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Virtual braids from a topological viewpoint

Bruno A. Cisneros de la Cruz

Abstract

Virtual braids are a combinatorial generalization of braids. We present abstract braids
as equivalence classes of braid diagrams on a surface, joining two distinguished boundary
components. They are identified up to isotopy, compatibility, stability and Reidemeister
moves. We show that virtual braids are in a bijective correspondence with abstract braids.
Finally we demonstrate that for any abstract braid, its representative of minimal genus is
unique up to compatibility and Reidemeister moves. The genus of such a representative is
thus an invariant for virtual braids. We also give a complete proof of the fact that there is a
bijective correspondence between virtually equivalent virtual braid diagrams and braid-Gauss
diagrams.
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1 Introduction

A knot diagram is an oriented planar closed curve in general position (only transversal double
points, called crossings) with a function that assigns to each crossing a sign, either positive or
negative. Knot diagrams are identified up to Reidemeister moves and the equivalence classes
are in bijective correspondence with knots in R3. Some approaches to knot theory are by means
of knot diagrams.

There is a combinatorial way to describe an oriented planar closed curve in general position
called the Gauss word. It was described by Gauss [4, pp. 85] in his unpublished notebooks. The
main idea of this approach is to consider the curve as an oriented graph where the vertices are
the crossings of the curve and the edges are the oriented segments joining two crossings.

This idea has been retaken by O. Viro and M. Polyak in order to express knot diagrams
in a combinatorial way. To do this, they introduced the notion of Gauss diagrams to compute
Vassiliev’s invariants [16]. In fact Mikhail N. Goussarov proved that all Vassiliev invariants can
be calculated in this way.
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The theory of virtual knots was introduced by L. Kauffman [7] as a generalization of classical
knot theory. A virtual knot diagram is an oriented planar closed curve in general position with
a function that assigns to each crossing a value that can be positive, negative or virtual. Virtual
knot diagrams are identified up to Reidemeister, virtual and mixed moves.

Goussarov, Polyak and Viro [6] showed that there is a bijection between virtually equivalent
virtual knot diagrams and Gauss diagrams. Moreover they showed that any Vassiliev invariant
of classical knots can be extended to virtual knots and calculated via Gauss diagrams formulas.

Braids are a fundamental part of knot theory, as each link can be represented as the closure
of a braid [1] (Alexander’s theorem) and there is a complete characterization of the closure of
braids given by Markov’s theorem [14].

L. Kauffman defined virtual braids and virtual string links and he also gave a virtual version
of Alexander’s theorem [9]. Independendtly S. Kamada also proved a virtual version of Alexan-
der’s theorem and a full characterization of the closure of virtual braids, i.e. a virtual version
of Markov’s theorem [10].

Goussarov, Polyak and Viro defined Gauss diagrams for virtual string links. All though they
stated that, up to virtual and mixed moves, each Gauss diagram defines a unique virtual string
link diagram [6, 12], it is not clear that this statement is still true for virtual braids.

In Section 2 we describe the braid version of Gauss diagrams and then we prove that each
braid-Gauss diagram defines, up to virtual and mixed moves, a unique virtual braid diagram.
Then we introduce the Ω moves in braid-Gauss diagrams and we show that there is a bijection
a bijection between the Ω equivalence classes of braid-Gauss diagrams and the virtual braids.
Finally we recover the presentation given for the pure virtual braids in [2].

This result is quite technical and it has been considered as folklore in literature, even though
it was missing a rigorous proof. Gauss diagrams allow us to manage global information with
much more liberty as they express the interaction among all strands along the time. On the other
hand, on Gauss digrams we can obvious the virtual crossings, as the valuable information of
virtual objects underlies on how the strands interacts with themselves through regular crossings,
this information is expressed on the arrows of the Gauss diagrams. In particular they become
our main tool to prove the results of Section 3 and in [12] are used to define and calculate Milnor
invariants of virtual string links.

On the other hand, classical knot theory works with topological objects that can be studied
with topological, analytic, algebraic and combinatorial tools. Virtual knots diagrams encodes
the combinatorial information of a Gauss diagram, but these are not topological objects. A
topological interpretation of these objects was done by N. Kamada, S. Kamada and J. Carter [5,
11]. They defined abstract links as link diagrams on surfaces, identified up to stable equivalence
and Reidemeister moves. They proved that abstract links are in bijective correspondence with
virtual links.

A representation of a virtual knot in a closed surface is called a realization of the virtual knot.
The stable equivalence identifies different realizations, which means that a virtual knot may be
realized in different surfaces. G. Kuperberg proved that any virtual link admits a realization in
a surface of minimal genus and, up to diffeomorphism and Reidemeister moves, this realization
is unique [13].

In this paper we provide a topological interpretation of virtual braids inspired by [11, 13].
In Section 3 we introduce the notion of abstract braid diagrams, that are braid diagrams in a
surface with two distinguished boundary components and a real smooth function satisfying some
conditions. We also introduce the stable equivalence of abstract braid diagrams. The abstract
braids are the abstract braid diagrams identified up to compatibility, stable equivalence and
Reidemeister moves. We prove that abstract braids are in bijective correspondence with virtual
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braids.
The notion of abstract braid diagram must not be confused with the definition given in [11],

even if the concept is quite similar. An abstract diagram in [11] is a pair (S,D), with S an
oriented, compact surface and D is a diagram in S such that D is a deformation retract of S. In
any case, what we define as abstract braid diagram corresponds to the realization of an abstract
diagram in [11].

In Section 4 (Theorem 4.9) we prove that given an abstract braid, there is a unique abstract
braid diagram (up to Reidemeister moves and compatibility) of minimal genus.

These results states some questions for future work:

1. For any virtual braid diagram there exists a minimal thickened abstract braid representa-
tive. Can this representative induce a normal form on virtual braids?

2. We can see virtual braids as virtual string links, but in virtual string links we have more
Reidemeister and virtual moves. Thus, given two virtual braids equivalent as virtual string
link, are they equivalent as virtual braids? i.e. Does virtual braids embeds in virtual string
links?

3. Given a thickened abstract braid diagram β̄ = (MS , f, β), what is the relation between
the fundamental group of MS \ β and the group of the virtual link [3, 11] obtained by the
closure of β̄?

2 Virtual braids and Gauss diagrams

We fix the next notation: set n a natural number, the interval [0, 1] is denoted by I, and the
2-cube is denoted by D = I × I. The projections on the first and second coordinate from the
2-cube to the interval, are denoted by π1 : D→ I and π2 : D→ I, respectively. A set of planar
curves is said to be in general position if all its multiple points are transversal double points.

2.1 Virtual braids.

Definition 2.1. A strand diagram on n strands is an n-tuple of curves, β = (β1, . . . , βn), where
βk : I → D for k = 1, . . . , n, such that:

1. There exists σ ∈ Sn such that, for k = 1, . . . , n, we have βk(0) = ak and βk(1) = bσ(k),

where ak = (0, k
n+1) and bk = (1, k

n+1).

2. For k = 1, . . . , n and all t ∈ I, (π1 ◦ βk)(t) = t.

3. The set of curves in β is in general position.

The curves βk are called strands and the transversal double points are called crossings. The set
of crossings is denoted by C(β).

A virtual braid diagram on n strands is a strand diagram on n strands β endowed with a
function ε : C(β)→ {+1,−1, v}. The crossings are called positive, negative or virtual according
to the value of the function ε. The positive and negative crossings are called regular crossings
and the set of regular crossings is denoted by R(β). In the image of a regular neighbourhood
(homeomorphic to a disc sending the center to the crossing) we replace the image of the involved
strands as in Figure 1, according to the crossing type.
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( + ) ( - ) ( v )

Figure 1: Positive, negative and virtual crossings.

Without loss of generality we draw the braid diagrams from left to right. We denote the set
of virtual braid diagrams on n strands by V BDn.

Definition 2.2. Given two virtual braid diagrams on n strands, β1 and β2, and a neighbourhood
V ⊂ D, homeomorphic to a disc, such that:

• Up to isotopy β1 \ V = β2 \ V .

• Inside V , β1 differs from β2 by a diagram as either in Figure 2, or in Figure 3, or in Figure
4.

Then we say that β2 is obtained from β1 by an R2a, R2b, R3, V 2, V 3, M or M ′ moves.
The moves R2a, R2b, R3 are called Reidemeister moves, the moves V 2 and V 3 are called

virtual moves, and the moves M and M ′ are called mixed moves.

R2a R2b R3

Figure 2: Reidemester moves.
Let β and β′ be two virtual braid diagrams. Note that if β can be obtained from β′ by a

finite series of virtual, mixed or Reidemeister moves, necessarily β and β′ have the same number
of strands.

If β′ can be obtained from β by isotopy and a finite number of virtual, Reidemeister or
mixed moves, β and β′ are virtually Reidemeister equivalent. We denote this by β ∼ β′. These
equivalence classes are called virtual braids on n strands. We denote by V Bn = V BDn/ ∼ the
set of virtual braids on n strands.

If β′ can be obtained from β by isotopy and a finite number of virtual or mixed moves, β
and β′ are virtually equivalent. We denote this by β ∼vm β′.

If β′ can be obtained from β by isotopy and a finite number of Reidemeister moves, β and
β′ are Reidemeister equivalent. We denote this by β ∼R β′.

Remark 2.3. Define the product of two virtual braids diagrams as the concatenation of the
diagrams and an isotopy in the obtained diagram, to fix it in D. With this operation the set of
virtual braid diagrams has the structure of a monoid. It is not hard to see that it factorizes in
a group when we consider the virtual Reidemeister equivalence classes. Thus, the set of virtual
braids has the structure of a group with the product defined as the concatenation of virtual
braids. The virtual braid group on n strands has the following presentation:

V2 V3

Figure 3: Virtual moves.
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M M'

Figure 4: Mixed moves.

• Generators: σ1, . . . , σn−1, τ1, . . . , τn−1.

• Relations:

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2

σiσj = σjσi if |i− j| ≥ 2

τiτi+1τi = τi+1τiτi+1 for 1 ≤ i ≤ n− 2

τiτj = τjτi if |i− j| ≥ 2

σiτi+1τi = τi+1τiσi+1 for 1 ≤ i ≤ n− 2

τiσj = σjτi if |i− j| ≥ 2

τ2
i = 1 for 1 ≤ i ≤ n− 1

Remark 2.4. The mixed moves can be replaced by the moves showed in Figure 5.

P' P

Figure 5: Equivalent mixed moves.

2.2 Braid Gauss diagrams.

Definition 2.5. A Gauss diagram on n strands G is an ordered collection of n oriented intervals
tni=1Ii, together with a finite number of arrows and a permutation σ ∈ Sn such that:

• Each arrow connects by its ends two points in the interior of the intervals (possibly the
same interval).

• Each arrow is labelled with a sign ±1.

• The end point of the i-th interval is labelled with σ(i).

Gauss diagrams are considered up to orientation preserving homeomorphism of the underlying
intervals.

1

2

3

1

3

2
+-

-

-

+

1

2

3

1

2

3
+-

-

-

+

Figure 6: Gauss diagrams
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Definition 2.6. Let β be a virtual braid diagram on n strands. The Gauss diagram of β, G(β),
is a Gauss diagram on n strands given by:

• Each strand of G(β) is associated to the corresponding strand of β.

• The endpoints of the arrows of G(β) correspond to the preimages of the regular crossings
of β.

• Arrows are pointing from the over-passing string to the under-passing string.

• The signs of the arrows are given by the signs of the crossings (their local writhe).

• The permutation of G(β) correspond to the permutation associated to β.

a1

a2

a3

b1

b2

b3

1

2

3

1

2

3
+ -

-+

+

1

2

3

2

1

3

a1

a2

a3

b1

b2

b3

-+

+

+

Figure 7: Gauss diagrams of virtual braid diagrams

Remark 2.7. The arrows of the Gauss diagram of any virtual braid diagram are pairwise disjoint
and each arrow connects two different intervals. Furthermore we can draw them perpendicular
to the underlying intervals, i.e. we can parametrize each interval In with respect to the standard
interval I = [0, 1], in such a way that the beginning and ending points of each arrow correspond
to the same t ∈ I and such that different arrows correspond to different t’s in I, see Figure 7.

Definition 2.8. Gauss diagrams satisfying the conditions of Remark 2.7 are called braid Gauss
diagrams. The set of braid Gauss diagrams on n strands is denoted by bGDn.

Definition 2.9. Given a braid-Gauss diagram, G, we can associate a total order to the set
of arrows in G, given by the order in which the arrows appear in the interval I, i.e. let a
and b be two arrows in G, such that a appears first, then a > b. This order is not defined
in the equivalence class of the Gauss diagram, as it may change with orientation preserving
homeomorphisms of the underlying intervals.

We denote by P (G) the partial order obtained as the intersection of the total orders asso-
ciated to G. Given a virtual braid diagram β, let G(β) be its Gauss diagram. Then P (G(β))
defines a partial order in the set of regular crossings,R(β). We denote it by P (β).

Theorem 2.10. 1. Let g be a braid-Gauss diagram on n strands. Then there exists β ∈
V BDn such that G(β) = g.

2. Let β1 and β2 be two virtual braids on n strands. Then G(β1) = G(β2) if and only if
β1 ∼vm β2.

From now on we fix n ∈ N the number of strands on the braid-Gauss diagrams, and we say
braid-Gauss diagram instead of braid-Gauss diagram on n strands. We split the proof of this
theorem into some lemmas.
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Lemma 2.11. Let g be a braid-Gauss diagram. Then there exists β ∈ V BDn such that
G(β) = g.

Proof. Let g be a braid-Gauss diagram and A = {c1, . . . , ck} be the set of arrows of g. Set a
parametrization of the intervals as described in Remark 2.7. This induces an order in A given
by ci > cj if pi < pj , where pi ∈ I is the corresponding endpoint of ci. Suppose that ci > cj if
i < j.

Recall the notation of Definition 2.1. For j = 1, . . . , k let dj = ( j
k+1 ,

1
2) and consider the disc

Dj with radius r = 1
5(k+1) centered in dj . Draw a crossing inside Dj according to the sign of cj ,

and label the intersection of the crossing components with the boundary of Dj as in Figure 8.

v

v(1)

v(2)

v(2)

v(1)

( + )

v

v(1)

v(2)

v(2)

v(1)

( - )

Figure 8: Labelled neighbourhoods of regular crossings.

Drawing the strands: let σ ∈ Sn be the permutation associated to g. Fix i ∈ {1, . . . , n} and
let Ai = {ci1 , . . . , cim} be the arrows starting or ending in the i-th interval.

For s = 0, . . . ,m define os and ts+1 as follows:

1. o0 = ai and tm+1 = bσ(i).

2. For l = 1, . . . ,m, ol = (dil)
(v) and tl = (dil)(v) where:

(a) If cil is a positive arrow starting in the i-th interval or a negative arrow ending in the
i-th interval then v = 2;

(b) If cil is a negative arrow starting in the i-th interval or a positive arrow ending in the
i-th interval then v = 1.

For each s ∈ {0, . . . ,m}, draw a curve joining os to ts+1 such that it is strictly increasing
on the first component and disjoint from the discs Dj for all j ∈ {1, . . . , k} except possibly on
the points os and ts+1 defined above. In this way we have drawn a curve joining ai with bσ(i)
passing through the crossings ci1 , . . . , cjm .

For each i ∈ {1, . . . , k} we can draw a curve as described before, so that they are in general
position. Consider the double points outside the discs Dj as virtual crossings. In this way we
have constructed a virtual braid diagram such that its Gauss diagram coincides with g.

Lemma 2.12. Let β1 and β2 be two virtual braid diagrams on n strands such that they are
virtually equivalent. Then G(β1) = G(β2).

Proof. In order to see this we only need to verify that the V 2, V 3, M and M ′ moves do not
change the braid-Gauss diagram of a virtual braid diagram. In the cases of the V 2 and V 3 moves
they involve only virtual crossings, which are not represented in the Gauss diagram, so they do
not change the Gauss diagram. In the case of the M and M ′ moves, the Gauss diagrams of the
equivalent virtual braid diagrams are equal (Figure 9), thus this type of move neither changes
the Gauss diagram of the virtual braid diagram.
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1

2

3

3

2

1

+

Figure 9: Gauss code of the mixed move.

Definition 2.13. Given β ∈ V BDn we can deform β by an isotopy, in such a way that for
ci, cj ∈ C(β) with, i 6= j, we have that π1(ci) 6= π1(cj), in this case we say that β is in general
position. If β ∈ V BDn is in general position, let D(β) be the total order associated to C(β),
given by ci > cj if π1(ci) < π1(cj). Denote by D(β) the total order of the set of regular crossings,
R(β), induced by D(β).

Definition 2.14. A primitive arc of β is a segment of a strand of β which does not go through
any regular crossing (but it may go through virtual ones).

Let β ∈ V BDn. For v ∈ R(β), set a disc Dv centered in v, with a radius small enough so
that its intersection with β consists exactly in two transversal arcs as in Figure 8. We denote
by v(1) and by v(2) the bottom and upper left intersections of β with ∂Dv, and by v(2) and by
v(1) the bottom and upper right intersections of β with ∂Dv as in Figure 8.

Let d be a point in the diagram β, if d ∈ {b1, . . . , bn} or d ∈ {c(1), c(2)} for some c ∈ R(β)
we denote d by d∗. Similarly if d ∈ {a1, . . . , an} or d ∈ {c(1), c(2)} for some c ∈ R(β) we denote
d by d∗. A joining arc is a primitive arc α such that there exist a∗ and b∗ with α(0) = a∗ and
α(1) = b∗.

q
p

a
* b*

Figure 10: primitive and joining arcs.

As each arc is a segment of a strand βk : [0, 1]→ D we can parametrize it with respect to the
projection on the first coordinate, i.e. there exists a continuous bijective map θ : [t0, tf ]→ [0, 1]
with 0 < t0 < tf < 1 such that π1(α(θ(t))) = t . Without loss of generality we suppose from
now on that the arcs are parametrized by the projection on the first coordinate.

Lemma 2.15. Let β be a virtual braid diagram and let α1, α2 be two primitive arcs of β such
that:

1. The arcs α1 and α2 start at the same time, t0, and end at the same time, tf .

2. The arcs α1 and α2 start at the same point (a crossing which may be either virtual or
regular), i.e. α1(t0) = α2(t0).

3. The arcs α1 and α2 do not intersect, except at the extremes, i.e. α1|(t0,tf ) ∩ α2|(t0,tf ) = ∅.

Then, there exists a virtual braid diagram β′ virtually equivalent to β such that:

1. If β1 and β2 are the strands corresponding to α1 and α2 respectively, then up to isotopy
they remain unchanged in β′, and in their restriction to (0, t0) × I we add only virtual
crossings.

2. The diagrams β and β′ coincide for t ≥ tf , i.e. β|t≥tf = β′|t≥tf .
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3. In (t0, tf )× I there are only virtual crossings with α2.

4. If α1(tf ) = α2(tf ), we can choose β′ such that there is no crossing in (t0, tf )× I.

a1

a2

a7

..

.

b1

b2

b7

..

.β0

a1   
a2

a7

..

.

b1

b2

b7

..

.β0
vm β

t>t f
β

t>t f

Figure 11: Lemma 2.15.

Proof. Suppose α1(tf ) 6= α2(tf ) and that we have reduced β by all the possible V 2 moves that
may be made on it. Note that α1, α2 and y = tf form a triangle D.

Let C be the set of crossings in β such that their projections on the first component are in
the open interval (t0, tf ). Let m0 be the number of crossings in C that are in the interior of D,
m1 the number of crossings in C that are on α1, m2 the number of crossings in C that are on
α2, and m∞ the number of crossings in C that are outside D.

We argue by induction on m = m0 +m1 +m∞. Suppose m = 1. Then C = {c1, . . . , cm2 , d},
where c1, . . . , cm2 are the crossings on α2 and d is the other crossing. We have four cases:

1. The crossing d is outside D (Figure 12). We move d by an isotopy to the left part of
I × [t0, tf ).

t 0t 0

a1

a2

a7

..

.

b1

b2

b7

..

.β0

a1   
a2

a7

..

.

b1

b2

b7

..

.β0

isotopy
β

t>t f
β

t>t f

Figure 12: Case 1, Lemma 2.15.

2. The crossing d is inside D (Figure 13). There are two strands entering D that meet at the
crossing d. We apply a move of type M , M ′ or V 3 according to the value of the crossing
d, and then apply Case 1.

a1

a2

a7

..

.

b1

b2

b7

..

.β0

a1   
a2

a7

..

.

b1

b2

b7

..

.β0
vm β

t>t f
β

t>t f

0 t 0t

Figure 13: Case 2, Lemma 2.15.

3. The crossing d is on α1 in such a way that the strand making the crossing with α1 goes out
D (Figure 14). Then such strand also has a crossing with α2 and is the leftmost crossing
on it. Up to isotopy we may apply a move of type M , M ′ or V 3 according to the value of
the crossing p. Then we are done.
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t 0t 0

a1

a2

a7

..

.

b1

b2

b7

..

.β0

a1   
a2

a7

..

.

b1

b2

b7

..

.β0
vm β

t>t f
β

t>t f

Figure 14: Case 3, Lemma 2.15.

4. The crossing d is on α1 in such a way that the strand making the crossing with α1 enters
D (Figure 15). Let βj be that strand. We apply a move of type V 2 to βj and β2 just
before the crossing p, then we apply a move of type P , P ′ or V 3 according to the value of
the crossing p. In this way now d is a crossing on α2.

a1

a2

a7

..

.

b1

b2

b7

..

.β0

vmβ
t>t f

t 0

a1

a2

a7

..

.

b1

b2

b7

..

.β0 β
t>t f

t 0

a1

a2

a7

..

.

b1

b2

b7

..

.β0 β
t>t f

t 0

Figure 15: Case 4, Lemma 2.15.

Note that, in the above four cases, we have not deformed β for t ≥ tf . Moreover, up to
isotopy, β1 and β2 remain unchanged and in their restriction to (0, t0) × I we have added only
virtual crossings.

Now if m ≥ 2 take d the leftmost crossing in (t0, tf )× I such that d is not on α2. We apply
the case m = 1 in order to get rid of this crossing and reduce the obtained diagram by all the
possible V 2 moves in it. By the induction hypothesis, we have proven (1,2,3) of the lemma.

a1

a2

a7

..

.

b1

b2

b7

..

.β0

vmβ
t>t f

t 0 t f

a1

a2

a7

..

.

b1

b2

b7

..

.β0 β
t>t f

t 0 t f

Figure 16: Case α1(tf ) = α2(tf ), Lemma 2.15.

Now suppose α1(tf ) = α2(tf ). Then α1 and α2 form a bigon D. We apply the same
reasoning as above in order to have only crossings on α2 (Figure 16). Suppose that m2 6= 0,
then it necessarily is even (as each strand entering the bigon must go out by α2). We can apply
m
2 moves of type V 2 to get rid of the crossings in α2. But this is a contradiction as in each
inductive step we are reducing the diagram by all the possible V 2 moves in it. Therefore we can

10



chose β′ such that there are no crossings in (t0, tf )× I. With this we complete the proof of the
lemma.

Corollary 2.16. Let β be a virtual braid diagram and let α1, α2 be two primitive arcs of β
such that:

1. The arcs α1 and α2 start in the same point, say p (thus a crossing, it may be virtual or
regular).

2. The arcs α1 and α2 end at the same time, say tf .

Then there exists a virtual braid diagram β′ virtually equivalent to β such that:

1. If β1 and β2 are the strands corresponding to α1 and α2, respectively, then up to isotopy
they remain unchanged in β′ and in their restriction to (0, π1(p) = t0) we add only virtual
crossings.

2. The diagrams β and β′ coincide for t ≥ tf , i.e. β|t≥tf = β′|t≥tf .

3. Let α1 ∩α2 = {p = p1, p2, . . . , pm}, numbered so that π1(pi) < π1(pi+1) for 1 ≤ i ≤ m− 1.

(a) If π1(pm) = tf , then in (t0, tf )×I there are no crossings except, eventually, p2, . . . , pm−1.

(b) If π1(pm) 6= tf , then in (t0, π1(pm)) × I there are no crossings except eventually
p2, . . . , pm−1 and in (π1(pm), tf ) × I there are only virtual crossings with the corre-
sponding upper segment of α1 or α2.

a1

a2

a7

..

.

b1

b2

b7

..

. vmβ
t>t f

t 0 t f

β0

a1

a2

a7

..

.

b1

b2

b7

..

.β
t>t f

t 0 t f

β0

Figure 17: Corollary 2.16.

Proof. Suppose that π1(p1) < · · · < π1(pm). We argue by induction on m. Suppose m = 1.
Then necessarily p1 = p and we have the hypothesis of Lemma 2.15.

Suppose m > 1 and that α1 and α2 end in the same point pm. Consider the restrictions of
α1 and α2 to [π1(pm−1), tf ] and apply Lemma 2.15. We obtain a virtually equivalent diagram
β′ which does not have crossings neither on the restriction of α1 nor on the restriction of α2.
Furthermore, up to isotopy the strands corresponding to α1 and α2 remain unchanged and their
restrictions to [t0, π1(pm−1)] go only through virtual crossings, i.e. they are primitive arcs whose
intersection has m−1 points. Applying induction hypothesis on them, we have proved this case.

Suppose m > 1 and that α1 and α2 do not end in the same point. Consider the restrictions
of α1 and α2 to [π1(pm), tf ] and apply Lemma 2.15. We obtain a virtually equivalent diagram
β′ which may have only virtual crossings with the corresponding upper segment of α1 or α2.
Furthermore, up to isotopy, the strands corresponding to α1 and α2 remain unchanged and
their restrictions to [t0, π1(pm)] go only through virtual crossings, i.e. they are primitive arcs
whose intersection has m points and satisfies the condition of the preceding case. With this we
conclude the proof.
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Corollary 2.17. Given a virtual braid diagram β in general position. Let c1 and c2 be two
regular crossings not related in P (β) (Definition 2.9) and such that:

1. In the total order on R(β) (Definition 2.13), D(β), c1 > c2.

2. There is no regular crossing between c1 and c2 in D(β).

Then there exists a virtual braid diagram β′ virtually equivalent to β with c2 > c1 in D(β′),
and such that there is no regular crossing between them.

Furthermore, the diagrams β and β′ coincide for t > tf . In particular the total order on the
set of elements smaller than c2 in D(β) is preserved in D(β′), i.e. c2 > d1 > d2 in D(β), then
c1 > d1 > d2 in D(β′).

Proof. Let tf > π1(c2) such that there is no crossing in (π1(c2), tf ) × I and, let α1 and α2 be
the primitive arcs coming from the regular crossing c1 and finishing in tf . Applying the last
corollary to α1 and α2, we obtain a virtually equivalent diagram β′ such that in (π1(c1), tf ]× I
there are only virtual crossings and β remains unchanged for t ≥ tf . Thus c2 > c1 in D(β′) and
if c2 > d1 > d2 in D(β), then c1 > d1 > d2 in D(β′).

Given two orders, R and R′ over a set X, we say that R′ is compatible with R if R ⊂ R′.

Lemma 2.18. Let β be a virtual braid diagram and let R̃ be a total order on R(β) compatible
with P (β). Then there exists a virtual braid diagram β′ virtually equivalent to β such that
D(β′) = R̃.

a1

a2

a7

..

.

b1

b2

b7

..

. vmβ
t>t f

c1 c 2

β0

a1

a2

a7

..

.

b1

b2

b7

..

.β
t>t f

c1c 2

β0

Figure 18: Lemma 2.18.

Proof. Suppose
R̃ = {c1 > · · · > cm},

D(β) = {d1 > · · · > dm},

and that cl = dl for l > k, ck 6= dk and ck = dj > dk in D(β). Note that for k ≥ l > j, dj is
not related with dl in P (β). Applying the last corollary k− j times we construct a virtual braid
diagram β′ virtually equivalent to β such that if D(β′) = {d′1 > · · · > d′m} then cl = d′l for l ≥ k.
Applying this procedure inductively we obtain the lemma.

Lemma 2.19. Let β1 and β2 be two virtual braid diagrams on n strands, and let α1 and α2 be
two primitive arcs of β1 and β2 respectively, such that:

1. The extremes of α1 and α2 coincide.

2. α1 and α2 form a bigon D.

3. β1 \ α1 and β2 \ α2 coincide.
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4. There are no crossings in the interior of D.

Then β1 and β2 are virtually equivalent by isotopy and moves of type V 2.

Proof. First note that each strand entering D must go out. Take a strand α entering D and
suppose it is innermost. If it goes out by the same side, as there are no crossings in the interior
of D, then we can apply a move of type V 2 and eliminate the two virtual crossings. Therefore
we can suppose that each strands entering by one side goes out by the other. Apply an isotopy
following the strands crossing the bigon (if there are any) in order to identify the two primitive
arcs.

Lemma 2.20. Let β1 and β2 be two virtual braid diagrams on n strands, and let α1 and α2 be
two primitive arcs of β1 and β2 respectively, such that:

1. The extremes of α1 and α2 coincide.

2. α1 and α2 form a bigon D.

3. β1 \ α1 and β2 \ α2 coincide.

Then β1 and β2 are virtually equivalent.

a1
a2

an

..

.

b1
b2

bn

..

.

β
1

β
2

Figure 19: Lemma 2.20.

Proof. Call p and q the starting and ending points of α1, and set β = β1 \ α1. Let m be the
number of crossings inside D. We argue by induction on m. If m = 0 we apply the last lemma.

Suppose m ≥ 1 and let c be the leftmost crossing inside D. Choose t0 and t1 so that
π1(p) < t0 < t1 < π1(c) and so that there are no crossings in D ∩ ((t0, π1(c))× I). Draw a line
a′ joining α1(t0) and α2(t1). Note that a′ intersects the two incoming strands that compose c.
To the crossings of β with a′ assign virtual crossings. Consider the following primitive arcs:

c1 = α1|[π1(p),t0] ∗ a′ c3 = a′ ∗ α2|[t1,π1(q)]

c2 = α2|[π1(p),t1] c4 = α1|[t0,π1(q)].

Note that c1 and c2 form a bigon that has no crossing in its interior, so we apply the last
lemma to β′2 = (β2 ∪ c1) \ c2 and β2.

On the other hand, take the bigon D′ formed by c3 and c4. D′ has the same crossings as D,
and c is still the leftmost crossing in D′. By construction of β′2 we can apply a move of type V 3,
M or M ′ to move a′ to the other side of c. Call the obtained virtual braid diagram β′1. Then
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p q

α1

α2

c1

c2

c3

c4

Figure 20: Construction in proof of Lemma 2.20.

the bigon formed between β′1 and β1 has m− 1 crossings in its interior. Applying the induction
hypothesis to β1 and β′1 we conclude that

β1 ∼vm β′1 ∼vm β′2 ∼vm β2,

which proves the lemma.

Corollary 2.21. Let β1 and β2 be two virtual braid diagrams on n strands, and let α1 and α2

be two primitive arcs of β1 and β2, respectively, such that:

1. The extremes of α1 and α2 coincide.

2. β1 \ α1 and β2 \ α2 coincide.

Then β1 and β2 are virtually equivalent.

Proof. Without loss of generality we can suppose that α1 intersects transversally α2 in a finite
number of points. In this case they form a finite number of bigons. Apply the previous lemma
to each one.

Now we are able to complete the proof of Theorem 2.10. We have already proved (1) in
Lemma 2.11. In Lemma 2.12 we have shown that if β ∼vm β′ then G(β) = G(β′). It remains to
prove that if β, β′ ∈ V BDn are so that G(β) = G(β′), then β ∼vm β′. Set g = G(β) = G(β′).

Let R̃ be a total order of R(G), compatible with P (G). By Lemma 2.18 there exist two
virtual braid diagrams, α and α′, virtually equivalent to β and β′ respectively and such that
D(α) = R̃ = D(α′). As D(α) = D(α′) we can suppose that the regular crossings of α and α′

coincide (if not, move them by an isotopy to make them coincide). In this case α and α′ differ
by joining arcs.

Suppose α has m joining arcs. As the regular crossings of α and α′ coincide, we can suppose
that the corresponding joining arcs of α and α′ begin and end at the same points. Apply
Corollary 2.21 m times, in order to make that each of the corresponding joining arcs coincide.
We conclude that α is virtually equivalent to α′ and thus β and β′.

2.3 Virtual braids as Gauss diagrams

The aim of this section is to establish a bijective correspondence between virtual braids and
certain equivalence classes of braid-Gauss diagrams. We also give the group structure on the set
of virtual braids in terms of Gauss diagrams, and use this to prove a presentation of the pure
virtual braid group.

Definition 2.22. Let g and g′ be two Gauss diagrams. A Gauss embedding is an embedding
ϕ : g′ → g which send each interval of g′ into a subinterval of g, and which sends each arrow of g′

to an arrow of g respecting the orientation and the sign. Note that there is no condition on the
permutations associated to g′ and g in the above definition. We shall say that g′ is embedded
in g if a Gauss embedding of g′ into g is given.
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Let g′ be a Gauss diagram of n strands, so that it is embedded in g by sending the interval
i to a subinterval of the interval ki of g, we say that the embedding is of type (k1, . . . , kn).

Consider the three Gauss diagrams presented in Figure 21. Note that g1 is embedded in g2

by an embedding of type (2, 1), and g3 is embedded in g2 by an embedding of type (1, 2, 3).

1

2

3
+-

-

-

+-
+

1

2

3
+

+

1

2

G1 G2 G3

Figure 21: G1 is (1, 2)−embedded in G2, and G3 is (1, 2, 3)−embedded in G2.

By performing an Ω3 move on a braid Gauss diagram g, we mean choosing an embedding in
g of the braid Gauss diagram depicted on the left hand side of Figure 22 (or on the right hand
side of Figure 22), and replacing it by the braid Gauss diagram depicted on the right hand side
of Figure 22 (resp. on the left hand side of Figure 22).

1

2

3

Ω3

1

2

3
ϵ ϵϵ ϵ ϵϵ

Figure 22: Ω3 move on Gauss diagrams, with ε ∈ {±1}.

Let g be a Gauss diagram with n strands and i, j, k ∈ {1, . . . , n} with i < j < k. The six
different types of embeddings of the Gauss diagram in Figure 22 in g are illustrated in Figures
23, 24 and 25. According to the type of embedding the Ω3 move is called Ω3 move of type
(k1, k2, k3).

k

j

i i

j

k

Ω3a

ϵ ϵϵ ϵ ϵϵ
k

j

i

Ω3b

k

j

i

ϵ ϵϵ ϵ ϵϵ

Figure 23: Ω3 moves of type (i, j, k) and (i, k, j).
Similarly, by performing an Ω2 move on a braid Gauss diagram g, we mean choosing an

embedding in g of the braid Gauss diagram depicted on the left hand side of Figure 26 (or on
the right hand side of Figure 26), and replacing it by the braid Gauss diagram depicted on the
right hand side of Figure 26 (resp. on the left hand side of Figure 26).

In this case there are only two types of embeddings. They are illustrated in Figure 27.

Definition 2.23. The equivalence relation generated by the Ω2 and the Ω3 moves in the set of
braid Gauss diagrams is called Reidemeister equivalence. The set of equivalence classes of braid
Gauss diagrams is denoted by bGn.

Proposition 2.24. There is a bijective correspondence between bGn and V Bn.

Proof. By Theorem 2.10 we know that there is a bijective correspondence between the set of
virtually equivalent virtual braid diagrams and the braid Gauss diagrams. Therefore we need
to prove that if two virtual braid diagrams are related by a Reidemeister move then their braid
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k

j

i

Ω3c

k

j

i

ϵ ϵϵ ϵ ϵϵ
k

j

i

Ω3d

k

j

i

ϵ ϵϵ ϵ ϵϵ

Figure 24: Ω3 moves of type (j, i, k) and (j, k, i).

k

j

i

Ω3e

k

j

i

ϵ ϵϵ ϵ ϵϵ
k

j

i

Ω3f

k

j

i

ϵ ϵϵ ϵ ϵϵ

Figure 25: Ω3 moves of type (k, i, j) and (k, j, i).

Gauss diagrams are Reidemeister equivalent, and that if two braid Gauss diagrams are related
by an Ω2 or an Ω3 move then their virtual braid diagrams are virtually Reidemeister equivalent.

Let β and β′ be two virtual braid diagrams that differ by a Reidemeister move. Suppose
that they are related by a R3 move, and that the strands involved in the move are a, b, and c,
with a, b, c ∈ {1, . . . , n}. Then, up to isotopy we can deform the diagrams so that they coincide
outside the subinterval I0 := [t0, tf ] ⊂ I, and in I0 there are only the crossings involved in the
R3 move. In I0 the diagrams look as in Figure 28. Thus, their braid-Gauss diagrams coincide
outside I0 and in I0 they differ by an Ω3 move of type (a, b, c). The case R2 is proved in the
same way.

Now, let g and g′ be two braid Gauss diagrams and let a, b, c ∈ {1, . . . , n} be pairwise
different. Suppose that g and g′ are related by an Ω3 move of type (a, b, c). There exists a
subinterval I0 = [t0, tf ] ⊂ I, that contains only the three arrows involved in the Ω3 move. There
exists a virtual braid diagram β, representing g, that in the subinterval I0 it looks as the left
hand side (or the right hand side) of Figure 28. By performing an R3 move on β|I0 , we obtain
a virtual braid diagram β′. Their braid Gauss diagrams coincides outside I0 and in I0 the differ
by an Ω3 move of type (a, b, c), i.e. G(β′) = g′.

2.4 Presentation of PVn.

Recall that V Bn has a group structure, with the product given by the concatenation of the
diagrams (Remark 2.3). By Proposition 2.24, bGn has a group structure induced by the one on
V Bn.

A presentation of the pure virtual braids was given by Bardakov [2]. We present an alternative
proof by means of the braid Gauss diagrams.

Recall that the symmetric group, Sn, has the next presentation:

• Generators: t1, . . . , tn−1.

• Relations:

titi+1ti = ti+1titi+1 for 1 ≤ i ≤ n− 2

titj = tjti for |i− j| ≥ 2.

t2i = 1 for 1 ≤ i ≤ 2.
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1

2

Ω2
1

2-ϵϵ

Figure 26: Ω2 move on Gauss diagrams.

i

j

Ω2a
i

j

-ϵϵ

j

i
Ω2b

j

i
-ϵϵ

Figure 27: Ω2 moves of type (i, j) and (j, i).

From the presentation of V Bn (Remark 2.3), there exists an epimorphism θP : V Bn → Sn,
given by

θP (τi) = ti = θP (σi) for 1 ≤ i ≤ n− 1.

The kernel of θP is called the pure virtual braid group and is denoted by PVn. The elements
of this group correspond to the virtual braids diagrams whose strands begin and end in the same
marked point, i.e. the permutation associated to its braid Gauss diagram is the identity.

On the other hand, a braid Gauss diagram is composed by the next elements:

1. A finite ordered set of n intervals, say I1 t I2 t · · · t In.

2. A finite set of arrows connecting the different intervals, so that to each arrow corresponds
a different time.

3. A function assigning a sign, {±1}, to each arrow.

4. A permutation, σ ∈ Sn, labelling the endpoint of each interval.

Denote by Xε
i,j the arrow from the interval i to the interval j with sign ε ∈ {±1}. Let

X = {Xε
i,j | 1 ≤ i 6= j ≤ n , ε ∈ {±1}}

and denote by X∗ the set of all words in X union the empty word, denoted by e.
Given a braid Gauss diagram, g, its arrows have a natural order induced by the parametriza-

tion of the intervals. Let W ∈ X∗ be the word given by the concatenation of the arrows in g,
according to the order in which they appear, and σ ∈ Sn its associated permutation. Thus any
braid Gauss diagram can be expressed as g = (W,σ). We denote ē := (e, IdSn).

Proposition 2.25. (Bardakov [2]) The group PVn has the following presentation:

• Generators: Ai,j with 1 ≤ i 6= j ≤ n.

• Relations:

Ai,jAi,kAj,k = Aj,kAi,kAi,j for i, j, k distinct.

Ai,jAk,l = Ak,lAi,j for i, j, k, l distinct.

Proof. Given a pure virtual braid diagram β, its braid Gauss diagram is given by G(β) =
(W, IdSn). Thus any pure virtual braid diagram may be expressed as an element in X∗.

Recall that, as elements of bGn, the braid Gauss diagrams are related by three different
moves (and its inverses) on the subwords of any word in X∗:
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R3

c

b

a

c

b

a

Figure 28: A labelled R3 move.

1. Reparametrization:

Xε1
i,jX

ε2
k,l = Xε2

k,lX
ε1
i,j for i, j, k, l distinct and ε1, ε2 ∈ {±1}.

2. The Ω2 move:
Xε
i,jX

−ε
i,j = e for i, j distinct and ε ∈ {±1}.

3. The Ω3 move:

Xε
i,jX

ε
i,kX

ε
j,k = Xε

j,kX
ε
i,kX

ε
i,j for i, j, k distinct and ε ∈ {±1}.

Denote by PGn the set of equivalence classes of X∗. Note that PGn has the structure
of group with the product defined as the concatenation of the words. On the other hand
G : PVn → PGn is an homomorphism, i.e. G(β1β2) = G(β1)G(β2). By Proposition 2.24, G is a
bijection. Consequently it is an isomorphism.

Let Γ be the group with presentation as stated in the proposition. Let Ψ : Γ → PGn be
given by

Ψ(Ai,j) = Xi,j ,

and let Φ : PGn → Γ be given by
Φ(Xε

i,j) = Aεi,j .

Note that Φ and Ψ are well-defined homomorphisms and furthermore Ψ ◦ Φ = IdPGn and
Φ ◦Ψ = IdΓ. Consequently PVn has the presentation stated in the proposition.

3 Abstract braids

The aim of this section is to establish a topological representation of virtual braids.

Definition 3.1. A abstract braid diagram on n strands is a quadruple β̄ = (S, f, β, ε), such that:

1. S is a connected, compact and oriented surface.

2. The boundary of S has only two connected components, i.e. ∂S = C0 t C1, with C0 ≈
S1 ≈ C1. They are called distinguished boundary components.

3. Each boundary component of S has n marked points, say K0 = {a1, . . . , an} ⊂ C0 and
K1 = {b1, . . . , bn} ⊂ C1. Such that:

(a) The elements of K0 and K1 are linearly ordered.

(b) Let κ0 : S1 → C0 and κ1 : S1 → C1 be parametrizations of C0 and C1 compatible

with the orientation of S. Up to isotopy we can put ak = κ0(e
2πi
k ) and bk = κ1(e−

2πi
k )

for k ∈ {1, . . . , n}.
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4. f is a smooth function, f : S → I such that f−1({0}) = C0 and f−1({1}) = C1.

5. β is an n-tuple of curves β = (β1, . . . , βn) with

(a) For k = 1, . . . , n, βk : I → S.

(b) For k = 1, . . . , n, βk(0) = ak.

(c) There exists σ ∈ Sn such that
βk(1) = bσ(k),

for all k ∈ {1, . . . , n}.
(d) For k = 1, . . . , n and t ∈ I, f ◦ βk(t) = t.

(e) The n-tuple of curves β is in general position, i.e. there are only transversal double
points, called crossings.

6. Similarly to Defintion 2.1, denote by R(β) the set of crossings of β. Then ε is a function,

ε : R(β)→ {±1}.

From now on we fix n ∈ N and we say abstract braid diagram instead of abstract braid
diagram on n strands.

f

0 1

a4
a3
a2

a1

b4
b3
b2

b1

Figure 29: An abstract braid diagram on four strands.

Definition 3.2. An isotopy of abstract braid diagrams is a family of abstract braid diagrams
G = {β̄s = (S, fs, βs, εs)}s∈I , such that:

1. For all s ∈ I, Ks
0 = K0

0 and Ks
1 = K0

1 .

2. For all k ∈ {1, . . . , n}, Hk is continuous, where:

Hk :I × I → S

(s, t) 7→ βsk(t).

3. The function H is smooth, where:

H :I × S → I

(s, x) 7→ fs(x).

4. The function εs : R(βs)→ {±1} remains invariant, i.e. εs = ε0, for all s ∈ I.
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We say that β̄0 and β̄1 are isotopic and we denote it by G : β̄0 ' β̄1.

Remark 3.3. The isotopy relation is an equivalence relation on the set of abstract braid dia-
grams.

Definition 3.4. Let β̄ = (S, f, β̄, ε) and β̄′ = (S′, f ′, β̄′, ε′) be two abstract braid diagrams. We
say that β̄ and β̄′ are compatible if there exists a diffeomorphism ϕ : (S, ∂S) → (S′, ∂S′), such
that ϕ∗β̄ = (S′, f ◦ ϕ−1, ϕ ◦ β, ε) is isotopy equivalent to β̄′. We denote it by β̄ ≈ β̄′.

Remark 3.5. The compatibility relation is an equivalence relation on the set of abstract braid
diagrams, and the isotopy equivalence is included in the compatibility relation. We denote by
ABDn the set of compatibility classes of abstract braid diagrams on n strands.

Definition 3.6. Given β̄0 = (S0, f0, β
0, ε0) and β̄1 = (S1, f1, β

1, ε1). We say that they are
related by a stability move if there exist:

1. Two disjoint embedded discs, D0 and D1, in S0 \ β0.

2. An embedding ϕ : (S′0 = S0 \ (D0 ∪D1), ∂S0)→ (S1, ∂S1), such that S1 \ ϕ(S′0) ≈ S1 × I.

3. A smooth function F : S1 → I, such that:

(a) f0|S′
0

= F ◦ ϕ.

(b) The quadruple (S1, F, ϕ ◦ β0, ε0) is an abstract braid.

(c) (S1, F, ϕ ◦ β0, ε0) ≈ β̄1.

Definition 3.7. Given β̄0 = (S0, f0, β
0, ε0) and β̄1 = (S1, f1, β

1, ε1). We say that they are
related by a destability move or a destabilization, if there exist:

1. An essential non-separating simple curve C in S0 \ β0.

2. An embedding ϕ : (S′0 = S0\C, ∂S0)→ (S1, ∂S1), such that S1\ϕ(S0\C) is homeomorphic
to the disjoint union of two closed discs.

3. A smooth funcion F : S1 → I, such that:

(a) f0|S′
0

= F ◦ ϕ.

(b) The quadruple (S1, F, ϕ ◦ β0, ε0) is an abstract braid.

(c) (S1, F, ϕ ◦ β0, ε0) ≈ β̄1.

Given two abstract braid diagrams β̄0 and β̄1, if β̄1 is obtained from β̄0 from a stability move
along two discs D0 and D1 in S0 \ β0, the boundaries of D0 and D1 are homotopy equivalent in
S1. If we perform a destabilization along its homotopy class we recover β̄0, up to compatibility.

Reciprocally if β̄1 is obtained from β̄0 by a destabilization along an essential curve C, then
we can recover β̄0, up to compatibility, with a stabilization along the two capped discs in S0 \C,
see Figure 30.

Definition 3.8. The equivalence relation on the set of abstract braids generated by the stability
(and destability) moves is called stability equivalence. We denote it by ∼s.

Definition 3.9. Let β̄ = (S, f, β, ε) be an abstract braid, and let C be an embedded simple
closed curve in S \ β. Denote by SC the connected component of S \C containing β. Let S′C be
a compact, connected, oriented surface and ϕ : SC → S′C such that:
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Figure 30: Compatibility and stability equivalence.

1. The surface S′C has only two boundary components C ′0 and C ′1.

2. The map ϕ is an embedding such that ϕ(C0) = C ′0 and ϕ(C1) = C ′1.

3. Let kC be the number of connected components of S \ C.

(a) If kC = 1, then S′C \ ϕ(SC) is homeomorphic to a disjoint union of two discs.

(b) If kC = 2, then S′C \ ϕ(SC) is homeomorphic to a disc.

Let FC : S′C → I be a smooth function such that F |ϕ(SC) = f |SC (note that up to isotopy, this
extension is unique). Then β̄C = (S′C , FC , ϕ ◦ β, ε) is an abstract braid. We say that we obtain
β̄C by destabilizing β̄ along C, and is called a generalized destabilization.

Proposition 3.10. Let β̄ = (S, f, β, ε) be an abstract braid, and let C be an embedded simple
closed curve in S \ β. Then β̄C is stable equivalent to β̄ by a finite number of destabilizations.

Proof. First note that if S \C has only one connected component the generalized destabilization
along C coincides with the definition of destabilization. Thus β̄ ∼s β̄C by one destabilization.

So, we can assume that S \ C has two connected components, one of which contains β (we
call it SC) and the other is a compact connected surface with one boundary component, thus it
is homeomorphic to Σg,1. We will prove the proposition by induction on g.

If g = 0 then Σg,1 is a disc, thus FC ' f |SC and consequently β̄C ≈ β̄.
If g = 1 then Σ1,1 is a torus with one boundary component, which corresponds to the curve

C. Let C ′ be a closed simple essential non separating curve in Σ1,1. We claim that β̄C ≈ β̄C′ .
Note that Σ1,1 \C ′ is homeomorphic to a pair of pants (Figure 31), whose exterior boundary

is the curve C and whose interior boundaries correspond to the boundaries generated by cutting
S along C ′.

On the other hand consider the curve C ′ embedded in S. The surface S\C ′ has one connected
component and two (non distinguished) boundary components. Let S′ be the surface obtained
from S \ C ′ by capping the boundary components corresponding to C ′. There exist a disc, D′,
embedded in S′ so that its boundary corresponds to the curve C. Thus SC is embedded in SC′

and SC′ is embedded in S′.
Suppose ι : SC ↪→ SC′ and ϕC′ : SC′ ↪→ S′ are the embeddings. Denote ϕC = ϕC′ ◦ ι. Let

FC : S′ → I be an extension of f |SC and FC′ : S′ → I be an extension of f |SC′ . Note that FC
and FC′ differ only in the interior of the disc bounded by C. Consequently FC ' FC′ . From
this we conclude that β̄C ≈ β̄C′ . Thus β̄ ∼s β̄C by a unique destabilization.

Suppose that the proposition is true when the second connected component is homeomorphic
to Σk,1.

Choose a simple essential closed curve C which divides S in two connected components,
from which the component that does not contain β is homeomorphic to Σk+1,1. Take a simple
essential closed curve C ′ in Σk+1,1, which is not isotopic to C in Σk+1,1. Destabilize β̄ along C ′.
Then, by induction, β̄ is stable equivalent to β̄C′ . The curve C is still a simple closed curve in
SC′ \ β, thus we can destabilize β̄C′ along C.
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Figure 31: Generalized destabilization along a curve C.

By induction hypothesis, the destabilization of β̄C′ along C is stable equivalent to β̄C′ . Thus
β̄ is stable equivalent to (β̄C′)C .

Without loss of generality we can suppose that (ϕC′)C = ϕC , and note that FC and (FC′)C
differ by an isotopy in the disc bounded by C. Consequently (β̄C′)C ≈ β̄C and β̄ ∼s β̄C .

Definition 3.11. Given two abstract braid diagrams β̄ = (S, f, β, ε) and β̄′ = (S, f ′, β′, ε′), we
say that they are related by a Reidemeister move or simply by an R-move if, up to isotopy, f = f ′

and there exists a neighbourhood D in S, homeomorphic to a disc, such that β \ D = β′ \ D,
ε|β\D = ε′|β′\D, and inside D we can transform β into β′ by a Reidemeister move and isotopy
(Figure 2). The equivalence relation generated by the R-moves is called Reidemeister equivalence
or simply R-equivalence. We denote it by β̄ ∼R β̄′.

Definition 3.12. Let ∼ be the equivalence relation on the abstract braid diagrams on n strands
generated by the compatibility, stability and Reidemeister moves. The equivalence classes of
abstract braid diagrams are called abstract braids, and the set of abstract braids is denoted by
ABn.

Remark 3.13. The definition of braid Gauss diagram is extended in a natural way to the set
of abstract braid diagrams. The braid Gauss diagram of an abstract braid diagram is invariant
under compatility (resp. under isotopy) and stability.

Thus, there is a well defined map from ABDn to bGDn, which associates to each abstract
braid diagram its braid Gauss diagram. This map is well defined up to compatibility and
stability. By abuse of notation we denote the induced map still by G.

Recall that the set of braid Gauss diagrams is in bijective correspondence with the set of
virtually equivalent virtual braid diagrams. Thus, braid Gauss diagrams are a good tool to
prove that abstract braids are a good geometric interpretation of virtual braids. We present an
analogous of Theorem 2.10 for abstract braid diagrams.

Claim 3.14. The map G : ABDn → bGDn induces a bijection between the stable equivalence
classes of abstract braid diagrams and the braid Gauss diagrams.

Proof. Recall that the function is well defined from the stable and compatibility equivalence
classes of Abstract braid diagrams to the braid Gauss diagrams (Remark 3.13).

Now we proof the surjectivity. Let g ∈ bGDn. Then by Theorem 2.10 there exists a virtual
braid diagram β such that G(β) = g. For each β ∈ V BDn we can construct an abstract braid
diagram β̄ such that G(β) = G(β̄) as follows.

Let β be a virtual braid diagram, and let N be a regular neighbourhood of β ∪ ({0} ×
I) ∪ ({1} × I) in D = I × I (Figure 32). Note that N can be seen as the union of regular
neighbourhoods of each strand and of the two extremes of the virtual braid diagram.
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Now consider the standard embedding of D in R3. Around each virtual crossing perturb
the regular neighbourhoods of the strands involved in the crossing so that they do not intersect,
as pictured in Figure 32. To the regular neighbourhood of each extreme attach a ribbon so
that each extreme is now a cylinder, as in Figure 32. In this way we obtain a compact oriented
surface, S′, with more than the two distinguished boundary components. Consider the function
f : S′ → [0, 1] defined by the projection on the first coordinate in R3.

As S′ is compact, connected and oriented, it is diffeomorphic to Σg,b. We can cap all the non-
distinguished boundary components in order to obtain a surface S that has only the distinguished
boundary components. There exists an embedding ϕ : S′ → S and a smooth function F : S → I,
such that f = F ◦ϕ. In this way we have constructed an abstract braid diagram β̄ = (S, F, β, ε)
such that G(β) = G(β̄). From this we conclude that the function G is surjective.

x I x I
x I

Figure 32: Construction of β̄ from β such that G(β̄) = G(β).

Now to prove injectivity of the induced function, let β̄ = (S, f, β, ε) and β̄′ = (S′, f ′, β′, ε′)
be two abstract braid diagrams such that G(β̄) = G(β̄′). We claim that β̄ is stable equivalent
to β̄′.

Note that G(β̄) = G(β̄′) implies that the graph given by Γ = C0∪β∪C1 ⊂ S is homeomorphic
to Γ′ = C ′0 ∪ β′ ∪ C ′1 ⊂ S′. Consider a regular neighbourhood of Γ in S, N , and a regular
neighbourhood of Γ′ in S′, N ′. Thus there exists an homeomorphism ϕ : N → N ′, with
ϕ(Γ) = Γ′.

As N is homeomorphic to Σg,k+2, it has k non-distinguished boundary components. We can
cap the k non-distinguished boundary components of N to obtain a surface Σ that has only the
two distinguished boundary components. There exists an embedding ι : N → Σ and a smooth
function F : Σ → I such that f |N = F ◦ ι. In this way we have constructed an abstract braid
diagram ᾱ = (Σ, F, ι ◦ β, ε) stable equivalent to β̄.

On the other hand, note that f |N is homotopic to g = f ′ ◦ϕ and as Σ \N is a disjoint union
of circles, then we can extend g to Σ so that it is homotopy equivalent to F . Thus without
loss of generality we can suppose that f |N = f ′ ◦ ϕ. This implies that, up to compatibility and
destabilizations along the non-distinguished boundary components of N and N ′, we can obtain
ᾱ from β̄ and from β̄′. Thus β̄ and β̄′ are stable equivalent, consequently the induced function
on the stable equivalence classes is injective.

Theorem 3.15. There exists a bijection between the abstract braids on n strands and the
virtual braids on n strands.

Proof. We need to verify that the function induced by G, from ABn to bGn, is well defined and
that it remains injective. By abuse of notation we denote the induced map still by G.

Let β̄ = (S, f, β, ε) and β̄′ = (S, f, β′, ε′) be two abstract braid diagrams related by an R-
move. We need to see that G(β̄) is related to G(β̄′) by an Ω2 or an Ω3 move. By definition of an
R-move, there exists a neighbourhood, D, diffeomorphic to a disc, such that β and β′ coincide
outside D. Up to isotopy we can suppose that in the interval f(D) = f ′(D) there are no other
crossings that the involved on the R-move. In this way to perform an R-move in D is equivalent
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to perform an Ω2 or an Ω3 move in the braid Gauss diagram. Consequently G is well defined
from ABn to bGn.

To prove the injectivity, let β̄ and β̄′ be two abstract braids diagrams such that G(β̄) and
G(β̄′) are related by an Ω2 move. Note that the strands involved in the Ω2 move of β (resp.
of β′) in the regular neighbourhood constructed in the proof of Claim 3.14 look either as in the
left hand side or as in the right hand side of Figure 33 (resp. right hand side or left hand side).
Deform the regular neighbourhood of the right hand side by gluing a disc in the middle, so that
it looks as in the center of Figure 33. Then we can embed both diagrams in the same surface and
relate them by a R2 move. Then β̄ and β̄′ are related by a stability and a Reidemeister move.
The case when G(β) and G(β′) are related by an Ω3 move is proved similarly and illustrated in
Figure 34. Thus G is injective and the theorem is true.

Figure 33: Strands involved in the Ω2 move.

Figure 34: Strands involved in the Ω3 move.

As a consequence of the proof of the last theorem we have the next corollary.

Corollary 3.16. Given an abstract braid diagram β̄. Let [β̄]s be its stable equivalence class.
There exists a unique, up to compatibility, ᾱ ∈ [β̄]s, such that for all β̄′ ∈ [β̄]s, ᾱ is obtained
from β̄′ by a finite number of destabilizations.

4 Minimal realization of an abstract braid

Given an abstract braid diagram β̄ = (S, f, β, ε) we call the genus of β̄ to the genus of S. We
denote it by g(β̄).

Recall that ABDn denotes the set of equivalence classes of abstract braid diagrams, identified
up to isotopy and compatibility equivalence. Note that the genus of an abstract braid diagram
is preserved by the isotopy and compatibility equivalence. Thus we can define the genus of an
element of ABDn. From now on we will confuse an abstract braid diagram with its compatibility
and isotopy equivalence class.

On the other hand ABn denotes the set of stability and Reidemeister equivalence classes
of abstract braid diagrams. The Reidemeister equivalence preserves the genus of an abstract
braid. Denote by TABn the set of isotopy, compatibility and Reidemeister equivalence classes
of abstract braid diagrams.

Denote by [β̄] the stability and Reidemeister equivalence class of the abstract braid diagram
β̄. Given [β̄] ∈ ABn the stability equivalence defines an order on [β̄] given by β̄ < β̄′ if β̄
is obtained from β̄′ through Reidemeister and destability moves. Note that a destabilization
always reduces the genus of an abstract braid diagram and the genus is a non negative number.
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The aim of this section is to prove that two minimal elements in [β̄] ∈ ABn are related by a
finite number of isotopies, compatibilities, and Reidemeister moves, that is, they represent the
same element in TABn.

Recall that there is a bijective correspondence between ABn and V Bn (Theorem 3.15). In
particular, for a virtual braid β there exists a distinguished topological representative of β, given
by its minimal representative β̄ ∈ TABn.

Another straightforward consequence is that we can define the genus of a virtual braid as
the genus of the minimal topological representative of β, and this is an invariant of the virtual
braid, i.e. its value does not change up to isotopy and virtual, Reidemeister and mixed moves.

A regular braid is a virtual braid that has only regular crossings. A corollary of the previous
discussion is that if a virtual braid can be reduced to a regular braid, then necessarily its genus
must be zero. Eventhough, there are some virtual braids whose genus is zero and that are not
regular, for example consider the virtual braid β = σ1τ1, we have that g(β) = 0, but it is not a
regular braid (Figure 35).

Figure 35: No regular braid with genus 0.

Regular braid diagrams are projections of geometric braids in D × I on D. Is well known
that regular braids coincide with isotopy classes of geometric braids identified up to isotopy. In
order to have a similar result for abstract braids, we need to define a geometric object in a three
dimensional space, such that when it is projected on a two dimensional space we recover the
Abstract braid diagrams.

Definition 4.1. A braid in a thickened surface on n strands is a triple, β̄ = (MS , F, β), such
that:

1. There exists a compact, connected and oriented surface S, such that MS = S × I.

2. The boundary of S has only two connected components, i.e. ∂S = C0 t C1, with C0 ≈
S1 ≈ C1, called distinguished boundary components.

3. Each boundary component of S has n marked points, say K0 = {a1, . . . , an} ⊂ C0 and
K1 = {b1, . . . , bn} ⊂ C1. Such that:

(a) The elements of K0 and K1 are lineary ordered.

(b) Let κ0 : S1 → C0 and κ1 : S1 → C1 be parametrizations of C0 and C1 compatible

with the orientation of S. Up to isotopy we can put ak = κ0(e
2πi
k ) and bk = κ1(e−

2πi
k )

for k ∈ {1, . . . , n}.

4. F is a smooth function, F : MS → I such that, for i = 0, 1

F−1({i}) = Ci × I.

5. β is an n-tuple of curves β = (β1, . . . , βn) with:

(a) For k = 1, . . . , n, βk : I →MS .

(b) For k = 1, . . . , n, βk(0) = (ak,
1
2).
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(c) There exists σ ∈ Sn such that for k = 1, . . . , n,

βk(1) = (bσ(k),
1

2
).

(d) For k = 1, . . . , n and t ∈ I, F ◦ βk(t) = t.

(e) For i 6= j, βi ∩ βj = ∅.

From now on we fix n ∈ N and we say braids in a thickened surface instead of braids in a
thickened surface on n strands.

Definition 4.2. An isotopy of braids in a thickened surface is a family of braids in a thickened
surface G = {β̄s = (MS , F

s, βs)}s∈I , such that:

1. For all s ∈ I, Ks
0 = K0

0 and Ks
1 = K0

1 .

2. For k = 1, . . . , n, Hk is continuous, where:

Hk :I × I →MS

(s, t) 7→ βsk(t).

3. The function H is smooth, where:

H :I ×MS → I

(s, x) 7→ F s(x).

We say that β̄0 and β̄1 are isotopic and we denote it by G : β̄0 ' β̄1.

Definition 4.3. Given two thickened braid diagrams β̄ = (MS , F, β) and β̄′ = (MS′ , F ′, β′), we
say that they are compatible if there exists a diffeomorphism ϕ : MS →MS′ such that F = F ′◦ϕ
and β′ = ϕ ◦ β. We denote it by β̄ ≈ β̄′. Note that the compatibility relation is an equivalence
relation.

Fix a thickened surface MS . Given an isotopy between two braids in MS , we can decompose
the isotopy in a sequence of isotopies so that, in each step, only one strand moves and a bigon
is formed by the initial and terminal positions of that strand. Since the bigon is contained in a
disc, the projection of this move on the surface looks like Figure 36.

Figure 36: ∆-move.

Such moves are called ∆-moves and generate the ∆-equivalence of abstract braid diagrams
on S. Thus, there is a bijective correspondence between the ∆-classes of abstract braid diagrams
in S and the isotopy classes of braids in MS .

On the other side, the ∆-equivalence generates the Reidemeister moves R2a, R2b and R3
and viceversa, a ∆-move can be expressed as a finite sequence of Reidemeister moves [15, pp.
19-24]. Consequently we have the next lemma.
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Lemma 4.4. There is a bijective correspondence between isotopy and compatibility classes of
braids in thickened surfaces and TABn. We call the elements of TABn, thickened abstract braids
(on n strands).

From now on we will think the elements of TABn as isotopy classes of thickened abstract
braids.

Definition 4.5. Let β̄ = (MS , F, β) ∈ TABn. Given A,B ⊂MS we say that A is isotopic to B
relative to ∂MS if there exists a continuous function H : A× I →MS such that:

1. H0 = idA and H1(A) = B.

2. For all s ∈ I, Hs is an embedding.

3. For all s ∈ I, Hs(A ∩ ∂MS) ⊂ ∂MS .

In particular A is diffeomorphic to B, and H induces an isotopy of A ∩ ∂MS and B ∩ ∂MS in
∂MS .

Definition 4.6. Given β̄ = (MS , F, β) ∈ TABn.

1. A vertical annulus in β̄ is an annulus A ⊂MS \ β, such that A = C × I ⊂ S × I with C a
simple closed curve in S.

2. A destabilization of β̄ is an annulus A ⊂MS \β isotopic to a vertical annulus C×I relative
to ∂MS , with C essential and non-separating in S.

3. A destabilization move on β̄ along a destabilization A, is to cut MS along A, cap the two
boundary components with two thickened discs and extend the function to the obtained
manifold. We also say to destabilize β̄ along A and we denote the obtained thickened
abstract braid by β̄A.

4. The equivalence relation generated by these moves in the set of thickened abstract braids
is called stable equivalence.

As a consequence of Lemma 4.4, the definition of destabilization of a braid in a thickened
surface is equivalent to the destabilization of an abstract braid diagram identified up to Reide-
meister, isotopy and compatibility equivalence. Consequently we obtain the next proposition.

Proposition 4.7. The abstract braids are in bijective correspondence with the braids in thick-
ened surfaces identified up to stable equivalence.

Recall that the stability equivalence induces an order in TABn. This order is generated by
destabilizations, i.e. given β̄ and β̄′, if there exists a destabilization, A, of β̄′, such that β̄ ≈ β̄′A,
then β̄ < β̄′.

Definition 4.8. Given β̄ ∈ TABn, a descendent of β̄ is a thickened abstract braid β̄′ such
that β̄′ < β̄. An irreducible descendent of β̄ is a descendent of β̄ that does not admit any
destabilization.

Given β̄ ∈ TABn. Let A ⊂ MS \ β be an annulus isotopic to a vertical annulus A′ = C × I
relative to ∂MS . If C is not essential, we say that A is not essential. Suppose A = C × I is
vertical and not essential, hence C bounds a disc in S. Let D0 be the disc bounded by C×{0} in
S×{0}, and D1 be the disc bounded by C×{1} in S×{1}. Then A∪D0∪D1 is homeomorphic
to a sphere that bounds a ball in MS \ β. To express this we say that A bounds a ball, and we
refer to such ball as the ball bounded by A.
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Theorem 4.9. Given [β̄] ∈ ABn there exists a unique irreducible descedent of β̄ in TABn.

Proof. Let [β̄] ∈ ABn. Suppose that [β̄] has two irreducible descendents. In this case [β̄] has a
representative β̄ = (MS , F, β), such that S is of minimal genus among the representatives of [β̄]
admitting two different irreducible descendents.

Since each destabilization reduces the genus, by minimality of the genus of S each destabi-
lization of β̄ has a unique irreducible descendent. Two destabilizations of β̄ are called descendent
equivalent if they have the same irreducible descendent.

We claim that all destabilizations in β̄ are descendent equivalent. Suppose there exist two
destabilizations A1 and A2 of β̄ descendent inequivalent.

Claim 4.10. The intersection of A1 and A2 is nonempty.

Proof. Suppose A1 and A2 are disjoint. We can destabilize β̄ along A1 and then along A2 and
vice-versa. In both cases we obtain a common descendent, i.e. (β̄A1)A2 ≈ (β̄A2)A1 . This is a
contradiction.

Therefore, we can suppose A1 and A2 intersect transversally and so that the number of
curves in the intersection (m1,2 ≥ 1) is minimal. Furthermore, we can choose A1 and A2 so that
m1,2 is minimal among inequivalent pairs of destabilizations of β̄.

The intersection between two transversal surfaces is a disjoint union of 1-manifolds. A curve
in A1 ∩ A2 is thus either a circle or an arc. A horizontal circle in an annulus A is a circle that
does not bound a disc in A (Figure 37). A vertical arc in an annulus A is a simple arc in A such
that its extremes connect the two boundary components of A (Figure 37).

Given a horizontal circle C in an annulus A, it divides A in two annuli A′ and A′′ (Figure
37) such that:

∂A′ = (∂A ∩ (S × {0}) ∪ C and ∂A′′ = (∂A ∩ (S × {1}) ∪ C.

A

A' A''

A

Figure 37: Horizontal circle and vertical arc in A.

Claim 4.11. All the 1-manifolds in A1 ∩ A2 are either horizontal circles or vertical arcs in A1

and in A2.

Proof. Suppose there exists C ⊂ A1∩A2 such that C is a non-horizontal circle in A1. Thus, the
circle C bounds a disc D in A1, in particular it is null-homotopic in MS \ β. On the other hand
if C is horizontal in A2 it is homotopic to an essential circle in S and so it is not null-homotopic
in MS . Therefore C is non-horizontal in A2.

Suppose that C is innermost (i.e. int(D)∩A2 = ∅). Consider a regular neighbourhood of D
in MS \ β, N(D). The boundary of N(D), ∂N(D), intersects A2 in two disjoint circles C ′ and
C ′′. The circle C ′ (resp. C ′′) bounds a disc D′ (resp. D′′) in ∂N(D) (Figure 38). The surface
A2 \ N(D) has two connected components that we can complete with D′ and D′′ in order to
obtain two surfaces say A′2 and A′′2. They can be spheres, annuli or discs in MS .

28



Since C is non-horizontal in A2 and C is innermost in A1, necessarily, up to exchanging
A′2 with A′′2, A′2 is a sphere and A′′2 is an annulus isotopic to A2 (Figure 38). By construction
A1∩A′′2 has less connected components than A1∩A2. This is a contradiction. We conclude that
all the circles in A1 ∩A2 are horizontal in Ai for i = 1, 2.

Sx{0}

A1 A2

D' D D''

∂N (D)

Sx{1}

Sx{0}

Sx{1}

A1 A2

D' D D''

∂N (D)

Figure 38: A non-horizontal circle and a non-vertical arc in A1.

Let C ⊂ A1 ∩ A2 be a non-vertical arc in A1. Hence, the extremes of C are in the same
component of ∂A1. Let α be the segment of the component of ∂A1 that joins the extremes
of C so that C ∪ α is a simple closed curve that bounds a disc D in A1. In particular C is
null-homotopic in MS relative to ∂MS , consequently, C is also a non vertical arc in A2.

Suppose that C is innermost, in the sense that A2 ∩ int(D) = ∅. Let N(D) be a regular
neighbourhood of D in MS \ β. The boundary of N(D), ∂N(D), intersects A2 in two disjoint
non-vertical arcs, C ′ and C ′′. With a similar construction as for C, we can find arcs α′ and α′′

in ∂N(D) ∩ ∂MS such that C ′ ∪ α′ (resp. C ′′ ∪ α′′) bounds a disc D′ (resp. D′′) in ∂N(D).
The surface A2 \ N(D) has two connected components that we can complete with D′ and D′′

in order to obtain two surfaces A′2 and A′′2.
Since C is non-vertical in A2 and C is innermost in A1, necessarily, up to exchanging A′2

with A′′2, A′2 is a disc and A′′2 is an annulus isotopic to A2 (Figure 38). By construction A1 ∩A′′2
has less connected components than A1 ∩A2 which is a contradiction. We conclude that all the
arcs in A1 ∩A2 are vertical in Ai for i = 1, 2.

Claim 4.12. The intersection A1 ∩A2 does not contain any horizontal circle.

Proof. Let C ⊂ A1 ∩ A2 be a horizontal circle in A1. We have seen that necessarily it is a
horizontal circle in A2. Then C splits A1 and A2 in four annuli, A′1, A′′1, A′2 and A′′2. We can
choose C so that it is exterior in A1 in the sense that int(A′′1)∩A2 = ∅. In this case the annulus
A′′1 is isotopic to A′′2 in MS \ β relative to ∂MS . Let A3 be the annulus A′′1 ∪A′2 deformed by an
isotopy in such a way that it is in general position with respect to A1 (Figure 39).

Sx{0}

Sx{1}

A1 A2

A''2

A'2A'1

A''1
A3

C

Figure 39: The intersection of two destabilizations along a horizontal circle.

The number of curves in A3 ∩ A1 is strictly less than the number of curves in A2 ∩ A1.
Furthermore A2 is isotopy equivalent to A′′1∪A′2 which is isotopy equivalent to A3 by construction.
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Hence A3 is a destabilization equivalent to A2, and A3∩A1 has strictly less curves than A2∩A1.
This is a contradiction.

Claim 4.13. The intersection A1 ∩A2 does not contain any vertical arc.

Proof. Let N be a regular neighbourhood of A1 ∪ A2 in MS \ β. Then ∂N is a disjoint union
of m surfaces in MS . Since there are only vertical arcs in A1 ∩A2 these surfaces are isotopic to
vertical annuli, say ∂N = B1 tB2 t · · · tBm. Therefore, either there is a destabilization in ∂N
or all the vertical annuli are non-essential.

Suppose that for some k ∈ {1, . . . ,m}, Bk is a destabilization, i.e. isotopic to an essential
vertical annulus. Since Bk is disjoint from A1 and A2, it is descendent equivalent to both. This
is a contradiction.

Suppose that for all k = 1, . . . ,m, Bk is isotopic to a non-essential vertical annulus. Let Ek
be the ball bounded by Bk and Sk = ∂Ek.

We claim that there exists k ∈ {1, . . . ,m} such that A1 ∪A2 ⊂ Ek. This is equivalent to say
that there exists k ∈ {1, . . . ,m} such that (A1 ∪ A2) ∩ Ek 6= ∅. It is clear that if A1 ∪ A2 ⊂ Ek
then the intersection is nonempty. On the other hand, suppose there exists k ∈ {1, . . . ,m}, such
that (A1 ∪ A2) ∩ Ek 6= ∅. Since Bk ∩ (A1 ∪ A2) = ∅ and by connectivity of A1 ∪ A2 and of Ek,
we have A1 ∪A2 ⊂ Ek.

Now, suppose there exist j, k ∈ {1, . . . ,m}, such that j 6= k and Sk ∩ Sj 6= ∅. Then, up
to exchanging Ek with Ej , Ej ⊂ Ek. Note that Bj (resp. Bk) separates MS in two connected
components. Furthermore, Bk and A1 ∪ A2 (resp. Bj and A1 ∪ A2) are in the same connected
component of MS \Bj (resp. MS \Bk). Thus A1 ∪A2 is in the shell bounded by Sj and Sk. In
particular A1 ∪A2 ⊂ Ek.

If Si∩Sj = ∅, then Ei∩Ej = ∅. Suppose that Ei∩Ej 6= ∅. As Bi∩Bj = ∅, up to exchanging
Ei with Ej , Ei ⊂ Ej and (Si ∩ ∂MS) ⊂ (Sj ∩ ∂MS). This is a contradiction.

Suppose that for all k = 1, . . . ,m, (A1 ∪ A2) ∩ Ek = ∅ and that Si ∩ Sj = ∅ for i 6= j. As
Ei ∩ Ej = ∅ for i 6= j, the connected components of MS \ (∪mk=1Bk) are int(E1), . . . , int(Em),
and MS \ (∪mk=1Ek). But (A1 ∪ A2) ∩ Ek = ∅ for k = 1, . . . ,m. Thus β and A1 ∪ A2 are in the
same connected component. This is a contradiction, because ∂N separates β and A1 ∪A2. We
conclude that there exists k ∈ {1, . . . ,m} such that A1 ∪A2 ⊂ Ek.

For j = 1, 2 and i = 0, 1, set γij = (S × {i}) ∩ Aj . Since A1 ∪ A2 ⊂ Ek, we have γij ⊂ Ek,

thus γij is null-homotopic. This is a contradiction. We conclude that there are no vertical arcs
in A1 ∩A2.

Finally by Claim 4.10, A1 ∩ A2 6= ∅. On the other hand by Claim 4.11, A1 ∩ A2 has only
vertical arcs or horizontal circles. But Claims 4.12 and 4.13 state that A1 ∩ A2 does not have
neither horizontal circles nor vertical arcs, thus A1 ∩ A2 = ∅. This is a contradiction. We
conclude that there are no descendent inequivalent destabilizations of β̄, thus there is a unique
irreducible descendent.
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