
2 )du = −

∫ 1

0

1− (1− u2)
m−2

2

u
du

The change of variable u = 1√
k
sh t gives us

∫ 1

0

um−1du

( 1k + u2)m/2
=

∫ argsh
√
k

0
thm−1t dt

Since thm−1t tends to 1 when t → +∞, we deduce that when k → +∞
∫ argsh

√
k

0
thm−1dt ∼

k→+∞

∫ argsh
√
k

0
dt = argsh

√
k ∼
k→+∞

1

2
ln k.
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The proof is completed. �

Due to Proposition 4.3, we have

Em(x, y, ξ, η) ∼
d→0+

− 1

2π

(x

d

)m 2m−1

km/2
ln k ∼

d→0+

1

2π
ln d.

The case Re m < 1 is analogous.
�

Now, we can prove the main result of this section,

Theorem 4.4. Let m ∈ C. For (x, y) ∈ H+ and (ξ, η) ∈ H+,

Em(x, y, ξ, η) = −ξm

2π

∫ π

θ=0

sinm−1 θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]m/2
if Re m ≥ 1

and Em(x, y, ξ, η) =

(
ξ

x

)m−1

E2−m(x, y, ξ, η)

= −ξx1−m

2π

∫ π

θ=0

sin1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]1−m
2

if Re m < 1

is a fundamental solution on H+ for L⋆
m,ξ,η at the fixed point (x, y) ∈ H+,

which means that in the sense of distributions on H+:

L⋆
m,ξ,ηEm(x, y, ξ, η) = δ(x,y)(ξ, η).

Moreover, if (ξ, η) ∈ H+ is fixed, then in the sense of distributions on H+ :

Lm,x,yEm(x, y, ξ, η) = δ(ξ,η)(x, y),

which means that Em is a fundamental solution on H+ of Lm,x,y at the fixed
point (ξ, η) ∈ H+.

Proof. Let m ∈ C and u ∈ D(H+). Let (x, y) ∈ H+ and ε > 0 such that
D((x, y), ε) ⊂ H+where D((x, y), ε) is the disk of center (x, y) and of radius
ε.
We put

Iε :=

∫

H+\D((x,y),ε)
Lm(u)(ξ, η)Em(x, y, ξ, η)dξdη =

=

∫

H+\D((x,y),ε)
(Lm(u)(ξ, η)Em(x, y, ξ, η) − u(ξ, η)L⋆

m(Em)(x, y, ξ, η)) dξdη

because L⋆
m(Em) = 0 on H+ \D((x, y), ε). An elementary calculation gives

us

Lm(u)Em−uL⋆
m(E) = ∂ξ

(

(∂ξu)Em − u(∂ξEm) +
m

ξ
uEm

)

+∂η ((∂ηu)Em − u(∂ηEm)) .

We will recall the Green formula in the framework that will be useful to us
here.
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Recall. Let Ω be an open set of R2 whose boundary is piecewise C1-
differentiable.
By denoting ~n the outer unit normal vector to ∂Ω and ds the arc length
element on ∂Ω (positively oriented), if X = (X1,X2) : Ω → C2 is a C1

vector field, then
∫

Ω
divX(x, y)dxdy =

∫

∂Ω
X(x, y) · ~n(x, y)ds

With this reminder applied to the open set Ω = U \D((x, y), ε) where U is
a regular open set of H+ containing the support of u, we have

Iε = −
∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

((

(∂ξu)Em − u(∂ξEm) +
m

ξ
uEm

)

cos t+

+((∂ηu)Em − u(∂ηEm)) sin t
)

εdt

Proposition 4.2 shows that
∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

[

[(∂ξu) +
m

ξ
u] cos t+ (∂ηu) sin t

]

Em εdt −→
ε→0+

0

because limε→0 ε ln ε = 0. Then, if we want to prove that limε→0 Iε exists,
we have to prove the existence of

lim
ε→0

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u ((∂ξEm) cos t+ (∂ηEm) sin t) ε dt,

and this limit will be equal to the limit of Iε.
Now, we assume that Re m ≥ 1.
We denote Jε the integral in the previous expression. A computation gives

Jε = − m

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u
ξm−1

εm

∫ π

0

sinm−1 θ dθ
(
1 + k sin2 θ

2

)m/2
ε cos t dt

︸ ︷︷ ︸

Jε,1

+

+
m

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u
ξm

εm+2

∫ π

0

sinm−1 θ dθ
(
1 + k sin2 θ

2

)m/2+1
ε2 dt

︸ ︷︷ ︸

Jε,2

+

+
m

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u
ξm

εm+2

∫ π

0

2x sin2 θ
2 sin

m−1 θ dθ
(
1 + k sin2 θ

2

)m/2+1
ε cos t dt

︸ ︷︷ ︸

Jε,3

where k = 4xξ
ε2 .

We have the following propositions :
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Proposition 4.5. When k → +∞ and m ∈ C

∫ π

θ=0

sin2 θ
2 sin

m−1 θ dθ

(1 + k sin2 θ
2)

m/2+1
∼

k→+∞
2m−1

k
m
2
+1

ln k.

Proof. We put u = sin θ
2 , this integral is equal to

2m
∫ 1

0

um+1(1− u2)
m−2

2 du

(1 + ku2)m/2+1
=

2m

km/2+1

∫ 1

0

um+1(1− u2)
m−2

2 du

( 1k + u2)m/2+1
.

However
∫ 1

0

um+1(1− u2)
m−2

2 du

( 1k + u2)m/2+1
−
∫ 1

0

um+1du

( 1k + u2)m/2+1
= −

∫ 1

0

um+1

(
1
k + u2

)m/2+1
(1−(1−u2)

m−2
2 )du

−→
k→+∞

−
∫ 1

0

um+1

(u2)m/2+1
(1− (1− u2)

m−2
2 )du = −

∫ 1

0

1− (1− u2)
m−2

2

u
du.

The change of variable u = 1√
k
sh t gives us

∫ 1

0

um+1du

( 1k + u2)m/2+1
=

∫ argsh
√
k

0
thm+1t dt

Since thm+1t tends to 1 when t → +∞, it follows that when k → +∞
∫ argsh

√
k

0
thm+1dt ∼

k→+∞

∫ argsh
√
k

0
dt = argsh

√
k ∼
k→+∞

1

2
ln k.

The proposition is well proven..
�

Proposition 4.6. When k → +∞ and m ∈ C

∫ π

θ=0

sinm−1 θ dθ

(1 + k sin2 θ
2)

m/2+1
∼

k→+∞
2m

mk
m
2

Proof. Putting as previously u = sin θ
2 , this integral is equal to

2m
∫ 1

0

um−1(1− u2)
m−2

2 du

(1 + ku2)m/2+1
=

2m

km/2+1

∫ 1

0

um−1(1− u2)
m−2

2 du

( 1k + u2)m/2+1
.

However
∫ 1

0

um−1(1− u2)
m−2

2 du

( 1k + u2)m/2+1
−
∫ 1

0

um−1du

( 1k + u2)m/2+1
= −

∫ 1

0

um−1

(
1
k + u2

)m/2+1
(1−(1−u2)

m−2
2 )du

We first estimate the right hand side of this equality :

∫ 1

0

um−1

(
1
k + u2

)m/2+1
(1− (1− u2)

m−2
2 )du−

∫ 1

0

um−1

(
1
k + u2

)m/2+1

(
m− 2

2
u2
)

du
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=

∫ 1

0

um−1

(
1
k + u2

)m/2+1

(

1− m− 2

2
u2 − (1− u2)

m−2
2

)

du

−→
k→+∞

∫ 1

0

um−1

(u2)m/2+1

(

1− m− 2

2
u2 − (1 − u2)

m−2
2

)

du

=

∫ 1

0

1− m−2
2 u2 − (1− u2)

m−2
2

u3
du. (∗)

As seen in the proof of Proposition 4.5, we have

m− 2

2

∫ 1

0

um+1

( 1k + u2)
m
2
+1

du ∼
k→+∞

m− 2

4
ln k. (∗∗)

Through (*) and (**), one obtains :
∫ 1

0

um−1

(
1
k + u2

)m/2+1
(1− (1− u2)

m−2
2 )du ∼

k→+∞
m− 2

4
ln k.

The change of variable u = 1√
k
sh t gives us

∫ 1

0

um−1du

( 1k + u2)m/2+1
= k

∫ argsh
√
k

0

thm−1t

ch 2t
dt =

k

m
thm

(

argsh
√
k
)

.

It follows that when k → +∞,
∫ 1

0

um−1du

( 1k + u2)m/2+1
∼

k→+∞
k

m
.

We thus obtain
∫ 1

0

um−1(1− u2)
m−2

2 du

( 1k + u2)m/2+1
∼

k→+∞
k

m
.

And ∫ π

θ=0

sinm−1 θ dθ

(1 + k sin2 θ
2)

m/2+1
∼

k→+∞
2m

mk
m
2

and this completes the proof. �

Let us return to the proof of Theorem 4.4.
The Proposition 4.3 shows that

Jε,1 ∼
ε→0+

−m

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u
xm−1

εm
2m−1

km/2
(ln k) ε cos t dt

∼
ε→0+

+
m

2πx
ε ln ε

(
∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u(x+ ε cos t, y + ε sin t) cos t dt

)

which tends to 0.
The Proposition 4.5 shows that

Jε,3 ∼
ε→0+

m

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u
xm

εm+2
(2x)

2m−1

km/2+1
(ln k) ε cos t dt
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∼
ε→0+

− m

4πx
ε ln ε

(
∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u(x+ ε cos t, y + ε sin t) cos t dt

)

which tends to 0.
Finally, the proposition 4.6 shows that

Jε,2 ∼
ε→0+

m

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u
xm

εm+2

2m

mkm/2
ε2 dt

∼
ε→0+

1

2π

∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

u(x+ ε cos t, y + ε sin t)dt −→
ε→0+

u(x, y).

So we have proved that for all m ∈ C such that Re m > 0,

lim
ε→0+

∫

H+\D((x,y),ε)
Lm(u)(ξ, η)Em(x, y, ξ, η)dξdη =

=

∫

H+

Lm(u)(ξ, η)Em(x, y, ξ, η)dξdη = u(x, y)

therefore that Em is indeed a fundamental solution of L⋆
m for all m ∈ C with

Re m > 0.
Proof for m ∈ C with Re m ≤ 1 is completely similar.
We also have the dual assertions for fundamental solutions of Lm for all
m ∈ C thanks to Proposition 2.1.

�

The following proposition is roughly a consequence of the previous theorem.

Proposition 4.7. Let m ∈ C and let Ω be a relatively compact open set of
H+ whose boundary is piecewise C1-differentiable.
Then, for (x, y) ∈ Ω and u ∈ C2(Ω), by denoting ~n the outer unit normal
vector to ∂Ω and ds the arc length element on ∂Ω (positively oriented), we
have

u(x, y) =

∫

Ω
Lm(u)Em dξdη

−
∫

∂Ω

[

(∂ξu)Em − u(∂ξEm) +
m

ξ
uEm , (∂ηu)Em − u(∂ηEm)

]

·~n ds

where u := u(ξ, η) and Em := Em(x, y, ξ, η).

Proof. Indeed, if u ∈ C2(Ω), we have for (x, y) ∈ Ω and ε > 0 such that

D((x, y), ε) ⊂ Ω :
∫

Ω\D((x,y),ε)
Lm(u)Emdξ dη =

∫

Ω\D((x,y),ε)
(Lm(u)Em − L⋆

m(Em)u)dξ dη.

Thanks to the Green formula previously recalled, this last integral is equal
to

∫

∂Ω

[

(∂ξu)Em − u(∂ξEm) +
m

ξ
uEm , (∂ηu)Em − u(∂ηEm)

]

· ~n ds
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−
∫

t∈[0,2π]
(ξ,η)=(x,y)+ε(cos t,sin t)

((

(∂ξu)Em − u(∂ξEm) +
m

ξ
uEm

)

cos t+

+((∂ηu)Em − u(∂ηEm)) sin t
)

εdt,

and from what we saw in the previous proof, this last expression tends to
∫

∂Ω

[

(∂ξu)Em − u(∂ξEm) +
m

ξ
uEm , (∂ηu)Em − u(∂ηEm)

]

· ~nds + u(x, y),

when ε → 0.
The integrability nature of Em near (x, y) shows that

lim
ε→0

∫

Ω\D((x,y),ε)
Lm(u)Emdξ dη =

∫

Ω
Lm(u)Emdξ dη,

and the proof of the proposition is complete. �

5. Liouville-type result and decomposition theorem for the

axisymmetric potentials

In the previous section, we have just seen that there are two different ex-
pressions of the fundamental solutions depending on the values of m. For
the rest, each of the expressions have different behaviors according to the
value of m. We will look at the two cases separately : Re m < 1 and Re
m ≥ 1.
More specifically, we need fundamental solutions which vanish at the bound-
ary of H+, that is to say zero on the y-axis and zero to infinity.
For Re m < 1, the formula

Em(x, y, ξ, η) = −ξx1−m

2π

∫ π

θ=0

sin1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]1−m
2

shows that Em satisfies this property (Em(x, y, ·, ·) tends to 0 when x → 0+
and ‖(x, y)‖ → +∞).
For Re m ≥ 1, the expression

Em(x, y, ξ, η) = −ξm

2π

∫ π

θ=0

sinm−1 θ dθ

[(x− ξ)2 + 4xξ sin2
(
θ
2

)
+ (y − η)2]m/2

no longer satisfies this property. Contrariwise,

Em(x, y, ξ, η) − Em(−x, y, ξ, η)

is also a fundamental solution on H+, and satisfies this property.
Then, we will put
- For Re m < 1 :

Fm(x, y, ξ, η) = Em(x, y, ξ, η)

- For Re m ≥ 1 :

Fm(x, y, ξ, η) = Em(x, y, ξ, η) − Em(−x, y, ξ, η).

We will need the following definition of convergence to the boundary of H+.
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Definition. Let u : H+ → R be a function defined on H+. We write

lim
∂H+

u = 0

if and only if

∀ε > 0, ∃N ∈ N, ∀n ≥ N, ∀(x, y) ∈ H
+,

x ≤ 1

n
or ‖(x, y)‖ ≥ n =⇒ |u(x, y)| ≤ ε.

In other words, this amounts to considering that the boundary ∂H+ of H+

consists of y-axis points and points at infinity and to say that the concept
of punctual convergence to the boundary of H+ is a uniform convergence.
Indeed, we do not need the uniform convergence. More precisely, we have
the following proposition :

Proposition 5.1. Let u : H+ → C. We have

lim
∂H+

u = 0

if and only if

lim
‖(x,y)‖→+∞

u(x, y) = 0 and ∀y ∈ R, lim
(0,y)

u = 0.

Proof. The direct implication is easy. Conversely, we assume

lim
‖(x,y)‖→+∞

u(x, y) = 0 and ∀y ∈ R, lim
(0,y)

u = 0

and we have to show lim∂H+ u = 0.
Let ε > 0. There is A > 0 such that for all (ξ, η) ∈ H+,

√

ξ2 + η2 ≥ A ⇒ |u(ξ, η)| ≤ ε.

Similarly, for all y ∈ R, there is αy ∈]0, 1[ such that for all (ξ, η) ∈ H+

√

ξ2 + (η − y)2 < αy ⇒ |u(ξ, η)| ≤ ε.

The interval [−A,A] is compact.
By the Lebesgue covering lemma, there is α > 0 such that for all y′ ∈
[−A,A], the ball B(y′, α) is included in one of the balls B(y, αy) with y ∈
[−A,A].
In particular, if (ξ, η) ∈ H+ is such that 0 < ξ < α, then |u(ξ, η)| ≤ ε. This
completes the proof. �

The following proposition is a Liouville-type result for the axisymmetric
potentials in the right half-plane and this result is not immediate because
there is the loss of strict ellipticity of the Weinstein operator on the y-axis. In
[4] (see Theorem 7.1), we can found an interesting result on the description
of a class of non-strictly elliptic equations with unbounded coefficients.
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Proposition 5.2. Let u ∈ C2(H+) such that Lmu = 0 and lim
∂H+

u = 0. Then

u ≡ 0 on H+.

Proof. For (ξ, η) ∈ H+ and N ∈ N∗, we define

φN (ξ, η) = θ1(Nξ)θ2

(
ξ

N

)

θ2

( η

N

)

where θ1 and θ2 are smooth functions on R, valued on [0, 1] and such that
θ1(t) = 1 for t ≥ 1, θ1(t) = 0 for t ≤ 1

2 , θ2(t) = 1 for t ∈
[
−1

2 ,
1
2

]
and

θ2(t) = 0 for t ∈ R \ ]−1, 1[. We assume that all derivatives of θ1 and θ2
vanish at

{
−1,−1

2 ,
1
2 , 1
}
.

1

11
2

θ1 1

11
2

θ2

If u ∈ C2(H+) satisfies Lmu = 0, then uφN ∈ C2(H+) and is compactly
supported on H+. Throughout the following, we fix (x, y) ∈ H+. For N
sufficiently large, thanks to Proposition 4.7 (true if Em is replaced by Fm),
we have

u(x, y) = u(x, y)φN (x, y) =

∫

H+

Lm(uφN )Fm dξdη

(because the function Lm(uφN ) is identically zero in a neighborhood of the
singularity of Fm), thus

u(x, y) =

∫

H+

[Lm(u)φN + uLm(φN ) + 2∇u · ∇φN ]Fm dξdη

=

∫

H+

u[Lm(φN )Fm − 2 div (Fm∇φN )]dξdη

=

∫

D1∪···∪D8

u[Lm(φN )Fm − 2 div (Fm∇φN )]dξdη

= −
∫

D1∪···∪D8

u[L−m(φN )Fm + 2∇Fm · ∇φN ]dξdη

where D1, . . . ,D8 are the following domains (which depend of N) :

D1 =

[
1

2N
,
1

N

]

×
[

−N

2
,
N

2

]

, D2 =

[
1

N
,
N

2

]

×
[
N

2
, N

]

,

D3 =

[
N

2
, N

]

×
[

−N

2
,
N

2

]

, D4 =

[
1

N
,
N

2

]

×
[

−N,−N

2
,

]

,

D5 =

[
1

2N
,
1

N

]

×
[
N

2
, N

]

, D6 =

[
N

2
, N

]

×
[
N

2
, N

]

,

D7 =

[
N

2
, N

]

×
[

−N,−N

2

]

and D8 =

[
1

2N
,
1

N

]

×
[

−N,−N

2

]

.
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Figure : Domains Di

D2

D4

D6

D7

D3D1

D5

D8

1
2N

1
N

N

N/2

φN ≡ 1

−N

−N/2

N

N/2

ξ

η

Since lim∂H+ u = 0, then

uN := sup
(ξ,η)∈D1∪···∪D8

|u(ξ, η)| −→
N→+∞

0.

We will estimate each integrals supported on D1, . . . ,D8. For this, we need
the following lemmas which will give us estimates of each terms when N
tends to infinity. We recall that, if (uN )N and (vN )N are complex sequences,
uN = O(vN ) means that there exists a constant M such that, for every N
sufficiently large, |uN | ≤ M |vN | ; uN = o(vN ) means that for every ε > 0,
for every N sufficiently large, |uN | ≤ ε|vN |.

Lemma 5.3. On D1, we have

sup

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O(N) and sup

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= 0.

On D2 ∪D4, we have

sup

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= 0 and sup

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= O

(
1

N

)

.

On D3, we have

sup

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O

(
1

N

)

and sup

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= 0.

On D5 ∪D8, we have

sup

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O(N) and sup

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= O

(
1

N

)

.

On D6 ∪D7, we have

sup

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O

(
1

N

)

and sup

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= O

(
1

N

)

.
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On D1 ∪D5 ∪D8, we have

sup |L−m(φN )| = O(N2).

On D2 ∪D3 ∪D4 ∪D6 ∪D7, we have

sup |L−m(φN )| = O
(

1

N2

)

.

Proof. *For (ξ, η) ∈ D1, φN (ξ, η) = θ1(Nξ) and thus

∂φN

∂ξ
(ξ, η) = Nθ′1(Nξ) ,

∂φN

∂η
(ξ, η) = 0,

L−mφN (ξ, η) = N2θ′′1(Nξ)− mN

ξ
θ′1(Nξ),

which give us

sup
D1

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O(N), sup

D1

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= 0, sup

D1

|L−m(φN )| = O(N2)

since the derivatives of θ1 are bounded and for (ξ, η) ∈ D1, one gets ξ ≥ 1
2N .

*For (ξ, η) ∈ D2, φN (ξ, η) = θ2
( η
N

)
and thus

∂φN

∂ξ
(ξ, η) = 0 ,

∂φN

∂η
(ξ, η) =

1

N
θ′2
( η

N

)

,

L−mφN (ξ, η) =
1

N2
θ′′2
( η

N

)

,

which give us

sup
D2

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= 0, sup

D2

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= O

(
1

N

)

, sup
D2

|L−m(φN )| = O
(

1

N2

)

*So does same with D4.

* For (ξ, η) ∈ D3, φN (ξ, η) = θ2

(
ξ
N

)

and thus

∂φN

∂ξ
(ξ, η) =

1

N
θ′2

(
ξ

N

)

,
∂φN

∂η
(ξ, η) = 0,

L−mφN (ξ, η) =
1

N2
θ′′2

(
ξ

N

)

− 1

N

m

ξ
θ′2

(
ξ

N

)

,

which give us

sup
D3

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O

(
1

N

)

, sup
D3

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= 0, sup

D3

|L−m(φN )| = O
(

1

N2

)

* For (ξ, η) ∈ D5, φN (ξ, η) = θ1(Nξ)θ2
( η
N

)
and thus

∂φN

∂ξ
(ξ, η) = Nθ′1(Nξ)θ2

( η

N

)

,
∂φN

∂η
(ξ, η) =

1

N
θ1(Nξ)θ′2

( η

N

)

,
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L−mφN (ξ, η) = N2θ′′1(Nξ)θ2

( η

N

)

+
1

N2
θ1(Nξ)θ′′2

( η

N

)

−m

ξ
Nθ′1(Nξ)θ2

( η

N

)

which give us

sup
D5

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O(N), sup

D5

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= O

(
1

N

)

, sup
D5

|L−m(φN )| = O(N2).

* So does same with D8.

*For (ξ, η) ∈ D6, φN (ξ, η) = θ2

(
ξ
N

)

θ2
( η
N

)
and thus

∂φN

∂ξ
(ξ, η) =

1

N
θ′2

(
ξ

N

)

θ2

( η

N

)

,
∂φN

∂η
(ξ, η) =

1

N
θ2

(
ξ

N

)

θ′2
( η

N

)

,

L−mφN (ξ, η) =
1

N2
θ′′2

(
ξ

N

)

θ2

( η

N

)

+
1

N2
θ2

(
ξ

N

)

θ′′2
( η

N

)

− m

Nξ
θ′2

(
ξ

N

)

θ2

( η

N

)

which give us

sup
D6

∣
∣
∣
∣

∂φN

∂ξ

∣
∣
∣
∣
= O

(
1

N

)

, sup
D6

∣
∣
∣
∣

∂φN

∂η

∣
∣
∣
∣
= O

(
1

N

)

, sup
D6

|L−m(φN )| = O
(

1

N2

)

.

* So does same with D7. Hence the lemma resulting.
�

We now estimate the following quantities for i ∈ {1, . . . , 8} :
∫

Di

|Fm| dξdη,
∫

Di

|∂ξFm| dξdη et

∫

Di

|∂ηFm| dξdη.

Lemma 5.4. For Re m < 1, we have :
- for i = 1 :

∫

Di

|Fm|dξ dη = O
(

1

N2

)

,

∫

Di

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O

(
1

N

)

.

- for i = 2, 4 :
∫

Di

|Fm|dξ dη = O
(
N2
)
,

∫

Di

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O (N) .

- for i = 3 :
∫

Di

|Fm|dξ dη = O
(
N2
)
,

∫

Di

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O (N) .

- for i = 5, 8 :
∫

Di

|Fm|dξ dη = O
(

1

N2

)

,

∫

Di

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O

(
1

N

)

,

∫

Di

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O

(
1

N2

)

.
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- for i = 6, 7 :
∫

Di

|Fm|dξ dη = O
(
N2
)
,

∫

Di

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O (N) ,

∫

Di

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O (N) .

Proof. For Re m < 1, we have

Fm(ξ, η) = −ξx1−m

2π

∫ π

θ=0

sin1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]1−m
2

.

therefore there is a constant C1 such that for all (ξ, η) ∈ H+, we have

|Fm(ξ, η)| ≤ C1ξ

[(x− ξ)2 + (η − y)2]1−
Rem

2

. (5.1)

Similarly, we have

∂Fm

∂ξ
=

Fm

ξ
− ξx1−m

2π
(m− 2)

∫ π

θ=0

[(ξ − x) + 2x sin2 θ
2 ] sin

1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]2−m
2

,

and as before, as

∀θ ∈ [0, π],

∣
∣
∣
∣
∣

[(ξ − x) + 2x sin2 θ
2 ] sin

1−m θ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]2−m
2

∣
∣
∣
∣
∣
≤ |(ξ − x) + 2x sin2 θ

2 |
(

(x− ξ)2 + (η − y)2
)2−Rem

2

=
|ξ − x cos θ|

(

(x− ξ)2 + (η − y)2
)2−Rem

2

≤ ξ + x
(

(x− ξ)2 + (η − y)2
)2−Rem

2

,

there exists a constant C2 such that for all N large enough and for all
(ξ, η) ∈ H+, we have

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
≤ C2






1
[

(x− ξ)2 + (η − y)2
]1−Rem

2

+
ξ(x+ ξ)

(

(x− ξ)2 + (η − y)2
)2−Rem

2




 .

(5.2)
Finally, as

∂Fm

∂η
= (2−m)(η − y)

ξx1−m

2π

∫ π

θ=0

sin1−m θ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]2−m
2

,

there exists a constant C3 such that for all N large enough and for all
(ξ, η) ∈ H+, we have

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
≤ C3ξ

|η − y|3−Rem
. (5.3)

Using these inequalities, we estimate integrals of these functions on the
domains Di.
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On D1 : Inequality (5.1) give us

∫

D1

|Fm|dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N
2

η=−N
2

ξ dξ dη

[(x− ξ)2 + (η − y)2]1−
Rem

2

= O(1/N2)

∫ η=N
2

η=−N
2

dη
[
(x− 1

N )2 + (η − y)2
]1−Rem

2

= O(1/N2).

Then, thanks to (5.2), we have

∫

D1

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N
2

η=−N
2






1
[

(x− ξ)2 + (η − y)2
]1−Rem

2

+
ξ(x+ ξ)

(

(x− ξ)2 + (η − y)2
)2−Rem

2




 dξdη

= O(1/N)

∫ η=N
2

η=−N
2

dη
[
(x− 1

N )2 + (η − y)2
]1−Rem

2

+O(1/N2) = O(1/N).

On D2 : due to inequality (5.1), we have

∫

D2

|Fm|dξdη = O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

ξ dξdη

[(x− ξ)2 + (η − y)2]1−
Rem

2

= O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

ξ

|η − y|2−Rem
dξdη = O(N2)

∫ N

η=N
2

dη

|η − y|2−Rem

= O(N2)

[

1

(N − y)1−Rem
− 1

(N2 − y)1−Rem

]

= O(NRem+1).

Then, thanks to (5.3), we have
∫

D2

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

ξ

|η − y|3−Rem
dξ dη

= O(N2)

∫ N

η=N
2

dη

|η − y|3−Rem
= O(NRem)

On D3 : due to inequality (5.1), we have

∫

D3

|Fm|dξdη = O(1)

∫ N

ξ=N
2

∫ N
2

η=−N
2

ξ dξdη

[(x− ξ)2 + (η − y)2]1−
Rem

2

= O(1)

∫ N

ξ=N
2

∫ N
2

η=−N
2

ξ dξdη
[
(x− N

2 )
2 + (η − y)2

]1−Rem
2
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= O(N2)

∫ N
2

η=−N
2

dη
[
(x− N

2 )
2 + (η − y)2

]1−Rem
2

= O(N2)

∫ N
2

η=−N
2

dη

[1 + (η − y)2]1−
Rem

2

= O(N2).

Then, thanks to (5.2), we have

∫

D3

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ N

ξ=N
2

∫ N
2

η=−N
2






1
[

(x− ξ)2 + (η − y)2
]1−Rem

2

+
ξ(x+ ξ)

(

(x− ξ)2 + (η − y)2
)2−Rem

2




 dξdη

= O(N)

∫ N
2

η=−N
2

dη
[
(x− N

2 )
2 + (η − y)2

]1−Rem
2

+O(N3)

∫ N
2

η=−N
2

dη
[
(x− N

2 )
2 + (η − y)2

]2−Rem
2

= O(N) +O(N3)

∫ N
2

η=−N
2

dη

(x− N
2 )

4−Rem

= O(N) +O(NRem) = O(N).

On D4 : this case is analogous to the case D2.

Sur D5 : due to inequality (5.1), we have

∫

D5

|Fm|dξdη = O(1)

∫ 1
N

ξ= 1
2N

∫ N

η=N
2

ξ dξdη

[(x− ξ)2 + (η − y)2]1−
Rem

2

= O(1/N2)

∫ N

η=N
2

dη

(η − y)2−Rem

= O(1/N2)

[

1

(N − y)1−Rem
− 1

(N2 − y)1−Rem

]

= O(1/N3−Rem).

Then, thanks to (5.2), we have

∫

D5

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2






1
[

(x− ξ)2 + (η − y)2
]1−Rem

2

+
ξ(x+ ξ)

(

(x− ξ)2 + (η − y)2
)2−Rem

2




 dξdη
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= O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2






1
[(
x− 1

N

)2
+ (η − y)2

]1−Rem
2

+
ξ(x+ ξ)

((
x− 1

N

)2
+ (η − y)2

)2−Rem
2




 dξdη

= O
(

1

N

)

The estimate (5.3) gives
∫

D5

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2

ξ dξ dη

|η − y|3−Rem
= O

(
1

N2

)

On D6 : due to (5.1), we have
∫

D6

|Fm|dξdη = O(1)

∫ N

ξ=N
2

∫ N

η=N
2

ξ dξdη

[(x− ξ)2 + (η − y)2]1−
Rem

2

= O(N2)

∫ N

η=N
2

dη

(η − y)2−Rem

= O(N2)

[

1

(N − y)1−Rem
− 1

(N2 − y)1−Rem

]

= O(N1+Rem).

Then, thanks to (5.2), we have

∫

D6

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ ξ=N

ξ=N
2

∫ η=N

η=N
2






1
[

(x− ξ)2 + (η − y)2
]1−Rem

2

+
ξ(x+ ξ)

(

(x− ξ)2 + (η − y)2
)2−Rem

2




 dξdη

= O(1)

∫ ξ=N

ξ=N
2

∫ η=N

η=N
2

[
1

(η − y)2−Rem
+

ξ(x+ ξ)

(η − y)4−Rem

]

dξdη

= O(N) +O(N3)

∫ N

η=N
2

dη

(η − y)4−Rem
= O(N) +O(NRem) = O(N).

The estimate (5.3) gives
∫

D6

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O(1)

∫ ξ=N

ξ=N
2

∫ η=N

η=N
2

ξ dξ dη

|η − y|3−Rem
= O(N2)

∫ η=N

η=N
2

dη

|η − y|3−Rem

= O(NRem).
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Sur D7 : this case is analogous to the case D6.

Sur D8 : this case is analogous to the case D5. �

Lemma 5.5. For Re m ≥ 1, all estimations obtained on the Lemma 5.4 are
true.

Proof. For Re m ≥ 1, we have

Fm(x, y, ξ, η) = −ξm

2π

∫ π

θ=0
sinm−1 θ

(

1

[(x− ξ)2 + 4xξ sin2 θ
2 + (y − η)2]m/2

− 1

[(x+ ξ)2 − 4xξ sin2 θ
2 + (y − η)2]m/2

)

dθ.

Since for all (ξ, η) ∈ H+, we have
∣
∣
∣
∣
∣

[

(x+ ξ)2 − 4xξ sin2
θ

2
+ (y − η)2

]m/2
∣
∣
∣
∣
∣
=
∣
∣
∣

[
x2 + ξ2 + 2xξ cos θ + (y − η)2

]m/2
∣
∣
∣ ,

then for all (ξ, η) ∈ H+,
∣
∣
∣
∣
∣

[

(x+ ξ)2 − 4xξ sin2
θ

2
+ (y − η)2

]m/2
∣
∣
∣
∣
∣
≥
(
(x− ξ)2 + (y − η)2

)Rem
2 (5.4)

and there is a constant C ′
1 such that for all (ξ, η) ∈ H+, we have

|Fm| ≤ C ′
1ξ

Rem

((x− ξ)2 + (y − η)2)
Rem

2

. (5.5)

This inequality does not suffice to estimate integrals supported on D1. We
can improve inequality (5.5) as follows :
We rewrite Fm as

Fm(x, y, ξ, η) = −ξm

2π

∫ π

θ=0
sinm−1 θKm(x, y, ξ, η, θ)dθ

where

Km(x, y, ξ, η, θ) =
1

[(x− ξ)2 + 4xξ sin2 θ
2 + (y − η)2]m/2

− 1

[(x+ ξ)2 − 4xξ sin2 θ
2 + (y − η)2]m/2

.

For (x, y) ∈ H+ fixed, θ ∈ [0, π] fixed and η ∈ R fixed, we define the function
gm on [−1/N, 1/N ] with 1/N < x by

gm(ξ) =
1

[(x− ξ)2 + 4xξ sin2 θ
2 + (y − η)2]m/2

.

This function is well defined because

(x−ξ)2+4xξ sin2
θ

2
+(y−η)2 = x2+ξ2−2xξ cos θ+(y−η)2 ≥ (x−|ξ|)2+(y−η)2
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and this last term is larger than (x− 1/N)2 > 0.
We have

Km(x, y, ξ, η, θ) = gm(ξ)− gm(−ξ)

thus

|Km(x, y, ξ, η, θ)| ≤ 2ξ sup
[−ξ,ξ]

|g′m| ≤ 2|m|ξ |ξ − x|+ 2x

[(x − ξ)2 + (y − η)2]1+
1
2
Rem

,

which implies that there exists a constant c′1 such that

∀(ξ, η) ∈ D1, |Fm| ≤ c′1
ξRem+1

[

(x− ξ)2 + (η − y)2
]1+ 1

2
Rem

. (5.6)

Similarly, we have

∂Fm

∂ξ
=

mFm

ξ
+
mξm

2π

∫ π

θ=0
sinm−1 θ

(

(ξ − x) + 2x sin2 θ
2

[(x− ξ)2 + 4xξ sin2 θ
2 + (y − η)2]

m
2
+1

− (ξ + x)− 2x sin2 θ
2

[(x+ ξ)2 − 4xξ sin2 θ
2 + (y − η)2]

m
2
+1

)

dθ.

(5.7)
and as before,

∀θ ∈ [0, π],

∣
∣
∣
∣
∣

[(ξ − x) + 2x sin2 θ
2 ] sin

m−1 θ

[(x− ξ)2 + 4xξ sin2 θ
2 + (y − η)2]

m
2
+1

∣
∣
∣
∣
∣
≤

∣
∣(ξ − x) + 2x sin2 θ

2

∣
∣

[(x− ξ)2 + (y − η)2]
Rem

2
+1

=
|ξ − x cos θ|

[(x− ξ)2 + (y − η)2]
Rem

2
+1

≤ ξ + x

[(x− ξ)2 + (y − η)2]
Rem

2
+1

and thanks to (5.4) :

∀θ ∈ [0, π],

∣
∣
∣
∣
∣

[(ξ + x)− 2x sin2 θ
2 ] sin

m−1 θ

[(x+ ξ)2 − 4xξ sin2 θ
2 + (y − η)2]

m
2
+1

∣
∣
∣
∣
∣
≤

∣
∣(ξ + x)− 2x sin2 θ

2

∣
∣

[(x− ξ)2 + (y − η)2]
Rem

2
+1

=
|ξ + x cos θ|

[(x− ξ)2 + (y − η)2]
Rem

2
+1

≤ ξ + x

[(x− ξ)2 + (y − η)2]
Rem

2
+1

.

Those estimations, the formula (5.7) and the inequality (5.5) show that there
is a constant C ′

2 such that large enough N and for all (ξ, η) ∈ H+, we have
∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
≤ C ′

2

(

ξRem−1

[(x− ξ)2 + (y − η)2]
Rem

2

+
ξRem(ξ + x)

[(x− ξ)2 + (y − η)2]
Rem

2
+1

)

.

(5.8)
We can improve this inequality on D1, for this, we need to use the inequality
(5.6) instead of (5.5) and we obtain that there is two constants C ′′

2 and C ′′′
2

(which do not depend of N) such that for all (ξ, η) ∈ D1

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
≤ C ′′

2

(

ξRem

[(x− ξ)2 + (y − η)2]1+
Rem

2

+
ξRem(ξ + x)

[(x− ξ)2 + (y − η)2]
Rem

2
+1

)
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≤ C ′′′
2

ξRem

[(x− ξ)2 + (y − η)2]1+
Rem

2

(5.9)

Finally,

∂Fm

∂η
=

m(η − y)ξm

2π

∫ π

θ=0
sinm−1 θ

(

1

[(x− ξ)2 + 4xξ sin2 θ
2 + (y − η)2]

m
2
+1

− 1

[(x+ ξ)2 − 4xξ sin2 θ
2 + (y − η)2]

m
2
+1

)

dθ.

Similarly, there is a constant C ′
3 such that for all large enough N and for all

(ξ, η) ∈ H+, we have
∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
≤ C ′

3

|η − y|ξRem

((x− ξ)2 + (y − η)2)
Rem

2
+1

. (5.10)

Thanks to those inequalities, we will estimate the integrals of those functions
on each domain Di.

On D1 : due to (5.6), we have

∫

D1

|Fm|dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N
2

η=−N
2

ξRem+1dξdη
[

(x− ξ)2 + (η − y)2
]1+ 1

2
Rem

= O(N)

∫ ξ= 1
N

ξ= 1
2N

ξRem+1dξ = O(N)

[(
1

N

)Rem+2

−
(

1

2N

)Rem+2
]

= O(1/NRem+1).

Then thanks to (5.9), we have
∫

D1

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N
2

η=−N
2

ξRemdξdη
[

(x− ξ)2 + (η − y)2
]1+ 1

2
Rem

.

= O(N)

∫ ξ= 1
N

ξ= 1
2N

ξRemdξ = O(1/NRem).

On D2 : due to (5.5), we have

∫

D2

|Fm|dξdη = O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2

= O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

ξRemdξdη

|y − N
2 |Rem

= O(N2),

because we integrate a bounded function (independently of N) on a domain
with measure controlled by O(N2).
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Then, the inequality (5.10) implies
∫

D2

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

|η − y|ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2
+1

= O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

ξRemdξdη

|y − η|Rem+1
= O(1)

∫ N
2

ξ= 1
N

∫ N

η=N
2

NRemdξdη

|N2 − y|Rem+1
= O(N).

On D3 : due to (5.5), we have

∫

D3

|Fm|dξdη = O(1)

∫ N

ξ=N
2

∫ N
2

η=−N
2

ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2

= O(1)

∫ N

ξ=N
2

∫ N
2

η=−N
2

ξRemdξdη
(
(x− N

2 )
2 + (y − η)2

)Rem
2

= O(NRem+1)

∫ N
2

η=−N
2

dη
(
(x− N

2 )
2 + (y − η)2

)Rem
2

= O(N2).

Then, thanks to (5.8), we have
∫

D3

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ N

ξ=N
2

∫ N
2

η=−N
2

(

ξRem−1

[(x− ξ)2 + (y − η)2]
Rem

2

+
ξRem(ξ + x)

[(x− ξ)2 + (y − η)2]
Rem

2
+1

)

dξdη

= O(NRem)

∫ N
2

η=−N
2

dη

[(x− N
2 )

2 + (y − η)2]
Rem

2

+O(NRem+2)

∫ N
2

η=−N
2

dη

[(x− N
2 )

2 + (y − η)2]
Rem

2
+1

= O(N) +O(N) = O(N).

On D4 : this case is analogous to the case D2.

On D5 : due to (5.5), we have
∫

D5

|Fm|dξdη = O(1)

∫ 1
N

ξ= 1
2N

∫ N

η=N
2

ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2

= O(1/NRem+1)

∫ N

η=N
2

dη

|y − N
2 |Rem

= O(1/N2Rem).

Then, thanks to (5.8), we have
∫

D5

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2

(

ξRem−1

[(x− ξ)2 + (y − η)2]
Rem

2
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+
ξRem(ξ + x)

[(x− ξ)2 + (y − η)2]
Rem

2
+1

)

dξdη

= O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2

(
ξRem−1

|y − η|Rem
+

ξRem(ξ + x)

|y − η|Rem+2

)

dξdη

= O(1/N2Rem−1).

With the inequality (5.10), we have
∫

D5

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2

|η − y|ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2
+1

= O(1)

∫ ξ= 1
N

ξ= 1
2N

∫ η=N

η=N
2

ξRemdξdη

|y − η|Rem+1
= O(1/N2Rem+1)

On D6 : due to (5.5), we have
∫

D6

|Fm|dξdη = O(1)

∫ N

ξ=N
2

∫ N

η=N
2

ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2

= O(NRem+1)

∫ N

η=N
2

dη

(N2 − y)Rem
= O(N2).

Then, thanks to (5.8), we obtain
∫

D6

∣
∣
∣
∣

∂Fm

∂ξ

∣
∣
∣
∣
dξdη = O(1)

∫ ξ=N

ξ=N
2

∫ η=N

η=N
2

(

ξRem−1

[(x− ξ)2 + (y − η)2]
Rem

2

+
ξRem(ξ + x)

[(x− ξ)2 + (y − η)2]
Rem

2
+1

)

dξdη

= O(1)

∫ ξ=N

ξ=N
2

∫ η=N

η=N
2

(
ξRem−1

|y − η|Rem
+

ξRem(ξ + x)

|y − η|Rem+2

)

dξdη

= O(N) +O(NRem+2)

∫ η=N

η=N
2

dη

|y − η|Rem+2
= O(N).

Finally, the inequality (5.10) implies
∫

D6

∣
∣
∣
∣

∂Fm

∂η

∣
∣
∣
∣
dξdη = O(1)

∫ ξ=N

ξ=N
2

∫ η=N

η=N
2

|η − y|ξRemdξdη

((x− ξ)2 + (y − η)2)
Rem

2
+1

= O(NRem+1)

∫ η=N

η=N
2

dη

|y − η|Rem+1
= O(N).

On D7 : this case is analogous to the case D6.

On D8 : this case is analogous to the case D5.
�
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In the following table, we summarize the results obtained on the previous
lemmas :

i supDi
|L−mφN |

∫

Di
|Fm|dξdη (|∂ξφN |, |∂ηφN |)

∫

Di
|∂ξFm|

∫

Di
|∂ηFm|

1 O(N2) O(1/N2) (O(N), 0) O( 1
N ) ×

2 O(1/N2) O(N2) (0,O( 1
N )) × O(N)

3 O(1/N2) O(N2) (O( 1
N ), 0) O(N) ×

4 O(1/N2) O(N2) (0,O( 1
N )) × O(N)

5 O(N2) O(1/N2) (O(N),O( 1
N )) O( 1

N ) O( 1
N2 )

6 O(1/N2) O(N2) (O( 1
N ),O( 1

N )) O(N) O(N)

7 O(1/N2) O(N2) (O( 1
N ),O( 1

N )) O(N) O(N)

8 O(N2) O(1/N2) (O(N),O( 1
N )) O( 1

N ) O( 1
N2 )

We can easily check that for each i ∈ {1, . . . , 8}, the quantities

sup
Di

|L−mφN |
∫

Di

|Fm|, sup
Di

|∂ξφN |
∫

Di

|∂ξFm| and sup
Di

|∂ηφN |
∫

Di

|∂ηFm|

stay bounded. Therefore,

u(x, y) = o(1)

when N → +∞. Thus

u ≡ 0

and this completes the proof of the Proposition 5.2. �

Lemma 5.6. Let u ∈ D(H+) and let (x, y) ∈ H+, we define

U(x, y) =

∫

H+

u(ξ, η)Fm(x, y, ξ, η)dξ dη,

then lim
‖(x,y)‖→+∞

U = 0, and for all y ∈ R, lim
(0,y)

U = 0.

Moreover, U ∈ C∞(H+ \ suppu) and for all (x, y) 6∈ supp u, we have
Lm,x,yU(x, y) = 0.

Proof. When (ξ, η) is fixed, and since

Fm(x, y, ξ, η) = −ξx1−m

2π

∫ π

θ=0

sin1−m θ dθ
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]1−m
2

for Re m < 1, then Fm(x, y, ξ, η) −→
‖(x,y)‖→+∞

0 and the first result of the

lemma is shown.
Similarly, if Re m ≥ 1,

Fm(x, y, ξ, η) = −ξm

2π

∫ π

θ=0
sinm−1 θ

[

1
[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]m
2

−
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− 1
[
(x+ ξ)2 − 4xξ sin2

(
θ
2

)
+ (y − η)2

]m
2

]

dθ

then Fm(x, y, ξ, η) −→
‖(x,y)‖→+∞

0 and the first result of the lemma is shown.

For the second result, it suffices to see, for Re m < 1, that

Fm(x, y, ξ, η) ∼
(x,y)→(0,y′)

− ξx1−m

2π[ξ2 + (y′ − η)2]1−m/2

∫ π

0
sin1−m θ dθ

which implies the desired result.
Now, we assume that Re m ≥ 1. Let (ξ, η) be fixed in the support of u,
which is a compact set of H+. In particular, there exist M > 0 and α > 0
which do not depend of u such that ‖(ξ, η)‖ ≤ M et ξ ≥ 2α. Let y be in R.
By denotting for x ∈ [−α,α],

fm(x) =
1

[
(x− ξ)2 + 4xξ sin2

(
θ
2

)
+ (y − η)2

]m
2

,

By the mean value inequality, for x > 0 near 0, we have

|fm(x)− fm(0)| ≤ x sup
[0,α]

|f ′
m|

and

|fm(−x)− fm(0)| ≤ x sup
[−α,0]

|f ′
m|.

then

|fm(x)− fm(−x)| ≤ 2x sup
[−α,α]

|f ′
m| ≤ 2x|m|3M + α

αRem+2
.

In particular,

sup
(ξ,η)∈suppu

y∈R

|Fm(x, y)| = O(x)

when x → 0+. The second result is proved.
The last result can be deduced of the fact that if (x, y) 6= (ξ, η) are both in
H+, then

Lm,x,yFm(x, y, ξ, η) = 0.

�

Remark 5.7. If U ∈ D(H+), then Lm,x,yU = u, but this identity is not
necessary true if U 6∈ D(H+). In particular, we can not say that in the
Lemma 5.6, we have LmU = u.

Now, we will prove a decomposition theorem for axisymmetric potentials,
it is interesting to compare the following theorem to known result in [5,
Theorem 2 section 4] (the fundamental difference is that in this work, the
conductivity is not extended in all domain by reflection through the bound-
ary ∂Ω).
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Theorem 5.8. Let m ∈ C. Let Ω be an open set of H+ and let K be a
compact set of Ω. If u ∈ C2(Ω \K) satisfies Lmu = 0 in Ω \K, then u has
a unique decomposition as follows :

u = v +w,

where v ∈ C2(Ω) satisfies Lmv = 0 in Ω and w ∈ C2(H+ \ K) satisfies
Lmw = 0 in H+ \K with lim

∂H+
w = 0.

Proof. For E ⊂ C and ρ > 0, we define Eρ = {x ∈ C, d(x,E) < ρ} (Eρ is a
neighborhood of E).
At first, we assume that Ω is a relatively compact open set of H+. We choose
ρ as small as Kρ and (∂Ω)ρ are disjoint. There is a function ϕρ ∈ D(H+)
compactly supported on Ω \ K such that ϕρ ≡ 1 in a neighborhood of
Ω \ (Kρ ∪ (∂Ω)ρ).

Figure : ϕρ ≡ 1 on the gray domain

x

y

K

Kρ

Ω \ {Kρ ∪ (∂Ω)ρ}

∂Ω

(∂Ω)ρ

ρ

ρ

For z = x+ iy ∈ Ω \ (Kρ ∪ (∂Ω)ρ), we denote

Fz(ζ) := Fm(x, y, ξ, η) and Lζ := Lm,ξ,η for ζ = ξ + iη,

Thanks to Proposition 4.7, we have

u(z) = uϕρ(z) =

∫

Ωρ

Fz(ζ)Lζ(uϕρ)(ζ)dξdη

=

∫

(∂Ω)ρ

Fz(ζ)Lζ(uϕρ)(ζ)dξdη +

∫

Kρ

Fz(ζ)Lζ(uϕρ)(ζ)dξdη

= vρ(z) + wρ(z).

Then, the last result of Lemma 5.6 shows us that vρ satisfies Lmvρ = 0 on
Ω\(∂Ω)ρ and wρ satisfies Lmwρ = 0 on H+\Kρ. We also have lim∂H+ wρ = 0.
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Now, we assume that σ < ρ. As previously, we obtain the decomposition
u = vσ +wσ on Ω \ (Kσ ∪ (∂Ω)σ). We claim that vρ = vσ on Ω \ (∂Ω)ρ and
wρ = wσ on H+ \Kρ. To see this, note that if z ∈ Ω \ (Kρ ∪ (∂Ω)ρ), then
vρ(z) + wρ(z) = vσ(z) + wσ(z).
We will designate by (1) the Weinstein equation Lmu = 0. Thus wρ − wσ

satisfies (1) on H+ \ Kρ, which is equal to vσ − vρ on Ω \ (Kρ ∪ (∂Ω)ρ),
therefore vσ − vρ extends to a solution of (1) on Ω \ (∂Ω)ρ.
Finally, wρ − wσ extends to a solution of (1) on H+, and lim

∂H+
wρ − wσ = 0.

Due to Proposition 5.2, we have

wρ = wσ,

and then vρ = vσ.
For z ∈ Ω, we can define v(z) = vρ(z) for ρ as small as z ∈ Ω \ (∂Ω)ρ.
Similarly, for z ∈ H+ \K, we put w(z) = wρ(z) for small ρ. We have proved
the desired decomposition u = v + w.
Now, assume that Ω is an arbitrary domain of H+ and let u be a solution
of Lmu = 0 on Ω \K. We choose a ∈ H+ and R large enough so that K ⊂
D(a,R) and D(a,R) be a relatively compact set of H+. Let ω = Ω∩D(a,R).
Note that K is a compact set of ω which is a relatively compact open set
of H+ and u satisfies (1) on ω \K. Applying the results demonstrated for
relatively compact open sets, we obtain

u(z) = ṽ(z) + w̃(z)

for z ∈ ω \K, where ṽ satisfies (1) on ω and w̃ satisfies (1) on H+ \K with
lim∂H+ w̃ = 0. Note that V = u − w̃ satisfies (1) on Ω \ K and V can be
extended into a solution of (1) in a neighborhood of K because V = ṽ on ω.
The sum u = V + w̃ provides us a desired decomposition of u.
As before, if we have another decomposition u = v + w with v ∈ C2(Ω),
Lmv = 0 and with w ∈ C2(H+ \K), Lmw = 0 and lim∂H+ w = 0, then we
have V − v = w− w̃ on Ω \K. The function w− w̃ can be extended on H+

into a solution of Lm(w− w̃) = 0 on H+ with lim∂H+(w− w̃) = 0. Thanks to
Proposition 5.2, we obtain w = w̃, then V = v, which completes the proof
of the decomposition theorem. �

The following proposition is a Poisson formula for the axisymmetric poten-
tials in H+ :

Proposition 5.9. Let m ∈ C be such that Re m < 1 and u : R → R be
a continuous and bounded function. Then there is a unique axisymmetric
potential U ∈ C2(H+) such that lim‖(x,y)‖→+∞ U(x, y) = 0 and for all y ∈ R,

lim
(0,y)

U = u(y).

Moreover, we have for all (x, y) ∈ H+,

U(x, y) = Cmx1−m

∫ ∞

η=−∞

u(η) dη

(x2 + (y − η)2)1−
m
2
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where Cm = 1−m
2π

∫ π
θ=0 sin

1−m θ dθ = 1
2mπ

Γ2(1−m
2 )

Γ(1−m) .

Proof. We define f(x, y) = x1−m

(x2+(y−η)2)1−
m
2
. To show that U is a solution of

LmU = 0, it suffices to prove that Lmf = 0 by differentiation under the
integral sign. We have

∂xf =
(1−m)x−m

(x2 + (y − η)2)1−
m
2

− (2−m)x2−m

(x2 + (y − η)2)2−
m
2

and

∂xxf = − m(1−m)x−m−1

(x2 + (y − η)2)1−
m
2

−(2−m)(3− 2m)x1−m

(x2 + (y − η)2)2−
m
2

+
(2−m)(4−m)x3−m

(x2 + (y − η)2)3−
m
2

and

∂yyf = − (2−m)x1−m

(x2 + (y − η)2)2−
m
2

+
(2−m)(4−m)(y − η)2x1−m

(x2 + (y − η)2)3−
m
2

.

Then,

∆f =
m(2−m)x1−m

(x2 + (y − η)2)2−
m
2

− m(1−m)x−m−1

(x2 + (y − η)2)1−
m
2

and we deduce that Lmf(x, y) = 0.
We have

U(x, y) = Cmx1−m

∫ ∞

η=−∞

u(η) dη

(x2 + (y − η)2)1−
m
2

=
Cm

x

∫ ∞

η=−∞

u(η) dη

(1 + (y−η
x )2)1−

m
2

By a change of variable t = y−η
x , we obtain

U(x, y) = Cm

∫ ∞

t=−∞

u(y − tx) dt

(1 + t2)1−
m
2

Thanks to the dominated convergence theorem, it suffices to show that

Cm

∫ ∞

t=−∞

dt

(1 + t2)1−
m
2

=
1−m

2π

∫ π

θ=0
sin1−m θ dθ

∫ ∞

t=−∞

dt

(1 + t2)1−
m
2

= 1.

To see this, according [1] (page 258), note that
∫ ∞

t=−∞

dt

(1 + t2)1−
m
2

= B

(
1

2
,
1−m

2

)

=
Γ(1/2)Γ

(
1−m
2

)

Γ
(
1− m

2

)

where B is the Euler beta function and

1−m

2π

∫ π

θ=0
sin1−m θ dθ =

1−m

2π
21−mB

(

1− m

2
, 1− m

2

)

=
1−m

2π
21−mΓ2

(
1− m

2

)

Γ (2−m)
.

Then, using the duplication formula for the Γ function,

Γ(2z) = π−1/222z−1Γ(z)Γ

(

z +
1

2

)
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and the recurrence formula Γ(z + 1) = zΓ(z), we obtain the desired result,

Γ(1/2)Γ
(
1−m
2

)

Γ
(
1− m

2

)
1−m

2π
21−mΓ2

(
1− m

2

)

Γ (2−m)
= 1.

The uniqueness follows from the proposition 5.2. So, we proved the propo-
sition. �

Remark 5.10. We could ask ourselves the question of the existence of a
such reproducing formula if Rem ≥ 1. In fact, if m ∈ N∗ and if u ∈ C2(H+)
satisfies Lm(u) = 0 on H+, then the function v defined on Rm+2 by

v(x1, . . . , xm+2) = u(0, xm+2)

and

v(x1, . . . , xm+2) = u

(√

x21 + · · · + x2m+1, xm+2

)

is harmonic on (Rm+1)∗ × R. In particular, if m ≥ 2, the Proposition 18
in [15], page 310 shows that v can be extended to a harmonic function on
Rm+2, which tends to 0 at infinity. We then deduce that the function v
is identically zero, then u ≡ 0, demonstrating that the problem to find a
solution of Lm(u) = 0 with u vanishing at infinity and that the values of u
are known on the y-axis is a problem that does not make sense. In this case,
no solution to the Dirichlet problem is a consequence of loss of the ellipticity
of the equation Lmu = 0 at the boundary of H+. Therefore, we do not deal
with the case Rem ≥ 1.

6. Fourier-Legendre decomposition

First, we will introduce a specific system of coordinates named bipolar co-
ordinates (τ, θ) (see [37]) and numerical applications on extremal bounded
problems using this system of coordinates have been realized in [21, 22, 23].
Let α > 0. We suppose that there is a positive charge at A = (−α, 0) and
a negative charge at B = (α, 0) (the absolute values of the two charges are
identical). The potential generated by this charges at a point M is ln

(
MA
MB

)

(modulo a multiplicative constant).

Figure : Bipolar coordinates

x

y

O B(α, 0)A(−α, 0)

M(x, y)

θ

By definition, the bipolar coordinates are

τ := ln
MA

MB
and θ = ÂMB.
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The bipolar coordinates are linked to the Cartesian coordinates by the fol-
lowing formulas :

x =
α sh τ

ch τ − cos θ
, y =

α sin θ

ch τ − cos θ
.

Let R > 0 and a =
√
R2 + α2, the disk of center (a, 0) and of radius R is

defined in terms of bipolar coordinates by

τ ≥ τ0 = ln

(

a

R
+

√

a2

R2
− 1

)

= argch
a

R
.

Moreover, the right half-plane is

H
+ = {(τ, θ) : τ ∈]0 +∞], θ ∈ [0, 2π[}.

The level lines τ = τ0 are circles of center(α coth τ0, 0) and radii α/sh τ0.
This implies that for all τ0, τ1 such that 0 < τ0 < τ1, the set {(τ, θ), τ ≥ τ0}
is a closed disk and the set {(τ, θ), 0 < τ < τ1} is the complement on H+ of
the closed disk {τ ≥ τ1}.

Figure : Level lines (with α = 1)

x

y

1−1

τ = 1/2

τ = 1

τ = 1/3τ = −1/3 θ = π/6

θ = π/3

θ = 11π/6

θ = 5π/3

τ = −1/2

τ = −1

θ = 0θ = 0

τ = 0

θ = π

The following theorem is known for m = −1 by physicists ([3, 44, 42, 43,
33, 39]. We extend this result to complex values of m :

Theorem 6.1. Let u be a solution of Lmu = 0 in an open set of H+ and
putting

vm(τ, θ) = sh
m−1

2 τ(ch τ − cos θ)−m/2u(τ, θ)

where by definition,

sh
m−1

2 τ(ch τ − cos θ)−m/2 = exp

(
m− 1

2
ln sh τ − m

2
ln(ch τ − cos θ)

)

then
∂2vm
∂τ2

+
∂2vm
∂θ2

+ coth τ
∂vm
∂τ

+

(
1

4
− (m− 1)2

4 sh 2τ

)

vm = 0.
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Proof. We have

∂u

∂τ
= α

[
1− ch τ cos θ

(ch τ − cos θ)2
∂u

∂x
− sh τ sin θ

(ch τ − cos θ)2
∂u

∂y

]

and
∂u

∂θ
= α

[ −sh τ sin θ

(ch τ − cos θ)2
∂u

∂x
+

ch τ cos θ − 1

(ch τ − cos θ)2
∂u

∂y

]

.

Thus, we obtain

∂u

∂x
=

1

α

(

(1− ch τ cos θ)
∂u

∂τ
− sh τ sin θ

∂u

∂θ

)

,

and

∂2u

∂τ2
=

α2

(ch τ − cos θ)4

[

(1− ch τ cos θ)2
∂2u

∂x2
+ sh 2τ sin2 θ

∂2u

∂y2

−2(1 − ch τ cos θ)sh τ sin θ
∂2u

∂x∂y

]

+
α

(ch τ − cos θ)3

[

sh τ(cos2 θ + ch τ cos θ − 2)
∂u

∂x
+ sin θ

(
ch 2τ − 2 + cos θch τ

) ∂u

∂y

]

and

∂2u

∂θ2
=

α2

(ch τ − cos θ)4

[

sh 2τ sin2 θ
∂2u

∂x2
+ (ch τ cos θ − 1)

∂2u

∂y2

+2(1 − ch τ cos θ)sh τ sin θ
∂2u

∂x∂y

]

+
α

(ch τ − cos θ)3

[

sh τ(2− cos2 θ − cos θch τ)
∂u

∂x
+ sin θ(2− ch 2τ − ch τ cos θ)

∂u

∂y

]

In particular, we have

∂2u

∂τ2
+

∂2u

∂θ2
=

α2

(ch τ − cos θ)2

[
∂2u

∂x2
+

∂2u

∂y2

]

.

Therefore, we obtain

Lm,x,yu =

(
ch τ − cos θ

α

)2(∂2u

∂τ2
+

∂2u

∂θ2
+

m(1− ch τ cos θ)

sh τ(ch τ − cos θ)

∂u

∂τ
− m sin θ

ch τ − cos θ

∂u

∂θ

)

.

We put

u(τ, θ) =
(ch τ − cos θ)m/2

sh
m−1

2 τ
vm(τ, θ)

and we calculate Lm,x,yu in terms of F (τ, θ). Denoting

rm(τ, θ) =
(ch τ − cos θ)m/2

sh
m−1

2 τ
,

we have
∂rm
∂θ

=
m

2

sin θ

ch τ − cos θ
rm
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and
∂2rm
∂θ2

=
m

4(ch τ − cos θ)2
(
2 cos θch τ +m sin2 θ − 2

)
rm

then

∂rm
∂τ

=
1

(ch τ − cos θ)sh τ

(
ch 2τ + (m− 1)ch τ cos θ −m

)
rm

and

∂2rm
∂τ2

=
1

4(ch τ − cos θ)2sh 2τ

[
ch 4τ − 2ch 3τ cos θ + (m− 1)2ch 2τ cos2 θ+

+2(m− 1)ch 2τ + (4− 2m2)ch τ cos θ + 2(m− 1) cos2 θ +m(m− 2)
]
rm.

The equation

Lm,x,yu = 0

can be rewritten as

rm

(
∂2vm
∂τ2

+
∂2vm
∂θ2

)

+
∂vm
∂τ

(

2
∂rm
∂τ

+
m

sh τ

1− ch τ cos θ

ch τ − cos θ
rm

)

+

+
∂vm
∂θ

(

2
∂rm
∂θ

− m sin θ

ch τ − cos θ
rm

)

+vm

(
∂2rm
∂τ2

+
∂2rm
∂θ2

+
m(1− ch τ cos θ)

sh τ(ch τ − cos θ)

∂rm
∂τ

− m sin θ

ch τ − cos θ

∂rm
∂θ

)

= 0

with

2
∂rm
∂τ

+
m

sh τ

1− ch τ cos θ

ch τ − cos θ
rm = rm coth τ,

2
∂rm
∂θ

− m sin θ

ch τ − cos θ
rm = 0

and

∂2rm
∂τ2

+
∂2rm
∂θ2

+
m(1− ch τ cos θ)

sh τ(ch τ − cos θ)

∂rm
∂τ

− m sin θ

ch τ − cos θ

∂rm
∂θ

=

(
1

4
− (m− 1)2

4sh 2τ

)

rm.

And this completes the proof. �

We seek vm by separation of variables : vm(τ, θ) = Am(τ)Bm(θ). From the
equation satified by vm (see Theorem 6.1), we obtain

A′′
m

Am
+ coth τ

A′
m

Am
+

1

4
− (m− 1)2

4 sh 2τ
= −B′′

m

Bm
.

The term on the right depends only of θ and the left one depends only of τ ,
thus we deduce that both are constant. Let n ∈ C such that this constant
is equal to n2. We then have







A′′
m + coth τA′

m +

(
1

4
− (m− 1)2

4sh 2τ
− n2

)

Am = 0,

B′′
m + n2Bm = 0.
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Bm is naturally a 2π−periodic function (because θ represents an angle),
therefore n should necessarily be an integer.
To examine the equation satisfied by Am, we carry out the following change
of function

Am(τ) = Cm(ch τ).

Then, Cm satisfies

sh 2τC ′′
m(ch τ) + 2 ch τ C ′

m(ch τ) +

(
1

4
− n2 − (m− 1)2

4sh 2τ

)

Cm(ch τ) = 0

which can be rewritten as

(1−ch 2τ)C ′′
m(ch τ)−2 ch τ C ′

m(ch τ)+

(

n2 − 1

4
− ((m− 1)/2)2

1− ch 2τ

)

Cm(ch τ) = 0.

(LAH)
This equation is named Hyperbolic Associated Legendre equation.
Note that if we put z = ch τ and u(z) = Cm(ch τ), then

(1− z2)u′′ − 2zu′ +

[

ν(ν + 1)− µ2

1− z2

]

u = 0 (LA)

where

ν = n− 1

2
and µ =

m− 1

2
.

This equation is named Associated Legendre equation, and it can be reduced
to the Legendre equation if µ = 0 :

(1− z2)u′′ − 2zu′ + ν(ν + 1)u = 0. (L)

Two independent solutions of (LA) are given in section 8 and denoted
Pµ
ν (ch τ) and Qµ

ν (ch τ).
Starting from this investigation of solutions in the form of separate variables,
we can state the following theorem

Theorem 6.2. Let m ∈ C. Let 0 < τ0. Let u be a smooth solution of
Lmu = 0 on the disk τ ≥ τ0 and let v be a smooth solution of Lmv = 0 on
H+ \ {τ > τ0} which is the complement on H+ of the disk {τ > τ0} and
we assume that lim∂H+ v = 0. Then there are two sequences (an)n∈Z and
(bn)n∈Z of ℓ2(Z) (which are even rapidly decreasing) such that :

u =
+∞∑

n=−∞
anQ

m−1
2

n− 1
2

(ch τ)sh
1−m

2 τ(ch τ − cos θ)
m
2 einθ

and

v =

+∞∑

n=−∞
bnP

m−1
2

n− 1
2

(ch τ)sh
1−m

2 τ(ch τ − cos θ)
m
2 einθ.

The sequence (an) is unique. In addition, the convergence of the first series
is uniform on every compact set [τ1, τ2] of the disk τ > τ0 with τ0 ≤ τ1 < τ2.
And the convergence of the second one is uniform on every compact set
[τ3, τ4] of the complement of the disk τ > τ0 on H+ with 0 < τ3 < τ4 ≤ τ0.
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If Re m < 1, then the sequence (bn) is unique.

Proof. Indeed, decomposing the function

θ 7→ u(τ0, θ)(ch τ0 − cos θ)−m/2sh
m−1

2 τ0

by Fourier series with respect to the variable θ, to yield the Fourier expansion
for u(τ0, ·)

u(τ0, θ) = sh
1−m

2 τ0(ch τ0 − cos θ)
m
2

+∞∑

n=−∞
ane

inθ,

where an ∈ ℓ2(Z) satisfies

an =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2sh

m−1
2 τ0 u(τ0, s)e

−ins ds.

This function is a smooth function of the variable θ, therefore we deduce
that the sequence (an)n is rapidly decreasing when |n| → +∞. The function

ũ(τ, θ) = sh
1−m

2 τ(ch τ − cos θ)
m
2

+∞∑

n=−∞
an

Q
m−1

2

n− 1
2

(ch τ)

Q
m−1

2

n− 1
2

(ch τ0)
einθ

coincides with u on the circle τ = τ0.
Moreover, thanks to the Proposition 8.1, we have when |n| → +∞,

Q
m−1

2

n− 1
2

(ch τ)

Q
m−1

2

n− 1
2

(ch τ0)
∼
√

sh τ0
sh τ

e|n|(τ0−τ)

and this equivalence is uniform in all compact set [τ1, τ2] with 0 < τ0 ≤ τ1 <
τ2.
It follows that the series of functions which defines ũ is normally converging
on any compact sets [τ1, τ2] of the disk τ ≥ τ0. So does same for deriva-
tives with respect to τ and θ (which are expressed also with the Associated
Legendre functions as mentioned in the section 8).
Particularly, the function ũ is well defined on the disk τ ≥ τ0 and coincides
with u on the circle τ = τ0.
Due to the fact that the solution of an elliptic equation is uniquely deter-
mined by its boundary values (this follows from the maximum principle), we
deduce that ũ the unique axisymmetric potential on the disk τ ≥ τ0 which
coincides with u on the circle τ = τ0.
For v, the proof is completely similar.
Indeed, decomposing the function

θ 7→ v(τ0, θ)(ch τ0 − cos θ)−m/2sh
m−1

2 τ0
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by Fourier series with respect to the variable θ, to yield the Fourier expansion
for v(τ0, ·)

v(τ0, θ) = sh
1−m

2 τ0(ch τ0 − cos θ)
m
2

+∞∑

n=−∞
bne

inθ,

where bn ∈ ℓ2(Z) satisfies

bn =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2sh

m−1
2 τ0 v(τ0, s)e

−ins ds.

This function is a smooth function of the variable θ, therefore we deduce
that the sequence (bn)n is rapidly decreasing when |n| → +∞. The function

ṽ(τ, θ) = sh
1−m

2 τ(ch τ − cos θ)
m
2

+∞∑

n=−∞
bn

P
m−1

2

n− 1
2

(ch τ)

P
m−1

2

n− 1
2

(ch τ0)
einθ

coincides with v on the circle τ = τ0.
Moreover, thanks to the Proposition 8.1, we have when |n| → +∞,

P
m−1

2

n− 1
2

(ch τ)

P
m−1

2

n− 1
2

(ch τ0)
∼
√

sh τ0
sh τ

e|n|(τ−τ0)

and this equivalence is uniform in all compact set [τ1, τ2] with 0 < τ1 < τ2 ≤
τ0.
It follows that the series of functions which defines ṽ is normally converging
on any compact sets [τ1, τ2] of the complementary of the disc τ > τ0. So
does same for derivatives with respect to τ and θ.
Particularly, the function ṽ is well defined on the complementary of the disk
τ > τ0 and coincides with v on the circle τ = τ0.
We will show that

lim
τ→0+

ṽ = 0.

If Re m < 1, we have when n ∈ N and thanks to the formula (8.1)

P
m−1

2

n− 1
2

(ch τ) =
2

m−1
2

√
πΓ
(
1− m

2

)sh
1−m

2 τ

∫ π

0
(ch τ +sh τ cos θ)n+

m
2
−1 sin1−m θ dθ

then

lim
τ→0+

P
m−1

2

n− 1
2

(ch τ) = 0

and in addition, for n > 1− Rem
2 , we have

∣
∣
∣
∣
P

m−1
2

n− 1
2

(ch τ)

∣
∣
∣
∣
≤ 2

Rem−1
2 sh

1−Rem
2 τ√

π
∣
∣Γ
(
1− m

2

)∣
∣

∫ π

0
(ch τ + sh τ cos θ))n+

Rem
2

−1 sin1−Rem θ dθ

≤ 2
Rem−1

2 sh
1−Rem

2 τ√
π
∣
∣Γ
(
1− m

2

)∣
∣

∫ π

0
(ch τ + sh τ))n+

Rem
2

−1 sin1−Rem θ dθ ≤ Cmsh
1−Rem

2 τe(n+
Rem

2 )τ
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thus

∑

n>1−Rem
2

sup
τ∈[0, τ02 ]

∣
∣
∣
∣
∣
∣
∣

bn

P
m−1

2

n− 1
2

(ch τ)

P
m−1

2

n− 1
2

(ch τ0)
einθ

∣
∣
∣
∣
∣
∣
∣

< +∞

by the Proposition 8.1, we obtain

P
m−1

2

n− 1
2

(ch τ0) ∼n→+∞
n

m
2
−1

√
2π sh τ0

enτ0 .

So, we can deduce that limτ→0+ ṽ = 0.
It remains to prove the uniqueness of the previous decomposition where
Rem < 1. This will result in the next paragraph which will establish the
fact that the family

A :=






Q
m−1

2

n− 1
2

(ch τ)

Q
m−1

2

n− 1
2

(ch τ0)

(ch τ − cos θ)m/2

sh
m−1

2 τ
einθ






n∈Z

:= (an)n∈Z

B :=






P
m−1

2

n− 1
2

(ch τ)

P
m−1

2

n− 1
2

(ch τ1)

(ch τ − cos θ)m/2

sh
m−1

2 τ
einθ






n∈Z

:= (bn)n∈Z

is a Riesz basis. �

Corollary 6.3. The solution of the Dirichlet problem for Lmu = 0 on
D((a, 0), R) where u = ϕ on ∂D((a, 0), R) is given by

u(τ, θ) = sh
1−m

2 τ(ch τ − cos θ)
m
2

+∞∑

n=−∞
cn

Q
m−1

2

n− 1
2

(ch τ)

Q
m−1

2

n− 1
2

(ch τ0)
einθ

where {τ = τ0} corresponds to the circle of center (a, 0) and radius R and
where

cn =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2sh

m−1
2 τ0 ϕ(a+R cos s,R sin s)e−ins ds.

Similarly,

v(τ, θ) = sh
1−m

2 τ(ch τ − cos θ)
m
2

+∞∑

n=−∞
cn

P
m−1

2

n− 1
2

(ch τ)

P
m−1

2

n− 1
2

(ch τ0)
einθ

is a solution of Lmv = 0 on H+ \ D((a, 0), R), which is equal to ϕ on
∂D((a, 0), R) where

cn =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2sh

m−1
2 τ0 ϕ(a+R cos s,R sin s)e−ins ds.
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Moreover, if Rem < 1, then v satisfies lim∂H+ v = 0, and the function v
constructed above is the unique solution of the Dirichlet problem Lmv = 0
on H+ \D((a, 0), R) which vanishes on ∂H+.

7. Riesz basis

We will prove that the half part of the following family





(ch τ − cos θ)m/2

sh
m−1

2 τ

{
cos(nθ)
sin(nθ)

}







P
m−1

2

n− 1
2

(ch τ)

Q
m−1

2

n− 1
2

(ch τ)












n∈Z
is a basis of solutions on the disk τ ≥ τ1 and the other half part is a basis
of solutions on τ ≤ τ0, which is the complement on H+ of a some disk, with
0 < τ0 < τ1. This fact is known for m = −1, namely for µ = 1. We extend
this result for complex values of m.

Let us recall the definition of a Riesz basis. (xn)n∈N is a quasi-orthogonal
or Riesz sequence of a Hilbert space X if there are two constants c, C > 0
such that for all sequences (an)n∈Z in ℓ2, we have

c2
∑

n

|an|2 ≤
∥
∥
∥
∥
∥

∑

n

anxn

∥
∥
∥
∥
∥

2

≤ C2
∑

n

|an|2.

If the family (xn)n∈Z is complete, it is a Riesz basis. The matrix of scalar
product {〈xi, xj〉}i,j is named Gram matrix associated to {xi}i.

To prove that {xi}i is a Riesz basis, a convenient characterization with the
Gram matrix is the following property :

Property ([40, p. 170]). A family {xi}i is a Riesz basis for a some Hilbert
space if {xi}i is complete on this Hilbert space and if the Gram matrix as-
sociated to {xi}i defines a bounded and invertible operator on ℓ2(N).

Let A and B the two families of solutions of Lm[u] = 0, respectively inside
the disk τ > τ0 and outside the other one τ > τ1, with 0 < τ0 < τ1

A :=






Q
m−1

2

n− 1
2

(ch τ)

Q
m−1

2

n− 1
2

(ch τ0)

(ch τ − cos θ)m/2

sh
m−1

2 τ
einθ






n∈Z

:= (an)n∈Z

B :=






P
m−1

2

n− 1
2

(ch τ)

P
m−1

2

n− 1
2

(ch τ1)

(ch τ − cos θ)m/2

sh
m−1

2 τ
einθ






n∈Z

:= (bn)n∈Z

Let C the union of the two previous families :

C := (cn)n∈Z := (c2n = an et c2n+1 = bn)n∈Z
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The annulus defined in terms of bipolar coordinates {0 < τ0 < τ < τ1} will
be denoted A. The space L2(∂A) is equipped of the following inner product :
for f, g ∈ L2(∂A),

〈f, g〉 = 1

2π

∫ 2π

0
f(τ0, θ)g(τ0, θ)

shRem−1τ0
(ch τ0 − cos θ)Rem

dθ

+
1

2π

∫ 2π

0
f(τ1, θ)g(τ1, θ)

shRem−1τ1
(ch τ1 − cos θ)Rem

dθ.

We have the following proposition :

Proposition 7.1. C is a Riesz basis in the Hilbert space L2(∂A).

Proof. Indeed, in order to build the Gram matrix of C, we first calculate all
its scalar products. We obtain for all n ∈ Z,

〈c2n, c2n〉 = 1 +

∣
∣
∣
∣
∣
∣
∣

Q
m−1

2

n− 1
2

(ch τ1)

Q
m−1

2

n− 1
2

(ch τ0)

∣
∣
∣
∣
∣
∣
∣

2

〈c2n+1, c2n+1〉 = 1 +

∣
∣
∣
∣
∣
∣
∣

P
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ1)

∣
∣
∣
∣
∣
∣
∣

2

〈c2n, c2n+1〉 =






P
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ1)




+

Q
m−1

2

n− 1
2

(ch τ1)

Q
m−1

2

n− 1
2

(ch τ0)

〈c2n+1, c2n〉 = 〈c2n, c2n+1〉

In all other cases, the inner product is zero, the Gram matrix is diagonal by
blocks and each blocks is expressed as the 2× 2 matrix :

Mn =
















1 +

∣
∣
∣
∣
∣
∣
∣

Q
m−1

2

n− 1
2

(ch τ1)

Q
m−1

2

n− 1
2

(ch τ0)

∣
∣
∣
∣
∣
∣
∣

2 




P
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ1)




+

Q
m−1

2

n− 1
2

(ch τ1)

Q
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ1)
+






Q
m−1

2

n− 1
2

(ch τ1)

Q
m−1

2

n− 1
2

(ch τ0)




 1 +

∣
∣
∣
∣
∣
∣
∣

P
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ1)

∣
∣
∣
∣
∣
∣
∣

2















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The Gram matrix G can be written as

G =




















M0 0 · · · · · · · · · · · · · · · · · ·
0 M−1 0 · · · · · · · · · · · · · · ·
... 0 M1 0 · · · · · · · · · · · ·
...

. . . 0 M−2 0 · · · · · · · · ·
...

. . .
. . . 0

. . .
. . . · · · · · ·

...
. . .

. . .
. . .

. . . M−n
. . . · · ·

...
. . .

. . .
. . .

. . .
. . . Mn

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .




















and the determinant of Mn is

det(Mn) =

∣
∣
∣
∣
∣
∣
∣

1−
Q

m−1
2

n− 1
2

(ch τ1)

Q
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ0)

P
m−1

2

n− 1
2

(ch τ1)

∣
∣
∣
∣
∣
∣
∣

2

Let’s show that Mn is invertible. Suppose the contrary, if Mn is not invert-
ible, then det(Mn) = 0, which is equivalent to

Q
m−1

2

n− 1
2

(ch τ1)P
m−1

2

n− 1
2

(ch τ0) = Q
m−1

2

n− 1
2

(ch τ0)P
m−1

2

n− 1
2

(ch τ1).

The previous equality can be written as follows
∣
∣
∣
∣
∣
∣
∣

Q
m−1

2

n− 1
2

(ch τ0) P
m−1

2

n− 1
2

(ch τ0)

Q
m−1

2

n− 1
2

(ch τ1) P
m−1

2

n− 1
2

(ch τ1)

∣
∣
∣
∣
∣
∣
∣

= 0,with P
m−1

2

n− 1
2

(ch τ0), Q
m−1

2

n− 1
2

(ch τ1) 6= 0.

Therefore, there is λ ∈ C\{0} (which depends on m, n, τ0 and τ1) such that






Q
m−1

2

n− 1
2

(ch τ0) = λP
m−1

2

n− 1
2

(ch τ0)

Q
m−1

2

n− 1
2

(ch τ1) = λP
m−1

2

n− 1
2

(ch τ1)

Then, by the asymptotic of Associated Legendre functions (see Proposition
8.1 in the Annex), on the one hand, we have both

λ ∼
n→+∞

πeiπ
m−1

2 e−2nτ0

and on the other hand, we have

λ ∼
n→+∞

πeiπ
m−1

2 e−2nτ1 ,

then it implies that τ0 = τ1, it is not possible.
We deduce that the matrixMn is invertible and this completes the proof. �
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8. Annex : Associated Legendre functions of first and second

kind

In this section, we provide the main formulas of integral representation for
the Associated Legendre function of the first and the second kind with z =
ch τ > 1 (see [2, 37, 46]) :

Pµ
ν (ch τ) =

2−νsh−µτ

Γ(−µ− ν)Γ(ν + 1)

∫ ∞

0
(ch τ + ch θ)µ−ν−1sh 2ν+1θ dθ

with Re ν > −1 and Re(µ + ν) < 0.

Pµ
ν (ch τ) =

2µsh−µτ√
πΓ
(
1
2 − µ

)

∫ π

0

(ch τ + sh τ cos θ)µ+ν

sin2µ θ
dθ (8.1)

with Re µ < 1
2 .

Pµ
ν (ch τ) =

√

2

π

sh µτ

Γ
(
1
2 − µ

)

∫ τ

0

ch
[(
ν + 1

2

)
θ
]

(ch τ − ch θ)µ+1/2
dθ

with Re µ < 1
2 .

Qµ
ν (ch τ) =

eiπµ
√
π

2µ
sh µτΓ(ν + µ+ 1)

Γ(ν − µ+ 1)Γ(µ + 1/2)

∫ ∞

0

sh 2µθ

(ch τ + sh τch θ)ν+µ+1
dθ

with Re µ > −1
2 , Re(µ− ν − 1) < 0 and µ+ ν + 1 /∈ Z−.

Qµ
ν (ch τ) =

√
π

2
eiπµ

sh µτ

Γ
(
1
2 − µ

)

∫ ∞

τ

e−(ν+
1
2)θ

(ch θ − ch τ)µ+1/2
dθ

with Re µ < 1
2 et Re(µ + ν + 1) > 0.

Qµ
ν (ch τ) = eiπµ2−ν−1Γ(ν + µ+ 1)

Γ(ν + 1)
sh−µτ

∫ π

0
(ch τ + cos θ)µ−ν−1 sin2ν+1 θ dθ

with Re ν > −1 and µ+ ν + 1 6∈ Z− (see [46] pages 4, 5 and 6).
We have also the following relations satisfied by the Legendre functions (see
[46] page 6 and [2], formula 8.2.2)

Pµ
ν = Pµ

−ν−1.

Qµ
−ν−1(z) =

−πeiπµ cos(πν)Pµ
ν + sin[π(ν + µ)]Qµ

ν

sin[π(ν − µ)]

for ν − µ 6∈ Z. (in particular for ν = n− 1
2 with n ∈ Z, we have

Qµ
−ν−1 = Qµ

ν

for all µ ∈ C),

eiπµΓ(ν + µ+ 1)Q−µ
ν = e−iπµΓ(ν − µ+ 1)Qµ

ν ,
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P−µ
ν =

Γ(ν − µ+ 1)

Γ(ν + µ+ 1)

[

Pµ
ν − 2

π
e−iπµ sin(πµ)Qµ

ν

]

,

In addition, we have the Whipple formulas connecting the associated Le-
gendre functions of first and second kind (see [46] page 6)

Qµ
ν (ch τ) = eiπµ

√
π

2

Γ(µ+ ν + 1)√
sh τ

P
−ν− 1

2

−µ− 1
2

(coth τ),

Pµ
ν (ch τ) =

ieiπν

Γ(−ν − µ)

√

2

π

1√
sh τ

Q
−ν− 1

2

−µ− 1
2

(coth τ).

We also have the recursion formulas (see [46] pages 6 et 7)

Pµ+1
ν (ch τ) =

(ν − µ)ch τ Pµ
ν (ch τ)− (ν + µ)Pµ

ν−1(ch τ)

sh τ

(ν − µ+ 1)Pµ
ν+1(ch τ) = (2ν + 1)ch τ Pµ

ν (ch τ)− (ν + µ)Pµ
ν−1(ch τ).

(z2 − 1)
dPµ

ν (z)

dz
= (ν + µ)(ν − µ+ 1)(z2 − 1)1/2Pµ−1

ν (z) − µzPµ
ν (z).

(z2 − 1)
dPµ

ν (z)

dz
= νzPµ

ν (z)− (ν + µ)Pµ
ν−1(z).

All of these formulas are used to explicitly calculate the values of Pµ
ν (ch τ)

and Qµ
ν (ch τ) for all τ > 0 and (µ, ν) ∈ C2.

If µ and τ are fixed, the following proposition collects the behavior of Asso-
ciated Legendre functions of the first and second kind when ν = n− 1

2 with
n ∈ Z and |n| → +∞.

Proposition 8.1. We fix τ > 0 and µ ∈ C. Then if ν = n− 1
2 with n ∈ Z,

we have :

when ν → +∞, Pµ
ν (ch τ) ∼

eτ/2√
2π sh τ

νµ−1/2eτν

when ν → −∞, Pµ
ν (ch τ) ∼

e−τ/2

√
2π sh τ

(−ν)µ−1/2e−τν

when ν → +∞, Qµ
ν (ch τ) ∼ eiπµe−τ/2

√
π

2 sh τ
νµ−1/2e−τν

when ν → −∞, Qµ
ν (ch τ) ∼ eiπµeτ/2

√
π

2 sh τ
(−ν)µ−1/2eτν .

These equivalences are locally uniform with respect to the variable τ , that is
to say uniform on all interval [τ0, τ1] with 0 < τ0 < τ1.

Proof. If ν = n− 1
2 with n ∈ N (see [46] page 48), we have

Pµ
ν (ch τ) =

Γ(ν + 1)

Γ(ν − µ+ 1)

1
√

2π(ν + 1)sh τ

[

e(ν+
1
2)τ + e−πi(µ− 1

2)−(ν+
1
2)τ
] [

1 +O
(
1

ν

)]

.
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A straightforward application of the Stirling formula shows that when ν →
+∞

Γ(ν + 1)

Γ(ν − µ+ 1)
∼

√
2πνν+1/2e−ν

√
2π(ν − µ)ν−µ+1/2e−ν+µ

=

(
ν

ν − µ

)ν+1/2

(ν − µ)µe−µ

= (ν − µ)µe−µ exp

(

−
(

ν +
1

2

)

ln
(

1− µ

ν

))

∼ νµ

consequently,

Pµ
ν (ch τ) ∼ νµ

1√
2πνsh τ

e
τ
2 eτν =

eτ/2√
2πsh τ

νµ−1/2eτν ,

which gives us the first estimate.
The second one is obtained directly thanks to the relation Pµ

ν = Pµ
−ν−1.

The third estimate follows directly from the formula (8.3) of [46] :

Qµ
ν (ch τ) ∼

√
π

2 sh τ
νµ−1/2eiπµe−τ(ν+1/2)

and the last estimation arises from the fact that for ν = n− 1
2 with n ∈ Z,

we have
Qµ

−ν−1 = Qµ
ν .

The locally uniform character of these equivalences come from explicits ex-
pressions of Pµ

ν and Qµ
ν in terms of hypergeometric functions ([17], tables

pages 124-138) and estimations of these special functions (always locally
uniform with respect to their parameters ([46], pages 178-182). �
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