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Optimal allocation of wealth for two consuming agents sharing a

portfolio

O. Mbodji, A. Nguyen Huu, T. Pirvu

February 4, 2014

Abstract

We study the Merton problem of optimal consumption-investment for the case of two
investors sharing a final wealth. The typical example would be a husband and wife sharing a
portfolio looking to optimize the expected utility of consumption and final wealth. Each agent
has different utility function and discount factor. An explicit formulation for the optimal
consumptions and portfolio can be obtained in the case of a complete market. The problem
is shown to be equivalent to maximizing three different utilities separately with separate
initial wealths. We study a numerical example where the market price of risk is assumed to
be mean reverting, and provide insights on the influence of risk aversion or discount rates on
the initial optimal allocation.

1 Introduction

In the portfolio optimization literature, the single agent framework constitutes the main prob-
lem. However, several financial problems involve many agents, e.g., when a household manages
a shared portfolio. One can also think of the situation of a portfolio manager working for a pool
of clients. The question raised here is thus: how do separate agents consume ressources out
of a common financial portfolio? Economic theory answers the question, at least partially, by
introducing social welfare and a common (utility) function to model the aggregated preferences
of several heterogeneous agents, see for example [1]. In the present paper, we investigate the
specific form of Utilitarian social welfare function composed of the linear combination of indi-
vidual discounted utility functions. That form is of particuliar importance for its simplicity, but
also because it involves the well-known notions of risk-aversion and individual discount factor
(preference for the present).
Imagine the following initial situation. Two agents, having utility functions U1 and U2 for
consumption c1 and c2 respectively and discount rates β1(t) and β2(t), share a self-financed
portfolio Xt over a period [0, T ] with T > 0 finite. They also share a third utility function U3

of terminal wealth XT discounted with rate β3(t). The goal of the couple is then to maximize
at time 0 the sum of the three expected discounted utilities from consumption and wealth over
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[0, T ] i.e., the quantity

E
[∫ T

0
e(−

∫ t
0 β

1(s)ds)U1(c1
t )dt+

∫ T

0
e(−

∫ t
0 β

1(s)ds)U2(c2
t )dt+ e(−

∫ T
0 β3(s)ds)U3(XT )

]
. (1.1)

This expression can be obviously generalized to any linear combination of a number n ∈ N of
utility functions for consuming agents.
When the total initial wealth X0 is given, the portfolio management problem brings up the
question of wealth allocation among participants in order to contempt them, additionally to the
one of optimal consumption-portfolio strategy for each of them. This initial allocation problem
is a one-time static problem at time t = 0. It is of fundamental importance to notice that if the
criterion is updated at a later date t > 0, the solution changes and does not correspond to the
wealth obtained by the allocation at date 0 and subsequent optimal portfolio strategies. This
means that the problem lacks a time-consistency property, see [2]. Indeed, the problem with
two agents can easily be reduced to a one agent problem by considering the utility function

U(s, t, C) := sup
c1+c2=C

[
exp

(
−
∫ t

s
β1(s)ds

)
U1(c1) + exp

(
−
∫ t

s
β2(s)ds

)
U2(c2)

]
.

It is foreseeable that the optimal behavior of the agent will depend on the initial date s, and
therefore be given up at a later date without any commitment device. This is why we reduce
ourselves to the problem of initial allocation at date 0, and suppose that this action commits
our two agents on the interval [0, T ]. In a future companion paper, we solve the couple problem
without commitment in a time-consistent manner, by the use of sub game perfect strategies as
in [2].
Coming back to (1.1), we actually show that the above problem can be divided in three separate
problems involving only one agent at a time. Thus, in a sense, the only real decision on the
part of the investor takes place at t = 0 with the determination of the initial wealth allocated to
each agent. Once the initial allocation is provided, the further evolution of interesting quantities
(consumptions and wealth) follows well known solutions provided by [5].
In order to illustrate the allocation solution, we provide a numerical application with closed form
solutions in the framework of [11], i.e., with power utilities and mean reverting market price of
risk. We naturally focus on the comparison between the two consuming agents initial wealth as a
function of risk aversion and discount rates. We find interesting insights for portfolio managers.
As the agent’s initial wealth increases, an increasing proportion of the wealth is allocated to
finance the portfolio. Furthermore, the less risk averse consumer allocates more money for
future consumption for sufficiently large values of the initial wealth. The effects of risk aversion
on the allocations are also intuitive. As agents become less risk averse, the allocated fraction of
initial wealth increases.
The article is organized as follows: Section 2 introduces the model, admissibility conditions and
discusses complete market properties. In Section 3, we introduce the total value function and
the three separated sub-problems. We provide their solution by relying on duality methods.
The proof of these results are provided in Section 4. The numerical application is discussed in
Section 5.
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2 Market model and super-martingale property of portfolios

2.1 Complete market and specification of agents

We place ourselves in a complete financial market with d tradable risky assets with prices driven
by Wiener processes, and a riskless asset. This framework has been considered by Kartzas and
al. [5] for a single investor and semi-explicit solutions are provided using a martingale approach.
Six [10] considered the special case of a single investor with two different power utilities: one for
consumption and one for final wealth. We show that the same method applies in our context
without difficulty.
We consider a filtered probability space (Ω,F ,P) with standard d-dimensional Brownian motion
W := (Wt)t∈[0,T ] = (W 1

t , . . . ,W
d
t )Tt∈[0,T ]. The filtration (Ft)t∈[0,T ] is the augmentation under

P of the natural filtration of W . We consider a complete market composed of d + 1 assets
(S0, . . . , Sd) which are continuously traded on [0, T ] and evolve according to the differential
equations dS0

t = r(t)S0
t dt for t ∈ [0, T ] with S0

0 = s0, and

dSit = Sit

bi(t)dt+
d∑
j=1

σij(t)dW
j
t

 , 0 ≤ t ≤ T (2.1)

with (S1
0 , . . . , S

d
0) = (s1, . . . , sd) ∈ (0,∞)d. Let us assume that the SDE (2.1) has a unique

strong solution. The interest rate process (r(t))t∈[0,T ] is adapted and bounded, uniformly in
(t, ω) ∈ [0, T ] × Ω. Throughout this paper, we replace all asset prices by the discounted asset
prices. The discount factor using the risk-free rate is

Dt := exp

(
−
∫ t

0
r(u)du

)
. (2.2)

For a generic process Yt, we introduce the notation Ỹt := YtD(t) to denote its discounted
counterpart. The vector of mean rates of excess return b(t) := (b1(t) . . . bd(t))

T
t∈[0,T ] and the

diffusion matrix σ(t) := (σij(t))1≤i,j≤d,t∈[0,T ] are assumed to be adapted and bounded, uniformly

in (t, ω) ∈ [0, T ]×Ω. We introduce the covariance matrix a(t) = σ(t)σT (t) and assume that for
some ε > 0, ζTa(t, ω)ζ ≥ ε||ζ||2, for any (t, ω) ∈ [0, T ]× Ω and any ζ ∈ Rd.

Definition 2.1. We introduce the following objects:

1. A portfolio strategy π := {π(t) = (π1(t), . . . , πd(t))
>} is an adapted, Rd-valued process

where πi(ω) ∈ L2([0, T ]) for P-almost every ω ∈ Ω and i = 1, . . . , d.

2. A consumption process is given by (c1
t , c

2
t )t∈[0,T ], an adapted process with non-negative

values such that C(ω) := c1(ω) + c2(ω) is in L1([0, T ]) for P-almost every ω ∈ Ω.

3. The wealth process X := (Xt)t∈[0,T ] is uniquely defined as

Xt =
1

D(t)

(
x+

∫ t

0

((
πT (s)b(s)− Cs)

)
D(s)ds+ πT (s)σ(s)D(s)dWs

))
(2.3)
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or equivalently by the discounted process

X̃t =

(
x+

∫ t

0

((
π̃T (s)b(s)− C̃s)

)
ds+ π̃T (s)σ(s)dWs

))
. (2.4)

Each agent i is endowed with a utility function Ui and a discount rate βi with corresponding
discount factor

Bi
t := exp

(
−
∫ t

0
βi(s)ds

)
. (2.5)

The discount rates are assumed to be adapted and bounded for all t uniformly P-almost surely.
We assume the following for the utility functions:

Assumption 2.2. For i = 1, 2, 3, we assume that Ui is a strictly increasing, strictly concave
real-valued function in C2([0,∞]) such that U ′′i is non decreasing, Ui(0) ≥ −∞ and U ′i(∞) = 0.
U ′i is defined from [0,∞) onto [0, U ′i(0)].

Note that we allow for Ui(0) = −∞ or U ′i(0) =∞. This framework encompasses a large class of
functions, including CARA and HARA utility functions.

2.2 Super-martingale property of admissible portfolios

The completeness of the market in the sense of [4] implies the existence of a unique P-equivalent
martingale measure P̃. Define the price of risk process θ(t) := σ(t)−1(b(t)− r(t)1), for t ∈ [0, T ].
Next, introduce the Radon Nikodym derivative of P̃ w.r.t. P,

Z(t) := exp

{
−

d∑
i=1

∫ t

0
θi(s)dW

i
s −

1

2

∫ t

0
||θ(s)||2ds

}
, for t ∈ [0, T ] . (2.6)

We can define Ẽ the expectation operator under P̃. Under some integrability conditions on θ,
W̃t := Wt +

∫ t
0 θ(s)ds is a Brownian motion under P̃ (see [9]). Thus

X̃t +

∫ t

0
C̃sds = x+

∫ t

0
π̃T (s)σ(s)dW̃ (s) . (2.7)

We now introduce the key concept of admissibility.

Definition 2.3. A triplet (π, c1, c2) of strategy and consumption processes is said to be admissible
for the initial endowment x ≥ 0 if the wealth process X satisfies Xt ≥ 0 for [0, T ] P-a.s. We call
A(x) the class of admissible processes (π, c1, c2) for initial wealth x.

For any (π, c1, c2) ∈ A(x), the left-hand side of (2.7) is non negative and the right-hand side
is a local martingale under P̃. It follows that the left-hand side, and hence also X̃t, is a non
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negative super-martingale under P̃. Now, if τ0 := T ∧ inf{0 ≤ t ≤ T,X(t) = 0}, then Xt = 0 for
all t ∈ [τ0, T ] on {τ0 > −∞}. The super martingale property in (2.7) yields

Ẽ
[
X̃T +

∫ T

0
C̃tdt

]
≤ x . (2.8)

This property allows to express admissibility of strategies and consumptions respectively in a
different manner.

Definition 2.4. We define

• C(x) (resp. D(x)) the class of consumption processes (c1, c2) which satisfy

Ẽ
[∫ T

0
C̃tdt

]
≤ x ( resp. = x) ; (2.9)

• L(x) (resp. M(x)) the class of non negative random variables L on (Ω,FT , P̃) which satisfy

Ẽ [L] ≤ x ( resp. = x) ; (2.10)

• P (x) the class of portfolio strategies π such that (π, 0, 0) ∈ A(x).

Remark 2.5. Since XT ≥ 0 and Ct ≥ 0 , for all t ∈ [0, T ], (π, c1, c2) ∈ A(x) implies (c1, c2) ∈
C(x), and XT ∈ L(x) implies inequality conditions (2.9) and (2.10) which turn out to be also
sufficient for admissibility. Moreover, according to (2.7), the set P (x) corresponds to strategies
such that XT belongs to M(x).

We shall show that C(x) consists of exactly those “reasonable” consumption processes, for which
the couple of investors, starting out with wealth x at time 0, is able to construct a portfolio that
avoids debt (i.e., negative wealth) on [0, T ] P-almost surely.

Proposition 2.6. For every given (c1, c2) ∈ C(x), there exists a portfolio strategy π such that
(π, c1, c2) ∈ A(x).

Proof Let I :=
∫ T

0 C̃tdt, and define the non-negative process (Nt)t∈[0,T ] by

Nt := x− ẼI + Ẽ
[∫ T

t
C̃sds|Ft

]
=

(
x+mt −

∫ t

0
C̃sds

)
where mt := Ẽ[I|Ft] − ẼI is a P̃-martingale. Note that Nt ≥ 0 because of (2.9). By the
martingale representation theorem [9], we can find an adapted process φ(t) ∈ L2(Rd × [0, T ])
with values in Rd P-a.s., so that

mt =
d∑
j=1

∫ t

0
φj(s)dW̃

j
s for all t ∈ [0, T ] .

By taking π(t) = (D(t)σT (t))−1φ(t), we then get that Xt = Nt and the consumption process
(c1, c2) correspond to the wealth process Xt. �
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Remark 2.7. The wealth process X corresponding to any (c1, c2) ∈ D(x), is given by

Xt = Ẽ
[∫ T

t
C̃sds|Ft

]
, 0 ≤ t ≤ T (2.11)

In particular, XT = 0 P-a.s.

Proposition 2.8. For every L ∈ L(x), there exists a trio (π, c1, c2) ∈ A(x) with corresponding
wealth process X, for which XT = L P-a.s.

Proof Define the non negative process η by

ηtDt := Ẽ
[
L̃|Ft

]
+
(
x− Ẽ[L̃]

)(
1− t

T

)
(2.12)

= x+mt − ρt ,

where

mt := Ẽ
[
L̃|Ft

]
− Ẽ[L̃] and ρ :=

x− Ẽ[L̃]

T
. (2.13)

Obviously, η0 = x and ηT = L P-a.s. Furthermore (2.10) implies that ηt ≥ 0. We can obtain a
stochastic integral representation of the form (2.13) for the P̃-martingale m. Then (2.12) is cast
in the form (2.13) once we take π as in Proposition 2.6, Ct = ρ/Dt, for t ∈ [0, T ] and Xt = ηt.
Therefore XT = L. �

Corollary 2.9. For any given L ∈ L(x), there exists a portfolio strategy π ∈ P (x) with corre-
sponding wealth process

Xt = Ẽ[L|Ft], for t ∈ [0, T ]. (2.14)

This corollary shows that the extreme elements of L(x) are attainable by strategies that mandate
zero consumption.

3 The portfolio management problem

Recall that the discount function for agent i is given by (2.5). For a given x ≥ 0, we define the
value function at x by

V (x) := sup
{
J(x;π, c1, c2) : (π, c1, c2) ∈ Ã(x)

}
, (3.1)

where

J(x;π, c1, c2) := E

[∫ T

0
(B1

tU1(c1
t ) +B2

tU2(c2
t ))dt+B3

TU3(XT )

]
and

Ã(x) :=

{
(π, c1, c2) ∈ A(x) : E

[∫ T

0
(B1

tU
−
1 (c1

t ) +B2
tU
−
2 (c2

t ))dt+B3
TU
−
3 (XT )

]
<∞

}
.
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The expectation J is well defined for every pair (π, c1, c2) ∈ Ã(x). The total initial endowment
of the couple is x. We can easily see that Ã(x) = A(x) if Ui(0) > −∞ for i = 1, 2, 3. We consider
three problems that are sub-problems to the one above related to each term in the expression
of the functional J . For a given x1 > 0, we define the value function

V1(x1) := sup
{
J1(x1;π, c1, c2) : (π, c1, c2) ∈ A1(x1)

}
(3.2)

where

J1(x1;π, c1, c2) := E

[∫ T

0
B1
tU1(c1

t )dt

]
and

A1(x1) :=

{
(π, c1, c2) ∈ A(x1) : E

[∫ T

0
B1
tU
−
1 (c1

t )dt

]
<∞

}
.

The expectation J1 is well defined for every pair (π, c1, c2) ∈ A1(x1). The value functions V2, V3

and the sets A2, A3 are defined similarly in an obvious manner.
We now turn to several definitions to describe the solution to (3.1) and (3.2). Let Ii := (U ′i)

−1

be the inverse functions of the marginal utilities for i = 1, 2, 3. Because U ′i : [0,∞] → [0, U ′i(0)]
is strictly decreasing, it has a strictly decreasing inverse Ii : [0, U ′i(0)]→ [0,∞]. We extend Ii to
be a continuous function on the entirety of [0,∞] by setting Ii(y) = 0 for U ′i(0) ≤ y ≤ ∞, and
note that

Ui(Ii(y)) ≥ Ui(c) + yIi(y)− yc, for (y, c) ∈ (0,∞)× [0,∞) . (3.3)

Recall that the process Zt is given by (2.6). Define for i = 1, 2, 3 the state price process
corresponding to the discount factor Bi,

ζit := ZtDt exp(

∫ t

0
βi(u)du) =

Z̃t
Bi
t

.

We introduce also the following functions:

Hi(y, t) := Ẽ
[∫ T

t
DuIi(yζ

i
u)du|Ft

]
for i = 1, 2 , (3.4)

and
H3(y, t) := Ẽ

[
DT I3(yζ3

T )|Ft
]
. (3.5)

We will abuse notation by often writing Hi(y) := Hi(y, 0). We now make the following assump-
tions.

Assumption 3.1. For i = 1, 2, 3, we have Hi(y) <∞, for all y ∈ (0,∞).

Assumption 3.2. For all y ∈ (0,∞), we have that

E
[∫ T

0
B1
t |U1(I1(yζ1

t ))|dt+

∫ T

0
B2
t |U2(I2(yζ2

t ))|dt+B3
T |U3(I3(yζ3

T ))|
]
<∞ .
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Lemma 3.3. For i = 1, 2, 3, Hi is a continuous function, strictly decreasing on (0,∞) with
Hi(0) =∞ and Hi(∞) = 0

The proof of Lemma 3.3 is done in [5]. Define the function H on [0,∞) by H = H1 +H2 +H3.
We call Yi := H−1

i : [0,∞] → [0,∞] for i = 1, 2, 3 the inverse of the function Hi. Moreover
Y := H−1 : [0,∞]→ [0,∞].

Definition 3.4. Define for a1, a2, a3 ≥ 0 the consumption processes

c1t (a1) := I1(Y1(a1)ζ1
t ) ,

c2t (a2) := I2(Y2(a2)ζ2
t ) ,

and the following wealth processes

X1
t (a1) := Ẽ

[∫ T

t
c1s (a1)Dsds|Ft

]
= H1(Y1(a1), t) ,

X2
t (a2) := Ẽ

[∫ T

t
c2s (a2)Dsds|Ft

]
= H2(Y2(a2), t) ,

X3
t (a3) := Ẽ

[
I3(Y3(a3)ζ3

T )DT |Ft
]

= H3(Y3(a3), t) .

The portfolios corresponding to each agent are given by the triplet (π1(a1), π2(a2), π3(a3))
which is found using Proposition 2.6. Finally, by linearity we are able to define the total
portfolio π and total wealth process X by

π(a1, a2, a3) := π1(a1) + π2(a2) + π3(a3) , (3.6)

X(a1, a2, a3) := X1(a1) +X2(a2) +X3(a3) . (3.7)

Theorem 3.5. Consider a couple endowed initially with wealth x > 0. Then,

V (x) = V∗(x) := sup
{
V1(a1) + V2(a2) + V3(a3) : (a1, a2, a3) ∈ R3

+, a1 + a2 + a3 = x
}

= V1(x1) + V2(x2) + V3(x3)

where the initial allocation xi is given by

xi = Hi(Y(x)) . (3.8)

The optimal consumption processes are given by c1(x1), c2(x2). The optimal wealth processes
corresponding to each agent are given by (X1(x1),X2(x2),X3(x3)) and the optimal portfolio
processes by (π1(x1),π2(x2),π3(x3)). The total portfolio process is π(x1, x2, x3) and the total
wealth process is X(x1, x2, x3).
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4 Proofs

In this section we provide the proof of Theorem 3.5. For this purpose, we introduce the solution
for each sub-problem.

Proposition 4.1 (Consumption problem). Let a1 ∈ R+. Then V1(a1) = J1(a1;π1(a1), c1(a1), 0)
where c1 is defined in Definition 3.4 and π1 follows from Proposition 2.6.

Remark 4.2. The same result holds for problem V2 in an obvious manner. Since (π, c1, c2) ∈
A1(a1) implies that (π, c1 + c2, 0) ∈ A1(a1),

J1(a1;π, c1, c2) ≤ J1(a1;π, c1 + c2, 0).

Thus, since U1 is an increasing function, the functional J1 is maximized when c2 = 0. The
reciprocal holds for J2.

Proof We take
ci = ĉit :=

ai

Ẽ
∫ T

0 Dtdt
∈ D(ai) ,

so that

E
[∫ T

0
Bi
tUi(ĉ

i
t)dt

]
= Ui(ĉ

i)E
[∫ T

0
Bi
tdt

]
<∞ .

Notice that ĉi ∈ D(ai) and since Ẽ
[∫ T

0 Dtc
i
tdt
]

= Hi(Yi(ai)) = ai, c
i
t ∈ D(ai). Inequality (3.3)

implies that for any ci ∈ C(ai) and t ∈ [0, T ],

Ui(c
i
t) ≥ Ui(cit) + Yi(ai)ζitcit − Yi(ai)ζitcit , P− a.s.

Therefore,

E
[∫ T

0
Bi
tU
−
i (cit)dt

]
≤ E

[∫ T

0
Bi
t

(
Ui(ĉ

i
t) + Yi(ai)ζitcit − Yi(ai)ζit ĉit

)−
dt

]
≤ E

[∫ T

0
Bi
t

(
U−i (ĉi) + Yi(ai)ζit ĉit

)]
<∞ .

Consider the measure on [0, T ]×Ω defined by dνi(t, ω) = Bi
tdtP(dω) . For any other consumption

process ci ∈ D(ai), we have∫ ∫
[0,T ]×Ω

Ui(c
i
t)dν

i ≥
∫ ∫

[0,T ]×Ω
Ui(c

i
t)dν

i +

∫ ∫
[0,T ]×Ω

Yi(ai)ζitcitdνi −
∫ ∫

[0,T ]×Ω
Yi(ai)ζitcitdνi

By using the fact that ci, ci ∈ D(ai),

E
[∫ T

0
Bi
tUi(c

i
t)dt

]
≥ E

[∫ T

0
Bi
tUi(c

i
t)dt

]
, i = 1, 2 .

�

9



Proposition 4.3 (Final wealth problem). Let a3 ∈ R+. Then

V3(a3) = J3(a3;π3(a3), 0, 0) . (4.1)

The corresponding final wealth is given by

X3
T (a3) = I3(Y3(a3)ζ3

T ) ∈M(a3) . (4.2)

Proof 1. First, we show that the strategy π3(a3) ∈ P (a3) and that the generated portfolio
process X3(a3) belongs to M(a3). According to (4.2), we have

Ẽ
[
X3

T (a3)
]

= Ẽ [I3(Y3(a3)ζT )] = H3(Y3(a3)) = a3 .

Considering the constant final wealth b := a3/Ẽ[DT ] ∈ D(a3), we get

U3(X3
T (a3)) ≥ U3(b) + Y3(a3)ζ3

TX
3
T (a3)− Y3(a3)ζ3

T b P− a.s.

Therefore,
E
[
B3
TU
−
3 (X3

T (a3))
]
≤ E

[
B3
T

(
U−3 (b) + Y3(a3)ζ3

T b
)]
<∞ .

2. Let’s show that the optimal strategy requires zero consumption. Let (π, c1, c2) ∈ A(a3) with
wealth process X be given. Define the random variable

B :=

{
a3

Ẽ[DTXT ]
XT if Ẽ[XT ] > 0

b if Ẽ[XT ] = 0
.

Since XT ∈ A(a3), Ẽ [DTXT ] ≤ a3. Then B ∈ M(a3) and B ≥ XT P-a.s. From Proposition
2.8 and Corollary 2.9, there exists a portfolio π̂ ∈ P (a3) with corresponding terminal wealth
X̂T = B ≥ XT P-a.s. Thus (π̂, 0, 0) ∈ A3(a3) and J3(a3, π, c

1, c2) ≤ J3(a3, π̂, 0, 0).
3. To obtain (4.1), it suffices to proceed as in Proposition 4.1:

E
[
B3
TU3(X3

T (x3))
]
≥ E

[
B3
T

(
U3(XT ) + Y3(x3)ζ3

T (X3
T (x3)−XT )

)]
≥ E

[
B3
TU3(XT )

]
.

�
Having the solution to sub-problems, we turn to the solution of problem (3.1). We start with a
preliminary lemma.

Lemma 4.4. For y > 0, define

G1(y) := E
[∫ T

0
B1
tU1(I1(yζ1

t ))dt

]
, (4.3)

G2(y) := E
[∫ T

0
B2
tU2(I2(yζ2

t ))dt

]
, (4.4)

G3(y) := E
[
B3
TU3(I3(yζ3

T ))
]
. (4.5)

Then
G′i(y) = yH′i(y) i = 1, 2, 3 (4.6)

and Vi ∈ C2((0,∞)) with
V ′i (x) = Yi(x) i = 1, 2, 3, x ≥ 0 . (4.7)
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Proof According to Assumption 3.2, we can take derivatives under the expectation and integral
signs to obtain

G′1(y) = E
∫ T

0
B1
t ζ

1
t I
′
1(yζ1

t )U ′1(I1(yζ1
t ))dt = E

∫ T

0
B1
t ζ

1
t yζ

1
t I
′
1(yζ1

t )dt

= Ẽ
∫ T

0
yζ1
t I
′
1(yζ1

t )dt = yH′1(y) .

Therefore,

V ′1(x) =
d

dx
G1(Y1(x)) = Y ′1(x)G′1(Y1(x)) = Y ′1(x)Y1(x)H′1(Y1(x)) = Y1(x) .

The other derivatives are computed in the same manner. �

Proposition 4.5. For x ≥ 0,

V (x) = V∗(x) := max {V1(a1) + V2(a2) + V3(a3)|a1, a2, a3 ∈ [0,∞); a1 + a2 + a3 = x} . (4.8)

Proof For x ≥ 0, we are given an arbitrary triplet (π, c1, c2) ∈ Ã(x) with corresponding wealth
process Xt. Recall that

a1 := Ẽ
[∫ T

0 B1
t c

1
tdt
]
, a2 := Ẽ

[∫ T
0 B2

t c
2
tdt
]

and a3 := Ẽ
[
B3
TXT

]
.

By the super martingale property, a := a1 + a2 + a3 ≤ x and by Propositions 4.1 and 4.3,
E
[
B1
tU1(c1

t )dt
]
≤ J1(a1;π1(a1), c1(a1), 0) = V1(a1),

E
[
B2
tU2(c2

t )dt
]
≤ J2(a2;π2(a2), 0, c2(a2)) = V2(a2),

E
[
B3
TU3(XT )

]
≤ J3(a3;π3(a3), 0, 0) = V3(a3).

Adding the three terms, we get

V1(a1) + V2(a2) + V3(a3) = J(a;π, c1(a1), c2(a2)) ≥ J(a;π, c1, c2) .

Taking the supremum over a1 + a2 + a3 ≤ x and over (π, c1, c2) ∈ Ã(x), we get

V (x) ≤ sup {V1(a1) + V2(a2) + V3(a3) : a1, a2, a3 ∈ [0,∞); a1 + a2 + a3 ≤ x}
= sup {V1(a1) + V2(a2) + V3(a3) : a1, a2, a3 ∈ [0,∞); a1 + a2 + a3 = x} := V∗(x)

from the non-decreasing characteristic of Vi for i = 1, 2, 3. Furthermore, by continuity of the
function (a1, a2, a3) 7→ V1(a1) + V2(a2) + V3(a3), the supremum above is attained at a point
(x1, x2, x3) and

V (x) ≤ V∗(x) = V1(x1) + V2(x2) + V3(x3) = J(x;π(x1, x2, x3), c1(x1), c2(x2)) ≤ V (x) .

The processes X1, X2 and X3 are nonnegative, so X is nonnegative. X is clearly in Ã(x).
We conclude by saying that the xi are found by using the envelope theorem: V ′1(x1) = V ′2(x2) =
V ′3(x3). Equivalently by (4.7),

Y1(x1) = Y2(x2) = Y3(x3) = y ,

i.e., xi = Hi(y) = Hi(Y(x)). This concludes the proof of Theorem 3.5. �
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5 CRRA utilities and mean reverting market price of risk

5.1 Configuration of the market

In this section, we provide an explicit model of the previously studied framework. The three
agents share a common initial wealth x and have CRRA type utilities

Ui(x) =
xγi

γi
for i = 1, 2, 3.

Here 1− γi ∈ (0,∞) is the risk aversion of agent i. Notice that Ui satisfy Assumptions 2.2, and

Ii(x) = x
1

γi−1 . Each agent has his own constant discount rate ρi.
Next take d = 1 as in Wachter [11] (the extension to multiple stocks is straightforward). The
asset price follows a geometrical Brownian motion. In order to isolate the effects of time variation
on expected returns, the risk-free rate is assumed to be constant and equal to r ≥ 0 but this
assumption can be relaxed. We fix the volatility σ := σ11 ∈ (0,∞) for (2.1), but we do not
specify the drift b1 ∈ R. Instead, we model the price of risk θ by

dθt = −λθ(θt − θ̄)dt− σθdWt , t ≥ 0 ,

where (λθ, σθ, θ̄) ∈ (0,∞)3. We assume W = W 1, so that the stock price S1
t and the state

variable θt are perfectly negatively correlated. These assumptions are like those in [6], except
that the latter allows for imperfect correlation, and thus incomplete markets.
The body of academic literature on long term mean reversion is more tractable than that on
short term mean reversion. A comprehensive study on the existence of mean reversion in Equity
Prices has been done in [7]. The primary case for the existence of long term mean reversion was
made in two papers published in 1988, one by [8], the other by [3]. In summary, these papers
conclude that for period lengths between 3 and 5 years, long term mean reversion was present
in stock market returns between 1926 and 1985.

5.2 Explicit formulas

The goal of the computation is to provide the initial repartition x1, x2, x3 such that x1+x2+x3 =
x. According to Theorem 3.5, the optimal allocation is given by xi = Hi(Y(x)). Denoting
y := Y(x) = Yi(xi), the theorem gives also the optimal consumption{

c1t (x1) = I1(yζ1
t ) = (y exp(ρ1t)Zt)

1
γ1−1

c2t (x2) = I2(yζ2
t ) = (y exp(ρ2t)Zt)

1
γ2−1

, 0 ≤ t ≤ T ,

where Zt is the state density process defined by (2.6), and the optimal total wealth process is
given by

Xt = Ẽ
[∫ T

t
Ds(c

1
s + c2s )|Ft

]
+ Ẽ

[
DT I3(yζ3

T )|Ft
]
, t ≥ 0 .
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The process Yt := (yZtDt)
−1 satisfies the SDE

dYt = Yt(rt + θ2
t )dt+ YtθtdWt , t ≥ 0 .

The the optimal consumption for first agent can be expressed as c1t = I1(yζ1
t ) = (YtDtB

1
t )

1
1−γ1

and his/her wealth process by

X1
t = Ẽ

[∫ T

t
c1sds|Ft

]
=

1

Zt
E
[∫ T

t
Zs(YsDsB

1
s )

1
1−γ1 |Ft

]
= YtE

[∫ T

t
Y

1
1−γ1

−1

s er(s−t)e
− (r+ρ1)s

1−γ1 |Ft
]

= Y
1

1−γ1
t

∫ T

t
e
r(s−t)− (r+ρ1)(s−t)

1−γ1 f1(t, s, θt)ds

where

f1(t, τ, θ) := E
[
exp

(
γ1

2(1− γ1)

∫ τ

t
θ2
sds+

γ1

1− γ1

∫ τ

t
θsdWs

)
|θt = θ

]
.

We can obviously define the same quantities for the second agent. The process

f1(t, τ, θt) exp

(
γ1

2(1− γi)

∫ t

0
θ2
sds+

γ1

1− γ1

∫ t

0
θsdWs

)
, 0 ≤ t ≤ τ ,

is a P-martingale for a given τ ≤ T . Given that f1(., τ, .) is C1,2, it follows by Feynman-Kac
formula that

f1
t − λθ(θ − θ̄)f1

θ +
σ2
θ

2
f1
θθ +

(
γ1

2(1− γ1)
+

γ2
1

2(1− γ1)2

)
θ2f1 = 0 . (5.1)

As in [11] we search for f1 of the form

f1(t, τ, θ) = exp

(
A1(t, τ)

θ2

2
+A2(t, τ)θ +A3(t, τ))

)
.

The terminal condition implies that in the latter expression, A1(τ, τ) = A2(τ, τ) = A3(τ, τ) = 0.
In the sequel, we omit τ in the notation of Aj , j = 1, 2, 3. Plugging the expression of f1 in (5.1),
we get

A′1(t)θ2

2
+A′2(t)θ +A′3(t) + λθ(θ̄ − θ)(A1(t)θ +A2(t))

+
σ2
θ

2

(
A1(t) + (A1(t)θ +A2(t))2

)
+

γ1

2(1− γ1)2
θ2 = 0 .

We obtain a second-order polynomial in θ. Since the equation holds for any θ, we separate the
coefficients in θ2, θ and constant. We then shall have

A′1(t)− 2λθA1(t) + σ2
θA1(t)2 + γ1

(1−γ1)2
= 0

A′2(t) + λθ(θ̄A1(t)−A2(t)) + σ2
θA1(t)A2(t) = 0

A′3(t) + λθθ̄A2(t) +
σ2
θ
2 (A1(t) +A2(t)2) = 0

(5.2)
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Suppose that a C1 function A1(t), t ∈ [0, τ ] has been found. Then A2 is given by a linear ODE,
which finally allows to retrieve A3:

A3(t) =

∫ τ

t
λθθ̄A2(u) +

σ2
θ

2
(A1(u) +A2(u)2)du .

We therefore seek for a solution A1(t) first. According to the first equation, we define the
determinant

∆′ = λ2
θ −

γiσ
2
θ

(1− γi)2

and

γlim :=
2

2 + b+
√

(2 + b)2 − 4
for b :=

σ2
θ

λ2
θ

.

This is the biggest γ for which ∆′ > 0. We then have three cases to consider.

• If ∆′ > 0, i.e., γi < γlim, γi 6= 0, then there are two distinct roots to the characteristic
polynomial of the first ODE of (5.2), given by m± := (λθ ±

√
∆′)/σ2

θ . A general solution
A1(t) shall verify

τ − t =
1

σ2
θ(m− −m+)

∫ T

t

dA1

A1 −m+
− dA1

A1 −m−
, ∀t ≤ τ .

It follows that

exp
(
σ2
θ(m− −m+)(τ − t)

)
=

∣∣∣∣m+

m−

A1(t)−m−
A1(t)−m+

∣∣∣∣
and finally on [0, τ ]

A1(t) = m+ +
m+ −m−

m−
m+

exp
(
σ2
θ(m− −m+)(τ − t)

)
− 1

.

• If ∆′ = 0, we have a double root m := λθ/σ
2
θ . As above,

τ − t =
1

σ2
θ

∫ τ

t

dA1

(A1 −m)2
=

1

σ2
θ

(
1

m
− 1

m−A1(t)

)
.

As long as τ < 1/λθ, there is a solution on [0, τ ] given by

A1(t) =
λ2
θ(τ − t)

σ2
θλθ(τ − t)− σ2

θ

.

• If ∆′ < 0, then

A′1(t) +

(
σθA1(t)− λθ

σ2
θ

)2

− ∆′

σ2
θ

= 0 .
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Taking y(t) := (σ2
θA1(t)− λθ)/

√
−∆′, we get

arctan(y(t))− arctan

(
− λθ√
−∆′

)
=
√
−∆′(τ − t)

so that

A1(t) =

(
y(t) +

λθ√
−∆′

) √
−∆′

σ2
θ

.

This equation does not always have a continuous solution on [0, τ ].

Having study the existence and the form of solution A1(t), we assume that we have computed
explicitly the solution to (5.2) and the function f1. The precedent calculations apply for agents
1 and 2. Let A1i, A2i, A3i be the functions corresponding to agent i (there is a dependence on
γi). The initial allocations are:

x1 = y
1

γ1−1
∫ T

0 exp
(
A11(0)θ2

0/2 +A21(0)θ0 +A31(0) + rτ − (r+ρ1)τ
1−γ1

)
dτ =: y

1
γ1−1 s1

x2 = y
1

γ2−1
∫ T

0 exp
(
A12(0)θ2

0/2 +A22(0)θ0 +A32(0) + rτ − (r+ρ2)τ
1−γ2

)
dτ =: y

1
γ2−1 s2

x3 = y
1

γ3−1 exp
(
rT − (r+ρ3)T

1−γ3

)
=: y

1
γ3−1 s3

.

(5.3)
We choose y = Y(x) uniquely such that x1 + x2 + x3 = x. Notice that

Y(x) ∈
[

max
i=1,2,3

(
(x/si)

γi−1
)
, max
i=1,2,3

(
(x/(s1 + s2 + s3))γi−1

)]
.

Define the density function pi(θt, t, τ) := Hi(θt, τ)
(∫ T−t

0 Hi(θt, s)ds
)−1

for i = 1, 2 where

Hi(θ, τ) := exp

(
A1i(0, τ)

θ2

2
+A2i(0, τ)θ +A3i(0, τ) + rτ − (r + ρi)τ

1− γi

)
.

The portfolio strategies πi
t are thus determined by

π1
t =

1

1− γ1

µt − r
σ2

− σθ
(1− γ1)σ

∫ T−t

0
p1(θt, t, τ)(A11(τ)θt +A21(τ))dτ

π2
t =

1

1− γ2

µt − r
σ2

− σθ
(1− γ2)σ

∫ T−t

0
p2(θt, t, τ)(A12(τ)θt +A22(τ))dτ

π3
t =

1

1− γ3

µt − r
σ2

− σθ
(1− γ3)σ

(A13(T − t)θt +A23(T − t))

. (5.4)

Together, equations of (5.4) and (3.6) solve the couple of investors optimal consumption and
portfolio choice problem. The economic consequences of these equations are explored in the
next subsection. We continue here to explore the analytical results.
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Proposition 5.1. Assume that θt > 0. If γi < 0, it follows that

A1i(T − t)θt +A2i(T − t) ≤
∫ T−t

0
pi(θt, t, τ)(A1i(τ)θt +A2i(τ))dτ ≤ 0 .

On the other hand if γi ≥ 0,

0 ≤
∫ T−t

0
pi(θt, t, τ)(A1i(τ)θt +A2i(τ))dτ ≤ A1i(T − t)θt +A2i(T − t) .

Proof These inequalities follow from the monotonicity of A1i and A2i. �

Proposition 5.2. Assume that θt > 0. If γi < 0, i = 1, 2, the consumption satisfaction propor-
tion (CSP) defined by (x1 + x2)/x is decreasing in θ. On the other hand if γi ≥ 0, i = 1, 2, CSP
is increasing in θ.

Remark 5.3. It is interesting to see that during favourably market conditions, i.e., θ is increas-
ing, the agents behave differently according to their risk aversion. Thus, if they are more risk
averse they will use a higher fraction of the initial wealth to finance investment; else if they are
less risk averse they will use a higher fraction of the initial wealth to finance consumption.

Proof From direct computations one gets

dy

dθ
=

y
1

γ1−1 ds1
dθ + y

1
γ2−1 ds2

dθ

s1
1−γ1 y

1
γ1−1

−1
+ s2

1−γ2 y
1

γ2−1
−1

+ s3
1−γ3 y

1
γ3−1

−1
.

Moreover

d

dθ

(
x1 + x2

x

)
=

d

dθ

(
1− x3

x

)
= −

dx3
dθ

x
=

dy
dθy

1
γ3−1

−1

(1− γ3)x
.

Thus, by (5.3) and Proposition 5.1 the claims yield. �

Proposition 5.4. Let us define the relative risk-aversion for the couple as R(x) := −xV ′′(x)/V ′(x),
with V of (3.1). Assume that γ1 < γ2 < γ3. Then with H1,H2,H3 of (3.4), (3.5)

lim
x→∞

R(x) = (1− γ1)
H3(1)

H1(1)
and lim

x→0
R(x) = (1− γ3)

H1(1)

H3(1)
.

Remark 5.5. It is interesting enough to point out that for small initial wealth or high initial
wealth the couple risk aversion is driven by one of the agents. Thus, the less risk averse agent
determines the couple utility for little initial wealth. This is in accordance with risk seeking
agents behaviour when the latter are poor.

Proof Recall that V (x) = G(Y(x)) and V ′(x) = Y(x). Thus V ′′(x) = Y ′(x) = 1
H′(y) (with

y := Y(x)) and R(x) = −xY ′(x)
Y(x) = − H(y)

yH′(y) . In light of

H(y) = y
1

γ1−1H1(1) + y
1

γ2−1H2(1) + y
1

γ3−1H3(1) ,
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it follows that

R(x) =
y

1
γ1−1H1(1) + y

1
γ2−1H2(1) + y

1
γ3−1H3(1)

y
1

γ1−1 H1(1)
1−γ1 + y

1
γ2−1 H2(1)

1−γ2 + y
1

γ3−1 H3(1)
1−γ3

,

whence the claim. �

5.3 Numerical results

For the numerical applications, following [11], we have chosen the following fixed parameters for
the market

(y, r, σθ, λθ, θ̄) = (3, 0.048, 0.0655, 0.2712, 0.9456) .

We first plot the fraction of initial wealth for each agent as a function of total wealth x in figure
1. In this situation, we assume that discount rates ρi are all equal to 0.01, but that risk aversions
differ and are given by (γ1, γ2, γ3) = (−9,−3,−2).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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fraction of wealth i to total variable wealth at t=0
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x1/x
x2/x
x3/x
consumption satisfaction proportion

Figure 1: Fraction of Initial Wealth as a function of total wealth for T = 1.

We see from the plot that the fraction of initial wealth allocated to each of the agents is
monotonous in wealth and it is higher for the less risk averse agent. Moreover, as the agents’
initial wealth increases, initial wealth allocation for financing investment increases. The model
with one agent only also mentions this fact, see [10].
Next we explore the effect of varying risk aversion. In figure 2, we vary γ1 while holding γ2, γ3

constant. As expected, when agent 1 becomes more risk-averse his/her initial wealth allocation
decreases and the initial wealth allocation for financing investment increases.
In figure 3, we vary γ3 and fix γ1 and γ2 to fall below the range of γ3. The initial wealth
allocation for financing investment increases in γ3.
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Figure 2: Fraction of Initial Wealth as a function of risk aversion γ1, for γ1 ≤ γ3.

In figure 4 we observe the effect on the initial wealth allocation of the market price of risk θ.
Here (γ1, γ2, γ3) = (−9,−3,−2). The findings are in accordance with Proposition 5.2.
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