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Improving the MicroResp™ substrate-induced respiration method by a
more complete description of CO, behavior in closed incubation wells

P. Renault **, M. Ben-Sassi *>!, A. Bérard *!

2 INRA, UMR 1114 EMMAH, Domaine St-Paul, Site Agroparc, 84914 Avignon Cedex 9, France
> ADEME, 20 avenue du Grésillé, BP 90406, F-49004 Angers Cedex 01, France

ABSTRACT

The MicroResp™ method allows soil respiration and microbial community physiological profiles to be deter-
mined colorimetrically in microplates. This method, however, neglects CO, storage in the agar gel carrying
the colorimetric indicator, and calcite dissolution associated with CO,-induced change in soil solution pH.
Our objective was to improve the method by taking into account CO, in the gel in the calculation of microbial
respiration, describing the effect of microbial CO, on the pH of the soil solution and calcite dissolution, and
checking whether CO, distribution among calcite, soil solution, air and gel is near equilibrium after incuba-
tion. We propose a thermodynamic equilibrium model describing (a) distribution of CO, among calcite, soil so-
lution, gel and air, (b) dissociations of water, carbonic acid, cresol red, and substrates in the gel and soil solution,
(¢) exchange of adsorbed cations with H30 in the gel, and (d) calcite dissolution in soil. In-gel experiments were
designed to calibrate the model, quantify the rate of CO, exchange with air, and compare conservation proce-
dures. On-soil experiments were designed to check whether calcite dissolution is near equilibrium and whether
the model predicts the effect of CO, on the pH of the solution. In-microplate experiments were designed to assess
the effects of incubation period and soil quantity on estimated microbial respiration. The model can describe the
distribution and speciation of CO, in the gel, the soil solution and the air space of each microplate well. Initial
properties of the gel vary with storage: soda lime partly extracts CO, supplied as NaHCOs, and dries out the
gel, which can skew the calibration. When incubation is over, the proportion of microbial CO-, in the gel is higher
at lower microbial respiration. Incubations shorter than 4 h underestimate microbial respiration due to the slow
diffusion of CO, in the gel. CO, in the soil solution cannot be overlooked; it decreases the soil pH and may
promote calcite dissolution in calcareous soil. It is important to precisely estimate initial CO, air fraction and to
control temperature, which affects both thermodynamic constants and microorganisms.
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1. Introduction respiration on various substrates provides an insight into microbial

functional diversity (Chapman et al., 2007; Degens and Harris, 1997).

Soil microbial respiration that consumes O, may regulate CH4 and N,O
greenhouse gas emissions and reduction of metals (Lahlah et al., 2009;
Parry et al,, 2000), organic matter turnover (Schlesinger and Andrews,
2000), and acid-base, complexation and precipitation/dissolution reac-
tions (Dassonville et al., 2004; Lahlah et al., 2009). Profiling microbial
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Microbial respiration has been assessed by O, consumption
(Garland et al., 2003), by CO, production (Cheng and Coleman,
1989), and by coupling the two (Sierra and Renault, 1995). Respira-
tion is more often characterized by CO, measurements, which are
easier and sensitive (Dilly, 2001). However, many characterizations
suffer from common limitations (long gas analysis, large volumes
required, complex set-up).

The MicroResp™ method is a miniaturized substrate-induced
respiration method that overcomes these limitations (Campbell et
al., 2003), and offers a wide range of applications (Ben Sassi et al.,
2012; Tlili et al., 2011): it couples the microplate format of the
Biolog™ test restricted to cultivable micro-organisms (Garland and
Mills, 1991; Stefanowicz, 2006) with the measurement of CO, air
fraction according to the work of Rowell (1995) on indicator dyes
in agar gel. In each closed well of a 96-well microplate, moist soil
with or without C substrates is incubated for 6 h in the presence of
an agar gel carrying cresol red as indicator dye (Campbell et al.,
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2003). The method only takes into account CO, in the well air space,
which is assumed to be of microbial origin (Campbell et al., 2003).
The CO, air fraction is estimated from gel absorbance at 570 nm
(Rowell, 1995). The MicroResp™ method has been widely used
on soils with pH <7 (Burton et al., 2010; Campbell et al., 2003;
Gonzalez-Quitiones et al., 2009; Lalor et al., 2007; Macdonald et al.,
2009; Wakelin et al., 2008; Yao et al., 2011; Zhou et al., 2011) and
occasionally used on soils with higher pH and calcite (Bérard et al.,
2011, 2012; Saul-Tcherkas and Steinberger, 2009; Wakelin et al.,
2008), although the technical manual recommends restricting it to
soil with pH <7 (Cameron, 2007). The method was modified by
Oren and Steinberger (2008a) to include CO, in the soil solution
and the effects of substrates on the soil solution pH and calcite disso-
lution, but without considering the effects of CO, on calcite dissolu-
tion and on the pH of the solution (Stumm and Morgan, 1996).
Their improvements, which require measurements on sterilized
soil and evaluation of substrate impact on soil pH, have not been
widely adopted to date (Garcia-Palacios et al., 2011; Oren and
Steinberger, 2008b). To our knowledge, CO, in the agar gel has
never been taken into account.

Thus the MicroResp™ method still suffers from limitations. First,
the volume of in-well gel (0.15 mL) cannot be neglected given the
volumes of soil solution (about 0.12 mL) and air space (about
1 mL). The pH of the gel (from 7 to 9 or more) magnifies the problem
with more HCO3™ and sometimes CO3~ than H,COs* (i.e., aqueous
CO, and actual H,COs3) in the gel solution (Stumm and Morgan,
1996) and in solutions of calcareous soils (Strom et al., 2001). Sec-
ond, failing to allow for the fact that increasing the CO, air fraction
decreases the pH of the soil solution (Stumm and Morgan, 1996) ul-
timately overestimates the amount of CO, in the solution. For calcar-
eous soils, increasing the CO, air fraction may also induce calcite
dissolution (Stevenson and Verburg, 2006; Stumm and Morgan,
1996; Tamir et al., 2011), leading to an abiotic production of total
CO, in the soil solution as H,CO5*, HCO3 and CO3~, even without
acidic substrates. Third, no check has been made to determine
whether the transfers between calcite, soil solution, air and gel can
be considered to be in equilibrium. Failure to approach equilibrium
would make calibration impossible. In addition, although tackled
by Oren and Steinberger (2008a), it remains important to know
whether most of the calcite dissolution caused by acidic substrate oc-
curs before or after microplate clamping.

Accordingly, the objective of this study was to improve the
MicroResp™ method by (i) including CO, in the gel carrying the
colorimetric indicator, (ii) refining microbial CO, in soil by describing
its effects along with those of substrates and calcite on the pH of
the solution, and quantifying calcite dissolution, and (iii) checking
whether CO, distribution among calcite, soil solution, air space and
the gel is near-balanced after 6 h incubation.

2. Materials and methods

The study combines modeling of CO, distribution during
MicroResp™ incubations based on geochemical equilibrium with
measurements performed on the gel, on a calcareous soil, and on
both combined in the MicroResp™ experimental design. For certain
incubations, the soil was sterilized and/or supplied with substrate
(e.g., glucose, glucosamine-HCl and Na,-malate as neutral, acid and
alkaline substrates, respectively).

2.1. Background of the MicroResp™ method

The MicroResp™ experimental design consists of two 96-well mi-
crotiter plates placed face-to-face (Campbell et al., 2003). One of the
plates, with a capacity of 300 pL - well™, holds 150 pL - well~! of
an agar gel (10 g - L™ 1) enriched in KCl (0.15 mol - L™ '), NaHCO;
(2.5 mmol - L™') and cresol red dye (32.7 umol - L™ 1) to estimate

CO,, air fraction based on gel absorbance at 570 nm. After preparation,
this plate is generally conserved for 7 d in a closed environment with
soda lime and water, without and with a protective Parafilm during
the first day and the 6 following days, respectively. The other plate,
with a capacity of 1.2 mL - well™ !, holds about 0.45 g - well ™! of
moist soil with or without substrate. Just before incubation, the
plate containing the gel is read with an absorbance microplate reader.
The two plates are then sealed together with a silicone rubber gasket
with interconnecting holes. After 6 h of incubation, the plates are
separated and the plate containing the gel is immediately re-read.
We have adapted the method to 24-, 12- and 6-well microplates
with silicone rubber gaskets manufactured in our lab to seal identical
plates.

2.2. Modeling of in-well CO, distribution and its effect on gel absorbance

The modeling study aimed to describe the relationships between
gel absorbance, CO, air fraction, amounts of total CO, in both gel
and soil solution (H,COs* (i.e., aqueous CO, and actual H,COs),
HCO3, C037), and calcite dissolution. Thermodynamic equilibrium
was considered for transfers between soil, air space and gel, for
acid-base reactions in solutions, for exchange of adsorbed cations
with H30™ in the gel solution, and for calcite dissolution. For the gel
and the soil solution, mass action laws were combined with equations
relating the balance of ionic charges and the total quantity of either
cresol red or substrate. Mass action laws were written with K’ con-
stants combining H30" activity and concentrations of other species.
In soil solution where ionic strength I =~ 15 mmol - L~ (Table 3),
activities are almost equal to concentrations, so K’ constants were
assumed to be equal to K constants combining activities only. In gel
solution where I~ 150 mmol - L™ !, K’ constants were estimated
from K* constants combining concentrations only or K constants
using species activities only. Deviations between K and K* are consis-
tent with independent estimates of activity coefficients.

CO, distribution among air space, gel and soil solution was
described by Henry's law. Henry constants, ky for water and soil solu-
tion and ky’ for saline solution and gel, were estimated from the
equations of Harned and Davis (1943) and Weiss (1974), respectively
(Table 1). Deviation between ky and ky' is consistent with the
increase in H,COs* activity coefficient in the gel calculated by the
Pytkowicz's (1975) equation (Table 1). The fugacity coefficient of
CO, in air was set to 1 (DOE, 1994). H,0 activity in gel and soil solu-
tion was set to 1 (Stumm and Morgan, 1996). K,, and K,,* constants
for H,0 ion product were estimated from the equations of Harned
and Owen (1958) and Millero (1995), respectively (Table 1). Ky,
and K, constants for the first and second dissociation of H,COs*,
respectively, were estimated from the equations of Weiss (1974)
(Table 1), and K,;* and K,* constants were estimated from the
equations of Millero et al. (2007) for NaCl solutions (Table 1), since
they differ from those for seawaters (Millero et al., 2006). In the gel,
cresol red, symbolized by H,CR, dissociates into HCR™ and CR?~.
The first dissociation is complete, as its pKcg; constant is about 1.1
(EI Nahhal et al., 2012; French et al., 2002; Heger et al., 2006; Smith
and Matachek, 2002), and the Kcg, constant of the second dissociation
was estimated by the equation of French et al. (2002) (Table 1). Kcgo'
was deduced from Ker, and HCR™ and CR?~ activity coefficients. An
exchange of adsorbed cations with protons in the gel was taken into
account empirically (see Eq. (7) below). Activity coefficients of ions in
the gel solution were calculated by the Davies equation (Table 1)
(Pankow, 1991), except for CR>~ where the two negative charges
have to be considered independently, as is the case with other
diprotic acids used as indicator dyes (Salvatore et al., 1986). We
thus extended the relationship that uses specific interaction theory
for bromophenol blue (Salvatore et al., 1986) in order to assess real-
istic variations in the pKcg, of the second dissociation of cresol red at
25 °C (Table 1). In soil, dissociations of acid and alkaline substrates
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Table 1

Thermodynamic parameters involved in the calculation of geochemical equilibrium. R is the gas constant (8.31441 J - mol~! - K~ 1), T the temperature (K), P the air pressure (Pa),

and S the salinity of the agar gel solution (expressed as equivalent g NaCl - kg™')).

Constant Equation

References

ky: Henry's constant for CO, solubilization in pure ﬁ — 10~ (=%

water
9345.17

kyy': Henry's constant CO, solubilization in saline water ﬁ =
Yhyco,.- activity of H,CO3" in saline water Yh,C05 +
K ion product of water in pure water

K,,': ion product of water in saline water

Kaq: first dissociation constant of carbonic acid in
pure water

=269238) ) +(~0.0178471xT)+15.5873) | 1000xRxT
P

+23.3585 x In (—) —60.2409+
exp 2 T x 1000
S x <0.023517 +0.00470356 x (—) —0.023656 = (—))

_ 1(0.00035863+(0.00196297 x5)
pKw = —logyo(Kw) = 447292 —6.0875 + 0.01706 x T
pKwx = —log(Kw*) = —log| exp

P = —log(Kg1) = —114.3106 + (377367) 1 (17.779524 x In(T))

Harned and Davis (1943)

T

100
1000xRxT Weiss (1974)

T

100 100

Pytkowicz (1975)

Harned and Owen (1958)

—13847.26
T

+((-5977+ “8T'67 +1.0495 x ln(T)) x (50»5))
+(=0.01615 x 5)

148.9802 + ( ) +(—23.6521 x In(T))

Millero (1995)

Weiss (1974)

B )
PKar# = — 10g(Ka1%) = pKa1 + A +71+ (Cy x In(T)) with :

Ka1*: first dissociation constant of carbonic acid in
saline water

A; =35.2911 x m%> + 0.8491 x m—0.32 x m'> + 0.055 x m?
B; = —1583.09 x m%>

Millero et al. (2007)

Cy = —5.4366 x m®>

Ka2: second dissociation constant of carbonic acid
in pure water

pKaz = —log(Kay) = —83.2997 + (4821:38) + (13.5962 x In(T))

Weiss (1974)

B )
PKap# = — log(Kay+) = pKag + Az + =2 + (C x In(T)) with :

K4*: second dissociation constant of carbonic acid
in saline water

Ay = 38.2746 x m®> +1.6057 x m—0.647 x m'> +0.113 x m?
B, = —1738.16 x m%>

T
Millero et al. (2007)

C, = —6.0346 x m%5

Kcro: second dissociation constant of cresol red in
pure water

Yere-*: activity coefficient for cresol red anion CR?~ Yer- = (2 X (70.5107 X (W)))—(—o,ws * M)

with 2 e charges

vi*: Davis equation of activity coefficients for ionic
compound i, having a charge z;, except for CR*

PKcro = — log(pKcra) = 2.049 + (224) + (1.266 x log(T))

log(y,) = —Ax 22 x ((1d;) —0.2 x1)

French et al. (2002)

Empirical equation
deduced from

Pankow (1991)

were taken into account: reactions considered for substrates containing
more than one acid or alkaline functional group were chosen based on
their pK and the pH of the soil (Table 2). For calcareous soils, the solubil-
ity constant Ks for calcite was set to 8.3, mirroring data reported by
Stumm and Morgan (1996) at 25 °C. The simulated increase of [Ca®*]
during incubations makes it possible to assess the release of abiotic
CO,. Geochemical simulations were performed on soils at various CO,
air fractions for different substrates and amounts of substrates. pH
was adjusted so as to cancel the sum of charges of ions in solution.
The variation A[CO,]i in total CO, concentration in the solution
(H,CO5* HCO3 and CO3 ™) minus the increase A[Ca?*]in Ca?™* amount
for calcareous soils between the considered and 0.04% CO, air fractions
was then fitted by empirical functions:

A[COy] i —A[Ca™"| = a x (1€0,),) —, (1)

Table 2
Retained acid-base reactions for substrates used in MicroResp™ measurements for
soils whose pH(water) is about 7.5-8.5.

Substrate Acid form Charge of the Charge of the pKa
supplied acid form alkaline form
Glucosamine-HCI CgH13NOs-HCI +1 0 115
Na,-malate Na,-C4H405 —1 -2 5.1
Alanine C3H7NO, 0 —1 9.71
Glycine C,HsNO, 0 —1 9.58

where the three parameters g, b and c are specific to each combination
of soil, substrate type and substrate amount. Considering initial and
final CO, air fractions eliminates the reference to 0.04% CO, that was in-
troduced to facilitate the adjustment of empirical functions. For each
soil and each substrate, parameters a, b and ¢ can be obtained by fitting
Eq. (1) to geochemical simulations based on equations proposed in this
paper. It requires having first at 0.04% CO, rough estimates of the sum of
charges of ions other than H;0%, HO™, HCO3 and CO3 ™ in the soil solu-
tion and, for calcareous soils, the contribution of Ca?* to this sum. These
values can be estimated from chemical analysis and by fitting simulated
pH to pH measured on soil slurries at different CO, partial pressures.

The measured dimensionless absorbance Apy is the sum of the
absorbances of empty microplate A, agar gel without cresol red A,
and cresol red Acg:

Ay = Ae +Ag + Ay 2)

Acr may be expressed as a function of HCR~ and CR?~ concentrations:
A = nx- * Iy x HOR ]+ £ge- x Iy [CRZ*], 3)

where I, is the path length of light through the gel (m), and ycr— and
&cge- the molar absorptivities of HC(R™ and CR?~ (L - mol™! - m™1),
respectively. Combining Eqs. (2) and (3) with a mass action law for
the second dissociation of cresol red and a related equation for the
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stability of total cresol red amount leads to the following estimate of gel
solution pH:

PH = pKcgy’ + logyg (APH_/SAG ++Azl_—£':m;x XA(%») ) 4)
max e g |~ “lpH

where A,y (= Ecge- x Iy x [CRM]> is the absorbance of cresol red when
it is in CR?~ form only. The ratio &y~ /€cgz- Was set to 0.0019, in line
with Smith and Matachek (2002) at 574 nm. The concentration of
H,COs* in the gel solution may then be estimated as:

Yhzo*

Aqg+ <10*P”> +prﬂJKw’
[H,CO3+]

()

= 10PHPK " (2 x 102PH=(PKa1+PK:2))

where Agy is the net charge of ions other than H;0", HO~, HCO3 and
CO%~ in the gel solution (mol ¢* - L™1). It would be equal to the con-
centration [Na”’}NaHCO3 of Na™ supplied as NaHCO; (mol - L~1) if agar
did not affect the solution, which is not the case (Ferreira et al., 2012;
Lahaye and Rochas, 1991; Scholten and Pierik, 1998):

Agg = [Na*] NaHCO, +

Ac’, (6)
where Ac™ is the net concentration of charges (mol ¢t - L™1!) of ions re-
leased by agar. Ac* increases with decreasing pH of the gel, as in other
media (Renault et al., 2009), so we assumed the following equation:

(6hs)°
AC+ = AC;inJr + AC;ax X 1_% ) (7)

T+ (PHl/z)a

where Ach, is the concentration of charges released by agar at a high
pH (mol ¢™ - L™1), Ach.x the maximum concentration of charges re-
leased during acidification (mol c* - L™1), pHy, the pH at which one
half of the initially-adsorbed charges are released, and « an empirical
constant related to the sharp or gentle release of charges with changes
in pH around pH ~ pH; . Q4(CO,), i.e., the amount of CO, stored in the
gel (mol) as H,CO3*, HCO3™ and CO3~ is then easily estimated:

Q4(C0,) = V, x [H,CO34]
« (-1 + ]OPH—PKM' + (2 x 102PH_(PKa1'+PKaz'))) (8)

where Vj is the volume of the gel (L). While the CO, air fraction is initial-
ly the lab CO; air fraction not in equilibrium with the gel, its final value is
assumed to be in equilibrium with the gel and estimated from Henry's
law (Table 1):

[COyJ, = kyy' x [HyCO3]g, 9

where subscripts a and g stand for air and gel, respectively. The amount
of CO, stored in the air space is estimated as:

Qa(C0O,) =V, x [COy,, (10)

where V, is volume of the air space (L). Thus variations in CO, quantities
in both gel and air space are estimated from the amounts of CO, in these
compartments at the start and the end of incubations, assuming that the
gel is not in equilibrium with the air space or the soil solution at the
start. By contrast, empirical functions (Eq. (1)) are used to estimate
the variations AQs(CO-,) of amount of CO, in soil solution (mol) minus
CO,, released by calcite dissolution:

AQ,(€0,) = V; x (B[O or-6n— [zl (11)

where V is the volume of the soil solution (L). A negative value means
that abiotic CO, production exceeds the total amount of CO, stored in
the soil solution.

In addition, we assume that the variability in A,y between wells of
a given plate results from the variability in light path length [,. Initial
and final absorbances Ay of each well were therefore replaced by
absorbances Ay’ by taking into account the initial absorbance of the
target well Ap(t = 0) and the mean absorbance Apy(t = 0) across
all the wells in a plate:

, Ao (t=0)—A,
Ap’ = Ac + <(M> x (ApH—Ae)>. (12)

In this way, Apn, Ag and Amax can be replaced by Apy’, Ag and Amax,
respectively, in Eq. (4). When A. ~ 0, Eq. (12) approaches the correc-
tion of Campbell et al. (2003):

AL(t=0
A~ (ﬁ) x Ap. (13)

At about 80 °C, the gel is distributed in greater amounts than de-
sired, i.e., 0.20, 0.94, 1.74 and 4.09 mL instead of 0.15, 0.664, 1.314
and 3.27 mL for 96-, 24-, 12- and 6-well plates, respectively, and
mean gel thickness I, (mm) varies with plates, i.e., 5.51, 4.68, 4.38
and 4.13 mm, for 96-, 24-, 12- and 6-well plates, respectively. There-
fore, A; and Ama.x were estimated from measured values on 96-well
microplates according to the following equations:

A (n, = 1) = <_lg("w_')> x Ag(n, = 96), (14a)
L, (n,, = 96)
N E(nw = l) o
Amax (N, =1) = (lg(nw - 96)) % Apax (Ny = 96), (14b)

where n,, is the number of wells of the microplate considered.

Thus estimating the amount of microbial CO, produced during
MicroResp™ incubations hinges on knowing the values of three param-
eters concerning absorbance (A, A_g and Amax) and four parameters
concerning the exchange properties of the gel (Acihin, AChax PHis2,
and ). All other parameters may be estimated from the literature.

2.3. Experimental approach

2.3.1. The soil

Measurements were performed on a calcareous cambisol (FAO
classification) from the INRA Saint-Paul experimental station (43°91’ N,
4°88' E) near Avignon. It was cultivated with peas in 2008, but since
summer 2008 the soil lay bare. Annual rainfall is about 650 mm.
About 20 kg of this soil was sampled in the first 10 cm depth at the
edge of a 0.0075 ha experimental field on 8 December 2011. Its
moisture was about 21.3 % wt/wt. The soil was air-dried for 4 d in the
lab (14 % wt/wt residual moisture), mechanically crushed, sieved at
2 mm for soil analyses and at 2-3 mm for experiments, and stored at
4 °C in hermetically-sealed bags until the beginning of the experiments.
Its properties, measured at the Laboratoire d'Analyse des Sols (LAS-INRA)
in Arras (France), were as follows: 347 g kg~' CaCO; and, after
decarbonation, 323 g kg~ ! clay; 259 g kg~ ! silt; 41 g kg~ ! sand;
13.2 g kg~ ! organic C; 1.54 g kg~ ' total N; 1.4 mg kg~! N-NHJ;
101 mg kg~ ' N-NO3". Soil pH(water) and pH(KCI 1 M) were 8.51 and
7.85, respectively. Chemical properties of solutions for soil-to-solution
mass ratios of 1, 2.5 and 5 (Table 3) were used to assess composition of
the soil solution in MicroResp™ incubations. For geochemical simulations
on this soil, we assumed that the sum of charges of ions other than H;0,
HO™, HCO3 and CO%~ was equal to 4.6 mmol ¢* - L™, including the
initial concentration of Ca®>* equal to 6 mmol ¢™ - L™
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Table 3
Chemical properties of the solutions for mixtures of soil-to-solution mass ratios of 1,
2.5and 5.

Dilution pH(water) Ca?* Mg** Kt NO; (I~
mmol - L™!
5 7.56 0.47 0.049 0.212 0.28 0.019
25 7.84 0.71 0.078 0.252 0.54 0.025
1 7.88 1.38 0.173 0.360 1.12 0.057
Limit for ® = 31%* 7.97 2.96 0.426 0.523 3.06 0.120

2 Linear regression of Ln values.

2.3.2. Experiments on the gel

The agar product used in this work was the Merk 1614 product. Its
properties are presented and compared with those of other market
products in Scholten and Pierik (1998).

2.3.2.1. Calibration and assessment of the relationship between Apy'
and CO; air fraction. We used an EL800 absorbance microplate reader
(BioTek Instruments Inc., Winooski, VT) to measure (i) absorbance of
empty microplates (A.), (ii) mean absorbance of microplates filled with
gel prepared as in the MicroResp™ method (Campbell et al., 2003), but
excluding cresol red (A. + Ag ), and (iii) mean absorbance of microplates
filled with gel with or without added cresol red and in which NaHCO;
25 mmol - L™! was replaced by NaOH 10 mmol - L™! to ensure a
pH > 11. The mean maximum absorbance of cresol red as CR?>~ (Amax )
was estimated by the difference in absorbances at pH > 11. Just after
reading the absorbances, gel pH was measured in 8 wells of each
microplate using a 16-gauge micro-combination needle pH probe
(MI-414B, Microelectrodes, Inc., Bedford, NH) gently touching the bot-
tom of the wells and connected to a Bioblock Scientific 93327 pH-EH
meter (HANNA Instruments, Smithfield, RI). Additional measurements
were performed to assess the relationship between Apy’ and the pH of
the gel solution: for agar gel with or without added cresol red and buff-
ered at pH = pKcg> by replacing NaHCO5 2.5 mmol - L~ with H3BO;
0.50 mol - L™ ! and NaOH 0.65 mol - L™, and for microplates prepared
according to the MicroResp™ method after 24 h in sealed bags
containing either dry soda lime and water in distinct capsules or air
enriched with 1.5% CO,. To estimate Acihin, AGhax, PH12 and «, we set
out to obtain the relationship between Aq, and gel pH after equilibrating
the gel with air enriched by 0.5%, 1% and 1.5% CO,. To better circumvent
the effect of the gel, we simultaneously measured the pH of a solution of
the same composition, but without agar, equilibrated with CO,-enriched
air. However, the calculations are highly sensitive to gel pH, and 0.5% or
more CO, bars insight into pHs higher than 7.6. Therefore, parameters
Achin, Achax, PHip and « were empirically refined to ensure that
(i) the calculated CO, disappearing from the air space of empty wells
over 6 h balanced against the CO, stored in the gel of these wells in
96-well microplates, and (ii) the respiration rate estimated for 6 h incu-
bation in wells of 24-well microplates filled with either 0.6, 1.2, 1.8 or
2.4 g of moist soil did not depend on the final CO, air fraction in the
wells. The relationship between gel absorbance and CO- air fraction
was checked for microplates filled with gel previously equilibrated 5 d
with CO, air fractions of 0.5, 1, 1.5 and 2% at about 22.5 °C after being
stored uncovered in sealed plastic bags with soda lime and water for 6 d.

2.3.2.2. Kinetics of CO, exchange between the air space and the gel. Just
after being filled with gel, two 96-well microplates were stored for
1 d in sealed plastic bags that contained dry soda lime and water in
distinct containers, and two other microplates in sealed plastic bags
with air enriched by 1.5% CO,. Just after opening a bag, one of the
two microplates was used for absorbance measurements every 2 to
5 min for 6 h at about 22.5 °C, while the other was used to record
the pH of the gel every 1 to 5 min in a single well, using the
16-gauge micro-combination needle pH probe. Beyond 6 h, drying
led to cracks in the gel of some wells.

2.3.2.3. Effect of microplate storage on the initial state of the gel. Since
soda lime partly dries the gel and extracts CO, supplied as NaHCOs,
we checked whether absorbance varied between microplates pre-
pared simultaneously and kept for 7 d in a poorly-closed desiccator
with dry soda lime and water in separate capsules, in a sealed plastic
bag with dry soda lime and water in separate capsules, and in a sealed
plastic bag with soda lime and water in the same capsule. In addition,
we monitored the kinetics of gel desiccation in microplates stored for
7 d in sealed plastic bags with dry soda lime and water in separate
capsules, one of them being covered with a plastic film after 1 d of
storage, the other remaining exposed.

2.3.3. Experiment on the soil

2.3.3.1. Ability of the model to simulate the pH of soil solutions for various
CO, air fractions. Since retained reactions greatly simplify the complex
geochemistry of soils, we checked whether they permit the pH of a
soil solution to be simulated and whether the calcite dissolution that
results from an increase in CO, air fraction or the supply of an acid
substrate could be described by a thermodynamic equilibrium. The
relationship between CO, air fraction and pH of the soil solution was
assessed on soil slurries with a water-to-soil mass ratio of 1, 2.5 and
5 after equilibrating with either lab air (between 0.04 and 0.12% CO;)
or air enriched by 0.5, 1, 1.5 and 2% CO,, respectively, by sparging
with air and stirring the slurry.

2.3.3.2. Abiotic CO, emissions after supplying acid substrate to the soil.
Soil was autoclaved at 121 °C and 0.1 MPa for 1 h, incubated for 2 d,
then autoclaved a second time for 1 h at the same temperature and
pressure to eliminate any microorganisms that were not destroyed in
the initial autoclaving (Skipper et al, 1996). Then 24 wells of a
96-well microplate were filled with sterilized soil, while 24 other
wells were filled with non-sterilized soil. For each modality, 6 wells
each were supplemented with either 0.05 mL of water or with a
mixture of 0.025 mL water plus 0.025 mLof a 120 mg - mL™! solution
of glucose, glucosamine-HCI or Na,-malate, respectively. Abiotic emis-
sions due to glucosamine-HCl supply were estimated from 6 h incuba-
tion and compared with biotic emissions on unsterilized soil.

2.3.4. MicroResp™ incubations of various times and for various amounts
of soil

Three MicroResp™ incubation sets were performed to assess and
illustrate the new MicroResp™ data analysis. In a first set of incuba-
tions, the wells of four 24-well microplates were filled with 0.6, 1.2,
1.8 or 2.4 g of the same soil at 19 wt.% soil moisture supplemented
with 0.033, 0.066, 0.099 or 0.133 mL of water, respectively, and
0.033, 0.066, 0.099 or 0.133 mL of a 120 mg - mL™" solution of
glucose. The microplates were then incubated at 22.5 °C for 6 h. Re-
sults served to estimate the parameters « and pH;,; and to assess
the relative contributions of gel, air space and soil solution to CO,
storage. In a second set of incubations, the wells of five 96-well
microplates were either left empty or filled with about 0.38 g of soil
initially at 19 wt.% soil moisture supplemented with 0.05 mL of
water or 0.025 mL of water and 0.025 mL of a 120 mg - mL™! solu-
tion of glucose, Nay,-malate or glucosamine-HCl. The microplates
were then incubated at 22.5 °C for 1, 2, 4, 6 and 8 h. Results served
to check whether estimated microbial respiration was incubation
time-dependent. A third set of experiments was performed solely to
illustrate variations in microbial CO, production with changes in sub-
strates. Only one 96-well microplate was used; the wells were filled
with about 0.38 g of dry soil initially at 19 wt.% soil moisture and
supplemented with 0.05 mL of water or with 0.025 mL of water and
0.025 mL of a 120 mg - mL™ ! solution of glucose, sucrose, trehalose,
mannose, cellobiose, dextrin, glucosamine-HCI, alanine, glycine or
Na,-malate.
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3. Results and discussion
3.1. Calibration of the relationship between A,y' and the CO, air fraction

The means and standard deviations of the absorbances of empty
microplates (A.) were 0.030 and 0.001, respectively. The means and
standard deviations of the absorbances of the wells filled with gel
without cresol red (A. + Ag) were 0.171 and 0.009, respectively.
Thus an estimate of Ag is 0.141, the variability in A can be neglected
given its low contribution to Apy, and the standard deviation of Ag is
nearly 0.009, leading to a variation coefficient of Ag of about 6.2%.
Similar estimates for A; mean and standard deviation were obtained
for agar gel without cresol red and for pH ~ 11.7 and pH = pKcgy/,
although slightly lower when borate was used to buffer the gel solu-
tion. The means and standard deviations of the absorbances of
microplates with gel carrying cresol red and having a pH > 11 were
0.987 and 0.030, respectively, while the means and standard devia-
tions of absorbances of microplates with gel without cresol red and
having a pH > 11 were 0.162 and 0.008, respectively. Thus an esti-
mate of Amax is 0.825. Although an exact estimation of the A, vari-
ation coefficient is impossible, it should be lower than that of A, in our
experiment. Using these values and the calculated pKcg: to simulate
variations in the absorbance Apy as a function of the pH of the gel so-
lution correctly reflects experimental data (Fig. 1). The pH generally
decreases from 9 to 10 at the beginning of incubation (depending
on the efficiency of the soda lime to remove CO, from the gel) to
more than 7.1, a value rarely reached, which corresponds approxi-
mately to 2% of CO, in the air space.

The initial vs. final absorbances of empty wells (i.e., Apu(t = 0)
and Apu(t = 6 h), respectively) strongly suggest that Acqh, is close
to or slightly lower than zero, and that there is no exchange of
adsorbed cations with HsO™" in the gel solution at pH > 8: the oppo-
site (i.e., Acihin = 0 and/or Act >> 0) would require an unrealistical-
ly high initial CO, air fraction in the air space of the wells to explain
the change in absorbance measured for these wells (results not
shown). The pHs of the solution of the same composition as the gel
in the MicroResp™ method but without agar and in equilibrium
with 0.5%, 1% and 1.5% CO, were 7.49, 7.16 and 6.98, respectively.
These values correspond to a net Aqg of about 3.05, 2.85 and
2.82 mmol ¢ - L™, respectively, which is near the 2.5 mmol - L™!
of Na* supplied as NaHCOs. By contrast, the pHs of the agar gel in
equilibrium with 0.5%, 1% and 1.5% CO, were 7.66, 7.41 and 7.22,
respectively. These values correspond to a net Agg of about 4.50,
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Fig. 1. Relationship between pH of the agar gel and mean of the measured absorbance
Aph (Apn = Ae + Ag + Acg) over the 96 wells of a microplate. The X coordinates of the
experimental points are directly-measured pH. The Y coordinates of the experimental
points are directly-measured absorbances when the gel matched the composition used
in the MicroResp™ method, whereas for non-matched gels they were recalculated to
replace the absorbance of the modified gel by the actual absorbance of the gel matched
to the composition used in the MicroResp™ method.
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Fig. 2. Relationship between means of measured absorbance Ay (Apy = Ae + Ag + Acr)
over the 96 wells of a microplate and CO, air fraction in equilibrium with the microplates.

5.03 and 4.89 mmol c¢* - L™, respectively, suggesting that Aqg in-
creases with a decrease in pH in this pH range with a Acj,, probably
higher than 2. We set Acj.x to 3.0 mmol ¢t - L™ ! in order to obtain a
good fit of the relationship between the air CO, fraction and the
absorbance at 570 nm on experimental data for 0.5%, 1%, 1.5% and
2% CO, (Fig. 2). Parameters pHy,; and « were set to 7.7 and 80,
respectively, by minimizing differences in the respiration rates of
various amounts of the same soil (see below), making it possible to
simulate a majority of cation exchange for pH values between 7.4
and 8.

3.2. Effects of soil alkalinity, substrate and calcite on soil pH and microbial
CO, in solution

While solute concentrations were highly dependent on water-to-soil
mass ratio (Table 3), pH measured on soil slurries in equilibrium with a
range of CO, air fractions was only slightly dependent on water-to-soil
mass ratio (1, 2.5 and 5 in this work), but highly dependent on CO, air
fraction (Fig. 3). Simulations performed for soil solutions in equilibrium
with calcite and having an initial [Ca? 7] near the value extrapolated for
soil solutions at the start of MicroResp™ incubations were used to sim-
ulate slurry behavior. Although this was not the objective of these mea-
surements, the simulations confirmed that pH(water) (8.51 for our soil)
differs from the pH of the soil solution in equilibrium with lab air (pH
slightly lower than 8 here), since alkaline soil solution can trap a large
amount of gaseous CO,, but only very slowly in the absence of facilitated
transfer (vigorous stirring and bubbling).

Empirical functions were then easily obtained from geochemical
modeling to estimate the amount of microbial CO, stored in the soil

9.0
A 1.0mL.g-1

8.5
:E. 0O 2.5mL.g-1
=
O 8.0 - O 5.0mL.g-1
)
g — Simulation
7] 7.5
=
8 7.0

6.5 T T T

0 0.5 1 1.5 2

CO, AIR FRACTION (%)

Fig. 3. Measured pH of soil slurry as a function of CO; air fraction in equilibrium with it
by simultaneous air bubbling and slurry stirring. Simulations were performed for soil
at weight moistures as in MicroResp™ incubations.
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Fig. 4. Simulated amount of total CO, (mol - L~ ') minus CO, derived from calcite dis-
solution as a function of air space CO, fraction for a soil solution in equilibrium with
calcite and initially having a sum of charges other than H;0", HO~, HCO5 and CO3~
equalto —4.60 102> mol ¢™ - L™ 'and +6.00 102 mol ¢ - L~ Ca®™, and for differ-
ent amounts of Na,-malate substrate (0, 10, 20, 30 and 42 g - L™"). Zero values indi-
cate that total CO, in the soil solution is equal to CO, release by calcite dissolution.
Negative values mean that calcite dissolution releases more CO, than was initially
contained in the soil solution, indicating that CO, is partly transferred to the air and
agar gel in the well.

solution (H,CO5*, HCO3 and CO3~) minus the amount of total abiotic
CO, emitted by calcite dissolution. The variation of A[CO;]¢ in total
CO, concentration in the solution (H,CO5* HCO3 and CO3~) minus
the increase A[Ca®™] in Ca®™ concentration for calcareous soils be-
tween the considered CO, air fraction and the 0.04% CO, air fraction
was then fitted by empirical functions. An example of these functions
for several amounts of Na,-malate is proposed in Fig. 4, and empirical
coefficients defined in Eq. (1) for these functions are presented in
Table 4 for the relevant soil.

3.3. Kinetics of transfer and calcite dissolution and the effects on MicroResp™
estimation

Microbial respiration rate was assessed in a soil sterilized and subse-
quently supplied with a slightly acidic substrate (glucosamine-HCl) to
indirectly check whether calcite dissolution can be described by a ther-
modynamic equilibrium system. The results showed that abiotic CO,
microbial respiration can be neglected, as absolute values were small
(350 10~ ! pg C-CO, - g~ ' soil - h™!) compared with unsterilized
soil enriched with the same substrate (3.23 pg C-CO, g~ ! soil - h™1),
and positive or negative sign was dependent on the initial in-lab CO,
air fraction.

Fig. 5a-b illustrates the changes in the pH of the gel solution and
in the absorbance A,y of microplates initially stored in sealed plastic

Table 4

Retained coefficients a, b and ¢ used in Eq. (1) to describe variations in amount of
microbial CO, in the soil solution (i.e., the total amount of H,CO3* + HCO3 + CO3%~
reduced by the contribution of calcite dissolution to this pool) with regard to microbial
CO,, at 0.04% CO, air fraction:.
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Fig. 5. Changes (a) in absorbance Apy and (b) in the pH of the gel solution of
microplates initially stored in sealed plastic bags enriched with either 1.5% CO, or
with soda lime and water in separate capsules, and exposed to lab air.

bags either enriched with 1.5% CO, or containing soda lime and
water in distinct capsules and exposed to lab air. Superimposed yel-
low and pink color layers (corresponding to CO,-enriched air and
CO,-free air, respectively) in microplate well gel were clearly visible
for long periods of these experiments. These observations indicate
that CO, transfer between the air space and the gel is low and that
equilibrium is reached only after about 4 h. This is mainly because
low CO, transfer in the gel prevents a quick redistribution of CO,
when it accumulates or disappears in the gel near the interface with
air. For MicroResp™ microplate wells where microbial CO, produc-
tion was continuous over the 6 h of incubation, it is reasonable to
consider that equilibrium is never reached and that the estimated
microbial respiration a priori underestimates actual respiration.
However, the relative bias resulting from the equilibrium hypothesis
will decrease with increasing incubation times. Staggered incubations
(1, 2,4, 6 and 8 h) of soil enriched with glucose suggest that 4 h is the
minimum time requirement for incubations and that the 6 h incuba-
tion proposed in the MicroResp™ method is reasonable (Fig. 6).
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Fig. 6. Microbial respiration rates (g C-CO, - g~ ' dry soil - h~!) estimated from soil
incubation in 96-well microplates for 1, 2, 4, 6 and 8 h, without substrate (Y coordinates
on the right) and with glucose (Y coordinates on the left).
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Initial state of the gel may vary with initial storage time and condi-
tions. For example, the initial absorbance of 96-well microplates varies
between simultaneously-prepared microplates stored for 7 d in a
poorly-closed desiccator with dry soda lime and water in separate cap-
sules (Apn (t = 0) = 0.90), a sealed plastic bag with dry soda lime and
water in separate capsules (Apy(t =0) = 1.04), and a sealed plastic
bag with soda lime and water in the same capsule (Apy (t = 0) = 0.97).
For plates stored in sealed plastic bags, differences in Ay (t = 0) between
dry soda lime and water in separate capsules and in the same capsule
may have resulted from differences in gel desiccation, which would ex-
plain why Apy(t=0) exceeds the maximum simulated absorbance

Ae +Ag + Amax = 0.996 ). The kinetics of gel desiccation in microplates
stored for 7 d in sealed plastic bags with dry soda lime and water in sep-
arate capsules varies greatly with the presence or absence of a plastic film
covering the wells (Fig. 7). The procedure proposed in the MicroResp™
method therefore appears to have been adapted to protect the gel from
desiccation. However, the initial absorbance may still vary with the
amount of CO, extracted by soda lime during plate storage. This amount
has to be taken into account in microbial respiration estimates. However,
the worst-case scenario would be the gel drying out, which would ulti-
mately modify the value of the sum Aqg, and skew the calibration. For
this reason, it is essential to take all feasible precautions to protect the
gel from partial drying. Repeated use of the same microplate gels
“regenerated” between consecutive incubations by exposure to soda
lime should be ruled out. Finally, we note that microplates with an initial
absorbance Ayp (t = 0) of about 0.90 would correspond to a gel of about
pH 9.1 and about 0.0073% CO, air fraction, indicating that the NaOH
partially replaces NaHCOs; within the gel during storage due to CO,
extraction by the soda lime.

3.4. The effects of soil mass and substrate on respiration estimated from
6 h incubation

The 24-well microplates that were filled with 0.6, 1.2, 1.8 and
2.4 g of the same soil at 19 wt.% soil moisture and supplemented
with 0.033, 0.066, 0.099 and 0.133 mL of water and 0.033, 0.066,
0.099 and 0.133 mL of a 120 mg - mL™" solution of glucose, respec-
tively, were then incubated at 22.5 °C for 6 h. Although the results
partly contributed to calibration (pH;, and o were estimated so as
to minimize differences in estimated microbial respirations between
these four soil weights), they show that estimated soil microbial res-
piration is not dependent on soil weight and therefore not dependent
on CO; air fraction at the end of the incubations (Fig. 8). This is all the
more interesting as there is a variation in the relative proportions of
total CO, in the gas phase in the soil solution and in the gel (Fig. 9).
The accumulation of CO, during the 6 h of incubation is always stron-
ger in the gel than in the air space and the soil solution, especially
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Fig. 7. Change in the weight of microplates filled with agar gel during its initial 7-day
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Fig. 8. Microbial respiration rates (ug C-CO, - g~ ! dry soil - h™!) estimated for differ-
ent amounts of soil (0.6, 1.2, 1.8 and 2.4 g of fresh soil at 19 wt.% soil moisture)
supplied with water and glucose.

when final CO, content is low. Low final levels of CO, air fraction
are common for soils incubated without substrates or with inefficient,
poorly-used substrates. These results clearly demonstrate that we
cannot neglect variations in the amount of CO, in the gel. The fraction
of CO, stored in the soil solution cannot be neglected, but it can be es-
timated with less precision in view of its low contribution to the total
accumulation of microbial CO,.

We then tested this new mathematical procedure for estimating mi-
crobial respiration from MicroResp™ incubation on various substrates
(Fig. 10). As already observed in Fig. 9, the new method leads to esti-
mates of microbial respiration rates 2 to 4 times higher than esti-
mates considering only CO, accumulation in the air space of the
wells. Microbial respiration rates decreased in the following order
of added substrate: sucrose > glucose > malate > glucosamine-HCl >
cellobiose > alanine > mannose > dextrin > trehalose, and microbial
respiration rates were between 5 and 15 times stronger in the soil with
substrate than in the soil with water only. The coefficients of variation
of individual measurements (i.e., in a well) ranged from 6.3% (soil with
water) to 53% (soil + trehalose).

4. Conclusion

Here we propose a novel and more complete description of
the fate of CO, during soil incubation in the wells of microplates
used in the MicroResp™ method; for the first time, the storage of
CO, (as H,CO5* HCO3 and CO3 ™) in the gel carrying the colorimetric
indicator and the effects of CO, on the pH of the soil solution and, in
calcareous soils, the dissolution of calcite are now taken into account.
The comparison between the experimental data and simulations
shows that this improved model makes it possible to simulate the
main geochemical processes involved in the fate of CO,. It yields
appropriate estimates of microbial CO, production, as shown by
6 h-plus incubations of 0.6 to 2.4 g of soil (in 24-well microplates)
An incubation time of 6 h is a good compromise between the need
for short incubations to prevent microbial growth/selection and the
need for long incubations to reduce the gradient in CO, distribution
within the gel and between the gel and the air space. The final
proportion of CO, stored in the indicator gel is far from negligible,
especially when the final CO, air fraction is low, as is the case for in-
cubation of soil without substrate or with substrates that are difficult
to consume. Incubation for less than 4 h may underestimate microbi-
al respiration, since CO, dissolution and transfer within the gel are
both slow processes. The amount of CO, in the gel at the start of incu-
bation depends on the level of CO, (supplied as NaHCO3) extraction
by soda lime while the gel is in storage. Extracted CO, varies with
microplate distance to soda lime, duration of the exposure to soda
lime, etc. Storage may partially desiccate the gel and modify the
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Fig. 9. Distribution of microbial production of CO, in microplate well gel, air space and
soil solution as a function of (a) 0.6 g, (b) 1.2 g, (c) 1.8 g and (d) 2.4 g of fresh soil
(19wt.% soil moisture) supplied with water and glucose, corresponding to estimated
final CO, air fractions equal to 0.32, 0.57, 0.99 and 1.74% CO,. For the calculations,
abiotic CO, originating from calcite CO, was assumed to be in the soil solution only.
This slightly minimizes the contribution of soil solution to CO, storage based on calcu-
lations assuming even CO, distribution between soil solution, air space and gel.

relationship between CO, partial pressure and gel absorbance, and so
repeated use of the same microplates “regenerated” between consec-
utive incubations by exposure to soda lime should be avoided. CO,
stored in the soil cannot be neglected, but an increase in CO, partial
pressure decreases the pH of the soil solution and, in the case of
calcareous soils, generally promotes calcite dissolution. Neglecting
this decrease in pH or the dissolution of calcite would lead to an
overestimation of biotic CO, production. Since microbial CO, production
in soils without substrate often leads to a final CO, fraction of less than
0.4%, it is important to have a good estimate of the initial CO, partial
pressure (varying between 0.04 and more than 0.1% in lab air), possibly
by having empty wells with gel. It is also vital to keep firm control over
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Fig. 10. Example illustrating microbial respiration rate for several added substrates.
Microbial respiration rates have been estimated by taking into account either CO,
accumulation in air only or CO, accumulation in the gel, air and soil solution minus
the CO, issued from calcite dissolution.

temperature, which can affect all the thermodynamic constants as well
as microbial activity.

Authors can provide on request an Excel file to perform all
calculations.
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