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THE LARGEST EIGENVALUES OF FINITE RANK

DEFORMATION OF LARGE WIGNER MATRICES:

CONVERGENCE AND NONUNIVERSALITY OF THE

FLUCTUATIONS

By Mireille Capitaine, Catherine Donati-Martin

and Delphine Féral

Institut de Mathématiques de Toulouse, Université Paris 6
and Instituts de Mathématiques de Toulouse et de Bordeaux

In this paper, we investigate the asymptotic spectrum of com-
plex or real Deformed Wigner matrices (MN )N defined by MN =
WN/

√
N + AN where WN is an N ×N Hermitian (resp., symmet-

ric) Wigner matrix whose entries have a symmetric law satisfying
a Poincaré inequality. The matrix AN is Hermitian (resp., symmet-
ric) and deterministic with all but finitely many eigenvalues equal to
zero. We first show that, as soon as the first largest or last smallest
eigenvalues of AN are sufficiently far from zero, the corresponding
eigenvalues of MN almost surely exit the limiting semicircle compact
support as the size N becomes large. The corresponding limits are
universal in the sense that they only involve the variance of the en-
tries of WN . On the other hand, when AN is diagonal with a sole
simple nonnull eigenvalue large enough, we prove that the fluctua-
tions of the largest eigenvalue are not universal and vary with the
particular distribution of the entries of WN .

1. Introduction. This paper lies in the lineage of recent works studying
the influence of some perturbations on the asymptotic spectrum of classical
random matrix models. Such questions come from statistics (cf. [20]) and
appeared in the framework of empirical covariance matrices, also called non-
white Wishart matrices or spiked population models, considered by Baik,
Ben Arous and Péché [8] and by Baik and Silverstein [9]. The work [8] deals
with random sample covariance matrices (SN )N defined by

SN =
1

N
Y ∗
NYN ,(1.1)
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where YN is a p×N complex matrix whose sample column vectors are i.i.d.,
centered, Gaussian and of covariance matrix a deterministic Hermitian ma-
trix Σp having all but finitely many eigenvalues equal to 1. Besides, the size
of the samples N and the size of the population p = pN are assumed of
the same order (as N →∞). The authors of [8] first noticed that, as in the
classical case (known as the Wishart model) where Σp = Ip is the identity
matrix, the global limiting behavior of the spectrum of SN is not affected
by the matrix Σp. Thus, the limiting spectral measure is the well-known
Marchenko–Pastur law. On the other hand, they pointed out a phase tran-
sition phenomenon for the fluctuations of the largest eigenvalue according
to the value of the largest eigenvalue(s) of Σp. The approach of [8] does not
extend to the real Gaussian setting and the whole analogue of their result
is still an open question. Nevertheless, Paul was able to establish in [25] the
Gaussian fluctuations of the largest eigenvalue of the real Gaussian matrix
SN when the largest eigenvalue of Σp is simple and sufficiently larger than
1. More recently, Baik and Silverstein investigated in [9] the almost sure
limiting behavior of the extremal eigenvalues of complex or real nonneces-
sarily Gaussian matrices. Under assumptions on the first four moments of
the entries of YN , they showed in particular that when exactly k eigenvalues
of Σp are far from 1, the k first eigenvalues of SN are almost surely out-
side the limiting Marchenko–Pastur support. Fluctuations of the eigenvalues
that jump are universal and have been recently found by Bai and Yao in [6]
(we refer the reader to [6] for the precise restrictions made on the definition
of the covariance matrix Σp). Note that the problem of the fluctuations in
the very general setting of [9] is still open.

Our purpose here is to investigate the asymptotic behavior of the first
extremal eigenvalues of some complex or real Deformed Wigner matrices.
These models can be seen as the additive analogue of the spiked population
models and are defined by a sequence (MN )N given by

MN =
1√
N

WN +AN :=XN +AN ,(1.2)

where WN is a Wigner matrix such that the common distribution of its
entries satisfies some technical conditions [given in (i) below] and AN is a
deterministic matrix of finite rank. We establish the analogue of the main
result of [9], namely that, once AN has exactly k (fixed) eigenvalues far
enough from zero, the k first eigenvalues of MN jump almost surely out-
side the limiting semicircle support. This result is universal (as the one of
[9]) since the corresponding limits only involve the variance of the entries of
WN . On the other hand, at the level of the fluctuations, we exhibit a striking
phenomenon in the particular case where AN is diagonal with a sole simple
nonnull eigenvalue large enough. Indeed, we find that in this case, the fluctu-
ations of the largest eigenvalue of MN are not universal and strongly depend
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on the particular law of the entries of WN . More precisely, we prove that
the limiting distribution of the (properly rescaled) largest eigenvalue of MN

is the convolution of the distribution of the entries of WN with a Gaussian
law. In particular, if the entries of WN are not Gaussian, the fluctuations of
the largest eigenvalue of MN are not Gaussian.

In the following section, we first give the precise definition of the De-
formed Wigner matrices (1.2) considered in this paper and we recall the
known results on their asymptotic spectrum. Then, we present our results
and sketch the proofs. We also outline the organization of the paper.

2. Model and results. Throughout this paper, we consider complex or
real Deformed Wigner matrices (MN )N of the form (1.2) where the matrices
WN and AN are defined as follows:

(i) WN is an N ×N Wigner Hermitian (resp., symmetric) matrix such that
the N2 random variables (WN )ii,

√
2ℜe((WN )ij)i<j ,

√
2ℑm((WN )ij)i<j

[resp., the N(N + 1)/2 random variables 1√
2
(WN )ii, (WN )ij , i < j] are

independent identically distributed with a symmetric distribution µ of
variance σ2 and satisfying a Poincaré inequality (see Section 3).

(ii) AN is a deterministic Hermitian (resp., symmetric) matrix of fixed finite
rank r and built from a family of J fixed real numbers θ1 > · · ·> θJ in-
dependent of N with some j0 such that θj0 = 0. We assume that the non-
null eigenvalues θj of AN are of fixed multiplicity kj (with

∑
j 6=j0

kj = r),
that is, AN is similar to the diagonal matrix

DN = diag

(
θ1, . . . , θ1︸ ︷︷ ︸

k1

, . . . , θj0−1, . . .︸ ︷︷ ︸
kj0−1

,0, . . . . ,0︸ ︷︷ ︸
N−r

, θj0+1, . . .︸ ︷︷ ︸
kj0+1

, . . . , θJ , . . .︸ ︷︷ ︸
kJ

)
.

(2.1)
Before going into the details of the results, we want to point out that the

condition made on µ (namely that µ satisfies a Poincaré inequality) is just
a technical condition: we conjecture that our results still hold under weaker
assumptions (see Remark 2.1 below). Nevertheless, a lot of measures satisfy a
Poincaré inequality (we refer the reader to [12] for a characterization of such
measures on R; see also [1]). For instance, consider µ(dx) = exp(−|x|α)dx
with α≥ 1.

Furthermore, note that this condition implies that µ has moments of any
order (cf. Corollary 3.2 and Proposition 1.10 in [22]).

Let us now introduce some notations. When the entries of WN are further
assumed to be Gaussian, that is, in the complex (resp., real) setting when
WN is of the so-called GUE (resp., GOE), we will write WG

N instead of WN .

Then XG
N :=WG

N /
√
N will be said to be of the GU(O)E(N, σ

2

N ) and we will

let MG
N =XG

N +AN be the corresponding Deformed GU(O)E model.
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In the following, given an arbitrary Hermitian matrix B of order N , we
will denote by λ1(B)≥ · · · ≥ λN (B) its N ordered eigenvalues and by µB =
1
N

∑N
i=1 δλi(B) its empirical measure. Spect(B) will denote the spectrum of

B. For notational convenience, we will also set λ0(B) = +∞ and λN+1(B) =
−∞.

The Deformed Wigner model is built in such a way that the Wigner
theorem is still satisfied. Thus, as in the classical Wigner model (AN ≡ 0),
the spectral measure (µMN

) converges a.s. toward the semicircle law µsc

whose density is given by

dµsc

dx
(x) =

1

2πσ2

√
4σ2 − x21[−2σ,2σ](x).(2.2)

This result follows from Lemma 2.2 of [2]. Note that it only relies on the
two first moment assumptions on the entries of WN and the fact that the
AN ’s are of finite rank.

On the other hand, the asymptotic behavior of the extremal eigenvalues
may be affected by the perturbation AN . Recently, Péché studied in [26] the
Deformed GUE under a finite rank perturbation AN defined by (ii). Follow-
ing the method of [8], she highlighted the effects of the nonnull eigenvalues
of AN at the level of the fluctuations of the largest eigenvalue of MG

N . To
explain this in more detail, let us recall that when AN ≡ 0, it was established
in [33] that as N →∞,

σ−1N2/3(λ1(X
G
N )− 2σ)

L−→ F2,(2.3)

where F2 is the well-known GUE Tracy–Widom distribution (see [33] for
the precise definition). Dealing with the Deformed GUE MG

N , it appears
that this result is modified as soon as the first largest eigenvalue(s) of AN is
(are) quite far from zero. In the particular case of a rank-1 perturbation AN

having a fixed nonnull eigenvalue θ > 0, [26] proved that the fluctuations of
the largest eigenvalue of MG

N are still given by (2.3) when θ is small enough
and precisely when θ < σ. The limiting law is changed when θ = σ. As soon as
θ > σ, [26] established that the largest eigenvalue λ1(M

G
N ) fluctuates around

ρθ = θ+
σ2

θ
(2.4)

(which is > 2σ since θ > σ) as
√
N(λ1(M

G
N )− ρθ)

L−→N (0, σ2
θ),(2.5)

where

σθ = (σ/θ)
√

θ2 − σ2.(2.6)

Similar results are conjectured for the Deformed GOE but Péché emphasized
that her approach fails in the real framework. Indeed, it is based on the
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explicit Fredholm determinantal representation for the distribution of the
largest eigenvalue(s) that is specific to the complex setting. Nevertheless,
Mäıda [23] obtained a large deviation principle for the largest eigenvalue of
the Deformed GOE MG

N under a rank-1 deformation AN ; from this result she
could deduce the almost sure limit with respect to the nonnull eigenvalue of
AN . Thus, under a rank-1 perturbation AN such that DN = diag(θ,0, . . . ,0)
where θ > 0, [23] showed that

λ1(M
G
N )

a.s.−→ ρθ if θ > σ(2.7)

and

λ1(M
G
N )

a.s.−→ 2σ if θ ≤ σ.(2.8)

Note that the approach of [23] extends with minor modifications to the
Deformed GUE. Following the investigations of [9] in the context of general
spiked population models, one can conjecture that such a phenomenon holds
in a more general and nonnecessarily Gaussian setting. The first result of our
paper, namely the following Theorem 2.1, is related to this question. Before
being more explicit, let us recall that when AN ≡ 0, the whole spectrum of
the rescaled complex or real Wigner matrix XN =WN/

√
N belongs almost

surely to the semicircle support [−2σ,2σ] as N goes to infinity and that (cf.
[7] or Theorem 2.12 in [2])

λ1(XN )
a.s.−→ 2σ and λN (XN )

a.s.−→−2σ.(2.9)

Note that this last result holds true in a more general setting than the
one considered here (see [7] for details) and in particular only requires the
finiteness of the fourth moment of the law µ. Moreover, one can readily
extend the previous limits to the first extremal eigenvalues of XN , that is,

for any fixed k ≥ 1, λk(XN )
a.s.−→ 2σ and λN−k(XN )

a.s.−→−2σ.
(2.10)
Here, we prove that, under the assumptions (i)–(ii), (2.10) fails when some
of the θj ’s are sufficiently far from zero: as soon as some of the first largest
(resp., last smallest) nonnull eigenvalues θj of AN are taken strictly larger
than σ (resp., strictly smaller than −σ), the same part of the spectrum of
MN almost surely exits the semicircle support [−2σ,2σ] as N →∞ and the
new limits are the ρθj ’s defined by

ρθj = θj +
σ2

θj
.(2.11)

Observe that ρθj is > 2σ (resp., < −2σ) when θj > σ (resp., < −σ) (and
ρθj =±2σ if θj =±σ).

Here is the precise formulation of our result. For definiteness, we set k1 +
· · ·+ kj−1 := 0 if j = 1.
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Theorem 2.1. Let J+σ (resp., J−σ) be the number of j’s such that
θj > σ (resp., θj <−σ).

(a) ∀1≤ j ≤ J+σ,∀1≤ i≤ kj , λk1+···+kj−1+i(MN )−→ ρθj a.s.
(b) λk1+···+kJ+σ

+1(MN )−→ 2σ a.s.

(c) λk1+···+kJ−J−σ
(MN )−→−2σ a.s.

(d) ∀j ≥ J − J−σ + 1,∀1≤ i≤ kj , λk1+···+kj−1+i(MN )−→ ρθj a.s.

Remark 2.1. Following [9], one can expect that this theorem holds
true in a more general setting than the one considered here, namely one
that would only require four first moment conditions on the law µ of the
Wigner entries. As we will explain in the following, the assumption that µ
satisfies a Poincaré inequality is actually fundamental in our reasoning since
we will need several variance estimates.

This theorem will be proved in Section 4. The second part of this work
is devoted to the study of the particular rank-1 diagonal deformation AN =
diag(θ,0, . . . ,0) such that θ > σ. We investigate the fluctuations of the largest
eigenvalue of any real or complex Deformed model MN satisfying (i) around
its limit ρθ. We obtain the following result.

Theorem 2.2. Let AN = diag(θ,0, . . . ,0) with θ > σ. Define

vθ =
t

4

(
m4 − 3σ4

θ2

)
+

t

2

σ4

θ2 − σ2
,(2.12)

where t = 4 (resp., t = 2) when WN is real (resp., complex) and m4 :=∫
x4 dµ(x). Then

√
N

(
1− σ2

θ2

)−1

(λ1(MN )− ρθ)
L−→ µ ∗N (0, vθ).(2.13)

Note that when m4 = 3σ4 as in the Gaussian case, the variance of the
limiting distribution of

√
N(λ1(MN )− ρθ) is equal to σ2

θ (resp., 2σ2
θ ) in the

complex (resp., real) setting [with σθ given by (2.6)].

Remark 2.2. Since µ is symmetric, it readily follows from Theorem 2.2
that when AN = diag(θ,0, . . . ,0) and θ <−σ, the smallest eigenvalue of MN

fluctuates as
√
N(1− σ2/θ2)−1(λN (MN )− ρθ)

L−→ µ ∗ N (0, vθ).

In particular, one derives the analogue of (2.5) for the Deformed GOE:
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Theorem 2.3. Let AN be an arbitrary deterministic symmetric matrix
of rank 1 having a nonnull eigenvalue θ such that θ > σ. Then the largest
eigenvalue of the Deformed GOE fluctuates as

√
N(λ1(M

G
N )− ρθ)

L−→N (0,2σ2
θ ).(2.14)

Obviously, thanks to the orthogonal invariance of the GOE, this result is
a direct consequence of Theorem 2.2.

It is worth noticing that, according to the Cramér–Lévy theorem (cf. [14],
Theorem 1, page 525), the limiting distribution (2.13) is not Gaussian if µ is
not Gaussian. Thus, (2.13) depends on the particular law µ of the entries of
the Wigner matrix WN which implies the nonuniversality of the fluctuations
of the largest eigenvalue of rank-1 diagonal deformation of symmetric or
Hermitian Wigner matrices (as conjectured in Remark 1.7 of [16]).

The latter also shows that in the non-Gaussian setting, the fluctuations
of the largest eigenvalue depend, not only on the spectrum of the deforma-
tion AN , but also on the particular definition of the matrix AN . Indeed,
in collaboration with S. Péché, the third author of the present article has
recently stated in [16] the universality of the fluctuations of some Deformed
Wigner models under a full deformation AN defined by (AN )ij = θ/N for all
1≤ i, j ≤N (see also [17]). Before giving some details on this work, we have
to specify that [16] considered Deformed models such that the entries of
the Wigner matrix WN have sub-Gaussian moments. Nevertheless, thanks
to the analysis made in [27], one can observe that the assumptions of [16]
can be reduced and that it is, for example, sufficient to assume that the
Wi,j ’s have moments of any order. Thus, the conclusions of [16] apply to
the setting considered in our paper. The main result of [16] establishes the
universality of the fluctuations of the largest eigenvalue of the complex De-
formed model MN associated to a full deformation AN and for any value
of the parameter θ. In particular, when θ > σ, it is proved therein the uni-
versality of the Gaussian fluctuations (2.5). The approach of [16] is mainly
based on a combinatorial method inspired by the work [31] (which handles
the non-Deformed Wigner model) and some results of [26] on the Deformed
GUE. The combinatorial arguments of [16] also work (with minor modifi-
cations) in the real framework and yield the universality of the fluctuations
if θ < σ. In the case where θ > σ which is of particular interest here, the
analysis made in [16] reduces the universality problem in the real setting to
the knowledge of the particular Deformed GOE model (this remark is also
valid in the case where θ = σ). Here, we will prove the needed results on the
Deformed GOE which, thanks to the analysis of [16] and [27], allow us to
claim the following universality.

Theorem 2.4. Let AN be a full perturbation given by (AN )ij = θ/N for
all (i, j). Assume that θ > σ. Let WN be an arbitrary real Wigner matrix
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with the underlying measure µ being symmetric with a variance σ2 and such
that

∫
|x|q dµ(x)<+∞ for any q in N.

Then the largest eigenvalue of the Deformed model MN has the Gaussian
fluctuations (2.14).

Remark 2.3. To be complete, let us notice that the previous result still
holds when we allow the distribution ν of the diagonal entries of WN to
be different from µ provided that ν is symmetric and has moments of any
order.

The fundamental tool of this paper is the Stieltjes transform. For z ∈C\R,
we denote the resolvent of the matrix MN by

GN (z) = (zIN −MN )−1

and the Stieltjes transform of the expectation of the empirical measure of
the eigenvalues of MN by

gN (z) = E(trN (GN (z))),

where trN is the normalized trace. We also denote by

gσ(z) = E((z − s)−1)

the Stieltjes transform1 of a variable s with semicircular distribution µsc.
Theorem 2.1 is the analogue of the main statement of [9] established

in the context of general spiked population models. The conclusion of [9]
requires numerous results obtained previously by Silverstein and co-authors
in [30], [3] and [4] (a summary of all this literature can be found in [2],
pages 671–675). From very clever and tedious manipulations of some Stieltjes
transforms and the use of the matricial representation (1.1), these works
highlight a very close link between the spectra of the Wishart matrices and
the covariance matrix (for quite general covariance matrix which includes
the spiked population model). Our approach mimics the one of [9]. Thus,
using the fact that the Deformed Wigner model is the additive analogue of
the spiked population model, several arguments can be quite easily adapted
here (this point has been explained in Chapter 4 of the Ph.D. thesis [15]).
Actually, the main point in the proof consists in establishing that for any
ε > 0, almost surely,

Spect(MN )⊂Kε
σ(θ1, . . . , θJ)(2.15)

for all N large, where we have defined

Kε
σ(θ1, . . . , θJ) =Kσ(θ1, . . . , θJ) + (−ε, ε)

1Note that in some papers to which we make reference, the Stieltjes transform is defined
with the opposite sign.
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and

Kσ(θ1, . . . , θJ) := {ρθJ ; . . . ;ρθJ−J−σ+1
} ∪ [−2σ,2σ] ∪ {ρθJ+σ

; . . . ;ρθ1}.

This point is the analogue of the main result of [3]. The analysis of [3]

is based on technical and numerous considerations of Stieltjes transforms
strongly related to the Wishart context and that cannot be directly trans-

posed here. Our approach to prove such an inclusion of the spectrum of MN

is very different from the one of [3]. Indeed, we use the methods developed
by Haagerup and Thorbjørnsen in [18], by Schultz [29] and by the two first

authors of the present article [13]. The key point of this approach is to obtain

a precise estimation at any point z ∈C \R of the following type:

gσ(z)− gN (z) +
1

N
Lσ(z) =O

(
1

N2

)
,(2.16)

where Lσ is the Stieltjes transform of a distribution Λσ with compact sup-

port in Kσ(θ1, . . . , θJ). Indeed such an estimation allows us through the
inverse Stieltjes transform and some variance estimates to deduce that a.s.,

trN (1cKε
σ(θ1,...,θJ)

(MN )) =O(N−4/3). Thus the number of eigenvalues of MN

in cKε
σ(θ1, . . . , θJ) is almost surely an O(N−1/3) and since for each N this

number has to be an integer, we deduce that it is actually equal to zero as

N goes to infinity.
Dealing with the particular diagonal perturbation AN = diag(θ,0, . . . ,0)

such that θ > σ, we obtain the fluctuations of the largest eigenvalue λ1(MN )

(Theorem 2.2) by an approach close to the one of [25] and the ideas of [11].

The reasoning relies on the writing of the rescaled variable
√
N(λ1(MN )−ρθ)

in terms of the resolvent of a non-Deformed Wigner matrix. Then, to com-

plete the analysis of [16] and justify Theorem 2.4, we focus on the particular

Deformed GOE model and improve the previous convergence at the level of
Laplace transform.

The paper is organized as follows. In Section 3, we introduce preliminary

lemmas which will be of basic use later on. Section 4 is devoted to the proof
of Theorem 2.1. We first establish an equation (called master equation or

master inequality) satisfied by gN up to some correction of order 1
N2 (see

Section 4.1). Then we explain how this master equation gives rise to an

estimation of type (2.16) and thus to the inclusion (2.15) of the spectrum of

MN in Kε
σ(θ1, . . . , θJ) (see Sections 4.2 and 4.3). In Section 4.4, we use this

inclusion to relate the asymptotic spectra of AN and MN and then deduce
Theorem 2.1. Section 5 deals with the fluctuations results. The proof of

Theorem 2.2 is given in Section 5.2; Theorem 2.4 is justified in Section 5.3.
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3. Basic lemmas. We assume that the distribution µ of the entries of the
Wigner matrix WN satisfies a Poincaré inequality: there exists a positive
constant C such that for any C1 function f :R→ C such that f and f ′ are
in L2(µ),

V(f)≤C

∫
|f ′|2 dµ,

with V(f) = E(|f − E(f)|2).
Let Tr denote the classical trace.
For any matrix M , define ‖M‖2 = (Tr(M∗M))1/2 the Hilbert–Schmidt

norm. Let Ψ : (MN (C)sa)→ R
N2

[resp., Ψ : (MN (C)s)→ R
N(N+1)/2] be the

canonical isomorphism which maps an Hermitian (resp., symmetric) matrix
M to the real parts and the imaginary parts of its entries (resp., to the
entries) (M)ij , i≤ j.

Lemma 3.1. Let MN be the complex (resp., real) Wigner Deformed ma-

trix introduced in Section 2. For any C1 function f :RN2
(resp., RN(N+1)/2)→

C such that f and the gradient ∇(f) are both polynomially bounded,

V[f ◦Ψ(MN )]≤ C

N
E{‖∇[f ◦Ψ(MN )]‖22}.(3.1)

Proof. According to Lemma 3.2 in [13],

V[f ◦Ψ(XN )]≤ C

N
E{‖∇[f ◦Ψ(XN )]‖22}.(3.2)

Note that even if the result in [13] is stated in the Hermitian case, the proof
is valid and the result still holds in the symmetric case. Now (3.1) follows
putting g(xij ; i≤ j) := f(xij + (AN )ij; i ≤ j) in (3.2) and noticing that the
(AN )ij are uniformly bounded in i, j,N . �

This lemma will be useful to estimate many variances. Now, we recall
some useful properties of the resolvent (see [13, 21]).

Lemma 3.2. For an N ×N Hermitian or symmetric matrix M , for any
z ∈C \ Spect(M), we denote by G(z) := (zIN −M)−1 the resolvent of M .

Let z ∈C \R.
(i) ‖G(z)‖ ≤ |ℑm(z)|−1 where ‖ · ‖ denotes the operator norm.
(ii) |G(z)ij | ≤ |ℑm(z)|−1 for all i, j = 1, . . . ,N .
(iii) For p≥ 2,

1

N

N∑

i,j=1

|G(z)ij |p ≤ (|ℑm(z)|−1)p.
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(iv) The derivative with respect to M of the resolvent G(z) satisfies

G′
M (z) ·B =G(z)BG(z) for any matrix B.

(v) Let z ∈C such that |z|> ‖M‖; we have

‖G(z)‖ ≤ 1

|z| − ‖M‖ .

Proof. We just mention that (v) comes readily noticing that the eigen-

values of the normal matrix G(z) are the 1
z−λi(M) , i= 1, . . . ,N. �

We will also need the following estimations on the Stieltjes transform gσ
of the semicircular distribution µsc.

Lemma 3.3. gσ is analytic on C \ [−2σ,2σ] and

(i) ∀z ∈ {z ∈C :ℑm(z) 6= 0},

σ2g2σ(z)− zgσ(z) + 1 = 0,(3.3)

|gσ(z)| ≤ |ℑm(z)|−1,(3.4)

|gσ(z)−1| ≤ |z|+ σ2|ℑm(z)|−1,(3.5)

|g′σ(z)|=
∣∣∣∣
∫

1

(z − t)2
dµσ(t)

∣∣∣∣≤ |ℑm(z)|−2,(3.6)

for a > 0, θ ∈R,

∣∣∣∣
1

agσ(z)− z + θ

∣∣∣∣≤ |ℑm(z)|−1.(3.7)

(ii) ∀z ∈ {z ∈C : |z|> 2σ},

|gσ(z)| ≤
1

|z| − 2σ
.(3.8)

|g′σ(z)|=
∣∣∣∣
∫

1

(z − t)2
dµσ(t)

∣∣∣∣≤
1

(|z| − 2σ)2
,(3.9)

|gσ(z)|−1 ≤ |z|+ σ2

|z| − 2σ
.(3.10)

Proof. For (3.3), we refer the reader to Section 3.1 of [2]. Equation

(3.7) is a consequence of ℑm(gσ(z))ℑm(z) < 0. Other inequalities derive
from (3.3) and the definition of gσ. �



12 M. CAPITAINE, C. DONATI-MARTIN AND D. FÉRAL

4. Almost sure convergence of the first extremal eigenvalues. Sections
4.1, 4.2 and 4.3 below describe the different steps of the proof of the inclusion
(2.15). We choose to develop the case of the complex Deformed Wigner
model and just to point out some differences with the real model case (at
the end of Section 4.3) since the approach would be basically the same. In
these sections, we will often refer the reader to the paper [13] where the
authors deal with several independent non-Deformed Wigner matrices. The
reader needs to fix r = 1, m= 1, a0 = 0, a1 = σ and to change the notation
λ= z, GN = gN , G= gσ in [13] in order to use the different proofs we refer to
in the present framework. We shall denote by Pk any polynomial of degree k
with positive coefficients and by C, K any constants; Pk, C, K can depend
on the fixed eigenvalues of AN and may vary from line to line. We also adopt
the following convention to simplify the writing: we sometimes state in the
proofs below that a quantity ∆N (z), z ∈ C \ R is O(N−p), p = 1,2. This
means precisely that

|∆N (z)| ≤ (|z|+K)l
Pk(|ℑm(z)|−1)

Np

for some k and some l and we give the precise majoration in the statements
of the theorems or propositions.

Section 4.4 explains how to deduce Theorem 2.1 from the inclusion (2.15).
The goal of Sections 4.1 and 4.2 is to establish Proposition 4.4 below

which is fundamental in the proof of the inclusion (2.15). Before describing
rigorously the different ideas of these two sections, let us help the reader’s
intuition by a heuristic understanding of the approach. Assume that we
can establish that gN (z) satisfied the rough quadratic equation (also called
master inequality):

σ2g2N (z)− zgN (z) + 1+
1

N
Eσ(z) =O

(
1

N2

)
.

Then, for any suitable z, divided by gN (z) the last approximation would
provide us an estimation of ΛN (z)−z where ΛN (z) = zσ(gN (z)) with zσ(g) =
1
g + σ2g being the inverse function of gσ (see Lemma 4.4 below). Then,

intuitively, a Taylor expansion of gσ between ΛN (z) and z would lead to an
estimation of the type

gN (z)− gσ(z) =− 1

N
(gσ(z))

−1g′σ(z)Eσ(z) +O

(
1

N2

)
.

This intuitive process may throw light on the expression (4.20) of Lσ(z) in
Proposition 4.4 below.
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4.1. The master equation.

4.1.1. A first master inequality. In order to obtain a master equation
for gN (z), we first consider the Gaussian case, that is, XN = XG

N is dis-
tributed as the GUE(N,σ2/N ) distribution.2

Let us recall the integration by parts formula for the Gaussian distribu-
tion.

Lemma 4.1. Let Φ be a complex-valued C1 function on (MN (C)sa) and
XN ∼GUE(N,σ2/N). Then,

E[φ′(XN ) ·H] =
N

σ2
E[φ(XN )Tr(XNH)](4.1)

for any Hermitian matrix H , or by linearity for H =Ejk, 1≤ j, k ≤N where
Ejk, 1 ≤ j, k ≤ N is the canonical basis of the complex space of N × N
matrices.

We apply the above lemma to the function Φ(XN ) = (GN (z))ij = ((zIN −
XN −AN )−1)ij , z ∈ C \ R, 1 ≤ i, j ≤ N . In order to simplify the notation,
we write (GN (z))ij =Gij . We obtain, for H =Eij ,

E((GHG)ij) =
N

σ2
E[Gij Tr(XNH)],

E(GiiGjj) =
N

σ2
E[Gij(XN )ji].

Now, we consider the normalized sum 1
N2

∑
ij of the previous identities to

obtain

E((trNG)2) =
1

σ2
E(trN (GXN )).

Then, since

GXN = (z−XN −AN )−1(XN +AN −zIN −AN +zIN ) =−IN −GAN +zG,

we obtain the following master equation:

E((trNG)2) +
1

σ2
(−zE(trNG) + 1+ E(trNGAN )) = 0.

Now, it is well known (see [13, 18] and Lemma 3.1) that

Var(trN (G))≤ C|ℑm(z)|−4

N2
.

Thus, in the case where XN =XG
N we obtain:

2Throughout this section, we will drop the subscript G in the interest of clarity.
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Proposition 4.1. The Stieltjes transform gN satisfies the following in-
equality:

∣∣∣∣σ2g2N (z)− zgN (z) + 1+
1

N
E(Tr(GN (z)AN ))

∣∣∣∣≤C
|ℑm(z)|−4

N2
.(4.2)

Note that since AN is of finite rank, E(Tr(GN (z)AN )) ≤ C where C is a
constant independent of N (depending on the eigenvalues of AN and z).

We now explain how to obtain the corresponding (4.2) in the Wigner case.
Since the computations are the same as in [13]3 and [21],4 we just give some
hints of the proof.

Step 1. The integration by parts formula for the Gaussian distribution
is replaced by the following tool:

Lemma 4.2. Let ξ be a real-valued random variable such that E(|ξ|p+2)<
∞. Let φ be a function from R to C such that the first p+1 derivatives are
continuous and bounded. Then,

E(ξφ(ξ)) =

p∑

a=0

κa+1

a!
E(φ(a)(ξ)) + ǫ(4.3)

where κa are the cumulants of ξ, |ǫ| ≤C supt |φ(p+1)(t)|E(|ξ|p+2), C depends
on p only.

We apply this lemma with the function φ(ξ) given, as before, by φ(ξ) =Gij

and ξ is now one of the variables ℜe((XN )kl), ℑm((XN )kl). Note that, since
the above random variables are symmetric, only the odd derivatives in (4.3)
give a nonnull term. Moreover, as we are concerned by estimation of order
1
N2 of gN , we only need to consider (4.3) up to the third derivative (see [13]).
The computation of the first derivative will provide the same term as in the
Gaussian case.

Step 2. Study of the third derivative.
We refer to [13] or [21] for a detailed study of the third derivative. Using

some bounds on GN (see Lemma 3.2), we can prove that the only term aris-
ing from the third derivative in the master equation, giving a contribution
of order 1

N , is

1

N
E

[(
1

N

N∑

k=1

G2
kk

)2]
.

3This paper treats the case of several independent non-Deformed Wigner matrices.
4The authors considered a non-Deformed Wigner matrix in the symmetric real setting.
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In conclusion, the first master equation in the Wigner case reads as follows:

Theorem 4.1. For z ∈C \R, gN (z) satisfies
∣∣∣∣∣σ

2gN (z)2 − zgN (z) + 1+
1

N
E[Tr(GN (z)AN )]

(4.4)

+
1

N

κ4
2
E

[(
1

N

N∑

k=1

(GN (z))2kk

)2]∣∣∣∣∣≤
P6(|ℑm(z)|−1)

N2
,

where κ4 is the fourth cumulant of the distribution µ.

4.1.2. Estimation of |gN − gσ|. Since

|E[Tr(GN (z)AN )]| ∨
∣∣∣∣∣E
[(

1

N

N∑

k=1

(GN (z))2kk

)2]∣∣∣∣∣≤ P4(|ℑm(z)|−1),

Theorem 4.1 implies that for any z ∈C \R,

|σ2gN (z)2 − zgN (z) + 1| ≤ P6(|ℑm(z)|−1)

N
.(4.5)

To estimate |gN − gσ | from (3.3) and (4.5), we follow the method initiated
in [18] and [29]. We do not develop it here since it follows exactly the lines
of Section 3.4 in [13] but we briefly recall the main arguments and results
which will be useful later on. We define the open connected set

O′
N =

{
z ∈C,ℑm(z)> 0,

P6(|ℑm(z)|−1)

N
(σ2|ℑm(z)|−1+ |z|)< 1

4|ℑm(z)|−1

}
.

For any z in C such that ℑm(z)> 0, we set

ΛN (z) := σ2gN (z) +
1

gN (z)
.(4.6)

One can prove that for any z in O′
N :

• gN (z) 6= 0 and

1

|gN (z)| ≤ 2(σ2|ℑm(z)|−1 + |z|);(4.7)

• from (4.5) and (4.7),

|ΛN (z)− z| ≤ P6(|ℑm(z)|−1)

N
2(σ2|ℑm(z)|−1 + |z|)(4.8)

and

ℑm(ΛN (z))≥ ℑm(z)

2
> 0;(4.9)
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• writing (3.3) at the point ΛN (z), we easily get that

gN (z) = gσ(ΛN (z))(4.10)

on the nonempty open subset O′′
N = {z ∈O′

N ,ℑm(z)>
√
2σ} and then on

O′
N by the principle of uniqueness of continuation.

Using

|gN (z)− gσ(z)| = |E[(z − s)−1(ΛN (z)− s)−1(ΛN (z)− z)]|
≤ ℑm(z) · ℑm(ΛN (z)) · |ΛN (z)− z|,

this allows us to get an estimation of |gN (z) − gσ(z)| on O′
N and then to

deduce:

Proposition 4.2. For any z ∈C such that ℑm(z)> 0,

|gN (z)− gσ(z)| ≤ (|z|+K)
P9(|ℑm(z)|−1)

N
.(4.11)

4.1.3. Study of the additional term E[Tr(ANGN (z))]. From now on and
until the end of Section 4.1, we denote by γ1, . . . , γr the nonnull eigenvalues
of AN (γi = θj for some j 6= j0) in order to simplify the writing. Let UN := U
be a unitary matrix such that AN =U∗∆U where ∆ is the diagonal matrix
with entries ∆ii = γi, i≤ r;∆ii = 0, i > r. We set

hN (z) := E[Tr(ANGN (z))] =

r∑

k=1

γk

N∑

i,j=1

U∗
ikUkjE[Gji].(4.12)

Our aim is to express hN (z) in terms of the Stieltjes transform gN (z) for
N large, using the integration by parts formula. Note that since we want
an estimation of order O(N−2) in the master inequality (4.4), we only need
an estimation of hN (z) of order O(N−1). As in the previous subsection, we
first write the equation in the Gaussian case and then study the additional
term (third derivative) in the Wigner case.

(a) Gaussian case. Apply (4.1) to Φ(XN ) =Gjl and H =Eil to get

E[GjiGll] =
N

σ2
E[Gjl(XN )li]

and

1

N

N∑

l=1

E[GjiGll] =
1

σ2
E[(GXN )ji].

Expressing GXN in terms of GAN , we obtain

Iji := σ2
E[GjitrN (G)] + δij − zE[Gji] +E[(GAN )ji] = 0.(4.13)
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Now, we consider the sum
∑

i,j U
∗
ikUkjIji, k = 1, . . . , r fixed and we denote

αk =
∑

i,j U
∗
ikUkjGji = (UGU∗)kk. Then, we have the following equality, us-

ing that U is unitary:

σ2
E[αktrN (G)] + 1− zE[αk] +

∑

i,j

U∗
ikUkjE[(GAN )ji] = 0.

Now,
∑

i,j

U∗
ikUkjE[(GAN )ji] = E[(UGANU∗)kk]

= E[(UGU∗∆UU∗)kk]

= γkE[(UGU∗)kk] = γkE[αk].

Therefore,

σ2
E[αktrN (G)] + 1 + (γk − z)E[αk] = 0.

Since αk is bounded and Var(trN (G)) =O(N−2), we obtain

E[αk](σ
2gN (z) + γk − z) + 1 =O

(
1

N

)
.(4.14)

Then using (4.11) we deduce that E[αk](σ
2gσ(z)+γk−z)+1 =O(N−1) and

using (3.7):

hN (z) =
r∑

k=1

γkE[αk] =
r∑

k=1

γk
z − σ2gσ(z)− γk

+O

(
1

N

)
.(4.15)

(b) The general Wigner case. We shall prove that (4.14) still holds. We
now rely on Lemma 4.2 to obtain the analogue of (4.13):

Jij := σ2
E[GjitrNG] + δij − zE[Gji]

+E[(GAN )ji] +
κ4
6N2

N∑

l=1

E[Ai,j,l](4.16)

=O

(
1

N2

)
.

The term Ai,j,l is a fixed linear combination of the third derivative of Φ :=Gjl

with respect to Re(XN )il (i.e., in the direction eil =Eil+Eli) and ℑm(XN )il
[i.e., in the direction fil :=

√
−1(Eil − Eli)]. We do not need to write the

exact form of this term since we just want to show that this term will give
a contribution of order O(N−1) in the equation for hN (z). Let us write the
derivative in the direction eil:

E[(GeilGeilGeilG)jl]
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which is the sum of eight terms of the form

E[Gji1Gi2i3Gi4i5Gi6l],(4.17)

where if i2q+1 = i (resp., l), then i2q+2 = l (resp., i), q = 0,1,2.

Lemma 4.3. Let 1≤ k ≤ r fixed; then

F (N) :=

∣∣∣∣∣
N∑

i,j=1

U∗
ikUkj

1

N

N∑

l=1

E[Ai,j,l]

∣∣∣∣∣≤C|ℑm(z)|−4(4.18)

for a numerical constant C.

Proof. F (N) is the sum of eight terms corresponding to (4.17). Let us
write, for example, the term corresponding to i1 = i, i3 = i, i5 = i:

1

N

∑

i,j,l

U∗
ikUkjE[GjiGliGliGll] = E

[
1

N

∑

i,l

U∗
ik(UG)kiGliGliGll

]

= E

[
1

N

∑

i

U∗
ik(UG)ki(G

TGDGT )ii

]
,

where the superscript T denotes the transpose of the matrix and GD is the
diagonal matrix with entries Gii. From the bounds ‖GN (z)‖ ≤ |ℑm(z)|−1

and ‖U‖= 1, we get the bound given in the lemma.
We give the majoration for the term corresponding to i1 = l, i3 = l, i5 = l:

1

N

∑

i,j,l

U∗
ikUkjE[GjlG

3
il] = E

[
1

N

∑

i,l

U∗
ik(UG)klG

3
il

]
.

Its absolute value is bounded by E[ 1N
∑

i,l |Gil|3]|ℑm(z)|−1 and thanks to

Lemma 3.2 by |ℑm(z)|−4. The other terms are treated in the same way. �

As in the Gaussian case, we now consider the sum
∑

i,j U
∗
ikUkjJji. From

Lemma 4.3 and the bound (using the Cauchy–Schwarz inequality)

N∑

i,j=1

|U∗
ikUkj| ≤N,

we still get (4.14) and thus (4.15). More precisely, we proved:

Proposition 4.3. For any z ∈C such that ℑm(z)> 0,
∣∣∣∣∣E[Tr(ANGN (z))]−

r∑

k=1

γk
z − σ2gσ(z)− γk

∣∣∣∣∣≤
P11(|ℑm(z)|−1)

N
(K + |z|).
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4.1.4. Convergence of E[( 1
N

∑N
k=1G

2
kk)

2]. We now study the last term
in the master inequality of Theorem 4.1. For the non-Deformed Wigner
matrices, it is shown in [21] that

RN (z) := E

[(
1

N

N∑

k=1

G2
kk

)2]
−→

N −→∞
g4σ(z).

Moreover, Proposition 3.2 in [13], in the more general setting of several
independent Wigner matrices, gives an estimate of |RN (z) − g4σ(z)|. The
above convergence holds true in the Deformed case. We just give some hints
of the proof of the estimate of |RN (z)− g4σ(z)| since the computations are
almost the same as in the non-Deformed case. Let us set

dN (z) =
1

N

N∑

k=1

G2
kk.

We start from the resolvent identity

zGkk = 1+

N∑

l=1

(MN )klGlk

= 1+

N∑

l=1

(AN )klGlk +

N∑

l=1

(XN )klGlk

and

zdN (z) =
1

N

N∑

k=1

Gkk +
1

N

N∑

k=1

(ANG)kkGkk +
1

N

N∑

k,l=1

(XN )klGlkGkk.

For the last term, we apply an integration by parts formula (Lemma 4.2) to
obtain (see [13, 21])

E

[
1

N

N∑

k,l=1

(XN )klGlkGkk

]
= σ2

E

[(
1

N

N∑

k=1

Gkk

)
dN (z)

]
+O

(
1

N

)
.

It remains to see that the additional term due to AN is of order O(N−1):

1

N

N∑

k=1

(ANG)kkGkk =
1

N

r∑

p=1

γp(UGGDU∗)pp

and
∣∣∣∣∣
1

N

N∑

k=1

(ANG)kkGkk

∣∣∣∣∣≤
(

r∑

p=1

|γp|
)
|ℑm(z)|−2

N
.
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We thus obtain (again with the help of a variance estimate)

zE[dN (z)] = gN (z) + σ2gN (z)E[dN (z)] +O

(
1

N

)
.

Then using (4.11) and since dN (z) is bounded we deduce that

zE[dN (z)] = gσ(z) + σ2gσ(z)E[dN (z)] +O

(
1

N

)
.

Thus [using (3.7)]

E[dN (z)] =
gσ(z)

z − σ2gσ(z)
+O

(
1

N

)
−→

N −→∞
gσ(z)

z − σ2gσ(z)
= g2σ(z).

Now, using some variance estimate,

E[d2N (z)] = (E[dN (z)])2 +O

(
1

N

)
= g4σ(z) +O

(
1

N

)
.

We can now give our final master inequality for gN (z) following our previous
estimates:

Theorem 4.2. For z ∈C such that ℑm(z)> 0, gN (z) satisfies
∣∣∣∣σ2g2N (z)− zgN (z) + 1+

1

N
Eσ(z)

∣∣∣∣≤
P14(|ℑm(z)|−1)

N2
(|z|+K),

where Eσ(z) =
∑r

k=1
γk

z−σ2gσ(z)−γk
+ κ4

2 g
4
σ(z), κ4 is the fourth cumulant of

the distribution µ.

Note that Eσ(z) can be written in terms of the distinct eigenvalues θj of
AN as

Eσ(z) =
J∑

j=1,j 6=j0

kj
θj

z − σ2gσ(z)− θj
+

κ4
2
g4σ(z).(4.19)

Let us set

Lσ(z) = gσ(z)
−1

E((z − s)−2)Eσ(z),(4.20)

where s is a centered semicircular random variable with variance σ2.

4.2. Estimation of |gσ(z)−gN (z)+ 1
NLσ(z)|. The method is roughly the

same as the one described in Section 3.6 in [13]. Nevertheless we choose to
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develop it here for the reader’s convenience. We have for any z in O′
n, by

using (4.6) and (4.10),
∣∣∣∣gσ(z)− gN (z) +

1

N
Lσ(z)

∣∣∣∣

=

∣∣∣∣gσ(z)− gσ(ΛN (z)) +
1

N
Lσ(z)

∣∣∣∣

=

∣∣∣∣E
[
(z − s)−1(ΛN (z)− s)−1(ΛN (z)− z) +

1

N
gσ(z)

−1(z − s)−2Eσ(z)

]∣∣∣∣

≤
∣∣∣∣E
[
(z − s)−1(ΛN (z)− s)−1

(
ΛN (z)− z +

1

N
gσ(z)

−1Eσ(z)

)]∣∣∣∣

+E[|(z − s)−1{(z − s)−1 − (ΛN (z)− s)−1}|] 1
N

|gσ(z)−1Eσ(z)|

≤ 2|ℑm(z)|−2

∣∣∣∣ΛN (z)− z +
1

N
Eσ(z)gσ(z)

−1

∣∣∣∣

+
P8(|ℑm(z)|−1)

N
|ΛN (z)− z|(|z|+K),

where we made use of the estimates (3.5), (4.9), ∀z ∈C \R,

∀x∈R

∣∣∣∣
1

z − x

∣∣∣∣≤ |ℑm(z)|−1,

(4.21)
|Eσ(z)| ≤ P4(|ℑm(z)|−1) [using (3.7)].

Let us write ∣∣∣∣Λn(z)− z +
1

N
gσ(z)

−1

∣∣∣∣

=
1

gN (z)

(
σ2g2N (z)− zgN (z) + 1+

Eσ(z)

N

)

+
Eσ(z)/N

gN (z)gσ(z)
(gN (z)− gσ(z)).

We get from Theorem 4.2, (4.7), (4.11), (4.21), (3.5),
∣∣∣∣ΛN (z)− z +

1

N
Eσ(z)gσ(z)

−1

∣∣∣∣≤ (|z|+K)3
P15(|ℑm(z)|−1)

N2
.

Finally, using also (4.8), we get for any z in O′
n,

∣∣∣∣gσ(z)− gN (z) +
1

N
Lσ(z)

∣∣∣∣≤ (|z|+K)3
P17(|ℑm(z)|−1)

N2
.
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Now, for z /∈O′
n, such that ℑm(z)> 0,

1≤ 4
P6(|(ℑm(z))−1|)

N
(|z|+ σ2|ℑm(z)|−1)|ℑm(z)|−1

≤ (|z|+K)
P8(|ℑm(z)−1|)

N
.

We get
∣∣∣∣gσ(z)− gN (z) +

1

N
Lσ(z)

∣∣∣∣≤ |gσ(z)− gN (z)|+ 1

N
|Lσ(z)|

≤ (|z|+K)
P8(|ℑm(z)|−1)

N

×
[
(|z|+K)

P9(|ℑm(z)|−1)

N
+

1

N
P7(|ℑm(z)|−1)(|z|+K)

]

≤ (|z|+K)2
P17(|ℑm(z)|−1)

N2
.

Thus, for any z such that ℑm(z)> 0,
∣∣∣∣gσ(z)− gN (z) +

1

N
Lσ(z)

∣∣∣∣≤ (|z|+K)3
P17(|ℑm(z)|−1)

N2
.(4.22)

Let us denote for a while gN = gAN
N and Lσ = LAN

σ . Note that we get exactly
the same estimation (4.22) dealing with −AN instead of AN . Hence since

gσ(z) = −gσ(−z), g−AN
N (z) = −gAN

N (−z) (using the symmetry assumption
on µ) and L−AN

σ (z) = LAN
σ (−z), it readily follows that (4.22) is also valid

for any z such that ℑm(z)< 0. In conclusion:

Proposition 4.4. For any z ∈C \R,
∣∣∣∣gσ(z)− gN (z) +

1

N
Lσ(z)

∣∣∣∣≤ (|z|+K)3
P17(|ℑm(z)|−1)

N2
.(4.23)

4.3. The spectrum of MN . The following step now consists of deducing
Proposition 4.6 from Proposition 4.4 (from which we will easily deduce the
appropriate inclusion of the spectrum of MN ). Since this transition is based
on the inverse Stieltjes transform, we start with establishing the fundamental
Proposition 4.5 below concerning the nature of Lσ . To this aim, it will be
relevant to rewrite Lσ as

Lσ(z) = gσ(z)
−1 × g′σ(z)×

(
J∑

j=1

kj
θj

(1/(gσ(z)))− θj
+

κ4
2
g4σ(z)

)
.(4.24)
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We recall that J+σ (resp., J−σ) denotes the number of j’s such that θj > σ
(resp., θj <−σ). As in the Introduction, we define

ρθj = θj +
σ2

θj

which is > 2σ (resp., <−2σ) when θj > σ (resp., <−σ).

Proposition 4.5. Lσ is the Stieltjes transform of a distribution Λσ with
compact support

Kσ(θ1, . . . , θJ) := {ρθJ ; . . . ;ρθJ−J−σ+1
} ∪ [−2σ,2σ] ∪ {ρθJ+σ

; . . . ;ρθ1}.

The proof relies on the following characterization already used in [29].

Theorem 4.3 [32].

• Let Λ be a distribution on R with compact support. Define the Stieltjes
transform of Λ, l :C \R→C by

l(z) = Λ

(
1

z − x

)
.

Then l is analytic in C\R and has an analytic continuation to C\supp(Λ).
Moreover:
(c1) l(z)→ 0 as |z| →∞,
(c2) there exist a constant C > 0, an n ∈ N and a compact set K ⊂ R

containing supp(Λ) such that for any z ∈C \R,
|l(z)| ≤Cmax{dist(z,K)−n,1},

(c3) for any φ ∈ C∞(R,R) with compact support

Λ(φ) =− 1

π
lim
y→0+

ℑm
∫

R

φ(x)l(x+ iy)dx.

• Conversely, if K is a compact subset of R and if l :C\K →C is an analytic
function satisfying (c1) and (c2) above, then l is the Stieltjes transform of
a compactly supported distribution Λ on R. Moreover, supp(Λ) is exactly
the set of singular points of l in K.

The following properties of the Stieltjes transform gσ will be useful for
showing that Lσ fulfills the previous conditions.

Lemma 4.4. gσ is analytic and invertible on C \ [−2σ,2σ] and its in-
verse zσ satisfied

zσ(g) =
1

g
+ σ2g ∀g ∈ gσ(C \ [−2σ,2σ]).
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(a) The complement of the support of µσ is characterized as follows:

x ∈R \ [−2σ,2σ] ⇐⇒ ∃g ∈R
∗ such that

∣∣∣∣
1

g

∣∣∣∣> σ and x= zσ(g).

(b) Given x ∈R \ [−2σ,2σ] and θ ∈R such that |θ|>σ, one has

1

gσ(x)
= θ ⇐⇒ x= θ+

σ2

θ
:= ρθ.

This lemma can be easily proved using, for example, the explicit expres-
sion of gσ [derived from (3.3)], namely for all x∈R \ [−2σ,2σ],

gσ(x) =
x

2σ2
(1−

√
1− 4σ2/x2).

Proof of Proposition 4.5. Using (4.24), one readily sees that the set
of singular points of Lσ is [−2σ,2σ]∪{x ∈R \ [−2σ,2σ], 1

gσ(x)
∈ Spect(AN )}.

Hence [using point (b) of Lemma 4.4] the set of singular points of Lσ is
exactly Kσ(θ1, . . . , θJ).

Now, we are going to show that Lσ satisfies (c1) and (c2) of Theorem 4.3.
We have obviously that

|z − σ2gσ(z)− θj| ≥ ||z − θj| − |σ2gσ(z)||.

Now, let α > 0 such that α > 2σ and for any j = 1, . . . , J , α− |θj|> σ2

α−2σ .
For any z ∈C such that |z|> α,

|z − θj| ≥ |z| − |θj|>
σ2

α− 2σ

and according to (3.8)

|σ2gσ(z)| ≤
σ2

|z| − 2σ
≤ σ2

α− 2σ
.

Thus we get that for z ∈C such that |z|> α,

|z − σ2gσ(z)− θj | ≥ |z| − |θj | −
σ2

α− 2σ
.

Using also (3.8)–(3.10), we get readily that for |z|> α,

|Lσ(z)| ≤
(
|z|+ σ2

|z| − 2σ

)
1

(|z| − 2σ)2

×
(

J∑

j=1

kj |θj|
|z| − |θj | − (σ2/(α− 2σ))

+
|κ4|

2(|z| − 2σ)4

)
.
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Then, it is clear that |Lσ(z)| → 0 when |z| →+∞ and (c1) is satisfied.
Now we follow the approach of [29] (Lemma 5.5) to prove (c2). Denote by

E the convex envelope of Kσ(θ1, . . . , θJ) and define the interval

K := {x ∈R; dist(x,E)≤ 1}
= [min{x ∈Kσ(θ1, . . . , θJ)} − 1;max{x ∈Kσ(θ1, . . . , θJ)}+1]

and

D = {z ∈C; 0< dist(z,K)≤ 1}.

• Let z ∈ D ∩ C \ R with ℜe(z) ∈ K. We have dist(z,K) = |ℑm(z)| ≤ 1.
Using the upper bounds (3.4), (3.5), (3.6) and (3.7), we easily deduce
that there exists some constant C0 such that for any z ∈D ∩C \R with
ℜe(z) ∈K,

|Lσ(z)| ≤C0|ℑm(z)|−7 =C0 dist(z,K)−7 =C0max(dist(z,K)−7; 1).

• Let z ∈D ∩C \R with ℜe(z) /∈K. Then dist(z,Kσ(θ1, . . . , θJ))≥ 1. Since
Lσ is bounded on compact subsets of C \Kσ(θ1, . . . , θJ), we easily deduce
that there exists some constant C1 such that for any z ∈D with ℜe(z) /∈
K,

|Lσ(z)| ≤C1 ≤C1 dist(z,K)−7 =C1max(dist(z,K)−7; 1).

• Since |Lσ(z)| → 0 when |z| →+∞, Lσ is bounded on C \D. Thus, there
exists some constant C2 such that for any z ∈C \D,

|Lσ(z)| ≤C2 =C2max(dist(z,K)−7; 1).

Hence (c2) is satisfied with C =max(C0,C1,C2) and n= 7 and Proposition
4.5 follows from Theorem 4.3. �

We are now in position to deduce the following proposition from the
estimate (4.23).

Proposition 4.6. For any smooth function ϕ with compact support,

E[trN (ϕ(MN ))] =

∫
ϕdµsc +

1

N
Λσ(ϕ) +O

(
1

N2

)
.(4.25)

Consequently, for ϕ smooth, constant outside a compact set and such that
supp(ϕ) ∩Kσ(θ1, . . . , θJ) =∅,

trN (ϕ(MN )) =O(N−4/3) a.s.(4.26)
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Proof. Using the inverse Stieltjes transform, we get, respectively, that,
for any ϕ in C∞(R,R) with compact support,

E[trN (ϕ(MN ))]−
∫

ϕdµsc −
Λσ(ϕ)

N
=− 1

π
lim

y→0+
ℑm

∫

R

ϕ(x)rN (x+ iy)dx,

where rN = gσ(z)− gN (z) + 1
NLσ(z) satisfies, according to Proposition 4.4,

for any z ∈C \R,

|rN (z)| ≤ 1

N2
(|z|+K)αPk(|ℑm(z)−1|),

where α= 3 and k = 17.
We refer the reader to the Appendix of [13] where it is proved using the

ideas of [18] that

lim sup
y→0+

∣∣∣∣
∫

R

ϕ(x)h(x+ iy)dx

∣∣∣∣≤C <+∞,

when h is an analytic function on C \R which satisfies

|h(z)| ≤ (|z|+K)αPk(|ℑm(z)−1|).

Dealing with h(z) =N2rN (z), we deduce that

lim sup
y→0+

∣∣∣∣
∫

R

ϕ(x)rN (x+ iy)dx

∣∣∣∣≤
C

N2

and then (4.25).
Following the proof of Lemma 5.6 in [29], one can show that Λσ(1) = 0.

Then, the rest of the proof of (4.26) sticks to the proof of Lemma 6.3 in [18]
(using Lemma 3.1). �

Following [18] (Theorem 6.4), we set K =Kσ(θ1, . . . , θJ) + (− ε
2 ,

ε
2), F =

{t ∈R; dist(t,Kσ(θ1, . . . , θJ))≥ ε} and take ϕ ∈C
∞(R,R) such that 0≤ ϕ≤

1, ϕ(t) = 0 for t ∈ K and ϕ(t) = 1 for t ∈ F . Then according to (4.26),
trN (ϕ(MN )) =O(N−4/3) a.s. Since ϕ≥ 1F , it follows that trN (1F (MN )) =
O(N−4/3) a.s. and thus the number of eigenvalues of MN in F is almost
surely an O(N−1/3) as N goes to infinity. Since for each N this number has
to be an integer we deduce that the number of eigenvalues of MN in F is
zero almost surely as N goes to infinity. The fundamental inclusion (2.15)
follows, namely, for any ε > 0, almost surely

Spect(MN )⊂Kσ(θ1, . . . , θJ) + (−ε, ε),

when N goes to infinity.
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Such a method can be carried out in the case of Wigner real symmetric
matrices; then the approximate master equation is the following [compare
with (4.4)]:

σ2gN (z)2 − zgN (z) + 1 +
1

N

κ4
2
E

[(
1

N

N∑

k=1

Gkk(z)
2

)2]
+

σ2

N
E(trNGN (z)2)

+ E(trN [ANGN (z)]) =O

(
1

N2

)
.

Note that the additional term σ2

N E(trNGN (z)2) already appears in the non-
Deformed GOE case in [29]. One can establish in a similar way the analogue
of (4.11) and then, following the proof of Corollary 3.3 in [29], deduce that

E(trNGN (z)2) = E((z − s)−2) +O

(
1

N

)
,

where s is a centered semicircular variable with variance σ2. Hence by similar
arguments as in the complex case, one gets the master equation

σ2gN (z)2 − zgN (z) + 1+
1

N
Eσ(z) =O

(
1

N2

)
,

where

Eσ(z) =

J∑

j=1,j 6=j0

kj
θj

z − σ2gσ(z)− θj
+

κ4
2
g4σ(z) +E((z − s)−2).

It can be proved that Lσ(z) := gσ(z)
−1

E((z − s)−2)Eσ(z) is the Stieltjes
transform of a distribution Λσ with compact support Kσ(θ1, . . . , θJ), too.
The last arguments hold likewise in the real symmetric case.

Hence we have established:

Theorem 4.4. Let (MN )N be any real or complex Deformed model
satisfying (i) and (ii) in Section 2. Let J+σ (resp., J−σ) be the number of j’s
such that θj > σ (resp., θj <−σ). Then for any ε > 0, almost surely, there
is no eigenvalue of MN in

(−∞, ρθJ − ǫ)∪ (ρθJ + ǫ, ρθJ−1
− ǫ)∪ · · · ∪ (ρθJ−J−σ+1

+ ǫ,−2σ− ǫ)
(4.27)

∪ (2σ + ǫ, ρθJ+σ
− ǫ)∪ · · · ∪ (ρθ2 + ǫ, ρθ1 − ǫ)∪ (ρθ1 + ǫ,+∞),

when N is large enough.

Remark 4.1. As soon as ǫ > 0 is small enough, the union (4.27) is made
of nonempty disjoint intervals.
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4.4. The almost sure convergence result. As announced in the Introduction,
Theorem 2.1 is the analogue of the main statement of [9] established for gen-
eral spiked population models (1.1). The previous Theorem 4.4 is the main
step of the proof since now, we can adapt the arguments needed for the
conclusion of [9] viewing the Deformed Wigner model (1.2) as the additive
analogue of the spiked population model (1.1).

Let us consider one of the positive eigenvalues θj of the AN ’s. We recall
that this implies that λk1+···+kj−1+i(AN ) = θj for all 1≤ i≤ kj . We want to
show that if θj > σ (i.e., with our notation, if j ∈ {1, . . . , J+σ}), the corre-
sponding eigenvalues of MN almost surely jump above the right endpoint
2σ of the semicircle support as

∀1≤ i≤ kj λk1+···+kj−1+i(MN )−→ ρθj a.s.,

whereas the rest of the asymptotic spectrum of MN lies below 2σ with

λk1+···+kJ+σ
+1(MN )−→ 2σ a.s.

Analogous results hold for the negative eigenvalues θj [see points (c) and (d)
of Theorem 2.1]. To describe the phenomenon, one can say that, when N
is large enough, the (first extremal) eigenvalues of MN can be viewed as a
“smoothed” deformation of the (first extremal) eigenvalues of AN . According
to the analysis made in the previous section [Lemma 4.4(b)], we already know
that the limits ρθj are related to the θj ’s through the Stieltjes transform gσ .
More precisely, one has

for all j such that |θj |>σ,
1

gσ(ρθj )
= θj.

Our main purpose now is to establish the asymptotic link between the spec-
tra of the matrices MN =XN +AN and AN .

Intuitively, this link seems rather natural when σ is close to zero. In-
deed, when N goes to infinity, since the spectrum of XN is concentrated in
[−2σ,2σ] [recall (2.9)], the spectrum of MN should be close to the one of
AN as soon as σ will be close to zero (in other words, the spectrum of MN

is, viewed as a deformation of the one of AN , continuous in σ in a neighbor-
hood of zero). Thus given an interval [a, b] ⊂ cKσ(θ1, . . . , θJ), the result of
Theorem 4.4 saying that [a, b] does not contain eigenvalues of MN should be
improved: it should correspond to [a, b] some interval I close to [a, b], lying
outside the spectrum of AN and such that the number of eigenvalues of MN

in one side of [a, b] is equal to the one of AN in the corresponding side of I .
Following [4], we will say that there is exact separation of eigenvalues of the
matrices AN and MN .

In the following section, we justify that the exact separation phenomenon
occurs regardless of the size of σ. The proof of Theorem 2.1 will then follow
from some suitable choices of [a, b] (see Section 4.4.2).
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4.4.1. Exact separation of eigenvalues. According to the previous dis-
cussion, we need to refine the analysis made on gσ in order to identify and
understand the link between intervals in cKσ(θ1, . . . , θJ) and the complement
of the spectrum of the AN ’s. We also need to understand the dependence
on σ. This is the aim of the following important Lemma 4.5.

As before, we denote (recall Lemma 4.4) by zσ the inverse function of gσ
which is given by

zσ(g) =
1

g
+ σ2g.

Using Lemma 4.4, one readily sees that the set cKσ(θ1, . . . , θJ) can be char-
acterized as follows:

x ∈ cKσ(θ1, . . . , θJ) ⇐⇒ ∃g ∈ Gσ such that x= zσ(g),(4.28)

where

Gσ :=

{
g ∈R

∗,

∣∣∣∣
1

g

∣∣∣∣> σ and
1

g
/∈ Spect(AN )

}
.(4.29)

Obviously, one has g = gσ(x) if x ∈ cKσ(θ1, . . . , θJ).

Lemma 4.5. Let [a, b] be a compact set contained in cKσ(θ1, . . . , θJ).
Then:

(i) [ 1
gσ(a)

, 1
gσ(b)

]⊂ (Spect(AN ))c.

(ii) For all 0< σ̂ < σ, the interval [zσ̂(gσ(a)), zσ̂(gσ(b))] is contained in
cKσ̂(θ1, . . . , θJ) and zσ̂(gσ(b))− zσ̂(gσ(a))≥ b− a.

Proof. The function 1/gσ being increasing, (i) readily follows from
(4.28).

Noticing that Gσ ⊂ Gσ̂ for all σ̂ < σ implies (recall also that gσ decreases
on [a, b]) that [gσ(b), gσ(a)] ⊂ Gσ̂ . Relation (4.28) combined with the fact
that the function zσ̂ is decreasing on [gσ(b), gσ(a)] leads to

[zσ̂(gσ(a)), zσ̂(gσ(b))]⊂ cK σ̂(θ1, . . . , θJ)

and the first part of (ii) is stated. Now, we have

lσ(σ̂) := zσ̂(gσ(b))− zσ̂(gσ(a))

=
1

gσ(b)
− 1

gσ(a)
+ σ̂2(gσ(b)− gσ(a)).

Since gσ decreases on [a, b], we have gσ(b)− gσ(a)≤ 0 and thus lσ is decreas-
ing on R

+. Then the last point of (ii) follows since lσ(σ) = b− a. �

The exact separation result can now be stated. Let [a, b] be an interval
contained in cKσ(θ1, . . . , θJ). By Theorem 4.4, [a, b] is outside the spectrum
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of MN . Moreover, from Lemma 4.5(i), there corresponds an interval I =
[a′, b′] outside the spectrum of AN , that is, there is iN ∈ {0, . . . ,N} such
that

λiN+1(AN )<
1

gσ(a)
:= a′ and λiN (AN )>

1

gσ(b)
:= b′.(4.30)

a and a′ (resp., b and b′) are linked as follows:

a= ρa′ := a′ +
σ2

a′
(resp., b= ρb′).

We claim that [a, b] splits the eigenvalues of MN exactly as I splits the
spectrum of AN . In other words:

Theorem 4.5. With iN satisfying (4.30), one has

P[λiN+1(MN )< a and λiN (MN )> b, for all large N ] = 1.(4.31)

This result is the analogue of the main statement of [4] (cf. Theorem 1.2
of [4]) established in the spiked population setting (and in fact for quite
general sample covariance matrices). Its proof is quite technical and is in-
spired by the work [4]. It mainly relies on results on eigenvalues of the
rescaled Wigner matrix XN combined with the following classical result
(due to Weyl).

Lemma 4.6 (cf. Theorem 4.3.7 of [19]). Let B and C be two N × N
Hermitian matrices. For any pair of integers j, k such that 1≤ j, k ≤N and
j + k ≤N + 1, we have

λj+k−1(B +C)≤ λj(B) + λk(C).

For any pair of integers j, k such that 1≤ j, k ≤N and j + k ≥N + 1, we
have

λj(B) + λk(C)≤ λj+k−N(B +C).

Remark 4.2. Note that this lemma is the additive analogue of Lemma
1.1 of [4] needed for the investigations of the spiked population model.

In particular, Lemma 4.6 gives that λiN+1(MN )≤ λiN+1(AN ) + λ1(XN )
and λiN (MN )≥ λiN (AN )+λN (XN ). Besides, as both λ1(XN ) and−λN (XN )
tend toward 2σ as N →∞ [this is (2.9)], the statement of Theorem 4.5 can
be quite easily derived when σ is close enough to zero. To handle the gen-
eral case, the key idea is that one can reduce to the previous situation by
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introducing some parameters. More precisely, given L> 0 and k ≥ 0, we will
introduce the Wigner matrix

W k,L
N =WN/

√
1 + k/L

and let

Mk,L
N =AN +W k,L

N /
√
N

be the Deformed Wigner matrix of parameter

σk,L = σ/
√

1 + k/L.

The proof will be organized as follows. On the one hand, as σk,L → 0 when
k → ∞ (for any fixed L > 0), we will readily prove that exact separation

occurs for the matrices AN and MK,L
N as soon as K is large enough. On the

other hand, we will show that exact separation also occurs for the eigen-
values of MN =M0,L

N and MK,L
N choosing L large enough. This latter point

will be established by induction on k; the underlying idea is that when the

parameter L is large, the matrices Mk,L
N and Mk+1,L

N are close to each other
and hence split their spectrum in a similar way.

Proof of Theorem 4.5. With our choice of [a, b] and the very defini-
tion of the spectrum of the AN ’s, one can consider ǫ′ > 0 small enough such
that, for all large N ,

λiN+1(AN )<
1

gσ(a)
− ǫ′ and λiN (AN )>

1

gσ(b)
+ ǫ′.

Given L> 0 and k ≥ 0 (their size will be determined later), we define

ak,L = zσk,L
(gσ(a)) and bk,L = zσk,L

(gσ(b)),

where we recall that zσk,L
(g) = 1/g+σ2

k,Lg. Note that for all L> 0, one has
a0,L = a and b0,L = b.

We first choose the size of L as follows. We take L0 large enough such
that for all L≥ L0,

max((σ2/L)(|gσ(a)|+ |gσ(b)|); 3σ/L)< (b− a)/4.(4.32)

From the very definition of the ak,L’s and bk,L’s, one can easily see that
bk,L − ak,L ≥ b− a [using the last point of (ii) in Lemma 4.5] and that this
choice of L0 ensures that, for all L≥ L0 and for all k ≥ 0,

|ak+1,L − ak,L|< (b− a)/4 and |bk+1,L − bk,L|< (b− a)/4.(4.33)

Now, we fix L such that L ≥ L0 and we write ak = ak,L, bk = bk,L and
σk = σk,L.
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We first show that there exists K large enough such that, for all k ≥K,

there is exact separation of the eigenvalues of the matrices AN and Mk,L
N ,

that is,

P[λiN+1(M
k,L
N )< ak and λiN (M

k,L
N )> bk for all large N ] = 1.(4.34)

Lemma 4.6 first gives that

λiN+1(M
k,L
N )≤ ak − ǫ′ − σ2

kgσ(a) +
1√

1 + k/L
λ1(XN ) if iN <N

and

λiN (M
k,L
N )≥ bk + ǫ′ − σ2

kgσ(b) +
1√

1 + k/L
λN (XN ) if iN > 0.

Furthermore, according to (2.9), the two first extremal eigenvalues of XN

are such that almost surely and for all N large enough,

0<max(−λN (XN ), λ1(XN ))< 3σ.

Thus for all k, almost surely, at least for N large enough (N does not depend
on k),

0<
1√

1 + k/L
×max(−λN (XN ), λ1(XN ))< 3σk.

As σk → 0 when k→+∞, there is K large enough such that for all k ≥K,

max(|3σk − σ2
kgσ(a)|, |3σk + σ2

kgσ(b)|)< ǫ′

and then, almost surely, for all N large enough

λiN+1(M
k,L
N )< ak if iN <N(4.35)

and

λiN (M
k,L
N )> bk if iN > 0.(4.36)

Since λN+1(M
k,L
N ) = −λ0(M

k,L
N ) = −∞, (4.35) [resp., (4.36)] is obviously

satisfied if iN =N (resp., iN = 0). Thus, we have established that for any
iN ∈ {0, . . . ,N} satisfying (4.30), (4.34) holds for all k ≥K. In particular,

P[λiN+1(M
K,L
N )< aK and λiN (M

K,L
N )> bK for all large N ] = 1.(4.37)

Now, we shall show that with probability 1: for N large, [aK , bK ] and [a, b]

split the eigenvalues of, respectively, MK,L
N and MN having equal amount of

eigenvalues to the left sides of the intervals. To this aim, we will proceed by
induction on k and establish that, for all k ≥ 0, [ak, bk] and [a, b] split the
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eigenvalues of Mk,L
N and MN (recall that MN =M0,L

N ) in exactly the same
way. To begin, let us consider for all k ≥ 0, the set

Ek = {no eigenvalues of Mk,L
N in [ak, bk], for all large N}.

By Lemma 4.5(ii) and Theorem 4.4, we know that P(Ek) = 1 for all k. In
particular, from the fact that P(E0) = 1, one has for all ω ∈ E0 and for all
large N ,

∃jN (ω) ∈ {0, . . . ,N} such that λjN (ω)+1(MN )< a and λjN (ω)(MN )> b.
(4.38)
Extending the random variable jN by setting, for instance, jN :=−1 on cE0,
we want to show that for all k,

P[λjN+1(M
k,L
N )< ak and λjN (M

k
N )> bk, for all large N ] = 1.(4.39)

This can be done by induction calling, one more time, on Lemma 4.6. By
(4.38), this is true for k = 0. Now, let us assume that (4.39) holds true. One
has

Mk+1,L
N =Mk,L

N +

(
1√

1 + (k+1)/L
− 1√

1 + k/L

)
XN

so, by Lemma 4.6,

λjN+1(M
k+1,L
N )≤ λjN+1(M

k,L
N ) + (−λN (XN ))/L.

But, for N large enough, 0<−λN (XN )≤ 3σ a.s., so by the condition (4.32)
on L,

λjN+1(M
k+1,L
N )< ak + (b− a)/4 := âk.

Similarly, one can show that

a.s. λjN (M
k+1,L
N )> bk − (b− a)/4 := b̂k.

By (4.33), one readily observes that âk − ak+1 = ak − ak+1 + (b− a)/4 > 0

and similarly that b̂k − bk+1 < 0. This implies that

[âk, b̂k]⊂ [ak+1, bk+1].

As P(Ek+1) = 1, we deduce that with probability 1,

λjN+1(M
k+1,L
N )< ak+1 and λjN (M

k+1,L
N )> bk+1 for all N large.

As a consequence, (4.39) holds for all k ≥ 0 and in particular for k = K.
Comparing this with (4.37), we deduce that jN = iN a.s. and

P[λiN+1(MN )< a and λiN (MN )> b for all large N ] = 1.

This ends the proof of Theorem 4.5. �

Now, we are in position to prove the main Theorem 2.1.
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4.4.2. Proof of Theorem 2.1. Our reasoning is close to the last Section
4 of [9]. It is enough to establish parts (a) and (b) since the assertions (c)
and (d) can then be deduced by taking −MN instead of MN .

The proof of (a) is mainly based on successive applications of Theorem
4.5. Fix an integer 1 ≤ j ≤ J+σ , and let us consider for ǫ > 0, the interval
[a, b] = [ρθj + ǫ, ρθj−1

− ǫ] which is included in the union (4.27) (at least for ǫ
small enough). We define Kj(−1) = k1 + · · ·+ kj(−1). We also take θ0 := +∞
and recall the conventions that λ0(MN ) = λ0(AN ) = +∞ and K0 = 0. Since
1/gσ(ρθk) = θk for k = j− 1 and j and since the function 1/gσ is continuous
and increasing on [a, b], the compact interval [a, b] satisfies (4.30) with iN =
Kj−1. Hence by Theorem 4.5, one has

P[λKj−1(MN )≥ ρθj−1
− ǫ and λKj−1+1(MN )≤ ρθj + ǫ, for N large] = 1.

Similar arguments imply that for all j ∈ {1, . . . , J+σ − 1},

P[λKj(MN )≥ ρθj − ǫ and λKj+1(MN )≤ ρθj+1
+ ǫ, for N large] = 1.

As a result, we deduce that for all 1≤ j ≤ J+σ − 1,

P[ρθj − ǫ≤ λKj(MN )≤ · · · ≤ λKj−1+1(MN )≤ ρθj + ǫ
(4.40)

for N large] = 1.

So, letting ǫ go to zero, we obtain (a) for each integer j of {1, . . . , J+σ − 1}.
Let us now quickly consider the case where j = J+σ . Note first that, from

the preceding discussion, we still have (for ǫ small enough)

P[λKJ+σ−1+1(MN )≤ ρθJ+σ
+ ǫ, for N large] = 1.

Then, using the fact that 1/gσ increases continuously on ]2σ,+∞[ with 1/
gσ(]2σ,+∞[) = ]σ,+∞[, one can show that once ǫ > 0 is small enough, the
compact set [a, b] = [2σ + ǫ, ρθJ+σ

− ǫ] satisfies the assumptions of Theorem

4.5 with iN =KJ+σ . This leads to

P[λKJ+σ
(MN )≥ ρθJ+σ

− ǫ and λKJ+σ
+1(MN )≤ 2σ + ǫ, for N large] = 1.

Letting ǫ → 0, we deduce that (4.40) holds for j = J+σ and the asser-
tion (a) is established. For point (b), the preceding analysis gives that
lim supN λKJ+σ

+1(MN )≤ 2σ a.s. and it remains to prove that

lim inf
N

λKJ+σ
+1(MN )≥ 2σ a.s.

This inequality follows from the fact that the spectral measure of MN con-
verges a.s. toward the semicircle law µsc which is compactly supported in
[−2σ,2σ]. This completes the proof of Theorem 2.1.
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5. Fluctuations. The (complex or real) Wigner matricial models under
consideration are the same as previously [i.e., defined by (i) in Section 2] but
now we assume that the perturbation AN is diagonal: AN = diag(θ,0, . . . ,0)
with unique nonnull eigenvalue θ > σ. According to the previous section, the
a.s. convergence of λ1(MN ) toward ρθ is universal in the sense that it does
not depend on µ.

In the first part of this section, we will show that the fluctuations of
λ1(MN ) around this universal limit are not universal any more. Indeed,
we are going to prove that

√
N(1 − σ2/θ2)−1(λ1(MN ) − ρθ) converges in

distribution toward the convolution of µ and a Gaussian distribution. Hence,
the limiting distribution clearly varies with µ and in particular cannot be
Gaussian unless µ is Gaussian.

In the second part of this section, we will sharpen the analysis of the
particular Deformed GOE model and explain how this gives Theorem 2.4.

5.1. Basic tools. We start with the following results which will be of
basic use later on. Note that in the following, a complex random variable x
will be said to be standardized if E(x) = 0 and E(|x|2) = 1.

Theorem 5.1 (Lemma 2.7 [3]). Let B = (bij) be an N ×N Hermitian
matrix and YN be a vector of size N which contains i.i.d. standardized entries
with bounded fourth moment. Then there is a constant K > 0 such that

E|Y ∗
NBYN −TrB|2 ≤KTr(BB∗).

Theorem 5.2 (cf. [6] or Appendix by J. Baik and J. Silverstein). Let
B = (bij) be a N ×N random Hermitian matrix and YN = (y1, . . . , yN ) be an
independent vector of size N which contains i.i.d. standardized entries with
bounded fourth moment and such that E(y21) = 0 if y1 is complex. Assume
that:

(i) there exists a constant a > 0 (not depending on N) such that ‖B‖ ≤
a,

(ii) 1
N TrB2 converges in probability to a number a2,

(iii) 1
N

∑N
i=1 b

2
ii converges in probability to a number a21.

Then the random variable (1/
√
N)(Y ∗

NBYN −TrB) converges in distribution
to a Gaussian variable with mean zero and variance

(E|y1|4 − 1− t/2)a21 + (t/2)a2,

where t= 4 when y1 is real and is 2 when y1 is complex.

Proof. This result is in fact a particular case of a more general result
of [6] (Theorems 7.1 and 7.2) which follows from the method of moments.
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We give an alternative elegant proof by J. Baik and J. Silverstein in the
Appendix of the present paper. �

Theorem 5.3 (Theorem 1.1 in [5]). Let f be an analytic function on an
open set of the complex plane including [−2σ,2σ]. If the entries of a general
Wigner matrix WN = ((WN )ij)1≤i≤j≤N satisfy the conditions:

• for i 6= j, E(|(WN )ij|4) = const,
• for any η > 0, limN→+∞

1
η4N2

∑
i,j E[|(WN )ij |41{|(WN )ij |≥η

√
N}] = 0,

then the random variable N(trN (f( 1√
N
WN ))−

∫
f dµsc) converges in distri-

bution toward a Gaussian variable.

In our setting, µ satisfies a Poincaré inequality and thus, as already no-
ticed in Section 2, µ satisfies

∫
|x|q dµ(x) < +∞ for any q in N. Hence,

the general Wigner matrices we consider obviously satisfy the conditions of
Theorem 5.3. Nevertheless, in the following study of fluctuations, we do not
use the Poincaré inequality; thus one can expect that Theorem 2.2 is still
valid under assumptions on the only four first moments of µ provided one
can prove the a.s. convergence of λ1(MN ) toward ρθ under these weaker
assumptions.

5.2. Proof of Theorem 2.2. The approach is the same for the complex
and real settings and is close to the one of [25] and the ideas of [11]. Let

M̂N−1 be the N−1×N−1 matrix obtained from MN removing the first row

and the first column. Thus,
√

N/(N − 1)M̂N−1 is a non-Deformed Wigner

matrix associated with the measure µ. We denote by λ1(M̂N−1) [resp.,

λN−1(M̂N−1)] the largest (resp., lowest) eigenvalue of M̂N−1.
Let 0< δ < (ρθ − 2σ)/4. Let us define the event

ΩN = {λ1(M̂N−1)≤ 2σ + δ;λN−1(M̂N−1)≥−2σ− δ;λ1(MN )≥ ρθ − δ}.

According to (2.9) and Theorem 2.1, limN→+∞P(ΩN ) = 1. Thus, it is suffi-
cient to restrict ourselves to the event ΩN in order to study the convergence
in distribution of

√
N(1− σ2/θ2)−1(λ1(MN )− ρθ).

Let V = t(v1, . . . , vN ) be an eigenvector corresponding to λ1(MN ). Define
the following vectors in C

N−1:

V̂ = t(v2, . . . , vN )

and

M̌
·1 =

t((MN )21, . . . , (MN )N1) =
1√
N

t((WN )21, . . . , (WN )N1).
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Then,

MNV = λ1(MN )V ⇐⇒





θv1 +
(WN )11√

N
v1 + M̌∗

·1V̂ = λ1(MN )v1,

M̌
·1v1 + M̂N−1V̂ = λ1(MN )V̂ .

On ΩN , λ1(MN ) is not an eigenvalue of M̂N−1 and one can write the eigen-

equations using the resolvent Ĝ(λ1(MN )) := (λ1(MN )IN−1 − M̂N−1)
−1 as

follows:

V̂ = v1Ĝ(λ1(MN ))M̌
·1,(5.1)

λ1(MN )v1 = θv1 +
(WN )11√

N
v1 + v1M̌

∗
·1Ĝ(λ1(MN ))M̌

·1.(5.2)

Since v1 is obviously nonequal to zero, one gets from (5.2)

λ1(MN ) = θ+
(WN )11√

N
+ M̌∗

·1Ĝ(λ1(MN ))M̌
·1.(5.3)

Moreover, on ΩN , ρθ is not an eigenvalue of M̂N−1 (recall that ρθ > 2σ) and

the resolvent Ĝ(ρθ) := (ρθIN−1 − M̂N−1)
−1 is well defined, too. Thus, (5.3)

is equivalent to

λ1(MN )−ρθ =
(WN )11√

N
+M̌∗

·1Ĝ(ρθ)M̌·1−
σ2

θ
+M̌∗

·1[Ĝ(λ1(MN ))−Ĝ(ρθ)]M̌·1.

Using Ĝ(λ1(MN ))−Ĝ(ρθ) =−(λ1(MN )−ρθ)Ĝ(ρθ)Ĝ(λ1(MN )) and gσ(ρθ) =
1/θ, one gets (on ΩN )

λ1(MN )− ρθ

=
(WN )11√

N
+ M̌∗

·1Ĝ(ρθ)M̌·1 − σ2gσ(ρθ)

− M̌∗
·1[(λ1(MN )− ρθ)Ĝ(ρθ)(Ĝ(ρθ)− (λ1(MN )− ρθ)Ĝ(ρθ)

× Ĝ(λ1(MN )))]M̌
·1.

Finally, defining fθ(z) :=
1

ρθ−z1|z|≤2σ+δ , we can easily deduce from the pre-

vious equality the following identity on ΩN :

{1 + cN + δ1(N) + δ2(N)}
√
N(λ1(MN )− ρθ)

(5.4)

= (WN )11 +

√
N

N − 1
dN +

√
N

N − 1
δ3(N),
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where

cN = σ2trN−1[f
2
θ (M̂N−1)],

dN =
√
N − 1{M̌∗

·1Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
M̌

·1 − σ2trN−1Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
},

δ1(N) =−(λ1(MN )− ρθ)M̌
∗
·1[Ĝ(ρθ)]

2Ĝ(λ1(MN ))M̌
·11ΩN

,

δ2(N) = M̌∗
·1[Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

]2M̌
·1 − σ2trN−1[Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

]2,

δ3(N) = σ2
√
N − 1

{
trN−1(fθ(M̂N−1))−

∫
fθ dµsc

}
.

First

|δ1(N)| ≤ |λ1(MN )− ρθ|‖M̌·1‖2‖Ĝ(ρθ)‖2‖Ĝ(λ1(MN ))‖1ΩN

≤ 1

(ρθ − 2σ− 2δ)(ρθ − 2σ− δ)2
1

N

N∑

j=2

|(WN )j1|2 × |λ1(MN )− ρθ|,

[using Lemma 3.2(v)]. By the law of large numbers 1
N

∑N
j=2 |(WN )j1|2 con-

verges a.s. toward σ2 and according to Theorem 2.1, |λ1(MN )−ρθ| converges
a.s. to zero. Hence δ1(N) converges obviously in probability toward zero.

Now, since fθ is analytic on an open set including [−2σ,2σ], we deduce
from Theorem 5.3 the convergence in probability of δ3(N) toward zero and

of cN toward σ2
∫
f2
θ dµsc =

σ2

θ2−σ2 .

According to Theorem 5.1 and using Lemma 3.2(v),

E(|δ2(N)|2)≤ K

N − 1
E(trN [Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ

]4)

≤ K

N − 1
E(‖Ĝ(ρθ)‖41‖M̂N−1‖≤2σ+δ

)

≤ K

N − 1

1

(ρθ − 2σ − δ)4
.

The convergence in probability of δ2(N) toward zero readily follows by
Chebyshev inequality.

Let us check that Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
satisfies the conditions of Theorem

5.2.

(i) ‖Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
‖ ≤ 1

ρθ−2σ−δ by Lemma 3.2(v).

(ii) As already noticed, trN−1f
2
θ (M̂N−1) converges in probability toward∫

f2
θ dµsc. Since on the event {‖M̂N−1‖ ≤ 2σ+ δ}, with limiting probability

1, trN−1[Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
]2 coincides with trN−1f

2
θ (M̂N−1), it also con-

verges in probability toward
∫
f2
θ dµsc.



LARGEST EIGENVALUES OF DEFORMED WIGNER MATRICES 39

(iii) It is proved in Proposition 3.1 in [13] that for any z ∈ C such that

ℑm(z)> 0, 1
N−1

∑N−1
i=1 ([Ĝ(z)]ii)

2 converges in probability toward g2σ(z). The

same result holds for 1
N−1

∑N−1
i=1 ([Ĝ(z)]ii)

21‖M̂N−1‖≤2σ+δ
. For any ǫ > 0 and

any α> 0,

P

(∣∣∣∣∣
1

N − 1

N−1∑

i=1

([Ĝ(ρθ)]ii)
21‖M̂N−1‖≤2σ+δ

− g2σ(ρθ)

∣∣∣∣∣> ǫ

)

≤ P

(∣∣∣∣∣
1

N − 1

N−1∑

i=1

{([Ĝ(ρθ)]ii)
2 − ([Ĝ(ρθ + iα)]ii)

2}1‖M̂N−1‖≤2σ+δ

∣∣∣∣∣>
ǫ

3

)

+ P

(∣∣∣∣∣
1

N − 1

N−1∑

i=1

([Ĝ(ρθ + iα)]ii)
21‖M̂N−1‖≤2σ+δ

− g2σ(ρθ + iα)

∣∣∣∣∣>
ǫ

3

)

+ P

(
|g2σ(ρθ)− g2σ(ρθ + iα)|> ǫ

3

)
.

Since

{([Ĝ(ρθ)]ii)
2 − ([Ĝ(ρθ + iα)]ii)

2}1‖M̂N−1‖≤2σ+δ

= [Ĝ(ρθ)− Ĝ(ρθ + iα)]ii[Ĝ(ρθ) + Ĝ(ρθ + iα)]ii1‖M̂N−1‖≤2σ+δ

= iα[Ĝ(ρθ)Ĝ(ρθ + iα)]ii[Ĝ(ρθ) + Ĝ(ρθ + iα)]ii1‖M̂N−1‖≤2σ+δ
,

we get by using Lemma 3.2(v)

|([Ĝ(ρθ)]ii)
2 − ([Ĝ(ρθ + iα)]ii)

2|1‖M̂N−1‖≤2σ+δ
≤ 2α

(ρθ − 2σ − δ)3
.

Similarly, we get that

|g2σ(ρθ)− g2σ(ρθ + iα)| ≤ 2α

(ρθ − 2σ)3
.

Thus, choosing α such that 2α
(ρθ−2σ−δ)3

< ǫ
3 , we readily deduce the conver-

gence in probability of

1

N − 1

N−1∑

i=1

([Ĝ(ρθ)]ii)
21‖M̂N−1‖≤2σ+δ

toward g2σ(ρθ).

Since Ĝ(ρθ)1‖M̂N−1‖≤2σ+δ
and M̌

·1 are independent, we can deduce from

Theorem 5.2 that dN converges in distribution toward a Gaussian law with
mean zero and variance

vθ := σ4

{(
E

(∣∣∣∣
(WN )12

σ

∣∣∣∣
4)

− 1− t/2

)
1

θ2
+

t

2

1

θ2 − σ2

}
,
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where t= 4 in the real setting and t= 2 in the complex one. Note that one
readily verifies that vθ satisfies (2.12) in Section 2.

Let 0< ǫ < 1. Since δ1(N) + δ2(N) converges in probability toward zero,
the probability of the event

Ω̃N =ΩN ∩ {|δ1(N) + δ2(N)| ≤ ǫ}(5.5)

tends to 1. Now, since cN ≥ 0 we have the following identity on Ω̃N :

√
N(λ1(MN )− ρθ) =

1

uN

{
(WN )11 +

√
N

N − 1
dN +

√
N

N − 1
δ3(N)

}
(5.6)

with uN := 1 + cN + δ1(N) + δ2(N) converging in distribution toward (1−
σ2/θ2)−1. Moreover, since (WN )11 and dN are independent, (WN )11 +√

N/(N − 1)dN +
√

N/(N − 1)δ3(N) converges in distribution toward the
convolution of µ and a Gaussian distribution N (0, vθ).

Finally, we can conclude that
√
N(1− σ2/θ2)−1(λ1(MN )− ρθ) converges

in distribution toward µ ∗N (0, vθ).

5.3. Proof of Theorem 2.4. As before, θ is assumed to be > σ. In The-
orem 2.4, we consider the real Deformed models and claim that the full
deformation AN defined by (AN )ij = θ/N exhibits universality of the Gaus-
sian fluctuations of the largest eigenvalue around ρθ. As already stated, the
analogue of this result holds in the complex setting. This is one of the con-
clusions of the work [16] which also partly solves the real case (we recall
to the reader that all the results of [16] readily extend to the framework of
Theorem 2.4 calling on [27]). In order to explain this more precisely, let us
summarize the main arguments developed by [16] in the complex setting.
First, it is shown that the universality of the fluctuations follows from the
universality of limits of expectations of traces of suitable high powers of any
Deformed Wigner matrices (the powers are of the order of

√
N ). Second

(this is the main part of the work [16]), to handle such expectations, the
authors perform a combinatorial method inspired by [31] and then deduce
that in the large limit N →∞, the previous expectations behave as in the
Gaussian case. The last step of the analysis calls on the investigations of
[26] on the Deformed GUE which allow to identify the value of these limits.

Actually, the combinatorial arguments also work in the real setting (see
in particular Section 2 in [16]) and reduce the universality problem to the
knowledge of the Deformed GOE. Thus, to get the result of Theorem 2.4, it
suffices to prove (using the orthogonal invariance of the GOE) the following
limit.

Proposition 5.1. Call Lθ the Laplace transform of the law N (0,2σ2
θ ).

Let MG
N be the Deformed GOE with AN = diag(θ,0, . . . ,0) and θ > σ.
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For any t in [0, ρθ[,

lim
N

E[Tr(MG
N /ρθ)

2[t
√
N ]] = Lθ(2t/ρθ).(5.7)

The starting point of our computations is the following result which states
that the previous expectation only involves (as N →∞) the rescaled largest
eigenvalue of the Deformed GOE

ξG1 =
√
N(λ1(M

G
N )− ρθ).

Lemma 5.1. For any t > 0,

E[Tr(MG
N/ρθ)

2[t
√
N ]] = E[exp(2tξG1 /ρθ)1|ξG1 |≤N1/6 ](1 + o(1)).(5.8)

This formula does not appear explicitly in [16] but all the arguments
needed for its justification can be found in it (actually one can show that
the formula holds for any Deformed Wigner model MN satisfying the as-
sumptions of Theorem 2.4). We will not give the proof and refer the reader
to Section 2 in [16].

Hence, to derive Proposition 5.1, it remains to show the next lemma on
ξG1 .

Lemma 5.2. For any t in [0,2[,

lim
N

E[exp(tξG1 )1|ξG1 |≤N1/6 ] = Lθ(t).(5.9)

Proof. Observe first that it is enough to show that

lim
N

E[exp(tξG1 )1|ξG1 |≤N1/61Ω̃N
] =Lθ(t),(5.10)

where the event Ω̃N was defined above by (5.5) choosing δ > 0 smaller than
min{ρθ−2σ

4 ; 13
∫

1
ρθ−x dµsc(x)}. Indeed, by the Cauchy–Schwarz inequality,

(E[exp(tξG1 )1|ξG1 |≤N1/61cΩ̃N
])2 ≤ E[exp(2tξG1 )1|ξG1 |≤N1/6 ]× P(cΩ̃N).

The previous right-hand side is negligible as N →∞ since the probability
vanishes and the expectation is bounded since [16] proved that the left-hand
side of (5.8) is bounded, too.

The occurrence of the event Ω̃N allows to make use of the relevant repre-
sentation (5.6) of ξG1 obtained in the previous Section 5.2:

ξG1 =
1

uGN

{
(WG

N )11 +

√
N

N − 1
dGN +

√
N

N − 1
δG3 (N)

}
.(5.11)
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Second, by Fubini’s theorem one can check that

E[exp(tξG1 )1|ξG1 |≤N1/61Ω̃N
]

(5.12)

=

∫

R

exP[{tξG1 ≥ x} ∩ Ω̃N ∩ {|ξG1 | ≤N1/6}]dx.

By Theorem 2.2,

P[{tξG1 ≥ x} ∩ Ω̃N ∩ {|ξG1 | ≤N1/6}] −→
N→+∞

P[tN ≥ x],(5.13)

where N is a centered Gaussian variable with variance 2σ2
θ . We want to

deduce (5.10) from (5.12) and (5.13) by the dominated convergence theorem.
Thus, we are going to prove that there exists a function h such that for N
large enough and for any x,

P[{tξG1 ≥ x} ∩ Ω̃N ∩ {|ξG1 | ≤N1/6}]≤ h(x)

with
∫
R
exh(x)dx < +∞. Note that for x ≤ 0, the result is obvious setting

h(x) = 1. Let x be nonnegative. We shall improve the general analysis made
in the previous Section 5.2 thanks to the particular Gaussian setting con-
sidered here. For all N large enough,

P[{tξG1 ≥ x} ∩ Ω̃N ∩ {|ξG1 | ≤N1/6}]

≤ P

[
(WG

N )11 ≥
x(1− ε)

3t

]
+ P

[√
N

N − 1
dGN ≥ x(1− ε)

3t

]

+ P

[√
N

N − 1
δG3 (N)≥ x(1− ε)

3t

]

= J
(1)
N (x) + J

(2)
N (x) + J

(3)
N (x).

J
(1)
N (x) = J (1)(x) does not depend on N and we have

∫
R
exJ (1)(x)dx =

E[exp( 3t
1−ε(W

G
N )11)] < +∞. Besides, one can easily see that the choice of

δ insures that J
(3)
N (x) = 0. By the Chebyshev inequality, we have

J
(2)
N (x)≤ exp(−6x(1− ε)/3t)E(E),

where E = E ′E ′′ with

E ′ = E[exp(6
√
N

t
M̌G

·1 Ĝ(ρθ)1‖M̂G
N−1‖≤2σ+δ

M̌G
·1 )|M̂G

N−1],

E ′′ = exp[−6σ2
√
NtrN−1(Ĝ(ρθ)1‖M̂G

N−1‖≤2σ+δ
)].

Using the Gaussian assumptions (see [28], pages 90–91), one has

E ′ = det

(
IN−1 − 12

σ2

√
N

Ĝ(ρθ)1‖M̂G
N−1‖≤2σ+δ

)−1/2
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=

N−1∏

i=1

(1− 12σ2βi/
√
N)−1/2

for large enoughN , where the βi’s are the eigenvalues of Ĝ(ρθ)1‖M̂G
N−1‖≤2σ+δ

.

Note that 0≤ βi <
1
3δ so that the last identities make sense, for instance, for

N > 16σ4

δ2
. Hence,

lnE ′E ′′ ≤ 1

2

N−1∑

i=1

{− ln(1− 12σ2βi/
√
N)− 12σ2βi/

√
N}.

Let α> 1
2 ; using that for any y in [0,1− 1

2α ], we have − ln(1− y)− y ≤ αy2.

So, as βi <
1
3δ , we get that for N > 16σ4δ−2(1− 1

2α )
−2,

lnE ′E ′′ ≤ α122σ4

18δ2
.

Thus, there is some constant Cα,σ,δ such that E ′E ′′ ≤Cα,σ,δ and

J
(2)
N (x)≤Cα,σ,δ exp(−2x(1− ε)/t).

Now, for 0 < t < 2(1 − ε),
∫ +∞
0 exp(x − 2x(1− ε)/t)dx < ∞. The proof is

complete. �

APPENDIX: BY J. BAIK AND J. SILVERSTEIN

This Appendix presents the proof by J. Baik and J. Silverstein of the
CLT (given by Theorem 5.2) needed in the previous section for the proof of
Theorem 2.2. Their proof is based on a writing of the expression

(1/
√
N)(Y ∗

NBYN −TrB)(A.1)

as a sum of martingale differences, and uses the following CLT.

Theorem A.1 (Theorem 35.12 of [10]). For each N , let ZN1, . . . ,ZNrN
be a real martingale difference sequence with respect to the increasing σ-field
{FN,j} having second moments. If, as N →∞,

rN∑

j=1

E(Z2
Nj |FN,j−1)

P−→ v2,(A.2)

where v2 is a positive constant, and for each ǫ > 0,

rN∑

j=1

E(Z2
Nj1|ZNj |≥ǫ)→ 0,(A.3)
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then
rN∑

j=1

ZNj
L−→N (0, v2).

Proof of Theorem 5.2. First, one can write (A.1) as a sum of mar-
tingale differences:

(1/
√
N)(Y ∗

NBYN −TrB)

= (1/
√
N)

N∑

i=1

(
(|yi|2 − 1)bii + ȳi

∑

j<i

yjbij + ȳi
∑

j>i

yjbij

)

= (1/
√
N)

N∑

i=1

(
(|yi|2 − 1)bii + ȳi

∑

j<i

yjbij + yi
∑

j<i

ȳjbji

)
=

N∑

i=1

Zi,

where

Zi =ZNi = (1/
√
N)

(
(|yi|2 − 1)bii + ȳi

∑

j<i

yjbij + yi
∑

j<i

ȳj b̄ij

)
.

Let FN,i (resp., FN,0) be the σ-field generated by y1, . . . , yi and B (resp.,
by B). Let also Ei(·) denote conditional expectation with respect to FN,i. It
is clear that Zi is measurable with respect to FN,i and satisfies Ei−1(Zi) = 0.

We will show the conditions of Theorem A.1 are met.
To verify the Lindeberg condition (A.3), we need to show this property is

closed under addition. This will follow from the following fact. For random
variables X1, X2, and positive ǫ,

E(|X1+X2|21|X1+X2|≥ǫ)≤ 4(E(|X1|21|X1|≥ǫ/2)+E(|X2|21|X2|≥ǫ/2)).(A.4)

Indeed, we have

E(|X1|21|X1+X2|≥ǫ)≤ E(|X1|21(|X1|≥ǫ/2)) + E(|X1|21(|X1|<ǫ/2,|X2|≥ǫ/2))

≤ E(|X1|21(|X1|≥ǫ/2)) + (ǫ2/4)P(|X2| ≥ ǫ/2)

≤ E(|X1|21(|X1|≥ǫ/2)) + E(|X2|21(|X2|≥ǫ/2)).

The same bound starting with X2 leads to (A.4).
Write Zi =Xi

1 +Xi
2, with Xi

1 = (1/
√
N)(|yi|2 − 1)bii. Then for ǫ > 0,

N∑

i=1

E(|Xi
1|21(|Xi

1|≥ǫ))≤ a2E((|y1|2 − 1)21(||x1|2−1|≥
√
Nǫ/a))→ 0(A.5)

as N →∞, by the dominated convergence theorem.
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We have

E

∣∣∣∣∣
∑

j<i

yjbij

∣∣∣∣∣

4

= E

(
|y1|4

∑

j<i

|bij |4
)
+2E

(∑

∗
|bij1 |2|bij2 |2

)

+ E

(
|y21 |2

∑

∗
b2ij1 b̄

2
ij2

)

≤ E|y1|4E
[
max

j
(B2)jj(B

2)ii

]
+ (2 +E|y21|2)E[(B2)2ii]

≤ a4[E|y1|4 +2+ E|y21|2],
where the sum

∑
∗

is over {j1 < i, j2 < i, j1 6= j2}. Therefore E|Xi
2|4 = o(N−1)

so that for any ǫ > 0,

N∑

i=1

E(|Xi
2|21(|Xi

2|≥ǫ))≤ (1/ǫ2)

N∑

i=1

E|Xi
2|4 → 0 as N →∞.(A.6)

Thus, by (A.5), (A.6) and (A.4), {Zi} satisfies (A.3).
Now, we shall verify condition (A.2). We have

N∑

i=1

Ei−1Z
2
i

= (1/N)

N∑

i=1

{
(E|y1|4 − 1)b2ii +Eȳ21

(∑

j<i

yjbij

)2

(A.7)

+Ey21

(∑

j<i

ȳj b̄ij

)2

+ 2E(|y1|2ȳ1)bii
∑

j<i

yjbij

+2E(|y1|2y1)bii
∑

j<i

ȳj b̄ij +2

(∑

j<i

yjbij

)∑

j<i

ȳj b̄ij

}
.

Let BL denote the strictly lower triangular part of B. We have

E

[
(1/N)

N∑

i=1

bii
∑

j<i

yjbij

]
= 0

and using Cauchy–Schwarz,

E

∣∣∣∣∣(1/N)
N∑

i=1

bii
∑

j<i

yjbij

∣∣∣∣∣

2

= E

∣∣∣∣∣(1/N)
N−1∑

j=1

yj
∑

i>j

biibij

∣∣∣∣∣

2
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= (1/N2)E

(
N−1∑

j=1

∑

i>j

biibij
∑

i>j

biibij

)

= (1/N2)E

(∑

ii

biibii(BLB
∗
L)ii

)

≤ E

[(
max

i
bii

)2

(1/N)

(∑

ii

|(BLB
∗
L)ii|2

)1/2]

= E

[(
max

i
bii

)2

(1/N)Tr((BLB
∗
L)

2)1/2

]

≤ E

[(
max

i
bii

)2

(1/
√
N)‖BL‖2

]
.

We apply the following bound (due to Mathias; see [24]): ‖BL‖ ≤ γN‖B‖
where γN =O(lnN), and the bound ‖B‖ ≤ a to conclude that

(1/N)
N∑

i=1

bii
∑

j<i

yjbij
P−→ 0.

Then (recall that Ey21 = 0 when y1 is complex), (A.7) can be written as

N∑

i=1

Ei−1Z
2
i = (1/N)

N∑

i=1

[
(E|y1|4 − 1)b2ii

+ t

(∑

j<i

yjbij

)(∑

j<i

ȳj b̄ij

)]
+ oP (1)(A.8)

= (1/N)

N∑

i=1

(E|y1|4 − 1)b2ii + t(1/N)Y ∗
NB∗

LBLYN + oP (1),

where t= 4 when y1 is real, and is 2 when y1 is complex.
Besides, from Lemma 2.7 in [3] (recalled in Theorem 5.1) we have

E|(1/N)(Y ∗
NB∗

LBLYN −Tr(B∗
LBL))|2 ≤ (1/N2)E(Tr(B∗

LBL)
2)

≤KE‖B‖4 ln
4N

N
→ 0

as N →∞. So, as

TrB∗
LBL =

∑

j<i

|bij |2 = (1/2)

(
TrB2 −

∑

i

b2ii

)
,
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(A.8) implies that condition (A.2) holds with

v2 = (E|y1|4 − 1− t/2)a21 + (t/2)a2.

Thus, by Theorem A.1, we deduce that (1/
√
N)(Y ∗

NBYN −TrB) converges
in distribution to a Gaussian variable with mean zero and variance v2. �
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de matrices aléatoires. Ph.D. thesis, Univ. Toulouse.
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