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This paper presents a different approach to classify Self-Mixing (SM) signals operating in moderate
feedback regime. A total of 6 distinct classes of SM signals can be defined based on the SM inherent
shapes which depend on both the feedback factor C and the linewidth enhancement factor α. This
classification allows to clearly identify SM signals for which normalization issues can arise and thus for
which displacement precision is inherently reduced due to the very nature of signal itself. Finally, it is
shown that phase unwrapping approaches can theoretically retrieve displacement with subnanometer
precision for usual laser diodes in moderate feedback regime, in the absence of noise, only for α values
greater than 4.3 approximately.

OCIS codes: (120.7280) Vibration analysis; (120.3180) Interferometry; (120.0280) Remote
sensing and sensors
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1. Introduction

Self-Mixing (SM) interferometry [1–4] remains an
active area of research for displacement sensing [5–
8]. For displacement sensing, SM moderate optical
feedback regime is being regularly exploited [9–
11] as its supposedly straight-forward signal shape
leads to simplified signal processing. The aim of
this paper, however, is to demonstrate that 1) SM
signals considered to be belonging to moderate feed-
back regime can be further classified and more im-
portantly 2) certain SM signal classes may not lead
to correct displacement retrieval.
SM signal shapes have been reported to depend

on the so-called optical feedback coupling factor C
as well as the laser diode (LD) linewidth enhance-
ment factor α [1, 2]. Different methods have also
been proposed to measure C and α [12–14]. The
former parameter C, depending notably on the re-
mote target surface reflectivity and the distance

∗ Corresponding author: bernal@enseeiht.fr

to the remote target, is usually used to discrimi-
nate between three main different optical feedback
regimes [1, 2]:

• 0.1 < C < 1: weak feedback regime with
sinusoidal or asymmetric SM interferometric
fringes devoid of sharp discontinuities.

• 1 < C < 4.6 : moderate feedback regime with
sawtooth-like SM interferometric fringes ex-
hibiting hysteresis.

• 4.6 < C : strong feedback regime with fringe-
loss that ultimately leads to a fringe-less SM
signal.

The moderate feedback regime, as already men-
tioned, is often sought for displacement sensing.
Here, displacement can be retrieved either by lock-
ing the interferometric phase to half fringe [11] or
by unwrapping the interferometric phase. Vari-
ous SM phase unwrapping methods exist includ-
ing direct phase unwrapping [15], parametric esti-
mation based unwrapping [16], and phase segmen-
tation based unwrapping [17]. Each of these pro-
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vides increasingly improved displacement measure-
ment precision respectively at a cost of increased
processing complexity respectively.

Note that such unwrapping methods seek mod-
erate feedback regime since, in such a regime, SM
signals present strong discontinuities which are used
by phase unwrapping methods as points of reference
[15–18]. Further, a normalization procedure is es-
sentially required by such methods as a first step.
However, up to now, to the best of our knowledge,
normalization issues were only pointed out for one
way target displacement (the target moves in one
direction only) [18]. So, in this paper, we shall fur-
ther analyze in detail moderate regime SM signals
in order to know if other kind of normalization is-
sues may exist. It is from this analysis that a novel
classification of SM signals in moderate feedback
will emerge.

The paper is organized as follows. After a short
introduction of the main characteristics of SM sig-
nals, we shall derive from established SM equations
a new way of classifying SM signals that does not
rely only on C value as it has usually been previ-
ously done [2], but also takes into account the α
value. We shall then be able to show that the mod-
erate feedback regime can be divided into 6 distinct
classes out of which only 3 can lead to a proper
target displacement retrieval using phase unwrap-
ping methods. Finally, normalization error effects
on retrieved displacements will be estimated and a
conclusion on the achievable performances of phase
unwrapping methods will be drawn.

Let us start with a theoretical background of SM
phenomenon.

2. Theory of Self-Mixing

The theory of SM interferometry has been described
by various authors [19]-[20] and is briefly summa-
rized below. Let D (t) represent the instantaneous
distance between the LD driven by a constant in-
jection current and a remote surface that back-
scatters a small amount of optical power back into
the LD cavity. To highlight the vibration displace-
ment d (t), D (t) can be expressed as follows:

D (t) = D0 + d (t) , (1)

where D0 is the distance at rest.

When this optical feedback phenomenon occurs,
the laser wavelength is no longer the constant λ0

but is slightly modified and becomes a function of
time λF (t) varying with D (t). The wavelength
fluctuations can be found by solving the phase equa-

tion [2]:

x0 (t) = xF (t) + C sin [xF (t) + atan (α)] (2)

= G [xF (t) , C, α] ,

where xF and x0 represent two phase signals (sub-
ject to feedback and under free running conditions,
respectively).
The value of xF (t) can be extracted from the

optical output power (OOP) of the laser diode P (t)
using:

P (t) = P0 {1 +m cos [xF (t)]} , (3)

where P0 is the power emitted by the free running
state laser diode and m a modulation index. By
using xF , x0 (t) can first be retrieved using the non-
linear function G (eq.2) and then d(t) as shown in
[16].

3. The Proposed SM Classification

As previously mentioned, three main SM regimes
based on C are usually identified. Depending on the
SM regime of operation, different algorithms [15–
17, 21, 22] can be used to unwrap the phase with an
aim to achieve either high precision, real-time oper-
ation, robustness or a combination of these charac-
teristics. To the best of our knowledge, all the re-
ported unwrapping techniques require one very first
step: the normalization. This normalization proce-
dure is based on the assumption that the normal-
ized SM signals always reach the maximum (mini-
mum) value +1 (- 1) [16]. Though such an assump-
tion is obvious for the weak feedback regime [21, 22],
one should evaluate if it is still true for the mod-
erate feedback regime (the strong feedback regime
is not considered here due to the higher complexity
required to process such SM signals).
Therefore, in this paper, an in-depth study of SM

signals in moderate feedback is presented with an
aim of determining whether there is a risk of misin-
terpretation of SM signals during the normalization
step. As a result of this analysis, a classification of
moderate SM signals for C >1 can then be pro-
posed.
To achieve such an objective, it is thus necessary

to analyze the evolution of xF around the disconti-
nuities and G as a function of C and α.
Firstly, let us analyze G and its nonlinearities.

3.A. Phase Discontinuity

G (see eq. 2) is not invertible when C >1 [23].
For such values of C, the laser diode enters into
a multiple mode lasing behavior [20]. This results
in phase discontinuities and hysteresis phenomena
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Fig. 2. Graphical representation of the normalized power
Pn of a SM signal for C=3 and α=2, its corresponding
xF and displacement D (t).

(see Fig. 1). Phase discontinuities occur whenever
the function xF (t) = F [x0 (t) , C, α] has infinite
slopes. These discontinuities can be either rising
(subscript R) ∆ΦR or falling (subscript F) ∆ΦF de-
pending on the evolution of xF (t) (see Fig. 1 and
Fig. 2). As these discontinuities strongly affect the
LD optical output power (OOP) signals so deter-
mining when they occur and what phase shifts are
induced in xF , is essential to classify SM signals.

From eq.2, we can define the following odd func-

tion:

H [xF , C, α] = G [xF − atan (α) , C, α] − atan (α) ,
(4)

G presents an inherent symmetry that implies that
∆ΦR=∆ΦF=∆Φ ([18]). Nevertheless, it does not
imply that the OOP signal is symmetric. This OOP
asymmetry will be studied in detail in the following
sections.
The discontinuities ∆ΦR occur at some xF,R val-

ues obtained for specific x0 values: x0,R (see Fig.1).
For C > 1, at the rising discontinuity, there are at

least two possible values for xF = F [x0,R (t) , C, α]:
(1) xF,R before the discontinuity and (2) xF,RΦ

after
the discontinuity. As a consequence, ∆ΦR can be
expressed as (see Fig. 1):

∆ΦR = F [x0,R (k) ;C;α]
︸ ︷︷ ︸

x
F,RΦ

−F [x0,R (k) ;C;α]
︸ ︷︷ ︸

x
F,R

,(5)

where k is an even integer. In a similar manner,
∆ΦF can be expressed as:

∆ΦF = F [x0,F (k) ;C;α]
︸ ︷︷ ︸

x
F,FΦ

−F [x0,F (k) ;C;α]
︸ ︷︷ ︸

x
F,F

,(6)

However, as the function G is strongly nonlinear,
it is not possible to obtain an exact value of xF,RΦ

(xF,FΦ
) but only that of xF,R (xF,F ) by equating

the derivative of the function G to zero [23]. Such
an exact solution is given below as it will be useful
for the sake of SM classification:

xF,R = kπ − atan (α) + β (7)

xF,F = (k + 2) π − atan (α)− β, (8)

where k is an even integer and β = acos
(
− 1

C

)
.

Then, by numerically approximating xF,RΦ
and

xF,FΦ
, Fig.3 (a) and Fig.5 (a) can be obtained. Hav-

ing known the locations of xF,R, xF,F , xF,RΦ
and

xF,FΦ
, we shall show how it can be unambiguously

determined whether the maximum value +1 or min-
imum value -1 can be reached. From this last anal-
ysis, a new classification of SM signals in moderate
feedback will be brought forward and proposed.

3.B. Classification of SM signals

By analyzing the value of xF,R (xF,F ) and xF,RΦ

(xF,FΦ
), it can be determined if individual fringes

can reach a maximum value +1 (minimum value -
1). This piece of information is essential for the SM
normalization which is the first step of any phase
unwrapping method algorithms [16, 17].
It is interesting to note that atan (α) ∈

]
0; π2

]
for

α ∈ ]0; 10] and that acos
(
−1
C

)
∈

]
π
2 ;π

]
for C ∈
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]1; 10]. As a result, using eq.7, it can be shown (see
Fig.3 (b)) that

xF,R > 0 [2π] ∀ (C,α) ∈ (]1; 10] ; ]0; 10]) , (9)

Therefore, it ensures that the SM signal R fringes
always reach a maximum value +1 before reaching
the discontinuity if and only if xF,RΦ

< 0 [2π] (Fig.3
(c)). Using numerical computation, xF,RΦ

can be
evaluated (Fig.3 (a), (c)). As shown in Fig.3 (a)
and Fig.4 (a), the case xF,RΦ

> 0 [2π] happens only
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for a small set of (C,α) that is out of the moder-
ate feedback regime region. Further, from xF,RΦ

,
it can also be determined if the fringe can reach a
minimum value of -1. This is only possible if and
only if xF,RΦ

< π (otherwise -1 is skipped during
the discontinuity). As a result, Fig.4 (b) can be
numerically obtained.
In a manner similar to that of eq.9 (Fig.5 (b)), it

can be deduced that −3π
2 < xF,F < −π

2 for (C,α) ∈
(]1; 10] ; ]0; 10]). This implies that F fringes might
not reach the minimum value of -1. To ensure this
minimum, xF,F < −π [2π] should be first verified.
It can be shown from eq.8 that such a condition is
valid if:

α >
√

C2 − 1 for C ∈ ]1; 10] (10)

However, as for the R fringes, it is a necessary con-
dition but it is not sufficient. It should also be
checked that xF,FΦ

< −3π
2 or that xF,FΦ

> −3π
2

and xF,FΦ
< xF,F . These conditions can be compu-

tationnally tested. Fig.5 (a) is a 3d plot represent-
ing xF,FΦ

. As a result, it can be shown that eq.10
(Fig.6(a)) is necessary and sufficient.
Finally, it can also be determined from xF,FΦ

if the F fringe can reach a maximum value of 1.
This can easily be checked by numerically solving
xF,FΦ

< 0 (Fig.6 (b)).

http://dx.doi.org/10.1364/AO.53.000702


This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the
following URL on the OSA website: http://dx.doi.org/10.1364/AO.53.000702 . Systematic or multiple reproduction or distribution to multiple locations via
electronic or other means is prohibited and is subject to penalties under law. c© 2014 Optical Society of America

5

1

3

5

7

9

0 1 2 3 4 5 6 7 8 9 10

xF,FΦ
> −π

xF,FΦ
< −πC

(a)

α

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

xF,FΦ
< 0

xF,FΦ
> 0

C

(b)

α

Fig. 6. (a) Graphical solution of xF,FΦ
= −π as a func-

tion of (C,α); (b) Graphical solution of xF,FΦ
= 0 as a

function of (C,α).

0 1 2 3 4 5 6 7 8 9 10

C

α

I

II

III

IV

V

VI

1

2

3

4

5

6

7

8

9

10

Fig. 7. Graphical representation of the different SM
classes as a function of (C,α)

This analysis can be summarized by Fig.7 and 8.
It shows that SM signals in moderate regime can be
classified into 6 distinct classes depending on values
of C and α:

• I: Both the R and F fringes reach +1 and -1.

• II: The R fringes reach only +1 and the F
fringes can reach both +1 and -1.

• III: The R fringes reach only +1 and the F
fringes reach only -1.

• IV: The R fringes reach only +1 and the F
fringes do not reach +1 neither -1.

• V: Both the R and F fringes reach only +1.

• VI: Both the R and F fringes do not reach +1
neither -1.
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Contrary to the SM signals belonging to the
classes I to IV, the classes V and VI can only be ob-
tained for low linewidth enhancement factor (LEF).
As shown in [24] [25], quantum cascade laser can
achieve such low LEF values. Though SM signals
(similar to class V signal) can be obtained using
such laser sources (as seen in Fig. 3 (b) of [25]), SM
signals are usually obtained by using laser diodes
with a LEF greater than 2 (as tabulated in [13]).
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Consequently, the classes of interest are mostly
the classes I, II, III and IV which correspond to usu-
ally encountered SM signals (see Fig.8). In Fig.7,
the dashed rectangle represents the usual (C,α) set
of experimental interest. It is of upmost importance
to note that it is possible to normalize without any
ambiguity only the SM signals of classes I, II, and
III. Further, the shapes of class III and class IV SM
signals are very similar. Therefore, performing the
correct normalization on IV SM signal is very chal-
lenging and can induce reconstruction displacement
errors. We propose to analyze this error to assess
whether or not it can compromise the results ob-
tained by phase unwrapping approach if the SM
class recognition is not properly done.

4. Classification and Phase Unwrapping

Let’s consider a IV SM signal as shown in Fig. 8
to illustrate the error analysis. Its misinterpreta-
tion as a class III SM signal results in stretching
the SM signals and thus, in wrongly extracting the
phase xF from the OOP using the arccosine func-
tion (eq. 3). Due to the behavior of this arcco-
sine function, this phase estimation is maximum for
OOP value close to 1 and -1. Further, we do know
that the minimum value of OOP is achieved at xF,F
(eq.8). Consequently, the xF phase estimation error
is maximum for this value. If the estimation error
on the estimation of C and α is not considered, then
an estimation of the phase error δx0 around xF,F
can be expressed as follows:

δx0 = −δxF,F (1 + C cos (xF,F + atan (α)))

−
(δxF,F )

2

2
C sin (xF,F + atan (α)) , (11)

where

δxF,F = π − atan (α)− acos

(

−
1

C

)

, (12)

From Fig.9, it is clear that the lower the α value,
the bigger the phase estimation error. For example,
for α=2 and C=4, the estimated phase error is ap-
proximately 0.086 rad which induces a displacement
estimation error of 5.5 nm for a 800 nm wavelength
laser.
Further, in order to accurately reconstruct the

displacement, phase unwrapping approaches need
to use the C and α value [17, 18]. In [18], a joint
estimation of C and α is employed. However for
class IV signals, using such an algorithm, C is un-
derestimated because of the normalization that in-
duces a reduction of the phase discontinuity ∆Φ
(Fig.1). This affects directly the estimated dis-
placement (eq.2).
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and P2(t) of class IV (c) and their corresponding dis-
placement reconstruction errors ǫ1(t) (b) and ǫ2(t) (e)
for (C,α) = (2, 2) and (C,α) = (4, 2) respectively. For
λ0=800nm and a sinusoidal displacement amplitude of
4µm.

To illustrate this analysis, Fig.10 shows two sim-
ulated SM signals (III and IV classes) and their
reconstructed displacement error using the phase
unwrapping method described in [18]. The maxi-
mum reconstruction error is approximately 4 nm for
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the class IV (Fig.10 (d)) compared to 70 pm for the
class III (Fig.10 (b)). Further, the estimated C val-
ues are 2.0007 instead of 2 and 3.91 instead of 4 for
the class III and IV respectively. These results are
in accordance with the theoretical analysis. How-
ever, the estimated errors are still lower than the
phase unwrapping method reconstruction errors for
measured SM signals (approximately 40 nm for [16]
and 14 nm for [18]). Therefore, as shown in Fig. 7,
using a laser diode having an α value greater than
4.3 is a necessary condition to achieve subnanome-
ter precision for any SM signal processing methods
requiring SM signal normalization as a first step.

5. Conclusion

In this paper, a new SM signal classification has
been proposed which is based on the characteristic
shapes of the SM signals as a function of C and
α. It has been shown that out of the 6 different
classes of moderate regime SM signals, only 3 can
lead to an exact and proper displacement recon-
struction due to normalization issues. Due to the
relatively low values required of α, class V and VI
are unlikely to be encountered for most laser diodes.
The displacement error for the class IV has been
estimated in particular as such a SM signal can be
misinterpreted as class III SM signal which does not
suffer from normalization errors. The inherent es-
timated error of phase unwrapping methods due to
a lack of discrimination between class III and class
IV SM signals is approximately <10 nm (C ∈ [1, 4],
α ∈ [2, 10] and λ0=800 nm). Finally, it is shown
that phase unwrapping approaches can theoreti-
cally retrieve displacement with subnanometer pre-
cision for usual laser diodes in moderate feedback
regime, in the absence of noise, only for α values
greater than 4.3 approximately.
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