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Abstract

In this paper, we present a novel approach that allows to couple two stochastic continuum models describing the same
random medium at different observation scales. The coupling strategy is performed in the Arlequin framework, which
is based on a volume coupling and a partition of the energy. Suitable functional space and coupling operator are
chosen for the weak enforcement of the continuity between the two models. This choice ensures that the resulting
mixed problem is well posed. The Monte-Carlo based numerical strategy for the solution of the mixed problem is
briefly outlined. An application is presented, emphasizing on the interest of the chosen coupling operator. Finally,
some remarks are provided concerning a stochastic multi-model coupling.
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1. Introduction

Classical deterministic models provide global predic-
tions that are satisfactory for many industrial applica-
tions. However, when one is interested in a very lo-
calized behavior or quantity, or when multiscale phe-
nomena come into play, these models may not be suf-
ficient. For instance the limited heterogeneity of a ma-
terial modeled as a continuum may not have significant
influence on its behavior at a large scale while it may
influence greatly a local stress factor, which would typi-
cally be a fundamental quantity of interest for structural
design. Unfortunately, for these problems, the informa-
tion necessary to parametrize the relevant, very com-
plex, models is usually not available. Stochastic meth-
ods have therefore been proposed [1, 2, 3, 4, 5, 6] and
now appear unavoidable in multiscale modeling. Al-
though the use of stochastic models and methods has
expanded rapidly in the last decades, the related nu-
merical costs are still often prohibitive. Hence, the
application of these methods in a complex or indus-
trial context remains limited. An important field of re-
search is therefore concerned with the general reduc-
tion of the costs associated with the use of stochastic
methods, for example by using iterative methods and
preconditioners specially adapted to the structure of the
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matrices arising in the Stochastic Finite Element (FE)
method [7, 8, 9, 10, 11], using reduced bases for the
representation of random fields [12, 13, 14], domain de-
composition [15, 16], or multigrid techniques [17].

Another approach consists, when it is possible, in try-
ing to localize the use of stochastic models to limited
regions of the computational domain, and to model the
rest of the domain with a deterministic model [18, 19].
This is typically possible only when a homogenized
medium can indeed be defined. The homogenized
model is then used for the bulk of the domain, and the
stochastic model is used close to boundaries, loadings
or geometrical features that preclude the use of homog-
enized models, and in areas over which the quantities of
interest are defined. Note that the areas over which the
model should be stochastic are not necessarily obvious,
although error estimation can help in that matter [20].
When it works, this approach can be seen as a model re-
duction technique, as the model is simplified wherever
the simplification does not impact the quality of the es-
timation of the quantities of interest. It is appealing in
terms of numerical cost for the direct solution of the
corresponding problems, and also in terms of parame-
terization when the identification of the parameters of
the models is considered.

There are unfortunately cases when homogenization
theory cannot be applied straightforwardly, such as
close to boundaries. This means in particular that over

Preprint submitted to Probabilistic Engineering Mechanics March 26, 2013



elongated domains, or when parameters fluctuate slowly
with respect to the size of the domain, homogenization
cannot be performed in the classical sense. However, in
such cases, it might still be possible to perform a sim-
ilar but more limited type of model reduction, and to
partially upscale the parameters fields. A stochastic pa-
rameter fluctuating rapidly would hence be replaced by
a parameter fluctuating more slowly over some parts of
the computational domain rather than by a deterministic
fully homogenized parameter.

This is the approach followed in this paper, and it re-
quires two ingredients: (i) a recipe for upscaling par-
tially a random medium, and (ii) a numerical method
for coupling stochastic models described at two differ-
ent scales. We consider that the models at the two scales
are stochastic, in the sense that they are driven by partial
differential equations with stochastic parameter fields.
The first model describes the material heterogeneity at a
micro scale, with a parameter field typically oscillating
over small distances. The second model is coarser, and
describes the same material at a meso-scale, typically
with smaller variations in both amplitude and wave-
length. The parameter of the second model may be seen
as a filtered (or partially homogenized) version of the
parameter of the first model. We will consider a case in
which the upscaling method is known (step (i) above),
so that the micro-scale and meso-scale (partially up-
scaled) models are given. This paper concentrates on
the proposal of a coupling method for two stochastic
models (step (ii) above).

Note that recent papers on stochastic multiscale me-
chanics have rather focused on an integrated approach
to the problems (i) and (ii) seen above. Extensions
of the multiscale finite element method [21] and vari-
ational multiscale method [22, 23] have been proposed
for stochastic elliptic problems [24, 25, 26, 27] and for
stochastic mixed formulations [28, 29, 30]. In these
extensions, the authors discuss in particular the way
to compute the meso-scale functional bases in efficient
ways, using hypotheses of weak randomness [31, 32],
interpolation [33] or stochastic collocation [26, 34, 35].
Extensions of the heterogeneous multiscale method
were also proposed [36, 37], and the asymptotic behav-
ior of the extensions of both the multiscale finite ele-
ment method and heterogeneous multiscale method are
discussed in [38].

Besides considering a segregated approach of (i)
and (ii), the present proposal differs from the papers
above in its focus. Indeed, the quantities of interest that
we aim at approximating are assumed to depend on the
micro-scale properties only locally. When this assump-
tion is appropriate, the bulk of the model can be rep-

resented by a meso-scale model without degrading the
evaluation of the quantity of interest, and the zone where
the micro-scale is considered can be seen as a zoom in a
global meso-scale model. This paper therefore stands in
the line of classical adaptive mesh and local enrichment
techniques [39, 40, 41, 42], global-local iterative meth-
ods [43, 44, 45] and bridging methods [46, 47, 48, 49],
widely developed for deterministic applications.

In particular, we construct our coupling technique
in the Arlequin framework [46], which is a bridging
method. Within this framework, the main issue of the
paper lies in the choice of coupling operator and spaces
that ensure that the resulting mixed formulation is well
posed and that the results obtained from the coupled
method are representative of the full micro-scale so-
lution. This paper describes an extension of [50, 18],
which considered the coupling of a deterministic model
with a stochastic one. It bears similarities also with the
paper [51] on discrete-to-continuum coupling, but the
coupling operator is there completely different.

In Section 2, the macro-scale and meso-scale models
of the random medium are described. In Section 3, the
Arlequin modeling is introduced in the particular case
of the coupling of two stochastic models. In Section 4
the numerical implementation is considered, based on
the Monte-Carlo approach. In Section 5, some exam-
ples are provided. Finally, some conclusions are drawn
in Section 6 and the extension of this method for two
models driven by different partial differential equations
(3D-beam coupling, for instance) is outlined.

2. Stochastic modeling and upscaling

In this section, we introduce the two stochastic con-
tinuum models that we will consider in the paper. We
start with the micro-scale one. The meso-scale model
is then obtained by considering a partial homogeniza-
tion of the micro-scale mechanical parameter field. The
micro-scale model is the reference one, and we only ex-
pect that the meso-scale solution can reproduce some of
the features of the micro-scale solution. Finally, we will
discuss at the end of this section the link between the
partial upscaling considered here and classical homoge-
nization.

2.1. Micro-scale (reference) model

Let us consider a domain Ω of Rd, with outgoing nor-
mal vector n and smooth boundary ∂Ω, separated into
Dirichlet and Neumann boundaries ΓD and ΓN , such that
ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and ΓD , ∅. We consider
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Poisson’s equation, with a random fluctuating mechan-
ical parameter km(x). In the particular case of homoge-
neous Dirichlet boundary conditions, the weak formu-
lation of the corresponding stochastic boundary value
problem reads: find um ∈ Vm such that

am(um, v) = f (v),∀v ∈ Vm, (1)

where am : Vm×Vm → R and f : Vm → R are defined,
respectively, by am(u, v) = E

[∫
Ω

km(x)∇u · ∇v dx
]
,

f (v) =
∫

Ω
f E[v] dx +

∫
ΓN

g E[v] dx, and E[·] =
∫

Θ
· dP

denotes the mathematical expectation. The mechanical
parameter km(x) is modeled as a positive, second-order,
mean-square continuous stochastic field indexed on Rd,
and defined on a probability space (Θ,F , P). We as-
sume that it is statistically homogeneous and bounded
almost surely for any x ∈ Ω cm < k(x) < cM , with
cm > 0. The functional space is Vm = L2(Θ,H1

0 ),
with H1

0 = {v ∈ H1(Ω), v|ΓD = 0}. Endowed with
the appropriate inner product and norm,Vm is a Hilbert
space. Using Lax-Milgram theorem, it can be proved
that the problem (1) has a unique solution um (see for
instance [52]). An approximation of that solution can
then be obtained, for example, by using a Stochastic FE
method [53, 54] or a Monte Carlo approach [55].

The field km(x) will be called throughout micro-scale
mechanical parameter field, the boundary value prob-
lem (1) will be called micro-scale mono-model problem,
and its solution um(x) will be called micro-scale mono-
model solution. Note that we use the term mono-model
for the problem and its solution, in order not to mistake
them with the quantities relevant to the coupled system
that will be introduced further down, and that will in-
clude a micro-scale component.

The micro-scale mechanical parameter field km(x)
is fluctuating, and those fluctuations are controlled by
its power spectral density R̂m(ζ) (PSD), which is the
Fourier transform in Rd of its autocovariance Rm(y) =

E[(km(x) − km)(km(x + y) − km)], where km = E[km(x)] is
the expectation of km(x), and we assume that the auto
covariance is integrable on Rd. Although the power
spectral density and autocovariance in general depend
on the considered direction, we assume here that they
are isotropic, so that they only depend on the amplitude
of the y and ζ. Furthermore, we assume that a correla-
tion length `m can be defined as `m =

∫
R |Rm(y)|dy/σ2

m,
where σ2

m = Rm(0) is the variance of km. Examples of
realizations of micro-scale parameter fields can be ob-
served in Figures 1 (dashed lines) and 2 (upper figure),
respectively in 1D and 2D, along with an example of a
triangular PSD in Figure 1 (upper figure).
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Figure 1: PSD (upper figure) and trajectories (lower figure) of two 1D
centered normal fields at different scales. The dashed lines correspond
to a micro-scale field km(x) with triangular spectrum, unit correlation
length `m = 1 m, and unit variance σ2

m = 1 (N/m)2. The solid lines
correspond to the corresponding meso-scale random field kM(x) with
trimmed triangular spectrum, correlation length `M = 3 m, and vari-
ance σ2

M = 1/3 (N/m)2.
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Figure 2: Trajectories of two 2D centered normal fields at different
scales. The upper figure corresponds to a micro-scale field km(x) with
triangular spectrum, unit correlation length `m = 1 m, and unit vari-
ance σ2

m = 1 (N/m)2. The lower figure corresponds to the correspond-
ing meso-scale random field kM(x) with trimmed triangular spectrum,
correlation length `M = 2 m, and variance σ2

M = 1/2 (N/m)2.

2.2. Meso-scale model

From the given PSD R̂m(ζ) of the micro-scale param-
eter field km(x), a hierarchy of upscaled parameter fields
can be derived by trimming its tails. This trimming
translates into an increase of the correlation length and
a decrease of the variance. Figure 1 shows an example
of such trimming on the PSD and the corresponding tra-
jectory in 1D-model (solid lines). Figure 2 presents a
similar example in 2D (lower figure). On both figures,
the increase of correlation length and decrease of vari-
ance is clear. In this paper, and for a given micro-scale
PSD, we refer to meso-scale mechanical parameter (or
coarse mechanical parameter) as the field kM(x) corre-
sponding to the trimmed PSD, with a correlation length
`M > `m, variance σ2

M < σ2
m, and average kM , which

is a priori different from km (see the discussion in Sec-
tion 2.3).

The construction above naturally introduces a seg-
mentation of the probability space (Θ,F , P) into two
probability spaces (ΘM ,FM , PM) and (Θm,Fm, Pm) such
that kM(x) is defined on FM ⊗ B(Ω), where B(Ω) is the
Borel σ-algebra generated by the open subsets of Ω,
(Θ,F ) = (ΘM × Θm,FM ⊗ Fm), and P is the unique
product measure of Pm and PM , such that ∀Xm ∈ Fm

and XM ∈ FM , P(Xm × XM) = Pm(Xm)PM(XM). We in-
troduce the additional notations EM[·] =

∫
ΘM
· dPM and

Em[·] =
∫

Θm
· dPm.

From this definition of the meso-scale parameter field
kM(x), we also define a meso-scale mono-model bound-
ary value problem, which states: find the meso-scale
mono-model solution uM(x) ∈ VM , such that

aM(uM , v) = f (v),∀v ∈ VM , (2)

where aM : VM × VM → R is defined by aM(u, v) =

EM

[∫
Ω

kM(x)∇u · ∇v dx
]
, and VM = L2(ΘM ,H

1
0 ). En-

dowed with appropriate inner product and norm,VM is
a Hilbert space. As before, it can be proved that the
problem (2) has a unique solution uM .

2.3. Partial upscaling and homogenization

Extending the upscaling process described above to
the limit `M → +∞, one obtains a deterministic homo-
geneous mechanical parameter k∗. In general, this pa-
rameter k∗ is not equal to the parameter obtained from
classical homogenization [56, 57, 58, 59]. However, in
the particular case of a micro-scale parameter with log-
normal first-order marginal density in 2D, the homog-
enized tensor is equal to the geometric average of the
field k∗ = km/(1 + σ2

m/k
2
m)1/2. Hence, if we assume that

both the micro-scale and meso-scale models follow a
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log-normal first-order marginal density, the average kM
of the meso-scale model can be chosen such that the
two models are coherent in the sense that they have the
same homogenized coefficient k∗ = km/(1+σ2

m/k
2
m)1/2 =

kM/(1 + σ2
M/k

2
M)1/2. With this hypothesis, a meso-scale

model kM(x), with trimmed triangular spectrum and log-
normal first-order marginal density, can be defined start-
ing from a micro-scale model km(x) for any choice of
correlation length `M > `m. Using the technique de-
scribed in [60], it is furthermore possible to generate
realizations of the two fields kM(x) and km(x) that cor-
respond one to the other, realization by realization, as
illustrated in Figures 1 and 2.

It should be noted that if the mechanical parameter
fields km and kM follow log-normal first-order marginal
densities, they are not bounded almost surely. Lax-
Milgram theorem can then not be used to prove ex-
istence and uniqueness of the micro- and meso-scale
mono-model solutions. Hence, we will rather use
trimmed log-normal first-order marginal densities. The
inferior bound bmin and superior bound bmax should be
chosen far enough from unity: 0 < bmin << 1 and
1 >> bmax, so that the distribution remains close to
a log-normal one, and the analytical formula can still
be used (this is only for simplicity). Also, the bounds
should be chosen such that bmin = 1/bmax, so that the
first-order marginal distributions of the variables and
their inverse remain equal and the formula above for the
2D homogenized coefficient k∗ [61, Chap. 3] remains
valid.

Note that this question of upscaling of random micro-
scale models has been widely treated in the litera-
ture [62, 63, 64, 60]. In particular, some upscal-
ing techniques seem to provide partial upscaling nat-
urally [65, 66]. The choice of micro-scale and meso-
scale models described in this section does not pretend
to be representative of the state-of-the-art in this field.
It is rather one very particular choice for which a se-
quence of models can be constructed analytically in a
manner consistent with (classical) homogenization. Our
objective in this paper does not lie in the actual process
of partial upscaling and homogenization, but in the de-
scription of a coupling technique for two stochastic con-
tinuum models at two different scales.

3. Coupling method in a stochastic framework

This section now concentrates on this issue of cou-
pling two stochastic continuum media. It constitutes
the core of this paper. We consider again the domain
Ω and now divide it into two overlapping subdomains

Ωm and ΩM such that Ωm ∪ ΩM = Ω (see Figure 3).
The Dirichlet and Neumann boundaries separate into
corresponding overlapping boundaries Γm

D, ΓM
D , Γm

N and
ΓM

N . Note that one of the two Dirichlet boundaries
may be empty. On each subdomain, a different model
will be considered, with a different mechanical param-
eter field, namely km(x) on Ωm and kM(x) on ΩM . As
with other similar techniques, the general idea is here
to replace, where it is relevant, a fine-scale model by
a coarser one in order to focus the available resources
on a limited area of the domain. This section de-
scribes the coupled problem then posed on Ω. This
coupling problem is developed in the Arlequin frame-
work [46, 67, 68, 69, 50, 18, 20]. This framework is
based on three ingredients: (i) splitting of the domain
into overlapping subdomains to which different models
are attached, (ii) introduction of weight functions to dis-
patch the global energy among the models, (iii) imposi-
tion of a weak compatibility constraint between the so-
lutions of the different models. The developments pro-
posed below for a coupling between two stochastic con-
tinuum models stand mainly in the choice of the cou-
pling operator and space (ingredient (iii) above).












Figure 3: General setting of the Arlequin model: overlapping micro-
scale domain Ωm and meso-scale domain ΩM and coupling volume
Ωc.

3.1. Arlequin formulation
We choose a so-called coupling volume Ωc ⊂ (Ωm ∩

ΩM), over which the two models are assumed to ex-
change information. In the particular case of homo-
geneous Dirichlet boundary conditions (the extension
to non-homogeneous boundary conditions is obvious),
the mixed Arlequin problem reads: find (wm,wM ,Φ) ∈
Wm ×WM ×Wc such that

Am(wm, v) + C(Φ, v) = fm(v), ∀v ∈ Wm

AM(wM , v) −C(Φ, v) = fM(v), ∀v ∈ WM

C(Ψ,wm − wM) = 0, ∀Ψ ∈ Wc

, (3)
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where the bilinear forms Am : Wm ×Wm → R, AM :
WM ×WM → R, and C :Wc ×Wc → R are defined
by Am(w, v) = E

[∫
Ωm
αmkm(x)∇w · ∇v dx

]
, AM(w, v) =

EM

[∫
ΩM

αMkM(x)∇w · ∇v dx
]
, and

C(w, v) = E
[∫

Ωc

(wv + κ∇w · ∇v) dx
]
, (4)

where κ is a constant essentially introduced for dimen-
sionality purposes [68], and where the linear forms
fm : Wm → R and fM : WM → R are defined, respec-
tively, by fm(v) =

∫
Ωm
αm f E[v]dx +

∫
Γm

D
αmgE[v]dx and

fM(v) =
∫

ΩM
αM f E[v]dx +

∫
ΓM

D
αMgE[v]dx. The weights

are chosen such that:
αm , αM ≥ 0 in Ωm ∪ΩM ,

αm + αM = 1 in Ωm ∪ΩM ,

αm , αM constant in (Ωm ∪ΩM) \Ωc .

(5)

The functional spaces are WM = L2(ΘM ,H
1
M) with

H1
M = {w ∈ H1(ΩM),w|ΓM

D
= 0}, for the meso-scale

space, and Wm = L2(Θ,H1
m), with H1

m = {w ∈

H1(Ωm),w|Γm
D

= 0}, for the micro-scale space. Note that
the equalities on the boundary conditions should be un-
derstood as PM-almost surely and almost-everywhere in
ΩM , and P-almost surely and almost-everywhere in Ωm,
respectively. The so-called mediator space Wc is de-
fined in the Section 3.2.

One can consider that the system (3) consists of three
equations: (i) one governing the behavior of the micro-
scale model, weighted by αm(x) and with a loading aris-
ing in the coupling volume Ωc embodied in the opera-
tor C, (ii) one governing the behavior of the meso-scale
model, weighted by αM(x) and with a loading opposite
to the previous in the coupling volume Ωc, and (iii) one
enforcing the weak compatibility between the two solu-
tions wm(x) and wM(x).

3.2. Mediator space

There are two natural choices for the mediator
space: (i) the restriction of the functional space for the
micro-scale model over the coupling volume W(i)

c =

L2(ΘM ,H
1(Ωc)), and (ii) the restriction of the func-

tional space for the meso-scale model over the coupling
volumeW(ii)

c = L2(Θ,H1(Ωc)).
However, the former choice (i) leads to an unstable

mixed problem when no Dirichlet boundary condition is
enforced on the micro-scale model (Γm

D = ∅) for exam-
ple. This is an important case, that includes in particular
zooms Ωm ⊂ ΩM with ∂Ωm ∩ ∂Ω = ∅.

The latter choice of mediator space (ii) does lead to a
stable mixed formulation. The coupling operator C in-
duces in that case solutions that are such that wm = wM

almost everywhere in Ωc and P−almost surely. Based
on observations on Figure 4 for example, we consider
that this is too demanding on the solutions. Figure 4
presents an example of micro-scale mono-model and
meso-scale mono-model solutions obtained by solving
Eq. (1) and (2), respectively, for a realization of km and
a corresponding upscaled version of it kM for a classical
1D traction problem. The parameter fields correspond
one to other, although km presents a higher frequency
content than kM , and we observe that the solutions be-
have similarly. ChoosingW(ii)

c as mediator space would
essentially impose that the two solutions overlap in the
coupling volume, among other things limiting the fre-
quency content of the micro-scale solution wm to that of
the coarser meso-scale solution. An appropriate choice
of mediator space should rather try to enforce a weaker
equality between um and uM in the coupling volume,
allowing the two solutions wm and wM of the coupled
problem (3) to oscillate at different frequencies.
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Figure 4: Gradients of the micro-scale mono-model solution um(x)
(solid line) and meso-scale mono-model solution uM(x) (dashed line)
for a bar under traction and unit bulk load. The micro-scale mechan-
ical parameter follows a (trimmed) log-normal first-order marginal
density, triangular PSD with `m = 3 × 10−3 m and σ2

m = 2.5 ×
10−2 (N/m)2. The meso-scale mechanical parameter is obtained as
described in Section 2 for `M = 4.5 × 10−3 m and σ2

M = 1.65 ×
10−2 (N/m)2.

The mediator space is therefore chosen as the sum
of a stochastic field related to the meso-scale variation,
which imposes a strong equality constraint on the low-
frequency parts of um and uM , and a stochastic vari-
able related to the high-frequency fluctuations, impos-
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ing only a weak constraint on that part of the spectrum
of um and uM:

Wc = L2(ΘM ,H
1(Ωc))∗ ⊕ L2(Θm,R), (6)

where the Bochner space L2(ΘM ,H
1(Ωc))∗ =

L2(ΘM ,H
1(Ωc))\{v | EM[

∫
Ωc

vdx] = 0} explicitly
excludes function with a deterministic spatial average.
This exclusion is necessary in order that there be
no intersection between the two spaces above. This
also explains the introduction of matrices Sc for the
numerical approximation of system (3) (see Section 4
for more details, and in particular Equation (11)).

After some algebraic manipulations, this choice of
the coupling space translates into the following weak
equality constraint in the last line of Equation (3): ∀Ψ =

ψ(x, θM)+θm ∈ Wc, with ψ(x, θM) ∈ L2(ΘM ,H
1(Ωc))∗,

θm ∈ L
2(Θm,R),

0 = C (Em[Ψ],wM − Em[wm])

− Em

[
θm

∫
Ωc

EM[wm − Em[wm]]dx
]

(7)

On the one hand, this equation imposes that the solu-
tions wm and wM be equal almost everywhere in Ωc and
almost surely with respect to the low-frequency fluctu-
ations of the medium (PM-almost surely). On the other
hand, it imposes that the average in space (over Ωc)
of the high frequency fluctuations of wm vanishes Pm-
almost surely.

3.3. Arlequin coupled solution
Each of the solutions wm and wM is spatially sup-

ported only over a subdomain of Ω. We discuss here
how to transform these localized solutions into global
solutions. The micro-scale information is available only
within Ω

f
m = Ωm\Ωc, where the micro-scale parameter

km is actually defined, and where the weight function
actually puts emphasis on it. The micro-scale coupled
solution is therefore only defined within this subdomain
uarl

m ∈ L
2(Θ,H1

0 (Ω f
m)) as

uarl
m = αmwm + αMwM , (8)

assuming extension by 0 of the functions wherever
they are not naturally defined. On the other hand, the
meso-scale information is available everywhere, either
through kM , or through km with also contains that meso-
scale information. We can therefore define a global
meso-scale coupled solution uarl

M ∈ L
2(ΘM ,H

1
brok) as

uarl
M = αmEm[wm] + αMwM , (9)

where H1
brok = {w ∈ H1

brok(Ω),w|ΓD = 0}, and disconti-
nuities in the solution uarl

M may appear when the weight
functions αm(x) and αM(x) are not continuous.

4. Numerical implementation

To approximate the solution (wm,wM ,Φ) of Equa-
tion (3), a mesh Tm of nm elements Em is constructed
over Ωm, a mesh TM of nM elements EM is constructed
over ΩM , and a mesh Tc of nc elements Ec is con-
structed over Ωc. The following functional spaces are
introduced: VH

m = {v ∈ P1(Em), v|Γm
D

= 0}, VH
M = {v ∈

P1(EM), v|ΓM
D

= 0} and VH
c = {v ∈ P1(Ec)}, composed

of linear polynomials on the elements of the different
meshes (higher-order polynomials could obviously be
used). We associate to these functional spaces the bases:
{vm

i }1≤i≤nm , {vM
i }1≤i≤nM , and {vc

i }1≤i≤nc .
The mixed system (3) is transformed, after space dis-

cretization, into the random matrix system:

E [A(θm, θM)U(θm, θM)] = F, (10)

where θm and θM indicate dependency on Θm and ΘM ,
respectively, and where

A(θm, θM) =
Am(θm, θM) 0 Cm S m 0

0 AM(θM) −CM −S M 0
CT

m −CT
M 0 0 S T

c
S T

m −S T
M 0 0 0

0 0 S c 0 0

 , (11)

with, for n = {m,M},

An,i j(θ) =

∫
Ωn

αn(x)kn(x, θ)∇vn
i (x) · ∇vn

j (x)dx , (12)

Cn,i j =

∫
Ωc

vc
i vn

j + κ∇vc
i · ∇vn

jdx , (13)

and, for n = {m,M, c},

S n, j =

∫
Ωc

vn
j . (14)

The load vector is F = [Fm FM 0 0 0]T , where,
for n = {m,M}, Fn, j =

∫
Ωn
αn f vn

jdx +
∫

Γn
D
αngvn

jdx.
The unknown vector is defined by U(θm, θM) =

[Um(θm, θM) UM(θM) ΨM(θM) Ψm(θm) Λ]T , where
the unknown fields are such that wm(x, θm, θM) =

Um, j(θm, θM)vm
j (x), wM(x, θM) = UM, j(θM)vM

j (x),
Φ(x, θm, θM) = ΨM, j(θM)vc

j(x) + Ψm(θm), and the addi-
tional scalar Λ is a Lagrange multiplier ensuring that∫

Ωc
ΨM, jvc

jdx = 0. This last equation is necessary to re-
strict the elements of L2(ΘM ,H

1(Ωc))∗ to non-constant
functions, as described in Section 3.2.

This matrix system can be solved in two different
ways. This first consists in solving it using a looped
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Monte Carlo approach. For each realization of kM , a
number of Monte Carlo realizations of km are generated
corresponding to that kM and the statistics (with respect
to Θm) of the solution are estimated for a fixed θM using
a condensation approach similar to what is done in [18].
Solving for several realizations of kM then provides the
statistics with respect to both Θm × ΘM . In that ap-
proach, the matrices that are inverted for each of the
Monte Carlo samples are small, since the micro-scale
domain is expected to be much smaller than the meso-
scale domain. However, these matrices are Schur com-
plements and in general are not sparse, so that iterative
inversion algorithms are usually less efficient.

Another approach consists in considering that each
entry of the solution vector U is a random variable in
L2(Θ,R), solving the full system for each Monte Carlo
sample, and obtain the solutions by taking the appropri-
ate averages for each element of U. The inconvenient of
that approach is that the matrices to invert are larger, but
on the other hand, they are sparse. From first tests that
we have performed, it seems that the second approach is
more interesting in terms of CPU time. However, these
tests were performed for rather large Ωm (with respect
to ΩM) so that they may not be fully objective. More
tests are required to clarify this issue.

5. Numerical examples

We present here two applications. The first one con-
sists in a simple 1D traction problem. The 1D setting
allows to compare the micro-scale mono-model, meso-
scale mono-model and coupled solutions. A second
application presents a 2D problem, more relevant for
real problems, where localization of stresses calls for a
micro-scale model localized around a geometrical fea-
ture.

5.1. 1D bar in traction

The first application is mainly introduced to com-
pare the solutions obtained by solving the micro-scale
mono-model boundary value problem (1), the meso-
scale mono-model boundary value problem (2) and the
Arlequin mixed problem (3). In particular, the 1D set-
ting allows to observe in detail the behavior of the dif-
ferent solutions in the coupling volume. We consider a
bar defined over the domain Ω = [0 1] and submitted
to a constant unit bulk load f = 1 and to a differen-
tial of Dirichlet boundary conditions. All quantities are
non-dimensionalized for notational simplicity.

Micro-scale mono-model problem. We consider a
micro-scale mechanical parameter km(x) statistically
homogeneous, with (trimmed, see Section 2.3) log-
normal first order marginal law, expectation km = 1,
variance σ2

m = 2.5 × 10−2, triangular PSD and correla-
tion length `m = 1×10−2. The micro-scale mono-model
solution um verifies, P-almost surely, and almost every-
where in Ω:

d
dx

(
km

dum

dx

)
+ f = 0 , (15)

and the boundary conditions are um(0) = 0 and um(1) =

1 almost surely. The analytical solution for the micro-
scale mono-model solution is:

um(x) =

∫ x

0

k∗ − f x′

km(x′)
dx′ , (16)

where k∗ verifies 1 =
∫ 1

0 (k∗ − f x′)/k(x′)dx′ almost
surely, and can be approximated when `m << |Ω| by
the homogenized parameter, which is equal to the har-
monic average in 1D: k∗ = E[k−1

m ]−1 = km/(1+σ2
m/k

2
m) ≈

0.976. Finally, we have the following equation for the
gradient:

dum

dx
=

k∗ − x
km(x)

. (17)

Note that we have E[um] = x(3 − x)/(2k∗) and
E[dum/dx] = (3 − 2x)/(2k∗).

Using a linear finite element method with 1000 ho-
mogeneous interval elements, and 10, 000 Monte Carlo
samples, one can estimate the statistics of the micro-
scale mono-model solution. Figure 5 displays the av-
erage, the 90%-confidence interval, and one realization
for that solution and its gradient. A pc-confidence inter-
val for a random variable X is defined as:

ICX = E[X] ±

√
E[(X − E[X])2]

1 − pc
. (18)

On Figure 5, one can observe the rapid fluctuations of
the micro-scale mono-model solution. As the observa-
tions are much clearer for the gradient than for the solu-
tion itself, we will only observe gradients from now on.

Meso-scale mono-model problem. We now consider a
meso-scale model for the same 1D traction bar prob-
lem. We consider a meso-scale parameter field kM(x),
obtained by upscaling, as described in Section 2, of
the micro-scale parameter field km(x) described above.
The meso-scale parameter field follows a (trimmed) log-
normal first-order marginal law with a trimmed triangle

8
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Figure 5: Micro-scale mono-model solution (upper figure) and its gra-
dient (lower figure): average (dashed lines), 90%-confidence interval
(grey shades) and one realization (solid lines).

PSD with correlation length set to `M = 2 × 10−1, vari-
ance σ2

M = 1.2 × 10−3 and average value kM = 0.976
(in order to have the same homogenized coefficient k∗

for both models). The meso-scale mono-model bound-
ary value problem is the same as in Equation (15), using
the meso-scale parameter field kM(x), and with a solu-
tion uM . The statistics of that meso-scale mono-model
solution are estimated using the same numerical method
and parameters as for the micro-scale mono-model. Fig-
ure 6 displays the average, the 90%-confidence interval,
and one realization for the gradient of that solution. As
expected, the fluctuations of the gradient of the meso-
scale mono-model solution uM are smoother than for
the micro-scale mono-model solution um, and the confi-
dence interval is smaller.
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Figure 6: Gradient of the meso-scale mono-model solution uM(x):
average (dashed line), 90%-confidence interval (grey shade) and one
realization (solid line).

Arlequin coupled problem. We finally turn to an Ar-
lequin coupled model of the same 1D traction bar prob-
lem. The meso-scale subdomain is set to ΩM = [0.1, 1],
the micro-scale subdomain to Ωm = [0, 0.2], and the
coupling domain to Ωc = [0.1, 0.2]. We consider the
same parameter fields km(x) and kM(x) as for the mono-
model cases. To accommodate the oscillations of each
model, ΩM is discretized into 45 elements of length
0.02, and Ωm is discretized into 200 elements of length
10−3. For simplicity, the two meshes are embedded in
Ωc, although this is not a restriction of the method. The
mesh corresponding to the spatial discretization of the
mediator spaceWc follows the mesh of ΩM (therefore
with 5 elements). The number of Monte Carlo sam-
ples is set to 100, 000, using 1000 samples of kM(x) and,
for each sample of kM(x), 100 samples of km(x), as de-
scribed in Section 4. The parameter κ is set to 10−3.
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The weight functions are set as in Equation (5), and lin-
ear between 10−3 and (1 − 10−3) in the coupling zone.
The total computation time was 200 s on a four 3.3 GHz
processor computer.

The raw output of the Arlequin coupled system are
the two solutions wm(x) and wM(x). Their gradients are
plotted in Figure 7 without any post-treatment. For one
realization, the expected behavior that wM be a low-
frequency filtered version of wm is observed. Also, as
induced by Equation (7), the ensemble average (with re-
spect to P) of the two solutions matches in the coupling
domain Ωc.
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Figure 7: Gradients of the micro-scale wm(x) and meso-scale wM(x)
solutions of the Arlequin coupled problem: average (dashed lines),
90%-confidence interval (grey shades) and one realization (solid
lines).

Comparisons and comments. The micro-scale and
meso-scale coupled solution can be constructed accord-
ing to Equations (8) and (9), respectively. As stated
in its definition, the micro-scale coupled solution uarl

m is
only defined in Ωm\Ωc, where the micro-scale informa-
tion is actually available and put emphasis on (through
the weight functions). On the contrary, the meso-scale
coupled solution uarl

M is reconstructed over the entire do-
main. The two coupled solutions uarl

m and uarl
m are plotted

in Figures 8 and 9, respectively. On the same figures,
each of them is compared to its mono-model counter-
part, in terms of average and confidence interval. A re-
markable match is observed. It is interesting to note in
Figure 9 that there is a smooth transition in the coupling
area Ωc between a gradient defined over large elements
(with gradient constant over length 0.2) and gradient de-
fined over small elements (with gradient constant over
length 0.001). This smooth transition is due to the intro-
duction of the weight functions that balance the energy

between two meshes with different sizes.
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Figure 8: Comparison of the gradient of the micro-scale mono-model
solution um(x) and of the micro-scale coupled solution uarl

m : aver-
age (dashed and solid lines, respectively), 90%-confidence interval
(dashed line and grey shade, respectively) and one realization of the
Arlequin solution (solid line).

5.2. 2D indented plate

Let now consider the example of a plate in traction.
The plate occupies a domain Ω that is inside the box
[−1, 1]×[0, 1]. This plate is indented by a notch of 1 unit
length width and 0.5 unit length depth. There is no bulk
modulus. The boundary conditions are u(x = −1, y) = 0
and u(x = 1, y) = 2, and ∇u · n = 0 on the other edges
(n being the normal to the edge). The aim is to local-
ize the full stochastic model in the bottom of the notch,
the meso-scale model expresses itself on the remaining
of the structure. The mechanical parameter is chosen
to follow a lognormal law of unit mean and variance
σ2

m = 0.025 with a triangular correlation model of cor-
relation length `m = 0.05. The micro-scale area is local-
ized to Ωm =..., nombre d elment The meso-scale model
expresses itself on the remaining of the domain. Its cor-
relation length is `M = 0.1 and its variance σ2

M = 0.01
. The domain is meshed with triangular element with
maximum edge size equal to 0.1. The mesh is refined
near the micro-scale zone in order to have an efficient
coupling. The quantities of interest will be the displace-
ment and its gradient (proportional to the stress). Re-
sults will be displayed on the entire structure and along
the line y = 0.5.
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Figure 9: Comparison of the gradient of the meso-scale mono-model
solution uM(x) and of the meso-scale coupled solution uarl

M : aver-
age (dashed and solid lines, respectively), 90%-confidence interval
(dashed line and grey shade, respectively) and one realization of the
Arlequin solution (solid line).
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Figure 10: Coarse (red points) : ∆x = ∆y = 0.1, `1 = 0.5, γ = 0.2,
fine mesh (blue lines): ∆x = ∆y = 0.01, `2 = 0.05, coupling area
between green and red lines.

6. Conclusion

We presented here a novel coupling approach for the
approximation solution of complex multiscale stochas-
tic problems. This coupling method is based on the Ar-
lequin framework, with a particular choice of mediator
space that can be seen as an extension of a stochastic-
deterministic coupling space introduced in [50, 18]. The
chosen coupling strategy ensures that the solutions of
the micro- and meso-scale models are equal almost ev-
erywhere in the coupling volume and almost surely
with respect to the low-frequency fluctuations of the
medium, and that the average in space of the high fre-
quency fluctuations of the micro-scale solution van-
ishes. The numerical implementation is performed us-
ing two Monte-Carlo loops intertwined.

As this coupling approach stands in the Arlequin
framework, it can be adapted to the case when the two
models are different, in the sense that they are governed
by different sets of partial differential equations. For
example, it may be interesting to consider the coupling
of a micro-scale 3D elastic model with a meso-scale
beam model. Likewise, atomistic-to-continuum cou-
pling approach may be approached. Although the me-
diator spaces should be modified accordingly, this type
of coupled problems, with appropriate levels of random-
ness on each subdomain, would be extremely interesting
in terms of applications.
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[62] Wen XH, Gómez-Hernández J. Upscaling hydraulic conduc-
tivities in heterogeneous media: an overview. J Hydrology
1996;183(1-2):ix–xxxii. doi:10.1016/S0022-1694(96)80030-8.

[63] Renard P, de Marsily G. Calculating equivalent permeabil-
ity: a review. Adv Water Resource 1997;20(5-6):253–78. doi:
10.1016/S0309-1708(96)00050-4.

[64] Farmer CL. Upscaling: a review. Int J Numer Meth Fluids
2002;40(1-2):63–78. doi:10.1002/fld.267.

[65] Brewster ME, Beylkin G. A multiresolution strategy for
numerical homogenization. Appl Comp Harmonic Anal
1995;2(4):327–49. doi:10.1006/acha.1995.1024.

[66] Dorobantu M, Engquist B. Wavelet-based numerical homog-
enization. SIAM J Numer Anal 1998;35(2):540–59. doi:
10.1137/S0036142996298880.

[67] Ben Dhia H, Rateau G. Mathematical analysis of the mixed
Arlequin method. Comptes Rendus Acad Sci - Series I - Math
2001;332(7):649–54. doi:10.1016/S0764-4442(01)01900-0.

[68] Ben Dhia H, Rateau G. The Arlequin method as a flexible engi-
neering design tool. Int J Numer Meths Engr 2005;62(11):1442–
62. doi:10.1002/nme.1229.

[69] Ben Dhia H. Further insights by theoretical investigations of
the multiscale Arlequin method. Int J Multiscale Comp Engr
2008;6(3):215–32. doi:10.1615/IntJMultCompEng.v6.i3.30.

13


