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Abstract

We study the Merton problem of optimal consumption-investment for the case of two
investors sharing a final wealth. The typical example would be a husband and wife sharing a
portfolio looking to optimize the expected utility of consumption and final wealth. Each agent
has different utility function and discount factor. We work in a complete market paradigm
and this makes the problem equivalent to maximizing three different utilities separately with
separate initial wealths. Consequently, an explicit formulation for the optimal consumptions
and portfolio are obtained. We study a numerical example where the market price of risk
is assumed to be mean reverting, and provide insights on the influence of risk aversion or
discount rates on the initial optimal allocation.

1 Introduction

In the portfolio optimization literature, the single agent framework constitutes the main prob-
lem. However, several financial problems involve many agents, e.g., when a household manages
a shared portfolio. One can also think of the situation of a portfolio manager working for a
pool of clients. The question raised here is thus: how do separate agents consume resources out
of a common financial portfolio? Economic theory answers the question, at least partially, by
introducing social welfare and a common (utility) function to model the aggregated preferences
of several heterogeneous agents, see for example [1]. In the present paper, we investigate the
specific form of utilitarian social welfare function composed of the linear combination of indi-
vidual discounted utility functions. That form is of particular importance for its simplicity, but
also because it involves the well-known notions of risk-aversion and individual discount factor
(preference for the present).
Imagine the following initial situation. Two agents, having utility functions U1 and U2 for
consumption streams c1 and c2 respectively and discount rates β1(t) and β2(t), share a self-
financed portfolio Xt over a period [0, T ] with T > 0 finite. They also share a third utility
function U3 of terminal wealth XT discounted with rate β3(t). The goal of the couple is then
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to maximize at time 0 the sum of the three expected discounted utilities from consumption and
wealth over [0, T ] i.e., the quantity

E
[∫ T

0
e(−

∫ t
0 β

1(s)ds)U1(c1
t )dt+

∫ T

0
e(−

∫ t
0 β

1(s)ds)U2(c2
t )dt+ e(−

∫ T
0 β3(s)ds)U3(XT )

]
. (1.1)

This expression can be obviously generalized to any linear combination of a number n ∈ N of
utility functions for consuming agents. Moreover, the methodology we developed here can be
easily extended to the case in which the agents have different utilities of the final wealth.
When the total initial wealth X0 is given, the portfolio management problem brings up the
question of wealth allocation among participants in order to contempt them, additionally to the
one of optimal consumption-portfolio strategy for each of them. This initial allocation problem
is a one-time static problem at time t = 0. It is of fundamental importance to notice that if the
criterion is updated at a later date t > 0, the solution changes and does not correspond to the
wealth obtained by the allocation at date 0 and subsequent optimal portfolio strategies. This
means that the problem lacks a time-consistency property, see [3].
The problem with two agents can easily be reduced to a one agent problem by considering the
utility function

U(s, t, C) := sup
c1+c2=C

[
exp

(
−
∫ t

s
β1(s)ds

)
U1(c1) + exp

(
−
∫ t

s
β2(s)ds

)
U2(c2)

]
. (1.2)

It is foreseeable that the optimal behavior of the agent will depend on the initial date s, and
therefore be given up at a later date without any commitment device. This is why we reduce
ourselves to the problem of initial allocation at date 0, and suppose that this action commits our
two agents on the interval [0, T ]. In a future companion paper, we solve the couple’s problem
without commitment in a time-consistent manner, by the use of sub game perfect strategies as
in [3].
Coming back to (1.1), we actually show that the above problem can be divided in three separate
problems involving only one agent at a time. Thus, in a sense, the only real decision on the
part of the investor takes place at t = 0 with the determination of the initial wealth allocated to
each agent. Once the initial allocation is provided, the further evolution of interesting quantities
(consumptions and wealth) follows well known solutions provided by [8]. One can draw a paral-
lelism with Pareto-optimality and the representative agent. Imagine that (1.1) is the expected
utility of the representative agent. Then we show that maximizing this utility is equivalent to
solving individual agent expected utilities problem and then find the Pareto weights, which in
our case are the vector of initial wealth allocations.
In order to illustrate the allocation solution, we provide a numerical application with closed form
solutions in the framework of [14], i.e., with power utilities and mean reverting market price of
risk. We naturally focus on the comparison between the two consuming agents initial wealth as a
function of risk aversion and discount rates. We find interesting insights for portfolio managers.
As the agent’s initial wealth increases, an increasing proportion of the wealth is allocated to
finance the portfolio. Furthermore, the less risk averse consumer allocates more money for
future consumption for sufficiently large values of the initial wealth. The effects of risk aversion
on the allocations are also intuitive. As agents become less risk averse, the allocated fraction of
initial wealth increases.
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Our main contribution is to show that the aggregate optimal consumption-investment problem
for multiple agents is equivalent to multiple optimal single agent consumption-investment prob-
lems given an optimal splitting of the initial allocation among the agents. We show how this
optimal allocation is computed which in turn leads to explicit formulas for the optimal consump-
tions and portfolios. Furthermore, in a specific example, by running numerical experiments we
show how the vector of optimal wealth allocations is affected by risk aversion and discount rates.
The article is organized as follows: Section 2 introduces the model, agents specification, the
problem and its solution. The numerical application is discussed in Section 3. Proofs are
delegated to an appendix.

2 Market model and portfolio management problem

2.1 Complete market

We consider a filtered probability space (Ω,F ,P) supporting a standard d-dimensional Brownian
motion W := (Wt)t∈[0,T ] = (W 1

t , . . . ,W
d
t )Tt∈[0,T ]. The filtration (Ft)t∈[0,T ] is the augmentation

under P of the natural filtration of W . We consider a complete market composed of d+ 1 assets
(S0, . . . , Sd) which are continuously traded on [0, T ] and evolve according to the differential
equations

dS0
t = r(t)S0

t dt , 0 ≤ t ≤ T ,

with S0
0 = s0, and

dSit = Sit

bi(t)dt+
d∑
j=1

σij(t)dW
j
t

 , 0 ≤ t ≤ T , (2.1)

with (S1
0 , . . . , S

d
0) = (s1, . . . , sd) ∈ (0,∞)d.

Assumption 2.1. The interest rate process (r(t))t∈[0,T ] is adapted. The vector of mean rates of

excess return b(t) := (b1(t) . . . bd(t))
T
t∈[0,T ] and the diffusion matrix σ(t) := (σij(t))1≤i,j≤d,t∈[0,T ]

are assumed to be adapted. They are such that the SDE (2.1) has a unique strong solution.

Throughout this paper, we replace all asset prices by the discounted asset prices. The discount
factor using the risk-free rate is

Dt := exp

(
−
∫ t

0
r(u)du

)
, 0 ≤ t ≤ T . (2.2)

For a generic process Yt, we introduce the notation Ỹt := YtD(t) to denote its discounted
counterpart.
The completeness of the market in the sense of [5] implies the existence of a unique P-equivalent
martingale measure P̃. Define the price of risk process θ(t) := σ(t)−1(b(t)− r(t)1), for t ∈ [0, T ].
We can define Ẽ the expectation operator under P̃. Under some integrability conditions on θ,
W̃t := Wt +

∫ t
0 θ(s)ds is a Brownian motion under P̃, see [12].
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Definition 2.2. The Radon Nikodym derivative process of P̃ w.r.t. P is defined by

Z(t) := exp

{
−

d∑
i=1

∫ t

0
θi(s)dW

i
s −

1

2

∫ t

0
||θ(s)||2ds

}
, for t ∈ [0, T ] . (2.3)

Assumption 2.3. The process Z(t), t ∈ [0, T ], is a (true) martingale.

Remark 2.4. Sufficient conditions for the Assumption 2.3 to be satisfies are Novikov and Kaza-
maki conditions. If the process θ(t), t ∈ [0, T ] is Markovian, [15] provide finer sufficient condi-
tions.

Remark 2.5. The methodology we developed does not extend naturally to incomplete markets.
This is because of the non uniqueness of the martingale measure. The BSDE approach may
work in the incomplete markets within our context, but we leave this as topic of future research.
The BSDE methodology was pioneered by [7] for the problem of expected utility maximization
of terminal wealth with special choice of utilities (power and exponential). It was extended to
general utilities by [6] and to allow for intertemporal consumption by [2].

2.2 Specification of agents

The latter framework has been considered by [8] for a single investor and semi-explicit solutions
are provided using a martingale approach, see subsection 4.1. [13] considered the special case
of a single investor with two different power utilities: one for consumption and one for final
wealth. We consider here two consumption streams and one common terminal portfolio value
evaluation. We comment the generalization to an arbitrary number of consumption streams and
terminal values in subsection 2.4.

Definition 2.6. We introduce the following objects:

1. A portfolio strategy π := {π(t) = (π1(t), . . . , πd(t))
>} is an adapted, Rd-valued process

where πi(ω) ∈ L2([0, T ]) for P-almost every ω ∈ Ω and i = 1, . . . , d; π(t) denotes the
number of shares of asset i held in the portfolio at time t.

2. A consumption process is given by (c1
t , c

2
t )t∈[0,T ], an adapted process with non-negative

values such that C(ω) := c1(ω) + c2(ω) is in L1([0, T ]) for P-almost every ω ∈ Ω.

3. The wealth process X := (Xt)t∈[0,T ] is uniquely defined as

Xt =
1

D(t)

(
x+

∫ t

0

((
πT (s)b(s)− Cs)

)
D(s)ds+ πT (s)σ(s)D(s)dWs

))
(2.4)

or equivalently by the discounted process

X̃t =

(
x+

∫ t

0

((
π̃T (s)b(s)− C̃s)

)
ds+ π̃T (s)σ(s)dWs

))
. (2.5)
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Equation (2.4) can also write with the P̃-Brownian motion:

X̃t +

∫ t

0
C̃sds = x+

∫ t

0
π̃T (s)σ(s)dW̃ (s) . (2.6)

Definition 2.7. A triplet (π, c1, c2) of strategy and consumption processes is said to be admissible
for the initial endowment x ≥ 0 if the wealth process X satisfies Xt ≥ 0 for [0, T ] P-a.s. We call
A(x) the class of admissible processes (π, c1, c2) for initial wealth x.

For any (π, c1, c2) ∈ A(x), the left-hand side of (2.6) is non negative and the right-hand side
is a local martingale under P̃. It follows that the left-hand side, and hence also X̃t, is a non
negative super-martingale under P̃. Now, if τ0 := T ∧ inf{0 ≤ t ≤ T,X(t) = 0}, then Xt = 0 for
all t ∈ [τ0, T ] on {τ0 > −∞}. The super martingale property in (2.6) yields

Ẽ
[
X̃T +

∫ T

0
C̃tdt

]
≤ x . (2.7)

This property allows to express admissibility of strategies and consumptions respectively in a
different manner. Additional martingale properties are developed in subsection 4.1.
Each agent i is endowed with a utility function Ui and a discount rate βi with corresponding
discount factor

Bi
t := exp

(
−
∫ t

0
βi(s)ds

)
. (2.8)

The discount rates are assumed to be adapted and bounded for all t uniformly P-almost surely.

Definition 2.8. We define for i = 1, 2, 3 the state price process corresponding to the discount
factor Bi,

ζit := ZtDt exp

(∫ t

0
βi(u)du

)
=
Z̃t
Bi
t

.

where the process Zt is given by (2.3).

Assumption 2.9. For i = 1, 2, 3, we assume that Ui is a strictly increasing, strictly concave
real-valued function in C2([0,∞]) such that U ′′i is non decreasing, Ui(0) ≥ −∞ and U ′i(∞) = 0.
U ′i is defined from [0,∞) onto [0, U ′i(0)]. We define Ii := (U ′i)

−1 be the inverse functions of the
marginal utilities for i = 1, 2, 3.

Note that we allow for Ui(0) = −∞ or U ′i(0) = ∞. This framework encompasses a large class
of functions, including CARA and HARA utility functions. Because U ′i : [0,∞] → [0, U ′i(0)] is
strictly decreasing, it has a strictly decreasing inverse Ii : [0, U ′i(0)] → [0,∞]. We extend Ii to
be a continuous function on the entirety of [0,∞] by setting Ii(y) = 0 for U ′i(0) ≤ y ≤ ∞, and
note that

Ui(Ii(y)) ≥ Ui(c) + yIi(y)− yc, for (y, c) ∈ (0,∞)× [0,∞) . (2.9)
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2.3 The portfolio management problem

We formalize the main problem (1.1).

Definition 2.10. For a given x ≥ 0, we define the value function at x by

V (x) := sup
{
J(x;π, c1, c2) : (π, c1, c2) ∈ Ã(x)

}
, (2.10)

where

J(x;π, c1, c2) := E

[∫ T

0
(B1

tU1(c1
t ) +B2

tU2(c2
t ))dt+B3

TU3(XT )

]
and

Ã(x) :=
{

(π, c1, c2) ∈ A(x) : J(x;π, c1, c2) <∞
}
.

The expectation J is well defined for every pair (π, c1, c2) ∈ Ã(x). The total initial endowment
of the couple is x. We can easily see that Ã(x) = A(x) if Ui(0) > −∞ for i = 1, 2, 3. We consider
three problems that are sub-problems to the one of Definition 2.10, related to each term in the
expression of J .

Definition 2.11. For a given x1 > 0, we define the value function

V1(x1) := sup
{
J1(x1;π, c1, c2) : (π, c1, c2) ∈ A1(x1)

}
(2.11)

where

J1(x1;π, c1, c2) := E

[∫ T

0
B1
tU1(c1

t )dt

]
and

A1(x1) :=
{

(π, c1, c2) ∈ A(x1) : J1(x1;π, c1, c2) <∞
}
.

The expectation J1 is well defined for every pair (π, c1, c2) ∈ A1(x1). The value functions V2, V3

and the sets A2, A3 are defined similarly in an obvious manner. We now turn to elements
involved in the solutions of V and Vi, i = 1, 2, 3.

2.4 Main result

Definition 2.12. We introduce the following functions on [0,∞)× [0, T ]:

Hi(y, t) := Ẽ
[∫ T

t
DuIi(yζ

i
u)du|Ft

]
for i = 1, 2 , (2.12)

and
H3(y, t) := Ẽ

[
DT I3(yζ3

T )|Ft
]
. (2.13)

We will write Hi(y) := Hi(y, 0), and call Yi := H−1
i : [0,∞]→ [0,∞] the inverse of the function

Hi for i = 1, 2, 3.

Assumption 2.13. For all y ∈ (0,∞), Hi(y) <∞, i = 1, 2, 3.
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Assumption 2.14. For all y ∈ (0,∞),

E
[∫ T

0
B1
t |U1(I1(yζ1

t ))|dt+

∫ T

0
B2
t |U2(I2(yζ2

t ))|dt+B3
T |U3(I3(yζ3

T ))|
]
<∞ .

In the special case of power type utilities these assumptions translate into finiteness of moments
for Z defined in (2.3).
The proof of the following Lemma is done in [8].

Lemma 2.15. For i = 1, 2, 3, Hi is a continuous function, strictly decreasing on (0,∞) with
Hi(0) =∞ and Hi(∞) = 0

Theorem 2.16. Let a1, a2, a3 ≥ 0. Then the value functions Vi(ai) for i = 1, 2, 3 are reached
with the consumption processes

c1t (a1) := I1(Y1(a1)ζ1
t ) ,

c2t (a2) := I2(Y2(a2)ζ2
t ) ,

and the following wealth processes

X1
t (a1) := Ẽ

[∫ T

t
c1s (a1)Dsds|Ft

]
= H1(Y1(a1), t) ,

X2
t (a2) := Ẽ

[∫ T

t
c2s (a2)Dsds|Ft

]
= H2(Y2(a2), t) ,

X3
t (a3) := Ẽ

[
I3(Y3(a3)ζ3

T )DT |Ft
]

= H3(Y3(a3), t) .

A triplet of financial strategies (π1(a1), π2(a2), π3(a3)) corresponds to the agents’ wealth
processes. It is provided in next section with Proposition 4.3. By linearity we are able to define
the total portfolio π and total wealth process X by

π(a1, a2, a3) := π1(a1) + π2(a2) + π3(a3) , (2.14)

X(a1, a2, a3) := X1(a1) + X2(a2) + X3(a3) . (2.15)

We now turn to the main result, i.e., the additivity of sub-problems allowing to find the initial
allocations for Theorem 2.16.

Definition 2.17. Let H be defined on [0,∞) by H := H1 +H2 +H3, and its inverse Y := H−1 :
[0,∞]→ [0,∞].

Theorem 2.18. Consider a couple endowed initially with wealth x > 0. Then,

V (x) = V∗(x) := sup
{
V1(a1) + V2(a2) + V3(a3) : (a1, a2, a3) ∈ R3

+, a1 + a2 + a3 = x
}

= V1(x1) + V2(x2) + V3(x3)

where the initial allocation xi is given by

xi = Hi(Y(x)) . (2.16)
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Let us give some intuition for this result. It says that the couple value function is the optimal
aggregation of individual value functions. This is a Pareto-optimality type result; the novelty is
that the Pareto weights are the initial wealth allocation.

Remark 2.19. Definition 2.10 easily extends to more than two consuming agents. The ex-
tension to more than one evaluation of the terminal wealth is however a matter of definition.
The function J is indeed defined with only one portfolio strategy and one terminal value: the
linearity of Xt in the financial strategy πt allows to separate into three sub-problems as asserted
by Theorem 2.18. However, changing the third term in the objective function J for a term like

E
[
e(−

∫ T
0 β1(s)ds)U4(X1

T ) + e(−
∫ T
0 β2(s)ds)U5(X2

T )
]
,

implies to define how agents 1 and 2 proceed. If they share an initial wealth, a common portfolio,
and decide at T to split the final wealth, then the problem is strictly equivalent to Problem (2.10)
by using the artifact that the one suggested in (1.2) with β3 = 0 and

U3(x) := sup
ε∈[0,1]

e(−
∫ T
0 β4(s)ds)U4(εx) + e(−

∫ T
0 β5(s)ds)U5((1− ε)x) .

If one wants to distinguish agents portfolios, then he shall redefine J in order to separate trading
portfolios and consumption portfolios from t = 0. The problem can be solved by using V∗ of
Theorem 2.18, and the splitting provided by Lemma 4.11 in Section 4.

We will also discuss the quantitative consequences of the agents specification on the splitting of
the initial wealth suggested by Theorem 2.18. As it is foreseeable and proved below in subsection
4.1, the wealth attributed to consuming agents is integrally consumed by the end T . We thus
introduce the following quantity.

Definition 2.20. Let x > 0 represent the total initial wealth and x1, x2 be given by (2.16). The
consumption satisfaction proportion (CSP) is then defined by (x1 + x2)/x.

We also introduce a well-known quantity regarding risk aversion for the consuming couple.

Definition 2.21. The relative risk-aversion for the couple as R(x) := −xV ′′(x)/V ′(x), with V
of (2.10).

3 CRRA utilities and mean reverting market price of risk

3.1 Configuration of the market

We provide here an explicit model of the previously studied framework. The three agents share
a common initial wealth x and have CRRA type utilities

Ui(x) =
xγi

γi
for i = 1, 2, 3.

Here 1− γi ∈ (0,∞) is the risk aversion of agent i. Notice that Ui satisfy Assumptions 2.9, and

Ii(x) = x
1

γi−1 . Each agent has his own constant discount rate ρi.
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Next take d = 1 as in [14] (the extension to multiple stocks is straightforward). The asset price
follows a geometric Brownian motion. In order to isolate the effects of time variation on expected
returns, the risk-free rate is assumed to be constant and equal to r ≥ 0 but this assumption
can be relaxed. We fix the volatility σ := σ11 ∈ (0,∞) for (2.1), but we do not specify the drift
b1 ∈ R. Instead, we model the price of risk θ by

dθt = −λθ(θt − θ̄)dt− σθdWt , t ≥ 0 ,

where (λθ, σθ, θ̄) ∈ (0,∞)3. We assume W = W 1, so that the stock price S1
t and the state

variable θt are perfectly negatively correlated. These assumptions are like those in [9], except
that the latter allows for imperfect correlation, and thus incomplete markets. The extension of
our results to incomplete markets is a non-trivial issue (see Remark 2.5).
The body of academic literature on long term mean reversion is more tractable than that on
short term mean reversion. A comprehensive study on the existence of mean reversion in Equity
Prices has been done in [10]. The primary case for the existence of long term mean reversion
was made in two papers published in 1988, one by [11], the other by [4]. In summary, these
papers conclude that for period lengths between 3 and 5 years, long term mean reversion was
present in stock market returns between 1926 and 1985.

3.2 Semi-explicit solutions

In this framework, the modeling assumptions of Section 2 are satisfied. We now seek for explicit
formulations in Theorem 2.18: we aim at providing the initial repartition x1, x2, x3 such that
x1 + x2 + x3 = x, and the corresponding optimal strategies (π1,π2,π3) and consumption
processes (c1, c2). We provide first the formulation of wealth processes for consuming agents.

Proposition 3.1. Let i = 1 or 2. Then

Xi
t = Y

1
1−γi
t e

(r+ρi)t

1−γi

∫ T−t

0
exp

(
−r(1− γ1) + ρi

1− γi
s+A1i(s)

θ2
t

2
+A2i(s)θt +A3i(s)

)
ds (3.1)

where the process Yt is given by
Yt := (yZt)

−1ert (3.2)

y = Y(x) is given by Definition 2.12, Z by Definition 2.2, and A1i, A2i, A3i are continuous
functions on {s ∈ [0, T − t]} verifying

A1i(0) = A2i(0) = A3i(0) = 0 , 0 ≤ s ≤ T − t , (3.3)

and satisfying the following system of ODEs
−A′1i(s)− 2λθA1i(s) + σ2

θA1i(s)
2 + γ1

(1−γ1)2
= 0

−A′2i(s) + λθ(θ̄A1i(s)−A2i(s)) + σ2
θA1i(s)A2i(s) = 0

−A′3i(s) + λθθ̄A2i(s) +
σ2
θ
2 (A1i(s) +A2i(s)

2) = 0

. (3.4)
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Proof Following Theorem 2.18, the optimal initial allocation is given by xi = Hi(Y(x)). De-
noting y := Y(x) = Yi(xi), the theorem gives also the optimal consumption

cit(xi) = Ii(yζ
i
t) = (y exp(ρit)Zt)

1
γi−1 , 0 ≤ t ≤ T ,

where Zt is the state density process defined by (2.3). By Ito’s formula,

dYt = (r + θ2
t )Ytdt+ θtYtdWt (3.5)

The optimal total wealth process of agent i is thus given by

Xi
t = Ẽ

[∫ T

t
Dsc

i
sds|Ft

]
.

The consumption process is cis = yeρisZs = eρisersY −1
s and Zs

Zt
= er(s−t) YtYs . Therefore,

Xi
t = Y

1+ 1
1−γi

−1

t Et

[∫ T

t
e−rser(s−t)e

(r+ρi)
s

γi−1

(
Ys
Yt

) 1
1−γi

−1

ds

]

= Y
1

1−γi
t

∫ T

t
e−rser(s−t)e

(r+ρi)
s

γi−1 e
γir(s−t)

1−γi f i(t, s, θt)ds

= Y
1

1−γi
t

∫ T

t
e
γir(s−t)−(r+ρi)s

1−γi f i(t, s, θt)ds

= Y
1

1−γi
t

∫ T

t
e
γir(s−t)−(r+ρi)s

1−γi f i(t, s, θt)ds

= Y
1

1−γi
t e

(r+ρi)t

1−γi

∫ T

t
e

((γi−1)r−ρi)(s−t)
1−γi f i(t, s, θt)ds

where the function f i is defined for t ≤ τ ≤ T and θ ∈ R by

f i(t, τ, θ) = E
[
exp

(
γi

2(1− γi)

∫ τ

t
θ2
sds+

γi
1− γi

∫ τ

t
θsdWs

)
|θt = θ

]
.

For, 0 ≤ t ≤ τ , the process

f i(t, τ, θt) exp

(
γi

2(1− γi)

∫ t

0
θ2
sds+

γi
1− γi

∫ t

0
θsdWs

)
,

is a conditional expectation of a FT -measurable random variable for any fixed θ0. It is then a P-
martingale on time τ ≤ T . Notice that in the definition of f i, the coefficients of the exponential
are independent of t. Therefore we look for f i of the form f i(t, τ, θt) := gi(τ − t, θt). We make
the change of variables τ − t := s. Given that gi is C1,2, it follows by Ito’s formula that

−gis − λθ(θ − θ̄)giθ +
σ2
θ

2
giθθ +

(
γi

2(1− γi)
+

γ2
i

2(1− γi)2

)
θ2gi = 0 . (3.6)
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with the condition gi(0, θ) = 1. We follow [14] and search for gi of the form

gi(s, θ) = exp

(
A1i(s)

θ2

2
+A2i(s)θ +A3i(s))

)
,

where A1i, A2i, A3i are three continuous functions of s. The terminal condition in the latter
expression implies condition (3.3). Plugging the expression of gi in (3.6), we get a second-order
polynomial in θ

θ2

[
−A′1i(s)− 2λθA1i(s) + σ2

θA1i(s)
2 +

γi
(1− γi)2

]
+θ
[
−A′2i(s) + λθ(θ̄A1i(s)−A2i(s)) + σ2

θA1i(s)A2i(s)
]

−A′3i(s) + λθθ̄A2i(s) +
σ2
θ

2
(A1i(s) +A2i(s)

2) = 0

Since the equation holds for any θ ∈ R, we separate the coefficients in θ2, θ and constant to
obtain (3.4). �
If a C1 function A1i(s), s ∈ [0, T − t] has been found, then A2i is given by a linear ODE, which
finally allows to retrieve A3i:

A3i(s) =

∫ s

0
λθθ̄A2i(u) +

σ2
θ

2
(A1i(u) +A2i(u)2)du .

This allows for the detailed numerical analysis we present in subsection 3. The following provides
the missing part.

Proposition 3.2. Let A1i(s) be a solution on {0 ≤ t ≤ T − t} of the ODE

−A′1i(s)− 2λθA1i(s) + σ2
θA1i(s)

2 +
γi

(1− γi)2
= 0 (3.7)

such that A1i(0) = 0. Then, denoting ∆ = λ2
θ −

γiσ
2
θ

(1−γi)2 , A1i is defined on [0, T − t] by

A1i(s) =



γi
(1− γi)2σθ

1− exp(−2
√

∆σ2
θs)

λθ +
√

∆− (λθ −
√

∆) exp(−2
√

∆σ2
θs)

if ∆ > 0
λ2
θs

σ2
θλθs+ σ2

θ

if ∆ = 0

1

σ2
θ

(√
−∆ tan

(
−
√
−∆s+ arctan

(
−λθ√
−∆

))
+ λθ

)
if ∆ < 0

. (3.8)

Proof Case 1: ∆ > 0. There are two distinct roots to the characteristic polynomial of the

11



ODE, given by m± := λθ
σθ
±
√

∆. A general solution A1(t) to (3.7) shall verify

σθ =
σθA

′
1i(τ)

(σθA1i(τ)− λθ
σθ

)2 − σ2
θ∆

σθs =

∫ s

0

σθA
′
1i(τ)dτ

(σθA1i(τ)− λθ
σθ
− σθ

√
∆)(σθA1i(τ)− λθ

σθ
+ σθ

√
∆)

=

∫ A1i(s)

0

σθdx

(σθx− σθm+)(σθx− σθm−)

=
1

σθ(m+ −m−)

∫ A1i(s)

0

dx

x−m+
− dx

x−m−
,

=
1

2σθ
√

∆
log

(
(A1i(s)−m+)m−
(A1i(s)−m−)m+

)
,

Therefore,
A1i(s)−m+

A1i(s)−m−
=
m+

m−
exp

(
2
√

∆σ2
θs
)

A1i(s) = m+ +
2σθ
√

∆

1− m+

m−
exp

(
2
√

∆σ2
θs
) ∀t ≤ τ .

Case 2: ∆ = 0. With the double root m := λθ/σ
2
θ , the same operation provides

σθ =
A′1i(τ)

(A1i(τ)−m)2

σθs =

∫ s

0

A′1i(τ)

(A1i(τ)−m)2
dτ

σθs =

(
− 1

m
+

1

m−A1i(s)

)
.

The solution then follows:

A1i(s) =
σθm

2s

1 +mσθs

Case 3: ∆ < 0. We can write the ODE as

−A′1i(s) +

(
σθA1i(s)−

λθ
σθ

)2

− ∆

σ2
θ

= 0 .

Taking y(s) := (σ2
θA1i(s)− λθ)/

√
−∆′, we get

arctan(y(s))− arctan

(
− λθ√
−∆′

)
= −
√
−∆s

12



providing the solution. �

Notice that A1i is not continuous nor well defined for all s, if ∆ ≤ 0. The condition ∆ > 0 can
also write

γ1 < γlim :=
2

2 + b+
√

(2 + b)2 − 4
for b :=

σ2
θ

λ2
θ

.

Proposition 3.1 provides the portfolio process value for a consuming agent. For the third agent,
Theorem 2.18 provides for 0 ≤ t

X3
t = Ẽ

[
DT I3(yζ3

T )|Ft
]

which can be solved by Proposition 3.1 and equation (3.3).

Corollary 3.3. Define for i = 1, 2 the function Hi : R× [0, T ]→ (0,∞) by

Hi(θ, τ) := exp

(
A1i(0, τ)

θ2

2
+A2i(0, τ)θ +A3i(0, τ)− r(1− γi) + ρi

1− γi
τ

)
,

and si =
∫ T

0 Hi(θ0, s)ds. The initial allocations for the three agents are:
x1 = y

1
γ1−1

∫ T
0 H1(θ0, s)ds = y

1
γ1−1 s1

x2 = y
1

γ2−1
∫ T

0 H2(θ0, s)ds = y
1

γ2−1 s2

x3 = y
1

γ3−1 exp
(
rT − (r+ρ3)T

1−γ3

)
=: y

1
γ3−1 s3

(3.9)

where y = Y(x) is uniquely defined such that x1 + x2 + x3 = x. Define the density function

pi(θt, t, τ) := Hi(θt, τ)
(∫ T−t

0 Hi(θt, s)ds
)−1

for i = 1, 2. Then the portfolio strategies πi
t are

thus determined by

π1
t =

1

1− γ1

µt − r
σ2

− σθ
(1− γ1)σ

∫ T−t

0
p1(θt, t, τ)(A11(0, τ)θt +A21(0, τ))dτ

π2
t =

1

1− γ2

µt − r
σ2

− σθ
(1− γ2)σ

∫ T−t

0
p2(θt, t, τ)(A12(0, τ)θt +A22(0, τ))dτ

π3
t =

1

1− γ3

µt − r
σ2

− σθ
(1− γ3)σ

(A13(0, T − t)θt +A23(0, T − t))

. (3.10)

Together, equations of (3.10) and (2.14) solve the couple of investors optimal consumption and
portfolio choice problem. The economic consequences of these equations are explored in the
next subsection. We continue here to explore the analytical results.

Proposition 3.4. Assume that θt > 0. (positive MPR). If γi < 0, i = 1, 2, the CSP decreases
with θ. On the other hand if γi ≥ 0, i = 1, 2, the CSP increases with θ.

Proof From direct computations one gets

dy

dθ
=

y
1

γ1−1ds1 + y
1

γ2−1ds2(
s1

1−γ1 y
1

γ1−1
−1

+ s2
1−γ2 y

1
γ2−1

−1
+ s3

1−γ3 y
1

γ3−1
−1
)
dθ

.
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Moreover

d

dθ

(
x1 + x2

x

)
=

d

dθ

(
1− x3

x

)
= −dx3

xdθ
=

y
1

γ3−1
−1
dy

(1− γ3)xdθ
.

If θt > 0 and γi < 0, it follows from the monotonicity of A1i and A2i that

A1i(0, T − t)θt +A2i(0, T − t) ≤
∫ T−t

0
pi(θt, t, τ)(A1i(0, τ)θt +A2i(0, τ))dτ ≤ 0 .

On the other hand if γi ≥ 0,

0 ≤
∫ T−t

0
pi(θt, t, τ)(A1i(0, τ)θt +A2i(0, τ))dτ ≤ A1i(0, T − t)θt +A2i(0, T − t) .

�

Remark 3.5. During favorably market conditions, i.e., when θ is increasing, the agents behave
differently according to their risk aversion. Thus, if they are more risk averse they will use a
higher fraction of the initial wealth to finance investment; else if they are less risk averse they
will use a higher fraction of the initial wealth to finance consumption.

Proposition 3.6. Assume that γ1 < γ2 < γ3. Then recalling H1,H2,H3 from (2.12), (2.13),
we get

lim
x→∞

R(x) = (1− γ1)
H3(1)

H1(1)
and lim

x→0
R(x) = (1− γ3)

H1(1)

H3(1)
.

Proof Recall that V (x) = G(Y(x)) and V ′(x) = Y(x). Thus V ′′(x) = Y ′(x) = 1/H′(y) (with
y := Y(x)) and R(x) = −xY ′(x)/Y(x) = −H(y)/(yH′(y)). In light of

H(y) = y
1

γ1−1H1(1) + y
1

γ2−1H2(1) + y
1

γ3−1H3(1) ,

it follows that

R(x) =
y

1
γ1−1H1(1) + y

1
γ2−1H2(1) + y

1
γ3−1H3(1)

y
1

γ1−1 H1(1)
1−γ1 + y

1
γ2−1 H2(1)

1−γ2 + y
1

γ3−1 H3(1)
1−γ3

,

whence the claim. �

Remark 3.7. For small initial wealth or high initial wealth the couple risk aversion is driven
by one of the agents. Thus, the less risk averse agent determines the couple’s utility for little
initial wealth. This is in accordance with risk seeking agents behavior when the latter are poor.

3.3 Numerical results

For the numerical applications, we have chosen the following fixed parameters for the market

(y, r, σθ, λθ, θ̄) = (3, 0.048, 0.0655, 0.2712, 0.9456) .

We first plot the fraction of initial wealth for each agent as a function of total wealth x in figure
1. In this situation, we assume that discount rates ρi are all equal to 0.01, but that risk aversions
differ and are given by (γ1, γ2, γ3) = (−9,−3,−2).
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Figure 1: Fraction of initial wealth as a function of total wealth for T = 1.

We see from the plot that the fraction of initial wealth allocated to each of the agents is
monotonous in wealth and it is higher for the less risk averse agent. Moreover, as the agents’
initial wealth increases, initial wealth allocation for financing investment increases. The model
with one agent only also mentions this fact, see [13].
Next we explore the effect of varying risk aversion. In figure 2, we vary γ1 while holding γ2, γ3

constant. As expected, when agent 1 becomes more risk-averse his/her initial wealth allocation
decreases and the initial wealth allocation for financing investment increases.
In figure 3, we vary γ3 and fix γ1 and γ2 to fall below the range of γ3. The initial wealth
allocation for financing investment increases in γ3.
In figure 4 we observe the effect on the initial wealth allocation of the market price of risk θ.
Here (γ1, γ2, γ3) = (−9,−3,−2). The findings are in accordance with Proposition 5.2.

3.3.1 Comparison with the single-agent solution

In this subsection we perform a comparison between consumption satisfaction proportion (CSP)
in single agent and multiple agent models. The effects of time discounting and risk aversion are
studied separately. In figure 5 we plot CSP given γ1 = γ2 = γ3 = −3 and ρi ∈ {0.0052, 0.3}, i =
1, 2, 3. We denote by CSP (1, 1, 1) and CSP (2, 2, 2) the optimal consumption satisfaction propor-
tion in a single agent model with ρ = 0.0052 (CSP (1, 1, 1)) and ρ = 0.3 (CSP (2, 2, 2)). More-
over CSP (1, 2, 1), CSP (1, 2, 2), CSP (1, 1, 2), CSP (2, 1, 1), CSP (2, 1, 2), CSP (2, 2, 1) denote the
optimal consumption satisfaction proportion in a two agents model as follows:

− CSP (1, 2, 1) corresponds to (ρ1, ρ2, ρ3) = (0.0052, 0.3, 0.0052);

− CSP (1, 2, 2) corresponds to (ρ1, ρ2, ρ3) = (0.0052, 0.3, 0.3);

− CSP (1, 1, 2) corresponds to (ρ1, ρ2, ρ3) = (0.0052, 0.0052, 0.3);
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Figure 2: Fraction of initial wealth as a function of risk aversion γ1, for γ1 ≤ γ3.

− CSP (2, 1, 1) corresponds to (ρ1, ρ2, ρ3) = (0.3, 0.0052, 0.0052);

− CSP (2, 1, 2) corresponds to (ρ1, ρ2, ρ3) = (0.3, 0.0052, 0.3);

− CSP (2, 2, 1) corresponds to (ρ1, ρ2, ρ3) = (0.3, 0.3, 0.0052);

By symmetry notice that CSP (1, 2, 2) = CSP (2, 1, 2) and CSP (1, 2, 1) = CSP (2, 1, 1). Since
γ1 = γ2 = γ3, CSP does not depend on the initial wealth (see (3.9)). We observe three effects
from the plot:

− when it comes to discounting utility of intertemporal consumption a higher discount rate
leads to higher CSP (see CSP (1, 2, 1) = CSP (2, 1, 1) > CSP (1, 1, 1), CSP (1, 2, 2) =
CSP (2, 1, 2) > CSP (1, 1, 2))

− when it comes to discounting utility of final wealth a higher discount rate leads to lower
CSP (see CSP (2, 2, 1) > CSP (2, 2, 2))

− discounting has a higher impact on the utility of final wealth (see CSP (1, 1, 1) > CSP (2, 2, 2))

In figure 6 we plot CSP given ρ1 = ρ2 = ρ3 = 0.0052 and γi ∈ {−3,−9}, i = 1, 2, 3. We
denote by CSP (1, 1, 1) and CSP (2, 2, 2) the optimal consumption satisfaction proportion in
a single agent model with γ = −3 (CSP (1, 1, 1)) and γ = −9 (CSP (2, 2, 2)). Moreover
CSP (1, 2, 1), CSP (1, 2, 2), CSP (1, 1, 2), CSP (2, 1, 1), CSP (2, 1, 2), CSP (2, 2, 1) denote the op-
timal consumption satisfaction proportion in a two agents model as follows:

− CSP (1, 2, 1) corresponds to (γ1, γ2, γ3) = (−3,−9,−3);

− CSP (1, 2, 2) corresponds to (γ1, γ2, γ3) = (−3,−9,−9);

− CSP (1, 1, 2) corresponds to (γ1, γ2, γ3) = (−3,−3,−9);
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Figure 3: Fraction of initial wealth as a function of γ3.

− CSP (2, 1, 1) corresponds to (γ1, γ2, γ3) = (−9,−3,−3);

− CSP (2, 1, 2) corresponds to (γ1, γ2, γ3) = (−9,−3,−9);

− CSP (2, 2, 1) corresponds to (γ1, γ2, γ3) = (−9,−9,−3);

By symmetry notice that CSP (1, 2, 2) = CSP (2, 1, 2) and CSP (1, 2, 1) = CSP (2, 1, 1). We
observe two effects from the plot:

− when it comes to utility of intertemporal consumption a higher γ leads to lower CSP (see
CSP (1, 2, 1) = CSP (2, 1, 1) > CSP (1, 1, 1), CSP (2, 2, 2) > CSP (2, 1, 2))

− when it comes to utility of final wealth a higher γ leads to higher CSP (see CSP (2, 2, 1) >
CSP (2, 2, 2))

4 Appendix: Proof of Theorem 2.18

For the purpose of this section, we first start with basic properties of portfolio processes in
the complete market setting. We then introduce the solution for each sub-problem in order to
compare the value functions as in Theorem 2.18.

4.1 Super-martingale property of admissible portfolios

We shall show that C(x) consists of exactly those “reasonable” consumption processes, for which
the couple of investors, starting out with wealth x at time 0, is able to construct a portfolio that
avoids debt (i.e., negative wealth) on [0, T ] P-almost surely.

Definition 4.1. We define
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Figure 4: Fraction of initial wealth as a function of θ.

− C(x) (resp. D(x)) the class of consumption processes (c1, c2) which satisfy

Ẽ
[∫ T

0
C̃tdt

]
≤ x ( resp. = x) ; (4.1)

− L(x) (resp. M(x)) the class of non negative random variables L on (Ω,FT , P̃) which satisfy

Ẽ [L] ≤ x ( resp. = x) ; (4.2)

− P (x) the class of portfolio strategies π such that (π, 0, 0) ∈ A(x).

Remark 4.2. Since XT ≥ 0 and Ct ≥ 0 , for all t ∈ [0, T ], (π, c1, c2) ∈ A(x) implies (c1, c2) ∈
C(x), and XT ∈ L(x) implies inequality conditions (4.1) and (4.2) which turn out to be also
sufficient for admissibility. Moreover, according to (2.6), the set P (x) corresponds to strategies
such that XT belongs to M(x).

Proposition 4.3. For every given (c1, c2) ∈ C(x), there exists a portfolio strategy π such that
(π, c1, c2) ∈ A(x).

Proof It is a straightforward application of martingale representation theorem; for more details
see [8]. �

Remark 4.4. The wealth process X corresponding to any (c1, c2) ∈ D(x) satisfies

Xt = Ẽ
[∫ T

t
C̃sds|Ft

]
, 0 ≤ t ≤ T (4.3)

In particular, XT = 0 P-a.s.

Proposition 4.5. For every L ∈ L(x), there exists a trio (π, c1, c2) ∈ A(x) with corresponding
wealth process X, for which XT = L P-a.s.
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Figure 5: Fraction of consumption satisfaction proportion (CSP) as a function of ρ and initial
wealth.

Proof It is a straightforward application of martingale representation theorem; for more details
see [8]. �

Corollary 4.6. For any given L ∈ L(x), there exists a portfolio strategy π ∈ P (x) with corre-
sponding wealth process

Xt = Ẽ[L|Ft], for t ∈ [0, T ]. (4.4)

This corollary shows that the extreme elements of L(x) are attainable by strategies that mandate
zero consumption.

4.2 Proof of Theorem 2.16

Proposition 4.7 (Consumption problem). Let a1 ≥ 0. Then V1(a1) = J1(a1;π1(a1), c1(a1), 0)
where c1 is defined in Theorem 2.16 and π1 follows from Proposition 4.3.

Proof We take
ci = ĉit :=

ai

Ẽ
∫ T

0 Dtdt
∈ D(ai) ,

so that

E
[∫ T

0
Bi
tUi(ĉ

i
t)dt

]
= Ui(ĉ

i)E
[∫ T

0
Bi
tdt

]
<∞ .

19



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

variable total initial wealth

Consumption Satisfaction Proportion for 1 agent problem and 2 agents problem and variable gamma

 

 

CSP (1,1,1)

CSP(1,1,2)

CSP(2,1,1)

CSP (2,2,2)

CSP(2,1,2)

CSP(2,2,1)

Figure 6: Fraction of consumption satisfaction proportion (CSP) as a function of γ and initial
wealth.

Notice that ĉi ∈ D(ai) and since Ẽ
[∫ T

0 Dtc
i
tdt
]

= Hi(Yi(ai)) = ai, cit ∈ D(ai). Inequality (2.9)

implies that for any ci ∈ C(ai) and t ∈ [0, T ],

Ui(c
i
t) ≥ Ui(cit) + Yi(ai)ζitcit − Yi(ai)ζitcit , P− a.s.

Therefore,

E
[∫ T

0
Bi
tU
−
i (cit)dt

]
≤ E

[∫ T

0
Bi
t

(
Ui(ĉ

i
t) + Yi(ai)ζitcit − Yi(ai)ζit ĉit

)−
dt

]
≤ E

[∫ T

0
Bi
t

(
U−i (ĉi) + Yi(ai)ζit ĉit

)]
<∞ .

Consider the measure on [0, T ]×Ω defined by dνi(t, ω) = Bi
tdtP(dω) . For any other consumption

process ci ∈ D(ai), we have∫ ∫
[0,T ]×Ω

Ui(c
i
t)dν

i ≥
∫ ∫

[0,T ]×Ω
Ui(c

i
t)dν

i +

∫ ∫
[0,T ]×Ω

Yi(ai)ζitcitdνi −
∫ ∫

[0,T ]×Ω
Yi(ai)ζitcitdνi

By using the fact that ci, ci ∈ D(ai),

E
[∫ T

0
Bi
tUi(c

i
t)dt

]
≥ E

[∫ T

0
Bi
tUi(c

i
t)dt

]
, i = 1, 2 .

�
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Remark 4.8. The same result holds for problem V2 in an obvious manner. Since (π, c1, c2) ∈
A1(a1) implies that (π, c1 + c2, 0) ∈ A1(a1),

J1(a1;π, c1, c2) ≤ J1(a1;π, c1 + c2, 0).

Thus, since U1 is an increasing function, the functional J1 is maximized when c2 = 0. The
reciprocal holds for J2.

Proposition 4.9 (Final wealth problem). Let a3 ∈ R+. Then

V3(a3) = J3(a3;π3(a3), 0, 0) . (4.5)

The corresponding final wealth is given by

X3
T (a3) = I3(Y3(a3)ζ3

T ) ∈M(a3) . (4.6)

Proof 1. First, we show that the strategy π3(a3) ∈ P (a3) and that the generated portfolio
process X3(a3) belongs to M(a3). According to (4.6), we have

Ẽ
[
X3
T (a3)

]
= Ẽ [I3(Y3(a3)ζT )] = H3(Y3(a3)) = a3 .

Considering the constant final wealth b := a3/Ẽ[DT ] ∈ D(a3), we get

U3(X3
T (a3)) ≥ U3(b) + Y3(a3)ζ3

TX3
T (a3)− Y3(a3)ζ3

T b P− a.s.

Therefore,
E
[
B3
TU
−
3 (X3

T (a3))
]
≤ E

[
B3
T

(
U−3 (b) + Y3(a3)ζ3

T b
)]
<∞ .

2. Let’s show that the optimal strategy requires zero consumption. Let (π, c1, c2) ∈ A(a3) with
wealth process X be given. Define the random variable

B :=

{
a3

Ẽ[DTXT ]
XT if Ẽ[XT ] > 0

b if Ẽ[XT ] = 0
.

Since XT ∈ A(a3), Ẽ [DTXT ] ≤ a3. Then B ∈ M(a3) and B ≥ XT P-a.s. From Proposition
4.5 and Corollary 4.6, there exists a portfolio π̂ ∈ P (a3) with corresponding terminal wealth
X̂T = B ≥ XT P-a.s. Thus (π̂, 0, 0) ∈ A3(a3) and J3(a3, π, c

1, c2) ≤ J3(a3, π̂, 0, 0).
3. To obtain (4.5), it suffices to proceed as in Proposition 4.7:

E
[
B3
TU3(X3

T (x3))
]
≥ E

[
B3
T

(
U3(XT ) + Y3(x3)ζ3

T (X3
T (x3)−XT )

)]
≥ E

[
B3
TU3(XT )

]
.

�
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4.3 Proof of Theorem 2.18

Having the solution to sub-problems, we turn to the solution of problem (2.10).

Proposition 4.10. For x ≥ 0,

V (x) = V∗(x) := max {V1(a1) + V2(a2) + V3(a3)|a1, a2, a3 ∈ [0,∞); a1 + a2 + a3 = x} . (4.7)

Proof For x ≥ 0, we are given an arbitrary triplet (π, c1, c2) ∈ Ã(x) with corresponding wealth
process Xt. Recall that

a1 := Ẽ
[∫ T

0 B1
t c

1
tdt
]
, a2 := Ẽ

[∫ T
0 B2

t c
2
tdt
]

and a3 := Ẽ
[
B3
TXT

]
.

By the super martingale property, a := a1 + a2 + a3 ≤ x and by Propositions 4.7 and 4.9,
E
[
B1
tU1(c1

t )dt
]
≤ J1(a1;π1(a1), c1(a1), 0) = V1(a1),

E
[
B2
tU2(c2

t )dt
]
≤ J2(a2;π2(a2), 0, c2(a2)) = V2(a2),

E
[
B3
TU3(XT )

]
≤ J3(a3;π3(a3), 0, 0) = V3(a3).

Adding the three terms, we get

V1(a1) + V2(a2) + V3(a3) = J(a;π, c1(a1), c2(a2)) ≥ J(a;π, c1, c2) .

Taking the supremum over a1 + a2 + a3 ≤ x and over (π, c1, c2) ∈ Ã(x), we get

V (x) ≤ sup {V1(a1) + V2(a2) + V3(a3) : a1, a2, a3 ∈ [0,∞); a1 + a2 + a3 ≤ x}
= sup {V1(a1) + V2(a2) + V3(a3) : a1, a2, a3 ∈ [0,∞); a1 + a2 + a3 = x} := V∗(x)

from the non-decreasing characteristic of Vi for i = 1, 2, 3. Furthermore, by continuity of the
function (a1, a2, a3) 7→ V1(a1) + V2(a2) + V3(a3), the supremum above is attained at a point
(x1, x2, x3) and

V (x) ≤ V∗(x) = V1(x1) + V2(x2) + V3(x3) = J(x;π(x1, x2, x3), c1(x1), c2(x2)) ≤ V (x) .

The processes X1, X2 and X3 are nonnegative, so X is nonnegative: X is clearly in Ã(x). �

We conclude the proof of Theorem 2.18 by saying that the xi are found by using the envelope
theorem, together with Lemma 4.11 below, which implies that

V ′1(x1) = V ′2(x2) = V ′3(x3) = Y1(x1) = Y2(x2) = Y3(x3) = y ,

i.e., xi = Hi(y) = Hi(Y(x)).

Lemma 4.11. For y > 0, define

G1(y) := E
[∫ T

0
B1
tU1(I1(yζ1

t ))dt

]
, (4.8)

G2(y) := E
[∫ T

0
B2
tU2(I2(yζ2

t ))dt

]
, (4.9)

G3(y) := E
[
B3
TU3(I3(yζ3

T ))
]
. (4.10)
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Then
G′i(y) = yH′i(y) i = 1, 2, 3 (4.11)

and Vi ∈ C2((0,∞)) with
V ′i (x) = Yi(x) i = 1, 2, 3, x ≥ 0 . (4.12)

Proof According to Assumption 2.14, we can take derivatives under the expectation and
integral signs to obtain

G′1(y) = E
∫ T

0
B1
t ζ

1
t I
′
1(yζ1

t )U ′1(I1(yζ1
t ))dt = E

∫ T

0
B1
t ζ

1
t yζ

1
t I
′
1(yζ1

t )dt

= Ẽ
∫ T

0
yζ1
t I
′
1(yζ1

t )dt = yH′1(y) .

Therefore,

V ′1(x) =
d

dx
G1(Y1(x)) = Y ′1(x)G′1(Y1(x)) = Y ′1(x)Y1(x)H′1(Y1(x)) = Y1(x) .

The other derivatives are computed in the same manner. �
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