
HAL Id: hal-00939957
https://hal.science/hal-00939957v1

Submitted on 31 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Domain Decomposition Preconditioners for
Heterogeneous Elliptic Problems

Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, Christophe Prud’Homme

To cite this version:
Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, Christophe Prud’Homme. Scalable Domain Decom-
position Preconditioners for Heterogeneous Elliptic Problems. SC13 - International Conference for
High Performance Computing, Networking, Storage and Analysis, Nov 2013, Denver, United States.
pp.80:1–80:11, �10.1145/2503210.2503212�. �hal-00939957�

https://hal.science/hal-00939957v1
https://hal.archives-ouvertes.fr

Scalable Domain Decomposition Preconditioners

Pierre Jolivet‡∗†
‡Laboratoire J. Kuntzmannn

Université J. Fourier
Grenoble Cedex 9, France
jolivet@ann.jussieu.fr

Frédéric Hecht∗†
∗Laboratoire J.-L. Lions
Université P. et M. Curie

Paris, France
hecht@ann.jussieu.fr

Frédéric Nataf∗†
†INRIA

ALPINES research team
Rocquencourt, France

nataf@ann.jussieu.fr
Christophe Prud’homme§

§IRMA
Université de Strasbourg

Strasbourg Cedex, France
prudhomme@unistra.fr

ABSTRACT
Domain decomposition methods are, alongside multigrid meth-
ods, one of the dominant paradigms in contemporary large-
scale partial differential equation simulation. In this paper,
a lightweight implementation of a theoretically and numer-
ically scalable preconditioner is presented in the context of
overlapping methods. The performance of this work is as-
sessed by numerical simulations executed on thousands of
cores, for solving various highly heterogeneous elliptic prob-
lems in both 2D and 3D with billions of degrees of freedom.
Such problems arise in computational science and engineer-
ing, in solid and fluid mechanics.
While focusing on overlapping domain decomposition meth-
ods might seem too restrictive, it will be shown how this
work can be applied to a variety of other methods, such as
non-overlapping methods and abstract deflation based pre-
conditioners. It is also presented how multilevel precondi-
tioners can be used to avoid communication during an iter-
ative process such as a Krylov method.

Categories and Subject Descriptors
G.1.8 [Numerical analysis]: Partial Differential Equations—
domain decomposition methods, finite element methods; D.2.13
[Software engineering]: Reusable Software—Reusable li-
braries

General Terms
Algorithms, Performance

Keywords
Linear solvers, divide and conquer, scalability

1. INTRODUCTION
Discretizations of partial differential equations used to model
physical phenomena typically lead to larger and larger sys-
tems that cannot be solved directly and require advanced
preconditioning techniques to ensure a fast convergence of
iterative methods. As the current trend in high performance
computing evolve towards more and more concurrency, re-
cent results using domain decomposition preconditioners [20]
and multigrid methods [3, 30] clearly show why these are the
methods of choice for achieving high-throughput finite ele-
ment simulations. Both are examples of the divide and con-
quer paradigm. On the one hand, for scalar equations such
as the simulation of flows through porous media, multigrid
methods are often the preferred methods. One the other
hand, domain decomposition methods are widely used in
solid mechanics, in multiphysics or for code coupling. While
these methods can offer high efficiency for solving PDE in
parallel, special care must be taken when solving highly het-
erogeneous and complex systems for ensuring convergence
rates independent of the number of computing nodes and
heterogeneities involved in the simulation, as shown in fig-
ure 1.
There are two main families of domain decomposition al-
gorithms: overlapping Schwarz methods and iterative sub-
structuring methods. While this work is more focused to-
wards the former, the key idea is the same for both methods:
to obtain convergence rates which are independent of the
number of subdomains, also referred to as substructures, an
additional component to provide global transfer of numerical
information across all subproblems is needed. In this work,
the construction of a so-called coarse operator is presented.
In section 2, some important notions about domain decom-
position methods are recalled, in section 3, the construction
of the coarse operator is presented. Numerical results are
gathered in section 3.4, where problems of up to 22 billions
unknowns in 2D, and 2 billions unknowns in 3D are solved
on more than 16K threads. Finally, it is shown in section
3.5 how one can use coarse grid correction to avoid commu-
nication during the iterations of a Krylov method.

2. DOMAIN DECOMPOSITION PRECON-
DITIONERS

Let Ω ⊂ Rd (d = 2 or 3) be a domain whose associated
mesh can be partitioned into N non-overlapping meshes

0 20 40 60 80 100 120

10−8

10−6

10−4

10−2

#iterations

R
el
a
ti
ve

re
si
d
u
a
l
er
ro
r

“Basic” preconditioning
“Advanced” preconditioning

Figure 1: Convergence of the GMRES precondi-
tioned by two domain decomposition methods on
16 subdomains. The “basic” method is oblivious to
the heterogeneities in the domain, while the “ad-
vanced” method take them into account in the pre-
conditioner.

{Ti}16i6N using graph partitioners such as METIS [18] or

SCOTCH [8]. Let V be the finite element space spanned by
the finite set of n basis functions {φi}16i6n defined on Ω.
Typical finite element discretizations of a symmetric, coer-
cive bilinear form a : V × V → R yield the following system
to solve:

Ax = b, (1)

where (Aij)16i,j6n = a(φj , φi), and (bi)16i6n = (f, φi),

f being in the dual space V ∗. Now let {Vi}16i6N be the lo-
cal finite element spaces defined on the domains associated
to each {Ωi}16i6N where Ωi is the subdomain defined as the
union of all mesh elements in Ti, for all 1 6 i 6 N . If δ is a
positive integer, the overlapping decomposition

{
T δi
}

16i6N

is defined recursively as follow: T δi is obtained by including
all elements of T δ−1

i plus all adjacent elements of T δ−1
i . For

δ = 0, T δi = Ti. An example of such a construction is given
figure 2, for δ = 2.

Figure 2: Decomposition of the SC conference logo
(no copyrights infringement intended) into three
color-coded subdomains. On the left, the decom-
position is non-overlapping, δ = 0. On the right, two
consecutive extensions are performed, δ = 2, and
represented in black overlay, to yield

{
Ω2
i

}
16i63

.

Now consider the restrictions {Ri}16i6N from V to
{
V δi
}

16i6N
,

the local finite element spaces on
{

Ωδi
}

16i6N
, and a local

partition of unity {Di}16i6N such that

N∑
j=1

RTj DjRj = In×n . (2)

Algebraically speaking, if {ni}16i6N denotes the number of
degrees of freedom in each local finite element spaces, then
Ri is a boolean matrix of size ni × n, and Di is a diagonal
matrix of size ni × ni for all 1 6 i 6 N . In our exper-
iments, we use a pretty simple partition of unity, already
used for example in [19]. Let χ̃i be a continuous piecewise
linear function (hence mesh elements vertices and degrees of
freedom coincide) defined on Ωδi as such:

χ̃i =

{
1 on all nodes of T 0

i

1− m

δ
on all nodes of T mi \ T m−1

i ∀m ∈ [1; δ]

The local partition of unity is defined as:

χi =
χ̃i

N∑
j=1

χ̃j |V δi ∩V δj

,

so that the support of the non negative function χi is V δi
and

N∑
i=1

χi = 1.

Using a linear interpolant from the finite element space of
continuous piecewise linear function from Ωδi to V δi (which
is typically of higher order), Di can be obtained from χi
for all 1 6 i 6 N . For more complex partitions of unity,
see for example [6]. Using the partition of unity, a common
one-level preconditioner for system (1) introduced in [7] is:

P−1
RAS =

N∑
i=1

RTi Di(RiAR
T
i)−1Ri . (3)

Equation (3) clearly shows the need of the globally assem-
bled matrix, or to be more precise, the need of N assembled
submatrices (commonly referred to as “Dirichlet” matrices).
These are typically hard to assemble directly and indepen-
dently with classical finite element packages, in comparison
with unassembled matrices (or “Neumann” matrices). Two
approaches can be considered to build each “Dirichlet” ma-
trix.

1. BuildA, then extract each assembled subproblem. While
this is the natural approach, it usually require some
communications to build a parallel structure capable
of handling distributed degrees of freedom, with ghost
elements.

2. Build the stiffness matrices Aδ+1
i yielded by the dis-

cretization of a on V δ+1
i , then, remove the columns

and rows associated to degrees of freedom lying on el-
ements of T δ+1

i \ T δi . This yields Ai := RiAR
T
i , the

global assembled matrix A is never assembled.

The second approach does not require any additional parallel
information or communication: there is no need for a global
ordering, associated to a global partition of the degrees of

freedom. Local matrices Ai are symmetric positive definite,
as A is.
Usually, one subdomain is mapped to a single MPI process.
For that reason, a given MPI process has a natural access to
ui := Riu for any function u ∈ V . In all the following, we
will assume that a finite element function in V δi (resp. V) can
be interpreted as vector of Rni (resp. Rn) for all 1 6 i 6 N .
In order to compute a global sparse matrix-vector product
Ax, one has to notice that, thanks to the partition of unity
and the duplication of unknowns on the overlap, it can be
proven that:

RiAR
T
j Djxj = RiR

T
j RjARjDjxj , (4)

so that

(Ax)i = RiAx = RiA

N∑
j=1

RTj DjRjx

= Ri

N∑
j=1

RTj RjARjDjRjx

=

N∑
j=1

RiR
T
j AjDjxj .

(5)

Applying RiR
T
j to a vector xj of V δj for all 1 6 i 6= j 6 N

is equivalent to restricting xj to the degrees of freedom in
V δj that are duplicated within V δi , sending the resulting vec-
tor to subdomain i, which then prolongates by 0 the re-
ceived vector outside of the overlap V δj ∩ V δi . In the fol-
lowing, Oi will be the set of neighboring subdomains to i,
i.e.
{
j : j 6= i and V δj ∩ V δi 6= ∅

}
, and Oi = Oi∪{i}. There

is no need to assemble each Ri, one only needs to know the
action of {RiRTj }16i6N,j∈Oi .

2.1 Problem specification
It is well known that one-level domain decomposition meth-
ods as depicted in the introduction of this section, see (3),
do suffer from poor conditioning when used with many sub-
domains, [25, 28, 32]. Indeed, if the subdomains are as-
sumed to be of size O(H), then the condition number of
the preconditioner grows as 1/H for overlapping methods.
For a given global mesh, increasing the number of subdo-
mains leads to decreasing H, hence increasing the number
of iterations needed for the preconditioned iterative method
to converge. To overcome this recurrent problem in over-
lapping and non-overlapping methods, one must introduce
a so-called coarse operator. In this work, an already es-
tablished coarse operator whose theoretical foundations are
presented in [29] is used. From a practical point of view, af-
ter building each local solver Ai, three dependent operators
are needed :

1. a deflation matrix Z of size n×m, with m� n,

2. a coarse operator E = ZTAZ of size m×m,

3. the actual preconditioner

P−1
A-DEF1 = P−1

RAS(I −AZE−1ZT) + ZE−1ZT , (6)

thoroughly studied in [31].

The choice of using P−1
A-DEF1 instead of, for example,

P−1
A-DEF2 = (I −AZE−1ZT)P−1

RAS + ZE−1ZT , (7)

which is also studied in [31] is pretty simple. While both
preconditioners have similar numerical properties, applying
P−1

A-DEF1 to a vector u requires only one coarse problem so-
lution (used in two different operations afterwards):

ZE−1ZTu .

On the other hand, applying P−1
A-DEF2 requires two coarse

problem solutions:

ZE−1ZTu and ZE−1ZTP−1
RASu .

Because applying a coarse correction is the most communication-
intensive operation when preconditioning an iterative method,
as shown in section 3.2, it is best to compute only 1 correc-
tion per iteration for scalability purposes.

In overlapping and non-overlapping decomposition methods,
the deflation matrix is usually defined as:

Z =
[
RT1 W1 RT2 W2 · · · RTNWN

]
∈ Rn × R

∑N
i=1 νi

The question is then, how to choose all those Wi, for all
1 6 i 6 N , to build a numerically scalable preconditioner ?
In [29], they are built as:{
Wi =

[
DiΛi1 DiΛi2 · · · DiΛiνi

]
∈ Rni × Rνi

}
16i6N

(8)
A threshold criterion is used to select the νi eigenvectors
{Λij}16j6νi associated to the smallest eigenvalues in mag-
nitude of the following local generalized eigenvalue problems:

AδiΛi = λiDiR
T
i,0Ri,0A

δ
iDiΛi (9)

where Aδi is the matrix yielded by the discretization of a
on V δi (unassembled submatrix), and Ri,0 is the restric-
tion operator from V δi to the overlap V δi ∩

(
∪j∈OiV δj

)
. If

Ωδi ∩ ∂Ω = ∅, Ωδi is commonly referred to as a floating sub-
domain. Hence, the bilinear form a lacks essential boundary
conditions on V δi , so that Aδi is now symmetric positive in-
definite (compared to Ai, the assembled submatrix, which
is always symmetric positive definite under the assumption
that A is). These independent and local eigenproblems are
solved concurrently in order to find low eigenvalues that are
in some sense close the lowest eigenvalues of the precondi-
tioned system. It is well known that those are hurting the
convergence rate of traditional Krylov methods, see [23, 11]
for further details. With this construction of the coarse op-
erator, it can be proven that the condition number of the
preconditioned system is now independent of the size of the
subdomains, of the number of subdomains, and of the het-
erogeneities in the physical coefficients. Once again, inter-
ested readers are referred to [29].

3. DESIGN OF THE COARSE OPERATOR
The goal of this section is to explain how a coarse operator
built using deflation vectors can be efficiently assembled for
large-scale simulations. This work is implemented in a light
and versatile C++ framework that is not directly linked to
domain decomposition methods, meaning that it is possible
to use it to assemble coarse operator with other abstract de-
flation vectors, for example as defined in [14] for simulations
in cosmology. When applicable, the MPI calls and opera-
tions related to linear algebra (either from dense BLAS [5]
or sparse BLAS such as Intel Math Kernel Library or cuS-
PARSE) are provided in typewriter font.

3.1 Assembling the coarse operator
Looking at the general formulation of E introduced in the
previous section, two global sparse matrix-matrix products
must be computed to assemble the coarse operator:

AZ then ZT (AZ) .

However, it is possible to exploit the sparsity pattern of Z
to build E more efficiently than with these two consecutive
computations. By construction, the deflation matrix Z is
made of block of dense matrices of size ni × νi as displayed
in figure 3.

Figure 3: Sparsity pattern of
the deflation matrix Z (grey
blocks represent nonzero en-
tries) with 4 subdomains.

If there is more than one block for which there are non zeros
in a given row of Z, it means that one is dealing with a dupli-
cated unknown (those which are in the overlap). From the
simple example in figure 3 with 4 subdomains, one can in-
fer that O1 = {2},O2 = {1, 3},O3 = {2, 4}, and O4 = {3}.
Just like the globally assembled matrix A, the global de-
flation matrix Z is never assembled, but its representation
above is useful to understand the assembly of E. Instead,
each subdomain has access to its local dense matrix Wi. The
block (i, j) of E of size νi×νj is then equal to WT

i RiAR
T
j Wj .

From that algebraic definition, one can see that the sparsity
pattern of E is linked to the connectivity between subdo-
mains, because:

RiAR
T
j = 0ni×nj ⇐⇒ V δi ∩ V δj = ∅ .

In the context of overlapping domain decomposition meth-
ods, using equations (4)-(8), the block (i, j) of E can be
computed as

WT
i RiAR

T
j Wj = WT

i RiR
T
j RjAR

T
j Wj

= WiRiR
T
j AjWj .

(10)

As in equation (5), the previous equation shows how it is pos-
sible to take advantage of the duplicated unknowns on the
overlap to compute a global product with only local compu-
tations and peer-to-peer transfers : the assembled matrices
A and Z are not needed. Noticing that RiR

T
i = Ini×ni , the

subdomain i needs to perform three tasks so that all blocks
of E can be computed:

1. compute locally Ti = AiWi (csrmm) and Ei,i = WT
i Ti

(gemm),

2. send to each neighboring subdomain j ∈ Oi,
Sj = RjR

T
i Ti, and receive from each neighboring sub-

domain Uj = RiR
T
j Tj ,

3. compute locally Ei,j = WT
i Uj (gemm).

The cost of step 2 is approximately the same as one global
sparse matrix-vector product. Using the same toy problem
as in figure 3, the following figure is a representation of the
sparsity pattern of E. Two colors are used to differentiate
blocks that can be computed without any communication

Figure 4: Sparsity pattern of
the coarse operator E. Blue
blocks involve only local com-
putations (step 1) while red
blocks also involve peer-to-
peer transfers (steps 2 and 3).

and those that cannot.
The three tasks to assemble all blocks of E can be cus-
tomized to suit one’s needs using C++ polymorphism. For
example, in the context of non-overlapping methods, the
sparsity pattern of E is typically more dense: a block (i, j)
of E is not null if and only if j ∈ Oj , but also if there exists
k ∈ Oj such that k ∈ Oi. This can be handled by our frame-
work. Likewise, each local computations Ti as introduced in
the first step, can be modified to involve more complex op-
erations and communications patterns.

Stopping at that point in the construction of E, solving sys-
tems involving the coarse operator would require either to
factorize a relatively small matrix on a large number of MPI
processes, or to call an iterative method with once again,
a distribution of data that would lead to a too fine-grained
granularity (blocks of rows of E are typically of size νi rang-
ing from 1 to 30). In both cases, the increased communica-
tion overhead would lead to bad performances when solving
multiple systems involving the coarse operator. Another ap-
proach would consist in replicating E over all subdomains,
and then performing independent factorizations, but that
is simply not feasible for large decompositions, with arbi-
trary numbers of deflation vectors. In the following subsec-
tions, a more efficient data distribution is explained. While
it will imply more communications during the setup of the
coarse operator, it will cover all possible issues stated in
this paragraph, regarding communication overhead, mem-
ory consumption and fast computation of coarse solutions.

3.1.1 Master-slave approach
The idea is to use only a “small” group of processes that
will be in charge of factorizing the coarse operator and that
will afterwards be called for computing solutions of systems
involving E−1 using a distributed sparse direct solver. This
is inspired by the famous master-slave approach. For the
rest of the paper, the following notations will be thoroughly
used (for the sake of completeness, we provide their type in
our implementation):

• unsigned short P: the number of masters, chosen at
runtime by the user,

• MPI_Comm masterComm: a communicator between all
masters, set to MPI_COMM_NULL on slaves, on which will
be instantiated the distributed solver,

• MPI_Comm splitComm: a communicator between a mas-
ter and its slaves in which the rank of the master is
always 0, and the ranks of the slave follow the same
order as in MPI_COMM_WORLD.

A representation of such communicators is given figure 5.
Prior to factorizing E, the first step is to assemble it in a

distributed matrix on the masters. Each master will be in
charge of assembling all the values of its slaves. It is assumed
that the format in which the distributed matrix is stored is
a simple global CSR or global COO — the standard format
for most linear solvers available nowadays, meaning that for
each non-zero value, one must know the absolute row and
column indices of the given value in the global matrix E.
For a process i, the global row indices IEi of all the blocks

{Ei,j}j∈Oi range from ri to ri+νi, where ri =
∑i−1
j=1 νj , and

the global column indices JEj of all the blocks {Ej,i}j∈Oi
range from ri to ri + νi. The simplest approach would then
be to:

1. call MPI_Allgather(νi) on MPI_COMM_WORLD to be able
to compute the cumulative sums {rj}j∈Oi and to allo-
cate the buffers Sj and Uj for all j ∈ Oi,

2. assemble locally {Ei,j}j∈Oi as previously and store the
values in CSR (or COO): (IEi , JEi , valEi),

3. call MPI_Gatherv(IEi), MPI_Gatherv(JEi), and
MPI_Gatherv(valEi) on splitComm with rank 0 as root.

The number of non-zero values for a process i is:

size(valEi) = νi × νi︸ ︷︷ ︸
Blue values in figure 4

+ νi ×
∑
j∈Oi

νj︸ ︷︷ ︸
Red values in figure 4

, (11)

meaning that prior to the three MPI_Gatherv in step 3, a call
to MPI_Gatherv(Oi) on splitComm with rank 0 as root must
be made to allocate the right buffers for the distributed for-
mat IE , JE , and valE on each master. While this approach
is somehow natural for assembling the distributed matrix
on the masters — because of the ordering of the rank of
the slaves, calling MPI_Gatherv is similar to concatenating
all local chunks of E — it implies a lot of (unnecessary)
communications. In particular, why should slaves send to
masters the global row and column indices ? Indeed, at
the end of assembly, only the masters have access to the
distributed coarse operator, so it is their responsability to
compute the indices. The slaves should not have to store
or compute anything related to the distributed format. The
following approach has the advantage of transferring only
what is needed from one slave i to its master: the array
of double valEi . The indices will be computed after recep-
tion by each master, meaning that the memory overhead on
the slaves is null (no integers are allocated for storing any
index). The new workflow is now:

1. perform a neighborhood collective operation
MPI_Ineighbor_alltoall(νi)

1 on the communicator
to which the distributed graph topology information of
the connectivity between subdomains is
attached (MPI_Dist_graph_create_adjacent). Then
allocate accordingly the buffers Sj and Uj for all j ∈ Oi

2. call MPI_Gather([νi, |Oi|]) (array of 2 integers) on split-

Comm with rank 0 as root so that masters can preallo-
cate the distributed CSR (IE , JE , valE),

1new to the MPI-3 standard

3. assemble locally {Ei,j}j∈Oi as previously and send the
values to the master. Prepend to the beginning of the
message, the values of Oi, i.e. the final size of the
message is |Oi|+ (11).

Additionally, the masters must concatenate all νi gathered
in step 2, using MPI_Allgatherv on commMaster to be able
to compute all cumulative sums ri, for all i ∈ splitComm.
This call is equivalent to the MPI_Allgather in step 1 of
the “natural” algorithm, but this time it doesn’t involve any
slave. When a master receives a message from a slave i, it
knows that the global row index ranges from ri to ri+νi, and
because the first values of the received message are a copy
of Oi, it can compute the correct global column indices for
the neighbors of this slave. The complete algorithm for as-
sembling the coarse operator is summarized in algorithms 1
(construction of all blocks of E) and 2 (distributed assembly
on the masters).

3.1.2 Electing the masters
In the previous paragraph, the masters are defined in a
rather abstract way, as the processes that have a rank equal
to 0 in splitComm. We have two ways to define the afore-
mentioned MPI communicator. The first is the natural dis-
tribution: the process are spread uniformly and contigu-
ously into P groups, the masters are of rank i · N/P , for
all 0 6 i 6 P − 1. The second distribution is a little more
advanced and better suited for assembling symmetric coarse
operators. In that case, one only needs to assemble the up-
per part of the distributed CSR or COO, so that only the
following blocks are computed and assembled:

Ei,j , ∀1 6 i 6 N, ∀j ∈ Oi : j > i .

Moreover, only the upper parts of the dense diagonal blocks
Ei,i for all 1 6 i 6 N are needed. To ensure load balancing
between masters, the processes are now spread contiguously
but non-uniformly, with masters of rank pi, where pi is de-
fined by the following sequence to ensure heuristically that
the number of values within each quadrilateral in figure 5 is
the same:

p0 = 0

pi = bN −
√

(pi−1 −N)2 −N2/P + 0.5c, 1 6 i 6 P − 1

4

8

12

Uniform distribution

2

5

8

00

Non-uniform distribution

Figure 5: Distribution of E when build with 16 sub-
domains using 4 masters. Each color represents a
different splitComm, each number represents the rank
of the master (in MPI_COMM_WORLD) of a given split-

Comm. On the right, the number of values per split-

Comm is roughly the same if the values below the di-
agonal are dropped (symmetric coarse operator).

Algorithm 1 Schematic construction of Ei,j , for all
1 6 i 6 N and j ∈ Oi

MPI_Ineighbor_alltoall(νi)
2: MPI_Gather([νi, |Oi|], splitComm, 0)

compute(Ti) . Ti = AiWi

4: for j ∈ Oi do . After completion of line 1
MPI_Isend(Sj , j, MPI_COMM_WORLD) . Sj = RjR

T
i Ti

6: MPI_Irecv(Uj , j, MPI_COMM_WORLD, rq[j])
end for

8: compute(Ei,i) . Diagonal block
for j ∈ Oi do

10: MPI_Waitany(rq, &index)
compute(Ei,index) . Off-diagonal block

12: end for

Algorithm 2 Schematic assembly of E on the masters

buildComm(P, splitComm, masterComm)
14: if masterComm != MPI_COMM_NULL then . Master

MPI_Allgatherv(νi)
16: . Now receive all messages from the slaves

for j = 1, . . . , MPI_Comm_size(splitComm) do
18: MPI_Irecv(msgFromSlave[j], j − 1, splitComm,

rq[j])
end for

20: assemble(Ei,i)
for k = 1, . . . , |Oi| do

22: assemble(Ei,k)
end for

24: . Blocks local to the masters have been assembled
for j = 1, . . . , MPI_Comm_size(splitComm) do

26: MPI_Waitany(rq, &index)
assemble(Eindex,index);

28: for k = 1, . . . , |Oindex| do
assemble(Eindex,msgFromSlave[index][k])

30: end for
end for

32: . Blocks from the slaves have been assembled
numericalFactorization(E)

34: else . Slave
msgToMaster = Oi

36: concatenate(msgToMaster, Ei,i)
for k ∈ Oi do

38: concatenate(msgToMaster, Ei,k)
end for

40: MPI_Isend(msgToMaster, 0, splitComm)
. Send the index of the neighbors as well as the local

rows of E computed in algorithm 1
42: end if

The procedure compute in algorithm 1 is in charge of return-
ing a dense array of values corresponding to the block of E
given in argument, while the procedure assemble in algo-
rithm 2 is in charge of computing the indices of the values
of the block of E given in argument and store them in the
distributed matrix representation.

3.2 Applying a coarse operator correction
Once E has been assembled, it is involved in the solution of
the following problem for a given vector u: ZE−1ZTu. It
is assumed that the right-hand side ZTu and the solution

E−1ZTu of the coarse problem are kept distributed on mas-

terComm at all time, as input and ouput of the distributed
solver. The computation of the correction can obviously be
broken down into three basic operations:

1. compute ZTu = w ∈ R
∑N
i=1 νi . Once again, the struc-

ture of Z makes it possible to compute this sparse
matrix-vector product without any explicit global rep-
resentation of Z. Indeed,

ZTu =

N∑
i=1

WT
i Riu

This is evaluated by having all subdomains i compute
locally wi = WT

i ui (gemv), and calling MPI_Gather(v)

on each splitComm with rank 0 as root to assemble
w with all local contributions of size νi, for all i in
splitComm, on the masters.

2. compute E−1w = y ∈ R
∑N
i=1 νi . This operation must

be as fast and reliable as possible, since it is carried
out by only few masters. The numerical factorization
of E as computed in the previous paragraph during the
assembly phase is reused for each forward elimination
and back substitution.

3. compute Zy = z ∈ R
∑N
i=1 ni . This is the exact dual of

step 1. This operation reads:

Zy =

N∑
i=1

RTi Wiyi

First, a call to MPI_Scatter(v) is made on each split-

Comm with rank 0 as root so that each subdomain i can
retrieve its yi of size νi from its master. Then they all
compute zi = Wiyi (gemv). Finally,

(Zy)i =

N∑
j=1

RiR
T
j zj (12)

is computed using the same communication procedure
as for the sparse matrix-vector product, see (5).

Using this construction, it is clear that using a non-uniform
criterion νi for each subdomain leads to using MPI com-
munications with varying counts of data from each process
(hence the v in parentheses). Because these communications
scale as O(N), it is preferable to call prior to assembling the
coarse operator MPI_Allreduce(νi,MPI_MAX). That way, it
is possible to use MPI communications with equal counts
of data, which typically scale as O(log(N)). Moreover, the
theoretical estimate on the condition number of the pre-
conditioner system remains valid. There are also multiple
simplifications possible during the assembly of E, because
using a uniform criterion means that any process i already
knows the value of νj , for all j ∈ Oi without needing the
call to MPI_Ineighbor_alltoall and such.

3.3 Cost analysis
As a consequence of the observation made in the previous
paragraph, it is assumed in this section that the number of
deflation vectors per subdomain is chosen uniformly and set
to ν. This will also be the case in section 3.4 for our scaling

experiments, and we now propose a comprehensive summary
of the cost of our two-level preconditioner, compared to a
simple one-level method. As a quick reminder, the cost of
applying a one-level preconditioner such as P−1

RAS in (3) is
the same as computing N independent solutions on each
subdomain – application of (RiAR

T
i)−1, then performing

one global matrix-vector product.

Memory footprint. Because it is clear that no global struc-
ture is needed for the construction and the use of Z and E
in our implementation, the memory footprint is straightfor-
ward to evaluate. For slaves, a dense array of size ν × ni is
needed to store Wi. For masters, the same array must be
stored, plus the factors of E−1 (whose size depends on the
distributed solver used).

Messages. During the construction of E, each process i
must send and receive a single message from each neighbor-
ing subdomains j ∈ Oi. The size of theses messages are
ν × size of overlap between V δi and V δj , see Sj and Uj
in algorithm 1. Then each slave i must send a single message
of double, of size |Oi|+ |Oi| × ν × ν to its master, see msg-

ToMaster in algorithm 2, and each master must reciprocally
receive these message for all slaves in splitComm. During the
solution, at each iteration, a MPI_Gather and a MPI_Scatter

are called on each splitComm. The messages passed at the
end of the correction step in equation (12) are of the exact
same sizes as for the global matrix-vector product for the
one-level method, c.f. (5).

Computational intensity. The major contribution is the
solution of each local and independant eigenvalue problem.
Afterwards, for the setup of E, the BLAS computations
stated in section 3.1 are negligible with respect to the time
spent transferring messages, and at each iteration the costly
operation in section 3.2 is the solution of the coarse correc-
tion – application of E−1 using a distributed direct solver.
Note that for big subdomains, this cost is negligible com-
pared to the one of computing each local solution for the
one-level preconditioner P−1

RAS, c.f. (3).

3.4 Numerical results
Results in this section were obtained on Curie, a Tier-0 sys-
tem for PRACE2 composed of 5040 nodes made of 2 eight-
core Intel Sandy Bridge processors clocked at 2.7 GHz. The
interconnect is an InfiniBand QDR full fat tree and the
MPI implementation used was BullxMPI version 1.1.16.5.
Intel compilers and Math Kernel Library in their version
13.1.0.146 were used for all binaries and shared libraries,
and as the linear algebra backend for both dense and sparse
computation in our framework. LU or LDLT decomposition
of the local problems are computed with either instances of
MUMPS [1, 2] or PaStiX [17] on MPI_COMM_SELF, or prefer-
ably using Intel MKL PARDISO, University of Lugano PAR-
DISO [26, 27], or WSMP [16, 15] which are by design more
suited for multithreaded computations. LU or LDLT de-
composition of the coarse operator is computed using MUMPS,
PaStiX, or PWSMP. Eigenvalue problems to compute the

2Partnership for Advanced Computing in Europe

deflation vectors as defined in (9) are solved using ARPACK [21].
Finite element matrices are obtained from FreeFem++, but
the design of our domain decomposition framework makes it
simple to port to other Domain-Specific (Embedded) Lan-
guage such as Feel++ [24], FEniCS [22] or finite element
libraries like deal.II [4], GetFem++ and such. We display
the speedup and efficiency in terms of number of MPI pro-
cesses. In these experiments, each MPI process is assigned
a single subdomain, and 2 OpenMP threads. The GMRES
is stopped when a relative 10−6 decrease of the residual is
reached.

First, the system of linear elasticity with highly heteroge-
neous elastic moduli is solved with a minimal geometric
overlap of one mesh element. Its variational formulation
reads:

a(u, v) =

∫
Ω

λ∇ · u∇ · v + 2µε(u) : ε(v) +

∫
Ω

f · v +

∫
∂Ω

g · v

where

• λ and µ are the Lamé parameters such that µ =
E

2(1 + ν)

and λ =
Eν

(1 + ν)(1− 2ν)
(E being Young’s modulus

and ν Poisson’s ratio). They are chosen to vary be-
tween two sets of values, (E1, ν1) = (2 ·1011, 0.25), and
(E2, ν2) = (107, 0.45).

• ε is the linearized strain tensor, f are the body forces
(in this case, only the gravity), and g are the surface
force (in this case, a vertical loading is imposed on
some parts of the geometries).

Such an equation typically arises in computational solid me-
chanics, for modeling small deformations of bodies. In 2D,
we use piecewise cubic basis functions (∼ 33 nnz per row).
The system is of constant size equal to approximately 2 bil-
lions unknowns. In 3D, piecewise quadratic basis functions
are used (∼ 83 nnz per row). The system is of constant
size equal to approximately 300 millions unknowns. Both
geometries are displayed in figure 6 and were meshed by
Gmsh [12] and partitioned with METIS.
After the partitioning step, each local mesh is refined con-
currently by splitting each triangle or tetrahedron into mul-
tiple smaller elements. This means that we start the sim-
ulation with a relatively “coarse” global mesh (26 million
triangles in 2D, 10 million tetrahedra in 3D), which is then
refined in parallel (thrice in 2D, twice in 3D). We get a nice
speedup from 1024× 2 = 2048 to 8192× 2 = 16384 threads
as shown in figure 8. According to the table in figure 8, the
costly operations in the construction of the preconditioner
are the solution of each local eigenvalue problem (9) (col-
umn deflation), and the factorization of each local solver
Ai (column factorization). In 3D, the complexity of such
operations typically grows superlinearly with respect to the
number of unknowns. That explains why we can achieve su-
perlinear speedup. At peak performance, on 16384 threads,
the speedup relative to the runtime on 2048 threads equals
530.56

51.76
≈ 10. In 2D, the computation costs are lower, and

tend to scale better with the number of unknowns, which

Figure 6: Tripod used for our 3D and cantilever
used for our 2D strong scaling experiments. Black
and light grey are used to represent the variations
of the Young’s modulus (200 GPa and 0.01 GPa) and
Poisson’s ratio (0.25 and 0.45).

makes it harder to achieve high speedup for larger number
of subdomains. At peak performance, on 16384 threads,
the speedup relative to the runtime on 2048 threads equals
213.20

34.54
≈ 6. In both cases, the solution of the eigenproblem

is the limiting factor for achieving better speedups. This
can be explained by the fact that the Arnoli method, which
ARPACK is based on, tends to perform better for larger

ratios
ni
νi

, but these values decrease as the subdomains get

smaller. We will get back to this issue in the conclusion.
For larger but fewer subdomains, the time to compute the
solution (column solution), i.e. the time for the GMRES to
converge, is almost equal to the forward eliminations and
back substitutions in the subdomains times the number of
iterations. When the decompositions become bigger, sub-
domains are smaller, hence each local solution is computed
faster and global communications have to be taken into ac-
count. For a comparison similar to the one in figure 1 in this
bigger configuration, we display in figure 7 the convergence
histogram of a simple one-level method versus this two-level
method. One can easily understand that, while the cost of
building the preconditioner cannot be neglected, it is neces-
sary to ensure the convergence of the Krylov method.
Moving on to the weak scaling properties of our framework,
the problem we now solve is a scalar equation of diffusiv-
ity with highly heterogeneous coefficients (varying from 1 to
3 · 106 as displayed in figure 9) on [0; 1]d (d = 2 or 3) with
piecewise quartic basis functions in 2D (∼ 23 nnz per row),
and piecewise quadratic basis functions in 3D (∼ 27 nnz per

0 100 200 300 400

10−6

10−5

10−4

10−3

10−2

#iterations

R
el
a
ti
ve

re
si
d
u
al

er
ro
r

P−1
RAS

P−1
A-DEF1

Figure 7: Convergence of the GMRES(40) precondi-
tioned by P−1

RAS and P−1
A-DEF1 for the problem of lin-

ear elasticity in 2D using 1024 subdomains. Timings
for the setup and solution phases using P−1

A-DEF1 are
available in figure 8. Using P−1

RAS, the convergence
is not reached after 600 seconds.

row). Its variational formulation reads:

a(u, v) =

∫
Ω

κ∇u · ∇v +

∫
Ω

f · v

where f is a source term. Such an equation typically arises
for modeling flows in porous media, or in computational fluid
dynamics. No change is needed in our framework, since all
operations are algebraic. The only work needed outside of
our framework is changing the mesh used for computations,
as well as the variational formulation of the problem in the
FreeFem++ DSL.
On average, there is a constant number of degrees of freedom
per subdomain equal to 280K in 3D, and near 2.7 millions
in 2D. As for the strong scaling experiment, after building
and partitioning a global “coarse” mesh (with few millions
of elements), each local mesh is refined independently to
ensure a constant size system per subdomain as the decom-
position becomes bigger. The efficiency remains near the
90% mark, thanks to almost no variability in the factor-
ization of the local problems and the construction of the
deflation vectors. In 3D, the initial problem of 74 millions
unknowns is solved in 200 seconds on 512 threads. Using
16384 threads, the problem is now made of approximately
2.3 billions unknowns, and it is solved in 215 seconds, which

yields an efficiency of
200 · 2.3 · 109

215 · 7.4 · 107 · 32
≈ 90%. In 2D, the

initial problem of 695 millions unknowns is solved in 175
seconds on 512 threads. Using 16384 threads, the prob-
lem is now made of approximately 22.3 billions unknowns,
and it is solved in 187 seconds, which yields an efficiency of

175 · 2.2 · 1010

187 · 6.7 · 108 · 32
≈ 96%. At such scales, the most penal-

izing step in the algorithm is the construction of the coarse
operator, specially in 3D, with a non negligible increase in
the time spent to assemble E.
Finally, we present in this last paragraph the performances
of our framework to assemble and factorize the coarse oper-
ator E for all the previous simulations. Tables in figures 8

1 024
2 048

4 096
8 192

1

2

4

8

#processes

S
p

ee
d
u
p

re
la

ti
ve

to
1

02
4

M
P

I
p
ro

ce
ss

es

Linear speedup
3D-P2

2D-P3

N Factorization Deflation Solution #it. Total #d.o.f.

3D

1 024 177.86 s 264.03 s 77.41 s 28 530.56 s

293.98 · 106
2 048 62.69 s 97.29 s 20.39 s 23 186.04 s
4 096 19.64 s 35.70 s 9.73 s 20 73.12 s
8 192 6.33 s 22.08 s 6.05 s 27 51.76 s

2D

1 024 37.01 s 131.76 s 34.29 s 28 213.20 s

2.14 · 109
2 048 17.55 s 53.83 s 17.52 s 28 95.10 s
4 096 6.90 s 27.07 s 8.64 s 23 47.71 s
8 192 2.01 s 20.78 s 4.79 s 23 34.54 s

Figure 8: Strong scaling experiments.

and 10 already included these timings in their last column
total (> factorization + deflation + solution), but for more
in depth analysis, they are reported next separately.
The figure 11 includes all timing relative to algorithms 1
and 2 described in section 3.1.1: the construction of the
communicators, the assembly of E, and its numerical fac-
torization. The most consuming part of the algorithm is
the actual transfer and the assembly by the masters. Es-
pecially in 3D, when the coarse operator is becoming less
and less sparse (directly linked with the average value of
|Oi|), it is likely to become a problem for even larger de-
composition. Note that the MPI implementation used for
these experiments is not thread compliant (and in partic-
ular, does not support a level of thread support equal to
MPI_THREAD_MULTIPLE), meaning that some “unnecessary”
#pragma omp critical had to be used during the assembly
by the masters. At these scales, another problem is the fac-
torization of E. Indeed, increasing the number of masters
P does not always have a beneficial effect for this concern,
because distributed solvers have difficulties scaling beyond
∼ 128 processes.

3.5 Communication avoiding multilevel pre-
conditioners

Classical Krylov methods require global synchronizations
during the orthogonalization and the normalization of the
basis vectors at each iteration that can hamper parallel scal-
ability. Efforts have been made to reduce the number of such
global operations [10, 9], and recent alternatives, such as the
p1-GMRES introduced in [13], predict considerable improve-
ment in speedups because they can overlap computations of
sparse matrix-vector products and global synchronizations.
For further references in this paper, it is best to quote the

Figure 9: Diffusivity κ used for our 2D weak scaling
experiment with channels and inclusions. Black and
light grey are used to represent the variations of κ
from 1 to 3 · 106.

actual computational loop of the p1-GMRES.

Algorithm Main loop of the p1-GMRES introduced in [13]

1: for i = 0, . . . ,m do
2: w ← Avi
3: if i > 1 then
4: vi−1 ← vi−1/hi−1,i−2 zi ← zi/hi−1,i−2

5: w ← w/hi−1,i−2 hi−1,i−1 ← hi−1,i−1/h
2
i−1,i−2

6: hj−1,i−1 ← hj−1,i−1/h
2
i−1,i−2, j = 0, . . . , i− 2

7: end if
8: zi+1 ← w −

∑i−1
j=0 hj,i−1zj+1

9: if i > 0 then
10: vi ← zi −

∑i−1
j=0 hj,i−1vj hi,i−1 ← ||vi||2

11: end if
12: hj,i ← 〈zi+1, vj〉, j = 0, . . . , i
13: end for

When using a multigrid or domain decomposition based pre-
conditioner, line 2 becomes w ← P−1

A-DEF1Avi and it gets
harder to hide the latency of the global reductions line 10
and 12 because applying the preconditioner might require a
global synchronization (induced by the solution of a coarser
problem).
Applying the preconditioner P−1

A-DEF1 built in this section
requires one MPI_Gather(v) on each splitComm, followed by
a coarse solution, followed by one MPI_Scatter(v) on each
splitComm with rank 0 as root. While this shows that there
is no global communication, data dependencies introduce a
“virtual” global synchronization (using non-blocking collec-
tive operations is not possible). Moreover, the two global
communications on each splitComm involve mainly short
messages if the number of deflation vectors is low (typically
νi < 30 for each subdomain), meaning that passing extra
data is unlikely to hurt too much the execution time of these
operations. This is why we propose a fused p1-GMRES,
where:

• no global reduction is performed line 10 and 12 (only
local computations),

• during the call to MPI_Gather(v) at the i-th iteration
of the GMRES line 2 on each splitComm with rank
0 as root, each process also sends to its master local
values of hi−1,i−2 and hj,i−1 for j = 0, . . . , i− 1 (these
are the non-reduced values of the previous iteration),

256 512 1 024
2 048

4 096
8 192

0 %

20 %

40 %

60 %

80 %

100 %

#processes

E
ffi

ci
en

cy
re

la
ti

v
e

to
25

6
M

P
I

p
ro

ce
ss

es

3D-P2

2D-P4

695

22 311

#
d

.o
.f

.
(i

n
m

il
li

on
s)

74

2 305

N Factorization Deflation Solution #it. Total #d.o.f.

3D

256 64.24 s 117.74 s 15.81 s 13 200.57 s 74.62 · 106

512 63.97 s 112.17 s 19.93 s 18 199.41 s 144.70 · 106

1 024 63.22 s 118.58 s 16.18 s 14 202.40 s 288.80 · 106

2 048 59.43 s 117.59 s 21.34 s 17 205.26 s 578.01 · 106

4 096 58.14 s 110.68 s 27.89 s 20 207.47 s 1.15 · 109

8 192 54.96 s 116.64 s 23.64 s 17 215.15 s 2.31 · 109

2D

256 29.40 s 111.35 s 25.71 s 29 175.85 s 695.96 · 106

512 29.60 s 111.52 s 27.99 s 28 179.07 s 1.39 · 109

1 024 29.43 s 112.18 s 33.63 s 28 185.16 s 2.79 · 109

2 048 29.18 s 112.23 s 33.74 s 28 185.20 s 5.58 · 109

4 096 29.80 s 113.69 s 31.02 s 26 185.38 s 11.19 · 109

8 192 29.83 s 113.81 s 30.67 s 25 187.57 s 22.31 · 109

Figure 10: Weak scaling experiments.

• prior to calling the coarse solver, each master reduces
the values received after the call to MPI_Gather(v)

and then launches a MPI_Iallreduce on masterComm.
It is then time for them to compute the solution of
the coarse problem, after which they wait for the non-
blocking reduction to finish,

• eventually, the reduced values of hi−1,i−2 and hj,i−1

for j = 0, . . . , i− 1 are scattered back with the coarse
solution using a single MPI_Scatter(v) on each split-

Comm with rank 0 as root.

Each iteration of this fused p1-GMRES can be seen as a
coarse operator correction, without a single additional global
communication or synchronization and only a single ad-
ditional call to MPI_Iallreduce between the masters on
masterComm, whose size is greatly smaller than the num-
ber of subdomains N . The communications induced by the
MPI_Iallreduce can be overlapped with the computation
of the coarse solution. While this approach looks promising,
our test cases are too small and the numbers of iterations
are relatively small, so that both pipelined GMRES are per-
forming approximately the same as the reference GMRES.
Such a direction of research is however becoming essential
as the concurrency of modern supercomputers is increasing
tremendously, and minimizing synchronizations is becoming
essential for large decompositions, as shown by theoretical
models in [13] for the unpreconditioned GMRES.

4. CONCLUSION AND OUTLOOK
In this paper, we assess the efficiency of our implementation
of a new adaptative two-level preconditioner suited for var-
ious problems such as linear elasticity or Darcy’s law with

3D

N P dim(E) |Oi| (average) nnz(E−1) Time

256 4 5120 11.5 2.6 · 106 2.78 s
512 6 10240 12.4 7.7 · 106 3.35 s
1024 8 8 20480 22528 13.0 12.0 24.5 · 106 14.6 · 106 4.42 s 11.25 s
2048 12 12 40960 40960 13.8 12.9 74.6 · 106 34.5 · 106 6.91 s 5.68 s
4096 18 22 73728 73728 14.2 13.7 143.0 · 106 85.3 · 106 10.75 s 8.04 s
8192 64 48 131072 131072 14.7 14.6 285.4 · 106 196.7 · 106 19.92 s 17.30 s

2D

N P dim(E) |Oi| (average) nnz(E−1) Time

256 2 5376 5.5 959.7 · 103 9.39 s
512 4 10240 5.6 2.1 · 106 9.96 s
1024 10 8 20480 24576 5.7 5.5 5.0 · 106 5.5 · 106 9.92 s 10.14 s
2048 14 12 38912 40960 5.8 5.7 10.8 · 106 9.3 · 106 10.05 s 6.20 s
4096 22 18 81920 73728 5.9 5.8 28.4 · 106 17.7 · 106 10.87 s 5.10 s
8192 36 36 163840 122880 5.9 5.8 73.3 · 106 30.4 · 106 13.27 s 6.96 s

Figure 11: Timings for assembling the coarse op-
erator. Results are gathered two-by-two, the first
column is for the diffusivity problem, the second is
for the elasticity problem.

high-contrast coefficients. The preconditioner was recently
theoretically introduced in [29] and it provides a sound back-
ground for evaluating the performance of our portable frame-
work. Using state of the art multithreaded direct linear
solvers and eigensolvers and distributed direct linear solvers,
we show experimentally that our approach is well suited for
large-scale simulations in both 2D and 3D with high-order
finite element methods, on up to 16384 threads, enabling
simulations for two classes of elliptic problems of more than
22 billion unkowns in 2D and 2 billion unkowns in 3D.
For building such a preconditioner, the deflation vectors used
in our coarse operator are currently determined a priori by
solving independently local eigenvalue problems. It is also
possible to retrieve them a posteriori during the convergence
of the iterative method, using for example approximations
of the Ritz vectors. Using new theoretical results, we are
currently evaluating a new a posteriori construction that
doesn’t require the solution of the aforementioned eigenvalue
problems. This will hopefully improve our results for more
fine-grained granularity in our strong scaling experiments.
Finally, we are currently investing other types of systems
for which domain decomposition methods have been proven
to be efficient, namely nonlinear problems in computational
solid mechanics, using non-overlapping methods. Thanks
to the versatile design of our framework, and the flexibil-
ity of current finite element Domain-Specific (Embedded)
Languages such as FreeFem++, new experiments should be
soon possible.

5. ACKNOWLEDGMENTS
This work has been supported in part by ANR through
COSINUS program (project PETALh no. ANR-10-COSI-
0013 and project HAMM no. ANR-10-COSI-0009). It was
granted access to the HPC resources of TGCC@CEA made
available within the Distributed European Computing Ini-
tiative by the PRACE-2IP, receiving funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement RI-283493. The first author
would like to thank A. Gupta and O. Schenk for providing
him suitable licenses of their respective software (WSMP
and PARDISO).

6. REFERENCES
[1] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster.

A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM Journal on
Matrix Analysis and Applications, 23(1):15–41, 2001.

[2] P. Amestoy, A. Guermouche, J.-Y. L’Excellent, and
S. Pralet. Hybrid scheduling for the parallel solution
of linear systems. Parallel computing, 32(2):136–156,
2006.

[3] A. Baker, R. Falgout, T. Kolev, and U. Yang. Scaling
hypre’s multigrid solvers to 100,000 cores. In
High-Performance Scientific Computing, pages
261–279. Springer, 2012.

[4] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II
— a general-purpose object-oriented finite element
library. ACM Transactions on Mathematical Software,
33(4):24–27, 2007.

[5] L. Blackford, A. Petitet, R. Pozo, K. Remington,
R. Whaley, J. Demmel, J. Dongarra, I. Duff,
S. Hammarling, G. Henry, et al. An updated set of
basic linear algebra subprograms (BLAS). ACM
Transactions on Mathematical Software,
28(2):135–151, 2002.

[6] X. Cai, M. Dryja, and M. Sarkis. Restricted additive
Schwarz preconditioners with harmonic overlap for
symmetric positive definite linear systems. SIAM
Journal on Numerical Analysis, 41(4):1209–1231,
2003.

[7] X. Cai and M. Sarkis. Restricted additive Schwarz
preconditioner for general sparse linear systems. SIAM
Journal on Scientific Computing, 21(2):792–797, 1999.

[8] C. Chevalier and F. Pellegrini. PT-Scotch: a tool for
efficient parallel graph ordering. Parallel Computing,
34(6):318–331, 2008.

[9] A. Chronopoulos and C. Gear. s-step iterative
methods for symmetric linear systems. Journal of
Computational and Applied Mathematics,
25(2):153–168, 1989.

[10] E. De Sturler and H. Van der Vorst. Reducing the
effect of global communication in GMRES(m) and CG
on parallel distributed memory computers. Applied
Numerical Mathematics, 18(4):441–459, 1995.

[11] J. Frank and C. Vuik. On the construction of
deflation-based preconditioners. SIAM Journal on
Scientific Computing, 23(2):442–462, 2002.

[12] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite
element mesh generator with built-in pre- and
post-processing facilities. International Journal for
Numerical Methods in Engineering, 79(11):1309–1331,
2009.

[13] P. Ghysels, T. Ashby, K. Meerbergen, and
W. Vanroose. Hiding global communication latency in
the GMRES algorithm on massively parallel machines.
SIAM Journal on Scientific Computing, 1(35):48–71,
2013.

[14] L. Grigori, R. Stompor, and M. Szydlarski. A parallel
two-level preconditioner for cosmic microwave
background map-making. In Proceedings of the 2012
ACM/IEEE conference on Supercomputing, SC12.
IEEE Computer Society, 2012.

[15] A. Gupta. WSMP: Watson sparse matrix package —
part II: Direct solution of general systems. Technical

Report 21888, IBM T.J. Watson Research Center,
2000.

[16] A. Gupta and H. Avron. WSMP: Watson sparse
matrix package — part I: Direct solution of symmetric
systems. Technical Report 21886, IBM T.J. Watson
Research Center, 2000.

[17] P. Hénon, P. Ramet, and J. Roman. PaStiX: a high
performance parallel direct solver for sparse symmetric
positive definite systems. Parallel Computing,
28(2):301–321, 2002.

[18] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[19] J. Kimn and M. Sarkis. Restricted overlapping
balancing domain decomposition methods and
restricted coarse problems for the Helmholtz problem.
Computer Methods in Applied Mechanics and
Engineering, 196(8):1507–1514, 2007.

[20] A. Klawonn and O. Rheinbach. Highly scalable
parallel domain decomposition methods with an
application to biomechanics. ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik, 90(1):5–32,
2010.

[21] R. Lehoucq, D. Sorensen, and C. Yang. ARPACK
users’ guide: solution of large-scale eigenvalue
problems with implicitly restarted Arnoldi methods,
volume 6. Society for Industrial and Applied
Mathematics, 1998.

[22] A. Logg, K.-A. Mardal, and G. Wells. Automated
solution of differential equations by the finite element
method, volume 84. Springer, 2012.

[23] R. Nicolaides. Deflation of conjugate gradients with
applications to boundary value problems. SIAM
Journal on Numerical Analysis, 24(2):355–365, 1987.

[24] C. Prud’homme, V. Chabannes, V. Doyeux, M. Ismail,
A. Samake, and G. Pena. Feel++: A computational
framework for Galerkin methods and advanced
numerical methods. In ESAIM: Proceedings,
volume 38, pages 429–455, 2012.

[25] A. Quarteroni and A. Valli. Domain decomposition
methods for partial differential equations, volume 10.
Clarendon Press, 1999.

[26] O. Schenk and K. Gärtner. Solving unsymmetric
sparse systems of linear equations with PARDISO.
Future Generation Computer Systems, 20(3):475–487,
2004.

[27] O. Schenk and K. Gärtner. On fast factorization
pivoting methods for sparse symmetric indefinite
systems. Electronic Transactions on Numerical
Analysis, 23:158–179, 2006.

[28] B. Smith, P. Bjørstad, and W. Gropp. Domain
decomposition: parallel multilevel methods for elliptic
partial differential equations. Cambridge University
Press, 2004.

[29] N. Spillane, V. Dolean, P. Hauret, F. Nataf,
C. Pechstein, and R. Scheichl. A robust two-level
domain decomposition preconditioner for systems of
PDEs. Comptes Rendus Mathematique,
349(23):1255–1259, 2011.

[30] H. Sundar, G. Biros, C. Burstedde, J. Rudi,

O. Ghattas, and G. Stadler. Parallel
geometric-algebraic multigrid on unstructured forests
of octrees. In Proceedings of the 2012 ACM/IEEE
conference on Supercomputing, SC12. IEEE Computer
Society, 2012.

[31] J. Tang, R. Nabben, C. Vuik, and Y. Erlangga.
Comparison of two-level preconditioners derived from
deflation, domain decomposition and multigrid
methods. Journal of Scientific Computing,
39(3):340–370, 2009.

[32] A. Toselli and O. Widlund. Domain decomposition
methods — algorithms and theory, volume 34 of Series
in Computational Mathematics. Springer, 2005.

