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Virtual braids from a topological viewpoint

Virtual braids are a combinatorial generalization of braids. We present abstract braids as equivalence classes of braid diagrams on a surface, joining two distinguished boundary components. They are identified up to isotopy, compatibility, stability and Reidemeister moves. We show that virtual braids are in a bijective correspondence with abstract braids. Finally we demonstrate that for any abstract braid, its representative of minimal genus is unique up to compatibility and Reidemeister moves. The genus of such a representative is thus an invariant for virtual braids. We also give a complete proof of the fact that there is a bijective correspondence between virtually equivalent virtual braid diagrams and braid-Gauss diagrams.

Introduction

A knot diagram is an oriented planar closed curve in general position (only transversal double points, called crossings) with a function that assigns to each crossing a sign, either positive or negative. Knot diagrams are identified up to Reidemeister moves and the equivalence classes are in bijective correspondence with knots in R 3 . Some approaches to knot theory are by means of knot diagrams.

There is a combinatorial way to describe an oriented planar closed curve in general position called the Gauss word. It was described by Gauss [4, pp. 85] in his unpublished notebooks. The main idea of this approach is to consider the curve as an oriented graph where the vertices are the crossings of the curve and the edges are the oriented segments joining two crossings.

This idea has been retaken by O. Viro and M. Polyak in order to express knot diagrams in a combinatorial way. To do this, they introduced the notion of Gauss diagrams to compute Vassiliev's invariants [START_REF] Polyak | Gauss diagram formulas for Vassiliev invariants[END_REF]. In fact Mikhail N. Goussarov proved that all Vassiliev invariants can be calculated in this way.

The theory of virtual knots was introduced by L. Kauffman [START_REF] Kauffman | Virtual Knots, talks at MSRI Meeting in January 1997 and AMS Meeting at University of Maryland[END_REF] as a generalization of classical knot theory. A virtual knot diagram is an oriented planar closed curve in general position with a function that assigns to each crossing a value that can be positive, negative or virtual. Virtual knot diagrams are identified up to Reidemeister, virtual and mixed moves.

Goussarov, Polyak and Viro [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF] showed that there is a bijection between virtually equivalent virtual knot diagrams and Gauss diagrams. Moreover they showed that any Vassiliev invariant of classical knots can be extended to virtual knots and calculated via Gauss diagrams formulas.

Braids are a fundamental part of knot theory, as each link can be represented as the closure of a braid [START_REF] Alexander | A lemma on systems of knotted curves[END_REF] (Alexander's theorem) and there is a complete characterization of the closure of braids given by Markov's theorem [START_REF] Markov | zúber die freie Aquivalenz der geschlossen Zöpfe[END_REF].

L. Kauffman defined virtual braids and virtual string links and he also gave a virtual version of Alexander's theorem [START_REF] Kauffman | Virtual braids and the L-move[END_REF]. Independendtly S. Kamada also proved a virtual version of Alexander's theorem and a full characterization of the closure of virtual braids, i.e. a virtual version of Markov's theorem [START_REF] Kamada | Braid presentation of virtual knots and welded knots[END_REF].

Goussarov, Polyak and Viro defined Gauss diagrams for virtual string links. All though they stated that, up to virtual and mixed moves, each Gauss diagram defines a unique virtual string link diagram [START_REF] Goussarov | Finite-type invariants of classical and virtual knots[END_REF][START_REF] Kravchenko | Diassociative algebras and Milnor's invariants for tangles[END_REF], it is not clear that this statement is still true for virtual braids.

In Section 2 we describe the braid version of Gauss diagrams and then we prove that each braid-Gauss diagram defines, up to virtual and mixed moves, a unique virtual braid diagram. Then we introduce the Ω moves in braid-Gauss diagrams and we show that there is a bijection a bijection between the Ω equivalence classes of braid-Gauss diagrams and the virtual braids. Finally we recover the presentation given for the pure virtual braids in [START_REF] Bardakov | The virtual and universal braids[END_REF].

This result is quite technical and it has been considered as folklore in literature, even though it was missing a rigorous proof. Gauss diagrams allow us to manage global information with much more liberty as they express the interaction among all strands along the time. On the other hand, on Gauss digrams we can obvious the virtual crossings, as the valuable information of virtual objects underlies on how the strands interacts with themselves through regular crossings, this information is expressed on the arrows of the Gauss diagrams. In particular they become our main tool to prove the results of Section 3 and in [START_REF] Kravchenko | Diassociative algebras and Milnor's invariants for tangles[END_REF] are used to define and calculate Milnor invariants of virtual string links.

On the other hand, classical knot theory works with topological objects that can be studied with topological, analytic, algebraic and combinatorial tools. Virtual knots diagrams encodes the combinatorial information of a Gauss diagram, but these are not topological objects. A topological interpretation of these objects was done by N. Kamada, S. Kamada and J. Carter [START_REF] Carter | Stable equivalence of knots on surfaces and virtual knot cobordisms[END_REF][START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF]. They defined abstract links as link diagrams on surfaces, identified up to stable equivalence and Reidemeister moves. They proved that abstract links are in bijective correspondence with virtual links.

A representation of a virtual knot in a closed surface is called a realization of the virtual knot. The stable equivalence identifies different realizations, which means that a virtual knot may be realized in different surfaces. G. Kuperberg proved that any virtual link admits a realization in a surface of minimal genus and, up to diffeomorphism and Reidemeister moves, this realization is unique [START_REF] Kuperberg | What is a virtual link?[END_REF].

In this paper we provide a topological interpretation of virtual braids inspired by [START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF][START_REF] Kuperberg | What is a virtual link?[END_REF]. In Section 3 we introduce the notion of abstract braid diagrams, that are braid diagrams in a surface with two distinguished boundary components and a real smooth function satisfying some conditions. We also introduce the stable equivalence of abstract braid diagrams. The abstract braids are the abstract braid diagrams identified up to compatibility, stable equivalence and Reidemeister moves. We prove that abstract braids are in bijective correspondence with virtual braids.

The notion of abstract braid diagram must not be confused with the definition given in [START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF], even if the concept is quite similar. An abstract diagram in [START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF] is a pair (S, D), with S an oriented, compact surface and D is a diagram in S such that D is a deformation retract of S. In any case, what we define as abstract braid diagram corresponds to the realization of an abstract diagram in [START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF].

In Section 4 (Theorem 4.9) we prove that given an abstract braid, there is a unique abstract braid diagram (up to Reidemeister moves and compatibility) of minimal genus.

These results states some questions for future work: [START_REF] Bellingeri | Groups of virtual and welded links[END_REF][START_REF] Kamada | Abstract link diagrams and virtual knots[END_REF] obtained by the closure of β?

Virtual braids and Gauss diagrams

We fix the next notation: set n a natural number, the interval [0, 1] is denoted by I, and the 2-cube is denoted by D = I × I. The projections on the first and second coordinate from the 2-cube to the interval, are denoted by π 1 : D → I and π 2 : D → I, respectively. A set of planar curves is said to be in general position if all its multiple points are transversal double points.

Virtual braids.

Definition 2.1. A strand diagram on n strands is an n-tuple of curves, β = (β 1 , . . . , β n ), where β k : I → D for k = 1, . . . , n, such that:

1. There exists σ ∈ S n such that, for k = 1, . . . , n, we have

β k (0) = a k and β k (1) = b σ(k) , where a k = (0, k n+1 ) and b k = (1, k n+1 ).
2. For k = 1, . . . , n and all t ∈ I, (π

1 • β k )(t) = t.
3. The set of curves in β is in general position.

The curves β k are called strands and the transversal double points are called crossings. The set of crossings is denoted by C(β).

A virtual braid diagram on n strands is a strand diagram on n strands β endowed with a function : C(β) → {+1, -1, v}. The crossings are called positive, negative or virtual according to the value of the function . The positive and negative crossings are called regular crossings and the set of regular crossings is denoted by R(β). In the image of a regular neighbourhood (homeomorphic to a disc sending the center to the crossing) we replace the image of the involved strands as in Figure 1, according to the crossing type. Without loss of generality we draw the braid diagrams from left to right. We denote the set of virtual braid diagrams on n strands by V BD n . Definition 2.2. Given two virtual braid diagrams on n strands, β 1 and β 2 , and a neighbourhood V ⊂ D, homeomorphic to a disc, such that:

( + ) ( -) ( v )
• Up to isotopy β 1 \ V = β 2 \ V .
• Inside V , β 1 differs from β 2 by a diagram as either in Figure 2, or in Figure 3, or in Figure 4.

Then we say that β 2 is obtained from β 1 by an R2a, R2b, R3, V 2, V 3, M or M moves. The moves R2a, R2b, R3 are called Reidemeister moves, the moves V 2 and V 3 are called virtual moves, and the moves M and M are called mixed moves.
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R2b R3

Figure 2: Reidemester moves. Let β and β be two virtual braid diagrams. Note that if β can be obtained from β by a finite series of virtual, mixed or Reidemeister moves, necessarily β and β have the same number of strands.

If β can be obtained from β by isotopy and a finite number of virtual, Reidemeister or mixed moves, β and β are virtually Reidemeister equivalent. We denote this by β ∼ β . These equivalence classes are called virtual braids on n strands. We denote by V B n = V BD n / ∼ the set of virtual braids on n strands.

If β can be obtained from β by isotopy and a finite number of virtual or mixed moves, β and β are virtually equivalent. We denote this by β ∼ vm β .

If β can be obtained from β by isotopy and a finite number of Reidemeister moves, β and β are Reidemeister equivalent. We denote this by β ∼ R β .

Remark 2.3. Define the product of two virtual braids diagrams as the concatenation of the diagrams and an isotopy in the obtained diagram, to fix it in D. With this operation the set of virtual braid diagrams has the structure of a monoid. It is not hard to see that it factorizes in a group when we consider the virtual Reidemeister equivalence classes. Thus, the set of virtual braids has the structure of a group with the product defined as the concatenation of virtual braids. The virtual braid group on n strands has the following presentation: • Generators: σ 1 , . . . , σ n-1 , τ 1 , . . . , τ n-1 .

V2 V3
• Relations:

σ i σ i+1 σ i = σ i+1 σ i σ i+1 for 1 ≤ i ≤ n -2 σ i σ j = σ j σ i if |i -j| ≥ 2 τ i τ i+1 τ i = τ i+1 τ i τ i+1 for 1 ≤ i ≤ n -2 τ i τ j = τ j τ i if |i -j| ≥ 2 σ i τ i+1 τ i = τ i+1 τ i σ i+1 for 1 ≤ i ≤ n -2 τ i σ j = σ j τ i if |i -j| ≥ 2 τ 2 i = 1 for 1 ≤ i ≤ n -1
Remark 2.4. The mixed moves can be replaced by the moves showed in Figure 5.
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Figure 5: Equivalent mixed moves.

Braid Gauss diagrams.

Definition 2.5. A Gauss diagram on n strands G is an ordered collection of n oriented intervals n i=1 I i , together with a finite number of arrows and a permutation σ ∈ S n such that:

• Each arrow connects by its ends two points in the interior of the intervals (possibly the same interval).

• Each arrow is labelled with a sign ±1.

• The end point of the i-th interval is labelled with σ(i).

Gauss diagrams are considered up to orientation preserving homeomorphism of the underlying intervals. • Each strand of G(β) is associated to the corresponding strand of β.

• The endpoints of the arrows of G(β) correspond to the preimages of the regular crossings of β.

• Arrows are pointing from the over-passing string to the under-passing string.

• The signs of the arrows are given by the signs of the crossings (their local writhe).

• The permutation of G(β) correspond to the permutation associated to β. Definition 2.8. Gauss diagrams satisfying the conditions of Remark 2.7 are called braid Gauss diagrams. The set of braid Gauss diagrams on n strands is denoted by bGD n . Definition 2.9. Given a braid-Gauss diagram, G, we can associate a total order to the set of arrows in G, given by the order in which the arrows appear in the interval I, i.e. let a and b be two arrows in G, such that a appears first, then a > b. This order is not defined in the equivalence class of the Gauss diagram, as it may change with orientation preserving homeomorphisms of the underlying intervals.

We denote by P (G) the partial order obtained as the intersection of the total orders associated to G. Given a virtual braid diagram β, let G(β) be its Gauss diagram. Then P (G(β)) defines a partial order in the set of regular crossings,R(β). We denote it by P (β).

Theorem 2.10.

1. Let g be a braid-Gauss diagram on n strands. Then there exists β ∈ V BD n such that G(β) = g.

2.

Let β 1 and β 2 be two virtual braids on n strands. Then G(β 1 ) = G(β 2 ) if and only if

β 1 ∼ vm β 2 .
From now on we fix n ∈ N the number of strands on the braid-Gauss diagrams, and we say braid-Gauss diagram instead of braid-Gauss diagram on n strands. We split the proof of this theorem into some lemmas. Lemma 2.11. Let g be a braid-Gauss diagram. Then there exists β ∈ V BD n such that G(β) = g.

Proof. Let g be a braid-Gauss diagram and A = {c 1 , . . . , c k } be the set of arrows of g. Set a parametrization of the intervals as described in Remark 2.7. This induces an order in A given by c i > c j if p i < p j , where p i ∈ I is the corresponding endpoint of c i . Suppose that c i > c j if i < j.

Recall the notation of Definition 2.1. For j = 1, . . . , k let d j = ( j k+1 , 1 2 ) and consider the disc D j with radius r = 1 5(k+1) centered in d j . Draw a crossing inside D j according to the sign of c j , and label the intersection of the crossing components with the boundary of D j as in Figure 8.

v v (1) v (2)
v (2) v (1) ( + )

v v (1) v (2)
v (2) v (1) ( -) Drawing the strands: let σ ∈ S n be the permutation associated to g. Fix i ∈ {1, . . . , n} and let A i = {c i 1 , . . . , c im } be the arrows starting or ending in the i-th interval.

For s = 0, . . . , m define o s and t s+1 as follows:

1. o 0 = a i and t m+1 = b σ(i) .

2. For l = 1, . . . , m, o l = (d i l ) (v) and t l = (d i l ) (v) where:

(a) If c i l is a positive arrow starting in the i-th interval or a negative arrow ending in the i-th interval then v = 2;

(b) If c i l is a negative arrow starting in the i-th interval or a positive arrow ending in the i-th interval then v = 1.

For each s ∈ {0, . . . , m}, draw a curve joining o s to t s+1 such that it is strictly increasing on the first component and disjoint from the discs D j for all j ∈ {1, . . . , k} except possibly on the points o s and t s+1 defined above. In this way we have drawn a curve joining a i with b σ (i) passing through the crossings c i 1 , . . . , c jm .

For each i ∈ {1, . . . , k} we can draw a curve as described before, so that they are in general position. Consider the double points outside the discs D j as virtual crossings. In this way we have constructed a virtual braid diagram such that its Gauss diagram coincides with g. Lemma 2.12. Let β 1 and β 2 be two virtual braid diagrams on n strands such that they are virtually equivalent. Then G(β 1 ) = G(β 2 ).

Proof. In order to see this we only need to verify that the V 2, V 3, M and M moves do not change the braid-Gauss diagram of a virtual braid diagram. In the cases of the V 2 and V 3 moves they involve only virtual crossings, which are not represented in the Gauss diagram, so they do not change the Gauss diagram. In the case of the M and M moves, the Gauss diagrams of the equivalent virtual braid diagrams are equal (Figure 9), thus this type of move neither changes the Gauss diagram of the virtual braid diagram. Definition 2.13. Given β ∈ V BD n we can deform β by an isotopy, in such a way that for c i , c j ∈ C(β) with, i = j, we have that π 1 (c i ) = π 1 (c j ), in this case we say that β is in general position. If β ∈ V BD n is in general position, let D(β) be the total order associated to C(β), given by c i > c j if π 1 (c i ) < π 1 (c j ). Denote by D(β) the total order of the set of regular crossings, R(β), induced by D(β). Definition 2.14. A primitive arc of β is a segment of a strand of β which does not go through any regular crossing (but it may go through virtual ones).

Let β ∈ V BD n . For v ∈ R(β), set a disc D v centered in v, with a radius small enough so that its intersection with β consists exactly in two transversal arcs as in Figure 8. We denote by v (1) and by v (2) the bottom and upper left intersections of β with ∂D v , and by v (2) and by v (1) the bottom and upper right intersections of β with ∂D v as in Figure 8.

Let As each arc is a segment of a strand β k : [0, 1] → D we can parametrize it with respect to the projection on the first coordinate, i.e. there exists a continuous bijective map θ : [t 0 , t f ] → [0, 1] with 0 < t 0 < t f < 1 such that π 1 (α(θ(t))) = t . Without loss of generality we suppose from now on that the arcs are parametrized by the projection on the first coordinate.

d be a point in the diagram β, if d ∈ {b 1 , . . . , b n } or d ∈ {c (1) , c (2) } for some c ∈ R(β) we denote d by d * . Similarly if d ∈ {a 1 , . . . , a n } or d ∈ {c (1) , c (2) } for some c ∈ R(β)
Lemma 2.15. Let β be a virtual braid diagram and let α 1 , α 2 be two primitive arcs of β such that:

1. The arcs α 1 and α 2 start at the same time, t 0 , and end at the same time, t f . 2. The arcs α 1 and α 2 start at the same point (a crossing which may be either virtual or regular), i.e. α 1 (t 0 ) = α 2 (t 0 ).

3. The arcs α 1 and α 2 do not intersect, except at the extremes, i.e.

α 1 | (t 0 ,t f ) ∩ α 2 | (t 0 ,t f ) = ∅.
Then, there exists a virtual braid diagram β virtually equivalent to β such that:

1. If β 1 and β 2 are the strands corresponding to α 1 and α 2 respectively, then up to isotopy they remain unchanged in β , and in their restriction to (0, t 0 ) × I we add only virtual crossings.

2. The diagrams β and β coincide for t ≥ t f , i.e.

β| t≥t f = β | t≥t f .
3. In (t 0 , t f ) × I there are only virtual crossings with α 2 .

4. If α 1 (t f ) = α 2 (t f ), we can choose β such that there is no crossing in (t 0 , t f ) × I. Proof. Suppose α 1 (t f ) = α 2 (t f ) and that we have reduced β by all the possible V 2 moves that may be made on it. Note that α 1 , α 2 and y = t f form a triangle D.

Let C be the set of crossings in β such that their projections on the first component are in the open interval (t 0 , t f ). Let m 0 be the number of crossings in C that are in the interior of D, m 1 the number of crossings in C that are on α 1 , m 2 the number of crossings in C that are on α 2 , and m ∞ the number of crossings in C that are outside D.

We argue by induction on

m = m 0 + m 1 + m ∞ . Suppose m = 1. Then C = {c 1 , . . . , c m 2 , d}
, where c 1 , . . . , c m 2 are the crossings on α 2 and d is the other crossing. We have four cases:

1. The crossing d is outside D (Figure 12). We move d by an isotopy to the left part of I × [t 0 , t f ). 2. The crossing d is inside D (Figure 13). There are two strands entering D that meet at the crossing d. We apply a move of type M , M or V 3 according to the value of the crossing d, and then apply Case 1. 3. The crossing d is on α 1 in such a way that the strand making the crossing with α 1 goes out D (Figure 14). Then such strand also has a crossing with α 2 and is the leftmost crossing on it. Up to isotopy we may apply a move of type M , M or V 3 according to the value of the crossing p. Then we are done. 4. The crossing d is on α 1 in such a way that the strand making the crossing with α 1 enters D (Figure 15). Let β j be that strand. We apply a move of type V 2 to β j and β 2 just before the crossing p, then we apply a move of type P , P or V 3 according to the value of the crossing p. In this way now d is a crossing on α 2 . Note that, in the above four cases, we have not deformed β for t ≥ t f . Moreover, up to isotopy, β 1 and β 2 remain unchanged and in their restriction to (0, t 0 ) × I we have added only virtual crossings. Now if m ≥ 2 take d the leftmost crossing in (t 0 , t f ) × I such that d is not on α 2 . We apply the case m = 1 in order to get rid of this crossing and reduce the obtained diagram by all the possible V 2 moves in it. By the induction hypothesis, we have proven (1,2,3) of the lemma. 

β 0 β t>t f t 0 t f Figure 16: Case α 1 (t f ) = α 2 (t f ), Lemma 2.15. Now suppose α 1 (t f ) = α 2 (t f ).
Then α 1 and α 2 form a bigon D. We apply the same reasoning as above in order to have only crossings on α 2 (Figure 16). Suppose that m 2 = 0, then it necessarily is even (as each strand entering the bigon must go out by α 2 ). We can apply m 2 moves of type V 2 to get rid of the crossings in α 2 . But this is a contradiction as in each inductive step we are reducing the diagram by all the possible V 2 moves in it. Therefore we can chose β such that there are no crossings in (t 0 , t f ) × I. With this we complete the proof of the lemma.

Corollary 2.16. Let β be a virtual braid diagram and let α 1 , α 2 be two primitive arcs of β such that:

1. The arcs α 1 and α 2 start in the same point, say p (thus a crossing, it may be virtual or regular).

2. The arcs α 1 and α 2 end at the same time, say t f .

Then there exists a virtual braid diagram β virtually equivalent to β such that:

1. If β 1 and β 2 are the strands corresponding to α 1 and α 2 , respectively, then up to isotopy they remain unchanged in β and in their restriction to (0, π 1 (p) = t 0 ) we add only virtual crossings.

2. The diagrams β and β coincide for t ≥ t f , i.e. 

β| t≥t f = β | t≥t f . 3. Let α 1 ∩ α 2 = {p = p 1 , p 2 , . . . , p m }, numbered so that π 1 (p i ) < π 1 (p i+1 ) for 1 ≤ i ≤ m -1. (a) If π 1 (p m ) = t f , then in (t 0 , t f )×I there are no crossings except, eventually, p 2 , . . . , p m-1 . (b) If π 1 (p m ) = t f , then in (t 0 , π 1 (p m )) × I
Proof. Suppose that π 1 (p 1 ) < • • • < π 1 (p m ).
We argue by induction on m. Suppose m = 1. Then necessarily p 1 = p and we have the hypothesis of Lemma 2.15. Suppose m > 1 and that α 1 and α 2 end in the same point p m . Consider the restrictions of α 1 and α 2 to [π 1 (p m-1 ), t f ] and apply Lemma 2.15. We obtain a virtually equivalent diagram β which does not have crossings neither on the restriction of α 1 nor on the restriction of α 2 . Furthermore, up to isotopy the strands corresponding to α 1 and α 2 remain unchanged and their restrictions to [t 0 , π 1 (p m-1 )] go only through virtual crossings, i.e. they are primitive arcs whose intersection has m -1 points. Applying induction hypothesis on them, we have proved this case.

Suppose m > 1 and that α 1 and α 2 do not end in the same point. Consider the restrictions of α 1 and α 2 to [π 1 (p m ), t f ] and apply Lemma 2.15. We obtain a virtually equivalent diagram β which may have only virtual crossings with the corresponding upper segment of α 1 or α 2 . Furthermore, up to isotopy, the strands corresponding to α 1 and α 2 remain unchanged and their restrictions to [t 0 , π 1 (p m )] go only through virtual crossings, i.e. they are primitive arcs whose intersection has m points and satisfies the condition of the preceding case. With this we conclude the proof.

Corollary 2.17. Given a virtual braid diagram β in general position. Let c 1 and c 2 be two regular crossings not related in P (β) (Definition 2.9) and such that:

1. In the total order on R(β) (Definition 2.13), D(β), c 1 > c 2 .

2. There is no regular crossing between c 1 and c 2 in D(β).

Then there exists a virtual braid diagram β virtually equivalent to β with c 2 > c 1 in D(β ), and such that there is no regular crossing between them.

Furthermore, the diagrams β and β coincide for t > t f . In particular the total order on the set of elements smaller than

c 2 in D(β) is preserved in D(β ), i.e. c 2 > d 1 > d 2 in D(β), then c 1 > d 1 > d 2 in D(β ).
Proof. Let t f > π 1 (c 2 ) such that there is no crossing in (π 1 (c 2 ), t f ) × I and, let α 1 and α 2 be the primitive arcs coming from the regular crossing c 1 and finishing in t f . Applying the last corollary to α 1 and α 2 , we obtain a virtually equivalent diagram β such that in (π 1 (c 1 ), t f ] × I there are only virtual crossings and β remains unchanged for t ≥ t f . Thus

c 2 > c 1 in D(β ) and if c 2 > d 1 > d 2 in D(β), then c 1 > d 1 > d 2 in D(β ).
Given two orders, R and R over a set X, we say that R is compatible with R if R ⊂ R . Lemma 2.18. Let β be a virtual braid diagram and let R be a total order on R(β) compatible with P (β). Then there exists a virtual braid diagram β virtually equivalent to β such that D(β ) = R. 

Proof. Suppose R = {c 1 > • • • > c m }, D(β) = {d 1 > • • • > d m },
and that c l = d l for l > k, c k = d k and c k = d j > d k in D(β). Note that for k ≥ l > j, d j is not related with d l in P (β). Applying the last corollary k -j times we construct a virtual braid diagram β virtually equivalent to β such that if D(β ) = {d 1 > • • • > d m } then c l = d l for l ≥ k.
Applying this procedure inductively we obtain the lemma.

Lemma 2.19. Let β 1 and β 2 be two virtual braid diagrams on n strands, and let α 1 and α 2 be two primitive arcs of β 1 and β 2 respectively, such that:

1. The extremes of α 1 and α 2 coincide.

2. α 1 and α 2 form a bigon D.

3.

β 1 \ α 1 and β 2 \ α 2 coincide.
4. There are no crossings in the interior of D.

Then β 1 and β 2 are virtually equivalent by isotopy and moves of type V 2.

Proof. First note that each strand entering D must go out. Take a strand α entering D and suppose it is innermost. If it goes out by the same side, as there are no crossings in the interior of D, then we can apply a move of type V 2 and eliminate the two virtual crossings. Therefore we can suppose that each strands entering by one side goes out by the other. Apply an isotopy following the strands crossing the bigon (if there are any) in order to identify the two primitive arcs.

Lemma 2.20. Let β 1 and β 2 be two virtual braid diagrams on n strands, and let α 1 and α 2 be two primitive arcs of β 1 and β 2 respectively, such that:

1. The extremes of α 1 and α 2 coincide.

2. α 1 and α 2 form a bigon D.

3.

β 1 \ α 1 and β 2 \ α 2 coincide.
Then β 1 and β 2 are virtually equivalent. Proof. Call p and q the starting and ending points of α 1 , and set β = β 1 \ α 1 . Let m be the number of crossings inside D. We argue by induction on m. If m = 0 we apply the last lemma. Suppose m ≥ 1 and let c be the leftmost crossing inside D. Choose t 0 and t 1 so that π 1 (p) < t 0 < t 1 < π 1 (c) and so that there are no crossings in D ∩ ((t 0 , π 1 (c)) × I). Draw a line a joining α 1 (t 0 ) and α 2 (t 1 ). Note that a intersects the two incoming strands that compose c. To the crossings of β with a assign virtual crossings. Consider the following primitive arcs:

c 1 = α 1 | [π 1 (p),t 0 ] * a c 3 = a * α 2 | [t 1 ,π 1 (q)] c 2 = α 2 | [π 1 (p),t 1 ] c 4 = α 1 | [t 0 ,π 1 (q)] .
Note that c 1 and c 2 form a bigon that has no crossing in its interior, so we apply the last lemma to β 2 = (β 2 ∪ c 1 ) \ c 2 and β 2 .

On the other hand, take the bigon D formed by c the bigon formed between β 1 and β 1 has m -1 crossings in its interior. Applying the induction hypothesis to β 1 and β 1 we conclude that

β 1 ∼ vm β 1 ∼ vm β 2 ∼ vm β 2 ,
which proves the lemma.

Corollary 2.21. Let β 1 and β 2 be two virtual braid diagrams on n strands, and let α 1 and α 2 be two primitive arcs of β 1 and β 2 , respectively, such that:

1. The extremes of α 1 and α 2 coincide.

2.

β 1 \ α 1 and β 2 \ α 2 coincide.
Then β 1 and β 2 are virtually equivalent.

Proof. Without loss of generality we can suppose that α 1 intersects transversally α 2 in a finite number of points. In this case they form a finite number of bigons. Apply the previous lemma to each one.

Now we are able to complete the proof of Theorem 2.10. We have already proved (1) in Lemma 2.11. In Lemma 2.12 we have shown that if

β ∼ vm β then G(β) = G(β ). It remains to prove that if β, β ∈ V BD n are so that G(β) = G(β ), then β ∼ vm β . Set g = G(β) = G(β ).
Let R be a total order of R(G), compatible with P (G). By Lemma 2.18 there exist two virtual braid diagrams, α and α , virtually equivalent to β and β respectively and such that D(α) = R = D(α ). As D(α) = D(α ) we can suppose that the regular crossings of α and α coincide (if not, move them by an isotopy to make them coincide). In this case α and α differ by joining arcs.

Suppose α has m joining arcs. As the regular crossings of α and α coincide, we can suppose that the corresponding joining arcs of α and α begin and end at the same points. Apply Corollary 2.21 m times, in order to make that each of the corresponding joining arcs coincide. We conclude that α is virtually equivalent to α and thus β and β .

Virtual braids as Gauss diagrams

The aim of this section is to establish a bijective correspondence between virtual braids and certain equivalence classes of braid-Gauss diagrams. We also give the group structure on the set of virtual braids in terms of Gauss diagrams, and use this to prove a presentation of the pure virtual braid group. Definition 2.22. Let g and g be two Gauss diagrams. A Gauss embedding is an embedding ϕ : g → g which send each interval of g into a subinterval of g, and which sends each arrow of g to an arrow of g respecting the orientation and the sign. Note that there is no condition on the permutations associated to g and g in the above definition. We shall say that g is embedded in g if a Gauss embedding of g into g is given.

Let g be a Gauss diagram of n strands, so that it is embedded in g by sending the interval i to a subinterval of the interval k i of g, we say that the embedding is of type (k 1 , . . . , k n ).

Consider the three Gauss diagrams presented in Figure 21. Note that g 1 is embedded in g 2 by an embedding of type (2, 1), and g 3 is embedded in g 2 by an embedding of type (1, 2, 3).

1 2 3 + - - - + - + 1 2 3 + + 1 2 G 1 G 2 G 3 Figure 21: G 1 is (1, 2)-embedded in G 2 , and G 3 is (1, 2, 3)-embedded in G 2 .
By performing an Ω3 move on a braid Gauss diagram g, we mean choosing an embedding in g of the braid Gauss diagram depicted on the left hand side of Figure 22 (or on the right hand side of Figure 22), and replacing it by the braid Gauss diagram depicted on the right hand side of Figure 22 (resp. on the left hand side of Figure 22). Proposition 2.24. There is a bijective correspondence between bG n and V B n .

Proof. By Theorem 2.10 we know that there is a bijective correspondence between the set of virtually equivalent virtual braid diagrams and the braid Gauss diagrams. Therefore we need to prove that if two virtual braid diagrams are related by a Reidemeister move then their braid Gauss diagrams are Reidemeister equivalent, and that if two braid Gauss diagrams are related by an Ω2 or an Ω3 move then their virtual braid diagrams are virtually Reidemeister equivalent.

Let β and β be two virtual braid diagrams that differ by a Reidemeister move. Suppose that they are related by a R3 move, and that the strands involved in the move are a, b, and c, with a, b, c ∈ {1, . . . , n}. Then, up to isotopy we can deform the diagrams so that they coincide outside the subinterval I 0 := [t 0 , t f ] ⊂ I, and in I 0 there are only the crossings involved in the R3 move. In I 0 the diagrams look as in Figure 28. Thus, their braid-Gauss diagrams coincide outside I 0 and in I 0 they differ by an Ω3 move of type (a, b, c). The case R2 is proved in the same way. Now, let g and g be two braid Gauss diagrams and let a, b, c ∈ {1, . . . , n} be pairwise different. Suppose that g and g are related by an Ω3 move of type (a, b, c). There exists a subinterval I 0 = [t 0 , t f ] ⊂ I, that contains only the three arrows involved in the Ω3 move. There exists a virtual braid diagram β, representing g, that in the subinterval I 0 it looks as the left hand side (or the right hand side) of Figure 28. By performing an R3 move on β| I 0 , we obtain a virtual braid diagram β . Their braid Gauss diagrams coincides outside I 0 and in I 0 the differ by an Ω3 move of type (a, b, c), i.e. G(β ) = g .

Presentation of P V n .

Recall that V B n has a group structure, with the product given by the concatenation of the diagrams (Remark 2.3). By Proposition 2.24, bG n has a group structure induced by the one on V B n .

A presentation of the pure virtual braids was given by Bardakov [START_REF] Bardakov | The virtual and universal braids[END_REF]. We present an alternative proof by means of the braid Gauss diagrams.

Recall that the symmetric group, S n , has the next presentation:

• Generators: t 1 , . . . , t n-1 .

• Relations: From the presentation of V B n (Remark 2.3), there exists an epimorphism θ P : V B n → S n , given by

t i t i+1 t i = t i+1 t i t i+1 for 1 ≤ i ≤ n -2 t i t j = t j t i for |i -j| ≥ 2. t 2 i = 1 for 1 ≤ i ≤ 2.
θ P (τ i ) = t i = θ P (σ i ) for 1 ≤ i ≤ n -1.
The kernel of θ P is called the pure virtual braid group and is denoted by P V n . The elements of this group correspond to the virtual braids diagrams whose strands begin and end in the same marked point, i.e. the permutation associated to its braid Gauss diagram is the identity.

On the other hand, a braid Gauss diagram is composed by the next elements:

1. A finite ordered set of n intervals, say

I 1 I 2 • • • I n .
2. A finite set of arrows connecting the different intervals, so that to each arrow corresponds a different time.

3. A function assigning a sign, {±1}, to each arrow.

4. A permutation, σ ∈ S n , labelling the endpoint of each interval.

Denote by X i,j the arrow from the interval i to the interval j with sign ∈ {±1}. Let

X = {X i,j | 1 ≤ i = j ≤ n , ∈ {±1}}
and denote by X * the set of all words in X union the empty word, denoted by e. Given a braid Gauss diagram, g, its arrows have a natural order induced by the parametrization of the intervals. Let W ∈ X * be the word given by the concatenation of the arrows in g, according to the order in which they appear, and σ ∈ S n its associated permutation. Thus any braid Gauss diagram can be expressed as g = (W, σ). We denote ē := (e, Id Sn ). Proposition 2.25. (Bardakov [START_REF] Bardakov | The virtual and universal braids[END_REF]) The group P V n has the following presentation:

• Generators: A i,j with 1 ≤ i = j ≤ n.
• Relations:

A i,j A i,k A j,k = A j,k A i,k A i,j for i, j, k distinct. A i,j A k,l = A k,l A i,j for i, j, k, l distinct.
Proof. Given a pure virtual braid diagram β, its braid Gauss diagram is given by G(β) = (W, Id Sn ). Thus any pure virtual braid diagram may be expressed as an element in X * .

Recall that, as elements of bG n , the braid Gauss diagrams are related by three different moves (and its inverses) on the subwords of any word in X * : 1. Reparametrization:

X 1 i,j X 2 k,l = X 2 k,l X 1
i,j for i, j, k, l distinct and 1 , 2 ∈ {±1}.

2. The Ω2 move: X i,j X - i,j = e for i, j distinct and ∈ {±1}.

3. The Ω3 move:

X i,j X i,k X j,k = X j,k X i,k X i,j for i, j, k distinct and ∈ {±1}.
Denote by P G n the set of equivalence classes of X * . Note that P G n has the structure of group with the product defined as the concatenation of the words. On the other hand

G : P V n → P G n is an homomorphism, i.e. G(β 1 β 2 ) = G(β 1 )G(β 2 )
. By Proposition 2.24, G is a bijection. Consequently it is an isomorphism.

Let Γ be the group with presentation as stated in the proposition. Let Ψ : Γ → P G n be given by Ψ(A i,j ) = X i,j , and let Φ : P G n → Γ be given by Φ(X i,j ) = A i,j .

Note that Φ and Ψ are well-defined homomorphisms and furthermore Ψ • Φ = Id P Gn and Φ • Ψ = Id Γ . Consequently P V n has the presentation stated in the proposition.

Abstract braids

The aim of this section is to establish a topological representation of virtual braids. Definition 3.1. A abstract braid diagram on n strands is a quadruple β = (S, f, β, ), such that:

1. S is a connected, compact and oriented surface. 1. For all s ∈ I, K s 0 = K 0 0 and K s 1 = K 0 1 .

2. For all k ∈ {1, . . . , n}, H k is continuous, where:

H k :I × I → S (s, t) → β s k (t).
3. The function H is smooth, where:

H :I × S → I (s, x) → f s (x).
4. The function s : R(β s ) → {±1} remains invariant, i.e. s = 0 , for all s ∈ I.

We say that β0 and β1 are isotopic and we denote it by G : β0 β1 .

Remark 3.3. The isotopy relation is an equivalence relation on the set of abstract braid diagrams.

Definition 3.4. Let β = (S, f, β, ) and β = (S , f , β , ) be two abstract braid diagrams. We say that β and β are compatible if there exists a diffeomorphism ϕ : (S, ∂S) → (S , ∂S ), such that ϕ * β = (S , f • ϕ -1 , ϕ • β, ) is isotopy equivalent to β . We denote it by β ≈ β .

Remark 3.5. The compatibility relation is an equivalence relation on the set of abstract braid diagrams, and the isotopy equivalence is included in the compatibility relation. We denote by ABD n the set of compatibility classes of abstract braid diagrams on n strands.

Definition 3.6. Given β0 = (S 0 , f 0 , β 0 , 0 ) and β1 = (S 1 , f 1 , β 1 , 1 ). We say that they are related by a stability move if there exist:

1. Two disjoint embedded discs, D 0 and D 1 , in S 0 \ β 0 .

2. An embedding ϕ :

(S 0 = S 0 \ (D 0 ∪ D 1 ), ∂S 0 ) → (S 1 , ∂S 1 ), such that S 1 \ ϕ(S 0 ) ≈ S 1 × I. 3. A smooth function F : S 1 → I, such that: (a) f 0 | S 0 = F • ϕ. (b) The quadruple (S 1 , F, ϕ • β 0 , 0 ) is an abstract braid. (c) (S 1 , F, ϕ • β 0 , 0 ) ≈ β1 .
Definition 3.7. Given β0 = (S 0 , f 0 , β 0 , 0 ) and β1 = (S 1 , f 1 , β 1 , 1 ). We say that they are related by a destability move or a destabilization, if there exist:

1. An essential non-separating simple curve C in S 0 \ β 0 .

2. An embedding ϕ : (S 0 = S 0 \C, ∂S 0 ) → (S 1 , ∂S 1 ), such that S 1 \ϕ(S 0 \C) is homeomorphic to the disjoint union of two closed discs.

3. A smooth funcion F : S 1 → I, such that:

(a) f 0 | S 0 = F • ϕ. (b) The quadruple (S 1 , F, ϕ • β 0 , 0 ) is an abstract braid. (c) (S 1 , F, ϕ • β 0 , 0 ) ≈ β1 .
Given two abstract braid diagrams β0 and β1 , if β1 is obtained from β0 from a stability move along two discs D 0 and D 1 in S 0 \ β 0 , the boundaries of D 0 and D 1 are homotopy equivalent in S 1 . If we perform a destabilization along its homotopy class we recover β0 , up to compatibility.

Reciprocally if β1 is obtained from β0 by a destabilization along an essential curve C, then we can recover β0 , up to compatibility, with a stabilization along the two capped discs in S 0 \ C, see Figure 30 So, we can assume that S \ C has two connected components, one of which contains β (we call it S C ) and the other is a compact connected surface with one boundary component, thus it is homeomorphic to Σ g,1 . We will prove the proposition by induction on g.

If g = 0 then Σ g,1 is a disc, thus F C f | S C and consequently βC ≈ β. If g = 1 then Σ 1,1 is a torus with one boundary component, which corresponds to the curve C. Let C be a closed simple essential non separating curve in Σ 1,1 . We claim that βC ≈ βC .

Note that Σ 1,1 \ C is homeomorphic to a pair of pants (Figure 31), whose exterior boundary is the curve C and whose interior boundaries correspond to the boundaries generated by cutting S along C .

On the other hand consider the curve C embedded in S. The surface S\C has one connected component and two (non distinguished) boundary components. Let S be the surface obtained from S \ C by capping the boundary components corresponding to C . There exist a disc, D , embedded in S so that its boundary corresponds to the curve C. Thus S C is embedded in S C and S C is embedded in S . Suppose that the proposition is true when the second connected component is homeomorphic to Σ k,1 .

Choose a simple essential closed curve C which divides S in two connected components, from which the component that does not contain β is homeomorphic to Σ k+1,1 . Take a simple essential closed curve C in Σ k+1,1 , which is not isotopic to C in Σ k+1,1 . Destabilize β along C . Then, by induction, β is stable equivalent to βC . The curve C is still a simple closed curve in S C \ β, thus we can destabilize βC along C. Thus, there is a well defined map from ABD n to bGD n , which associates to each abstract braid diagram its braid Gauss diagram. This map is well defined up to compatibility and stability. By abuse of notation we denote the induced map still by G.

Recall that the set of braid Gauss diagrams is in bijective correspondence with the set of virtually equivalent virtual braid diagrams. Thus, braid Gauss diagrams are a good tool to prove that abstract braids are a good geometric interpretation of virtual braids. We present an analogous of Theorem 2.10 for abstract braid diagrams.

Claim 3.14. The map G : ABD n → bGD n induces a bijection between the stable equivalence classes of abstract braid diagrams and the braid Gauss diagrams.

Proof. Recall that the function is well defined from the stable and compatibility equivalence classes of Abstract braid diagrams to the braid Gauss diagrams (Remark 3.13). Now we proof the surjectivity. Let g ∈ bGD n . Then by Theorem 2.10 there exists a virtual braid diagram β such that G(β) = g. For each β ∈ V BD n we can construct an abstract braid diagram β such that G(β) = G( β) as follows.

Let β be a virtual braid diagram, and let N be a regular neighbourhood of β ∪ ({0} × I) ∪ ({1} × I) in D = I × I (Figure 32). Note that N can be seen as the union of regular neighbourhoods of each strand and of the two extremes of the virtual braid diagram. Now consider the standard embedding of D in R 3 . Around each virtual crossing perturb the regular neighbourhoods of the strands involved in the crossing so that they do not intersect, as pictured in Figure 32. To the regular neighbourhood of each extreme attach a ribbon so that each extreme is now a cylinder, as in Figure 32. In this way we obtain a compact oriented surface, S , with more than the two distinguished boundary components. Consider the function f : S → [0, 1] defined by the projection on the first coordinate in R 3 .

As S is compact, connected and oriented, it is diffeomorphic to Σ g,b . We can cap all the nondistinguished boundary components in order to obtain a surface S that has only the distinguished boundary components. There exists an embedding ϕ : S → S and a smooth function F : S → I, such that f = F • ϕ. In this way we have constructed an abstract braid diagram β = (S, F, β, ) such that G(β) = G( β). From this we conclude that the function G is surjective. On the other hand, note that f | N is homotopic to g = f • ϕ and as Σ \ N is a disjoint union of circles, then we can extend g to Σ so that it is homotopy equivalent to F . Thus without loss of generality we can suppose that f | N = f • ϕ. This implies that, up to compatibility and destabilizations along the non-distinguished boundary components of N and N , we can obtain ᾱ from β and from β . Thus β and β are stable equivalent, consequently the induced function on the stable equivalence classes is injective. Theorem 3.15. There exists a bijection the abstract braids on n strands and the virtual braids on n strands.

Proof. We need to verify that the function induced by G, from AB n to bG n , is well defined and that it remains injective. By abuse of notation we denote the induced map still by G.

Let β = (S, f, β, ) and β = (S, f, β , ) be two abstract braid diagrams related by an Rmove. We need to see that G( β) is related to G( β ) by an Ω2 or an Ω3 move. By definition of an R-move, there exists a neighbourhood, D, diffeomorphic to a disc, such that β and β coincide outside D. Up to isotopy we can suppose that in the interval f (D) = f (D) there are no other crossings that the involved on the R-move. In this way to perform an R-move in D is equivalent to perform an Ω2 or an Ω3 move in the braid Gauss diagram. Consequently G is well defined from AB n to bG n .

To prove the injectivity, let β and β be two abstract braids diagrams such that G( β) and G( β ) are related by an Ω2 move. Note that the strands involved in the Ω2 move of β (resp. of β ) in the regular neighbourhood constructed in the proof of Claim 3.14 look either as in the left hand side or as in the right hand side of Figure 33 (resp. right hand side or left hand side). Deform the regular neighbourhood of the right hand side by gluing a disc in the middle, so that it looks as in the center of Figure 33. Then we can embed both diagrams in the same surface and relate them by a R2 move. Then β and β are related by a stability and a Reidemeister move. The case when G(β) and G(β ) are related by an Ω3 move is proved similarly and illustrated in Figure 34. Thus G is injective and the theorem is true. 

Minimal realization of an abstract braid

Given an abstract braid diagram β = (S, f, β, ) we call the genus of β to the genus of S. We denote it by g( β).

Recall that ABD n denotes the set of equivalence classes of abstract braid diagrams, identified up to isotopy and compatibility equivalence. Note that the genus of an abstract braid diagram is preserved by the isotopy and compatibility equivalence. Thus we can define the genus of an element of ABD n . From now on we will confuse an abstract braid diagram with its compatibility and isotopy equivalence class.

On the other hand AB n denotes the set of stability and Reidemeister equivalence classes of abstract braid diagrams. The Reidemeister equivalence preserves the genus of an abstract braid. Denote by T AB n the set of isotopy, compatibility and Reidemeister equivalence classes of abstract braid diagrams.

Denote by [ β] the stability and Reidemeister equivalence class of the abstract braid diagram β. Given [ β] ∈ AB n the stability equivalence defines an order on [ β] given by β < β if β is obtained from β through Reidemeister and destability moves. Note that a destabilization always reduces the genus of an abstract braid diagram and the genus is a non negative number.

The aim of this section is to prove that two minimal elements in [ β] ∈ AB n are related by a finite number of isotopies, compatibilities, and Reidemeister moves, that is, they represent the same element in T AB n .

Recall that there is a bijective correspondence between AB n and V B n (Theorem 3.15). In particular, for a virtual braid β there exists a distinguished topological representative of β, given by its minimal representative β ∈ T AB n .

Another straightforward consequence is that we can define the genus of a virtual braid as the genus of the minimal topological representative of β, and this is an invariant of the virtual braid, i.e. its value does not change up to isotopy and virtual, Reidemeister and mixed moves.

A regular braid is a virtual braid that has only regular crossings. A corollary of the previous discussion is that if a virtual braid can be reduced to a regular braid, then necessarily its genus must be zero. Eventhough, there are some virtual braids whose genus is zero and that are not regular, for example consider the virtual braid β = σ 1 τ 1 , we have that g(β) = 0, but it is not a regular braid (Figure 35). Regular braid diagrams are projections of geometric braids in D × I on D. Is well known that regular braids coincide with isotopy classes of geometric braids identified up to isotopy. In order to have a similar result for abstract braids, we need to define a geometric object in a three dimensional space, such that when it is projected on a two dimensional space we recover the Abstract braid diagrams. Definition 4.1. A braid in a thickened surface on n strands is a triple, β = (M S , F, β), such that:

1. There exists a compact, connected and oriented surface S, such that M S = S × I. (c) There exists σ ∈ S n such that for k = 1, . . . , n,

β k (1) = (b σ(k) , 1 2 ). 
(d) For k = 1, . . . , n and t ∈ I, F • β k (t) = t.

(e) For i = j, β i ∩ β j = ∅.

From now on we fix n ∈ N and we say braids in a thickened surface instead of braids in a thickened surface on n strands. Definition 4.2. An isotopy of braids in a thickened surface is a family of braids in a thickened surface G = { βs = (M S , F s , β s )} s∈I , such that:

1. For all s ∈ I, K s 0 = K 0 0 and K s 1 = K 0 1 .

2. For k = 1, . . . , n, H k is continuous, where:

H k :I × I → M S (s, t) → β s k (t).
3. The function H is smooth, where:

H :I × M S → I (s, x) → F s (x).
We say that β0 and β1 are isotopic and we denote it by G : β0 β1 . Fix a thickened surface M S . Given an isotopy between two braids in M S , we can decompose the isotopy in a sequence of isotopies so that, in each step, only one strand moves and a bigon is formed by the initial and terminal positions of that strand. Since the bigon is contained in a disc, the projection of this move on the surface looks like Figure 36. Such moves are called ∆-moves and generate the ∆-equivalence of abstract braid diagrams on S. Thus, there is a bijective correspondence between the ∆-classes of abstract braid diagrams in S and the isotopy classes of braids in M S .

On the other side, the ∆-equivalence generates the Reidemeister moves R2a, R2b and R3 and viceversa, a ∆-move can be expressed as a finite sequence of Reidemeister moves [15, pp. 19-24]. Consequently we have the next lemma.

Lemma 4.4.

There is a bijective correspondence between isotopy and compatibility classes of braids in thickened surfaces and T AB n . We call the elements of T AB n , thickened abstract braids (on n strands).

From now on we will think the elements of T AB n as isotopy classes of thickened abstract braids. Definition 4.5. Let β = (M S , F, β) ∈ T AB n . Given A, B ⊂ M S we say that A is isotopic to B relative to ∂M S if there exists a continuous function H : A × I → M S such that:

1. H 0 = id A and H 1 (A) = B.
2. For all s ∈ I, H s is an embedding.

For all s

∈ I, H s (A ∩ ∂M S ) ⊂ ∂M S .
In particular A is diffeomorphic to B, and H induces an isotopy of A ∩ ∂M S and B ∩ ∂M S in ∂M S . Definition 4.6. Given β = (M S , F, β) ∈ T AB n .

A vertical annulus in β is an annulus

A ⊂ M S \ β, such that A = C × I ⊂ S × I with C a simple closed curve in S.
2. A destabilization of β is an annulus A ⊂ M S \ β isotopic to a vertical annulus C × I relative to ∂M S , with C essential and non-separating in S.

3. A destabilization move on β along a destabilization A, is to cut M S along A, cap the two boundary components with two thickened discs and extend the function to the obtained manifold. We also say to destabilize β along A and we denote the obtained thickened abstract braid by βA .

4. The equivalence relation generated by these moves in the set of thickened abstract braids is called stable equivalence.

As a consequence of Lemma 4.4, the definition of destabilization of a braid in a thickened surface is equivalent to the destabilization of an abstract braid diagram identified up to Reidemeister, isotopy and compatibility equivalence. Consequently we obtain the next proposition.

Proposition 4.7. The abstract braids are in bijective correspondence with the braids in thickened surfaces identified up to stable equivalence.

Recall that the stability equivalence induces an order in T AB n . This order is generated by destabilizations, i.e. given β and β , if there exists a destabilization, A, of β , such that β ≈ β A , then β < β . Definition 4.8. Given β ∈ T AB n , a descendent of β is a thickened abstract braid β such that β < β. An irreducible descendent of β is a descendent of β that does not admit any destabilization.

Given β ∈ T AB n . Let A ⊂ M S \ β be an annulus isotopic to a vertical annulus A = C × I relative to ∂M S . If C is not essential, we say that A is not essential. Suppose A = C × I is vertical and not essential, hence C bounds a disc in S. Let D 0 be the disc bounded by C ×{0} in S × {0}, and D 1 be the disc bounded by C × {1} in S × {1}. Then A ∪ D 0 ∪ D 1 is homeomorphic to a sphere that bounds a ball in M S \ β. To express this we say that A bounds a ball, and we refer to such ball as the ball bounded by A. Since each destabilization reduces the genus, by minimality of the genus of S each destabilization of β has a unique irreducible descendent. Two destabilizations of β are called descendent equivalent if they have the same irreducible descendent.

We claim that all destabilizations in β are descendent equivalent. Suppose there exist two destabilizations A 1 and A 2 of β descendent inequivalent.

Claim 4.10. The intersection of A 1 and A 2 is nonempty.

Proof. Suppose A 1 and A 2 are disjoint. We can destabilize β along A 1 and then along A 2 and vice-versa. In both cases we obtain a common descendent, i.e. ( βA 1 ) A 2 ≈ ( βA 2 ) A 1 . This is a contradiction.

Therefore, we can suppose A 1 and A 2 intersect transversally and so that the number of curves in the intersection (m 1,2 ≥ 1) is minimal. Furthermore, we can choose A 1 and A 2 so that m 1,2 is minimal among inequivalent pairs of destabilizations of β.

The intersection between two transversal surfaces is a disjoint union of 1-manifolds. A curve in A 1 ∩ A 2 is thus either a circle or an arc. A horizontal circle in an annulus A is a circle that does not bound a disc in A (Figure 37). A vertical arc in an annulus A is a simple arc in A such that its extremes connect the two boundary components of A (Figure 37).

Given a horizontal circle C in an annulus A, it divides A in two annuli A and A (Figure 37) such that: Proof. Suppose there exists C ⊂ A 1 ∩ A 2 such that C is a non-horizontal circle in A 1 . Thus, the circle C bounds a disc D in A 1 , in particular it is null-homotopic in M S \ β. On the other hand if C is horizontal in A 2 it is homotopic to an essential circle in S and so it is not null-homotopic in M S . Therefore C is non-horizontal in 38). The surface A 2 \ N (D) has two connected components that we can complete with D and D in order to obtain two surfaces say A 2 and A 2 . They can be spheres, annuli or discs in M S .

Since C is non-horizontal in A 2 and C is innermost in A 1 , necessarily, up to exchanging A 2 with A 2 , A 2 is a sphere and A 2 is an annulus isotopic to A 2 (Figure 38). By construction A 1 ∩ A 2 has less connected components than A 1 ∩ A 2 . This is a contradiction. We conclude that all the circles in A 1 ∩ A 2 are horizontal in A i for i = 1, 2. Let C ⊂ A 1 ∩ A 2 be a non-vertical arc in A 1 . Hence, the extremes of C are in the same component of ∂A 1 . Let α be the segment of the component of ∂A 1 that joins the extremes of C so that C ∪ α is a simple closed curve that bounds a disc D in A 1 . In particular C is null-homotopic in M S relative to ∂M S , consequently, C is also a non vertical arc in A 2 .

Suppose that C is innermost, in the sense that Since C is non-vertical in A 2 and C is innermost in A 1 , necessarily, up to exchanging A 2 with A 2 , A 2 is a disc and A 2 is an annulus isotopic to A 2 (Figure 38). By construction A 1 ∩ A 2 has less connected components than A 1 ∩ A 2 which is a contradiction. We conclude that all the arcs in A 1 ∩ A 2 are vertical in A i for i = 1, 2.

Claim 4.12. The intersection A 1 ∩ A 2 does not contain any horizontal circle.

Proof. Let C ⊂ A 1 ∩ A 2 be a horizontal circle in A 1 . We have seen that necessarily it is a horizontal circle in A 2 . Then C splits A 1 and A 2 in four annuli, A 1 , A 1 , A 2 and A 2 . We can choose C so that it is exterior in A 1 in the sense that int(A 1 ) ∩ A 2 = ∅. In this case the annulus A 1 is isotopic to A 2 in M S \ β relative to ∂M S . Let A 3 be the annulus A 1 ∪ A 2 deformed by an isotopy in such a way that it is in general position with respect to A 1 (Figure 39). The number of curves in A 3 ∩ A 1 is strictly less than the number of curves in A 2 ∩ A 1 . Furthermore A 2 is isotopy equivalent to A 1 ∪A 2 which is isotopy equivalent to A 3 by construction.
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 1 Figure 1: Positive, negative and virtual crossings.
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 34 Figure 3: Virtual moves.
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 6 Figure 6: Gauss diagrams
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 7 Figure 7: Gauss diagrams of virtual braid diagrams
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 8 Figure 8: Labelled neighbourhoods of regular crossings.
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 9 Figure 9: Gauss code of the mixed move.

Figure 10 :

 10 Figure 10: primitive and joining arcs.
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 11 Figure 11: Lemma 2.15.
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 12 Figure 12: Case 1, Lemma 2.15.
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 13 Figure 13: Case 2, Lemma 2.15.

Figure 14 :

 14 Figure 14: Case 3, Lemma 2.15.
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 15 Figure 15: Case 4, Lemma 2.15.

Figure 18 :

 18 Figure 18: Lemma 2.18.

β 1 β 2 Figure 19 :

 219 Figure 19: Lemma 2.20.

3 and c 4 . 4 Figure 20 :

 4420 Figure 20: Construction in proof of Lemma 2.20.

Figure 22 :

 22 Figure 22: Ω3 move on Gauss diagrams, with ∈ {±1}.

Figure 23 :

 23 Figure 23: Ω3 moves of type (i, j, k) and (i, k, j). Similarly, by performing an Ω2 move on a braid Gauss diagram g, we mean choosing an embedding in g of the braid Gauss diagram depicted on the left hand side of Figure 26 (or on right hand side of Figure 26), and replacing it by the braid Gauss diagram depicted on the right hand side of Figure 26 (resp. on the left hand side of Figure 26). In this there are only two types of embeddings. They are illustrated in Figure 27. Definition 2.23. The equivalence relation generated by the Ω2 and the Ω3 moves in the set of braid Gauss diagrams is called Reidemeister equivalence. The set of equivalence classes of braid Gauss diagrams is denoted by bG n .

Figure 24 :

 24 Figure24: Ω3 moves of type (j, i, k) and (j, k, i).

Figure 25 :

 25 Figure 25: Ω3 moves of type (k, i, j) and (k, j, i).

Figure 26 :

 26 Figure 26: Ω2 move on Gauss diagrams.

Figure 27 :

 27 Figure27: Ω2 moves of type (i, j) and (j, i).

Figure 28 :

 28 Figure 28: A labelled R3 move.

2 . 3 .

 23 The boundary of S has only two connected components, i.e. ∂S = C 0 C 1 , with C 0 ≈ S 1 ≈ C 1 . They are called distinguished boundary components. Each boundary component of S has n marked points, say K 0 = {a 1 , . . . , a n } ⊂ C 0 and K 1 = {b 1 , . . . , b n } ⊂ C 1 . Such that: (a) The elements of K 0 and K 1 are linearly ordered. (b) Let κ 0 : S 1 → C 0 and κ 1 : S 1 → C 1 be parametrizations of C 0 and C 1 compatible with the orientation of S. Up to isotopy we can put a k = κ 0 (e 2πi k ) and b k = κ 1 (e -2πi k ) for k ∈ {1, . . . , n}.

4 . 1 Figure 29 :Definition 3 . 2 .

 412932 Figure 29: An abstract braid diagram on four strands.

. Definition 3 . 8 .

 38 The equivalence relation on the set of abstract braids generated by the stability (and destability) moves is called stability equivalence. We denote it by ∼ s . Definition 3.9. Let β = (S, f, β, ) be an abstract braid, and let C be an embedded simple closed curve in S \ β. Denote by S C the connected component of S \ C containing β. Let S C be a compact, connected, oriented surface and ϕ : S C → S C such that:

Figure 30 :

 30 Figure 30: Compatibility and stability equivalence.

  Suppose ι : S C → S C and ϕ C : S C → S are the embeddings. Denote ϕ C = ϕ C • ι. Let F C : S → I be an extension of f | S C and F C : S → I be an extension of f | S C . Note that F C and F C differ only in the interior of the disc bounded by C. Consequently F C F C . From this we conclude that βC ≈ βC . Thus β ∼ s βC by a unique destabilization.

Figure 31 :Remark 3 . 13 .

 31313 Figure 31: Generalized destabilization along a curve C.

Figure 32 :

 32 Figure 32: Construction of β from β such that G( β) = G(β). Now to prove injectivity of the induced function, let β = (S, f, β, ) and β = (S , f , β , ) be two abstract braid diagrams such that G( β) = G( β ). We claim that β is stable equivalent to β . Note that G( β) = G( β ) implies that the graph given by Γ = C 0 ∪β∪C 1 ⊂ S is homeomorphic to Γ = C 0 ∪ β ∪ C 1 ⊂ S . Consider a regular neighbourhood of Γ in S, N , and a regular neighbourhood of Γ in S , N . Thus there exists an homeomorphism ϕ : N → N , with ϕ(Γ) = Γ . As N is homeomorphic to Σ g,k+2 , it has k non-distinguished boundary components. We can cap the k non-distinguished boundary components of N to obtain a surface Σ that has only the two distinguished boundary components. There exists an embedding ι : N → Σ and a smooth function F : Σ → I such that f | N = F • ι. In this way we have constructed an abstract braid diagram ᾱ = (Σ, F, ι • β, ) stable equivalent to β.On the other hand, note that f | N is homotopic to g = f • ϕ and as Σ \ N is a disjoint union of circles, then we can extend g to Σ so that it is homotopy equivalent to F . Thus without loss of generality we can suppose that f | N = f • ϕ. This implies that, up to compatibility and destabilizations along the non-distinguished boundary components of N and N , we can obtain ᾱ from β and from β . Thus β and β are stable equivalent, consequently the induced function on the stable equivalence classes is injective.

Figure 33 :

 33 Figure 33: Strands involved in the Ω2 move.

Figure 34 :

 34 Figure 34: Strands involved in the Ω3 move.

Figure 35 :

 35 Figure 35: No regular braid with genus 0.
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 21 The boundary of S has only two connected components, i.e. ∂S = C 0 C 1 , with C 0 ≈ S 1 ≈ C 1 , called distinguished boundary components.3. Each boundary component of S has n marked points, sayK 0 = {a 1 , . . . , a n } ⊂ C 0 and K 1 = {b 1 , . . . , b n } ⊂ C 1 . Such that: (a)The elements of K 0 and K 1 are lineary ordered. (b) Let κ 0 : S 1 → C 0 and κ 1 : S 1 → C 1 be parametrizations of C 0 and C 1 compatible with the orientation of S. Up to isotopy we can put a k = κ 0 (e 2πi k ) and b k = κ 1 (e -2πi k ) for k ∈ {1, . . . , n}. 4. F is a smooth function, F : M S → I such that, for i = 0, -1 ({i}) = C i × I. 5. β is an n-tuple of curves β = (β 1 , . . . , β n ) with: (a) For k = 1, . . . , n, β k : I → M S . (b) For k = 1, . . . , n, β k (0) = (a k , 1 2 ).

Definition 4 . 3 .

 43 Given two thickened braid diagrams β = (M S , F, β) and β = (M S , F , β ), we say that they are compatible if there exists a diffeomorphism ϕ : M S → M S such that F = F •ϕ and β = ϕ • β. We denote it by β ≈ β . Note that the compatibility relation is an equivalence relation.

Figure 36 :

 36 Figure 36: ∆-move.

Theorem 4 . 9 .

 49 Given [ β] ∈ AB n there exists a unique irreducible descedent of β in T AB n . Proof. Let [ β] ∈ AB n . Suppose that [ β] has two irreducible descendents. In this case [ β] has a representative β = (M S , F, β), such that S is of minimal genus among the representatives of [ β] admitting two different irreducible descendents.

  ∂A = (∂A ∩ (S × {0}) ∪ C and ∂A = (∂A ∩ (S × {1}) ∪ C.

Figure 37 :Claim 4 . 11 .

 37411 Figure 37: Horizontal circle and vertical arc in A.

A 2 .

 2 Suppose that C is innermost (i.e. int(D) ∩ A 2 = ∅). Consider a regular neighbourhood of D in M S \ β, N (D). The boundary of N (D), ∂N (D), intersects A 2 in two disjoint circles C and C . The circle C (resp. C ) bounds a disc D (resp. D ) in ∂N (D) (Figure

Figure 38 :

 38 Figure 38: A non-horizontal circle and a non-vertical arc in A 1 .

A 2 ∩

 2 int(D) = ∅. Let N (D) be a regular neighbourhood of D in M S \ β. The boundary of N (D), ∂N (D), intersects A 2 in two disjoint non-vertical arcs, C and C . With a similar construction as for C, we can find arcs α and α in ∂N (D) ∩ ∂M S such that C ∪ α (resp. C ∪ α ) bounds a disc D (resp. D ) in ∂N (D). The surface A 2 \ N (D) has two connected components that we can complete with D and D in order to obtain two surfaces A 2 and A 2 .

Figure 39 :

 39 Figure 39: The intersection of two destabilizations along a horizontal circle.

  1. For any virtual braid diagram there exists a minimal thickened abstract braid representative. Can this representative induce a normal form on virtual braids? 2. We can see virtual braids as virtual string links, but in virtual string links we have more Reidemeister and virtual moves. Thus, given two virtual braids equivalent as virtual string

link, are they equivalent as virtual braids? i.e. Does virtual braids embeds in virtual string links? 3. Given a thickened abstract braid diagram β = (M S , f, β), what is the relation between the fundamental group of M S \ β and the group of the virtual link
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Hence A 3 is a destabilization equivalent to A 2 , and A 3 ∩ A 1 has strictly less curves than A 2 ∩ A 1 . This is a contradiction. Claim 4.13. The intersection A 1 ∩ A 2 does not contain any vertical arc.

Proof. Let N be a regular neighbourhood of A 1 ∪ A 2 in M S \ β. Then ∂N is a disjoint union of m surfaces in M S . Since there are only vertical arcs in A 1 ∩ A 2 these surfaces are isotopic to vertical annuli, say ∂N = B 1 B 2 • • • B m . Therefore, either there is a destabilization in ∂N or all the vertical annuli are non-essential.

Suppose that for some k ∈ {1, . . . , m}, B k is a destabilization, i.e. isotopic to an essential vertical annulus. Since B k is disjoint from A 1 and A 2 , it is descendent equivalent to both. This is a contradiction.

Suppose that for all k = 1, . . . , m, B k is isotopic to a non-essential vertical annulus. Let E k be the ball bounded by B k and S k = ∂E k .

We claim that there exists k ∈ {1, . . . , m} such that

then the intersection is nonempty. On the other hand, suppose there exists k ∈ {1, . . . , m}, such that (

Now, suppose there exist j, k ∈ {1, . . . , m}, such that j = k and S k ∩ S j = ∅. Then, up to exchanging

Suppose that E i ∩ E j = ∅. As B i ∩ B j = ∅, up to exchanging E i with E j , E i ⊂ E j and (S i ∩ ∂M S ) ⊂ (S j ∩ ∂M S ). This is a contradiction.

Suppose that for all k = 1, . . . , m, (A 1 ∪ A 2 ) ∩ E k = ∅ and that S i ∩ S j = ∅ for i = j. As E i ∩ E j = ∅ for i = j, the connected components of M S \ (∪ m k=1 B k ) are int(E 1 ), . . . , int(E m ), and

. . , m. Thus β and A 1 ∪ A 2 are in the same connected component. This is a contradiction, because ∂N separates β and A 1 ∪ A 2 . We conclude that there exists k ∈ {1, . . . , m} such that A 1 ∪ A 2 ⊂ E k .

For j = 1, 2 and i = 0, 1, set γ i j = (S × {i}) ∩ A j . Since A 1 ∪ A 2 ⊂ E k , we have γ i j ⊂ E k , thus γ i j is null-homotopic. This is a contradiction. We conclude that there are no vertical arcs in A 1 ∩ A 2 .

Finally by Claim 4.10, A 1 ∩ A 2 = ∅. On the other hand by Claim 4.11, A 1 ∩ A 2 has only vertical arcs or horizontal circles. But Claims 4.12 and 4.13 state that A 1 ∩ A 2 does not have neither horizontal circles nor vertical arcs, thus A 1 ∩ A 2 = ∅. This is a contradiction. We conclude that there are no descendent inequivalent destabilizations of β, thus there is a unique irreducible descendent.