N
N

N

HAL

open science

Riemann—Hilbert problem approach for two-dimensional
flow inverse scattering

Alexey Agaltsov, Roman Novikov

» To cite this version:

Alexey Agaltsov, Roman Novikov. Riemann—Hilbert problem approach for two-dimensional flow in-

verse scattering. Journal of Mathematical Physics, 2014, 55 (10), pp.103502. hal-00939283

HAL Id: hal-00939283
https://hal.science/hal-00939283
Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00939283
https://hal.archives-ouvertes.fr

Riemann—Hilbert problem approach for
two-dimensional flow inverse scatterin

A.D. Agaltso, R. G. Noviko]

Abstract

We consider inverse scattering for the time-harmonic wave equa-
tion with first-order perturbation in two dimensions. This problem
arises in particular in the acoustic tomography of moving fluid. We
consider linearized and nonlinearized reconstruction algorithms for
this problem of inverse scattering. Our nonlinearized reconstruc-
tion algorithm is based on the non-local Riemann—Hilbert problem
approach. Comparisons with preceding results are given.

Key words: acoustic tomography, moving fluid, wave equation with
first-order perturbation, inverse scattering, Riemann—Hilbert prob-
lem.

1 Introduction
We consider the equation

— AY — 2iA(2)Vp + V(x)h = By, x = (x1,12) €ER? E >0, (1.1)
where A =02 + 02,V = (0y,,00,), On, = 0/0xp, k=1, 2, and A = (Ay, A3)
and V are vector and scalar potentials on R2, respectively. In addition we
assume that

Ay, Ay and V are sufficiently reqular functions on R?

1.2
with sufficient decay at infinity. (1.2)

Equation (1) can be considered as a model equation for the time-harmonic
exp(—iwt) acoustic pressure ¢ in a two-dimensional moving fluid, see e.g. [RW],
[RE]. In this setting

E= (;”—0)2 Aw) = Zu(x), V(z)=(1-n(x)) (2’—0>2 (1.3)

where ¢g is a reference sound speed, n(z) is a scalar index of refraction, u(x) is
a normalized fluid velocity vector.

*The main part of the work was fulfilled during the stage of the first author in the Centre
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Equation (II)) can be also considered as the two-dimensional Schrédinger
equation at fixed energy E with magnetic potential A and electric potential v,
where

V(z) = A%(z) — idiv A(z) + v(2)

[ 0A1(x) = 0As(x) (1.4)
= A2 A2(1) —
l(x) + Q(ZC) ? ( axl + 8332 +U($))
see e.g. [HN1], [ER2].
For equation ([II)) we consider the classical scattering solutions ™ continu-
ous and bounded on R? with their first derivatives and specified by the following
asymptotics as |z| — oo:

cilkllz]

+ _ ikx i 1
reR? EeR? K2=E, C(k|)=—miv2re ™/ 4k,
where a priori unknown function f = f(k,l), k, | € R%, k? = [?> = E, arising
in (L3) is the classical scattering amplitude for (II)).
Given potentials A, V, to determine T and f one can use the following
Lippmann-Schwinger integral equation (6] and formula (L8] (see e.g. [HN1]):

YF(x, k) =™ 4 /G+(Jc —y, k)X
R2

(1.6)
X (=2iAW) V" (y, k) + V(y)e" (y,k)) dy,
+ o ) ei@" d€ o ) 1
G" (2, k) = —(2m) /m = — 3 Ho(lzllkl), (L.7)
R2

where z € R?, k € R?, k? = E, H} is the Hankel function of the first kind,;

FOe) = ()2 [ (-20AW) V0 k) + VS ) v, (L9
RQ
where k € R?, | € R?, k2 = [?> = E. Actually, we consider (1.6) and its
differentiated version, where V is applied to both sided of (1.6), as a system of
linear integral equations for ¥+ and V™.

One can see that the scattering amplitude f for equation (L)) at fixed E is
defined on

Mg ={keR*1eR* kK*=1?=FE}, E>0. (1.9)
Note that f on Mg is invariant with respect to the gauge transformations
A— A+ Vo,
(1.10)

V =V —iAp+ (Ve)? + 24V,

where ¢ is a sufficiently regular function on R? with sufficient decay at infinity,
see e.g. [HN2], [ER2]|. In addition, ¢ is transformed as

YT = eyt (1.11)



with respect to (LI0).
In this work we consider the following inverse scattering problem for equa-

tion (L) under assumptions (I2):

Problem 1.1. Given scattering amplitude f on Mg at fixed E > 0, find po-
tentials A and V on R? (at least approximately).

Problem [[7] for the case when A = 0 was studied, in particular, in [N1],
[GM], [N3], [GN2], [N4], [BBMRS], [BAR] and in [N2], [Buk].

Problem [I1] for the general case was considered, in particular, on page 457
of [N3] and in [X].

Problem[TT]is also related with several other inverse problems for the Schrodinger
equation in magnetic field (and for the time-harmonic wave equation with first-
order perturbation) in dimension d > 2. Concerning these other inverse prob-
lems see [DKN], [Sh], [HN2], [Nor|, [RW], [RE], [BBS], [ER1], [NSUJ, [A], [ER2],
[Ni], [WY], [GT], [IY] and references therein.

Note that approximate finding A and V' in Problem [[.I] means, in particular,
finding modulo transformations (TI0). However, for real-valued A and V there
is no gauge nonuniqueness (ILI0) in Problem [[l! In addition, A and V of
formulas (I3)) (of moving fluid acoustics) are real if n is real.

In this work we are mainly motivated by applications to the acoustic tomog-
raphy of moving fluid discribed in [Nor|, [RW], [RE], [BBS]. Note that in their
reconstruction results works [Nor], [RW], [RE], [BBS] proceed from near-field
scattering data (e.g. from some near field information on %) instead of the
scattering amplitude f. But it is also known that near-field scattering data can
be transformed into values of f, see e.g. [Ber|, [BBS].

Results of the present work can be described as follows:

In Section 2 we give formulas for solving Problem [I1] in the Born approxi-
mation. To our knowledge these formulas were not yet given explicitely in the
literature for the case when A # 0. These formulas are proved in Section 5.

In Section 3 we give a nonlinearized reconstruction algorithm for Problem
[T For the case when A = 0 this algorithm is reduced to the algorithm of
[N4] and was implemented numerically in [BAR]. For the general case this al-
gorithm can be also regarded as simplication and development of the algorithm
mentioned on page 457 of [N3] and based on the Riemann—Hilbert—Manakov
problem approach of [GN1], [N1]. A derivation of the reconstruction algorithm
of Section 3 is given in Section 6.

In Section 4 we show that in the Born approximation the algorithm of Sec-
tion 3 is reduced to formulas of Section 2. Related proofs are given in Section 7.

In a similar way with results of [NS] the reconstruction algorithm of Section 3
can be generalized to the multi-channel case. This generalization will be given
in a subsequent work.

In the present work we are focused on approximate reconstructions for Prob-
lem 1.1, admitting stable numerical implementation. Issues related with the-
orems of uniqueness and examples of nonuniqueness for Problem 1.1 will be
considered in a subsequent work.



2 Inverse scattering in the Born approximation

If A= (A1,A2) and V satisfy ([L2) and are sufficiently small, then proceeding
from (6)), (I.8) we have the following Born approximation formulas for direct
scattering:

Y (x, k) = e Vit (z, k) = etk
Flk 1)~ f (K, 1),
0k 1) 2L (9) / 0% (9% A(z) + V() de, (2.2)

R2

where z, k, | € R?, k? = |2 = E. In particular, formulas (2.1) can be specified
(2.14).
Note that '™ on Mg is invariant with respect to the gauge transformations

A—A+Vy, V>V —-ilyp, (2.3)

where ¢ is a sufficiently regular function on R? with sufficient decay at infinity.
This invariance follows from (22)), (23], integrating by parts and using that
k? —12 = 0. We consider (2.3) as a linearization of (ILI0) for small A, V and ¢.

In this section we consider the following linearized inverse scattering problem
for equation (LI) under assumptions (L2):

Problem 2.1. Given linearized scattering amplitude fi" on M at fixed E > 0,
find potentials A and V on R? (at least approximately).

Note that approximate finding A and V' in Problem 2.1l means, in particular,
finding modulo transformations (Z3)). However, in a similar way with Problem
L1l there is no gauge nonuniqueness (2.3) in Problem 2] for the case of real-
valued A and V.

Problem 21l is a linearization of Problem [T11

To study Problem [Z]it is convenient to introduce @41V, A4v:0 J/div.0 apq
o*, AT0 V+0 guch that:
AT (z) = —divA(z), ¢V (z) = 0as|z| — oo, (2.4)
ATO(a) = Ax) + V™), VA¥O(z) = V(a) - it (z),
where = € R?;
0.7 (1) = —5(Au(e) — ial®), () = Oas[a] o0, 05
A™%2) = A(z) + Vo~ (2), V7 z) =V(z) —idg™ (),
D" () = *%(Al(:ﬂ) +ids(x)), @ (x) — 0as|z| — oo, (2:6)
AT(2) = A(z) + VT (2), VPO(2) =V(2) —idp™(2),



where

1
0, = 5(8961 —i0y,), 0z = =(0p, +1i0s,), == (x1,13) € R (2.7)

N =

One can see that
div A%0(z) =0, A7 %z) —id; %x) =0, A7 (z)+iAJ (x) =0,

where © € R?, AT0 = (A?:’O, AQi’O).
It is also convenient to transform formula (22) to the form
£k, 1) = £ (=1 —h) = 2k + DAk — 1),
£k 0) + 1 (= =) =20k = DAk = 1) + 2V (k = 1),
A(p) = (2m) 2 / v A(x)dr, V(p) = (2m) 2 / V(@) dr,  (29)
R2 R2

where (k,1) € Mg, p € R2.

Note that

(k,1)€ Mg = k—1€ B, z, .10)
p€ By, 5 = p=k—1 forsome (k,l) € Mg, ’
where

B, ={peR?: |p|<r}, r>0, (2.11)

We define

CV7(R?) = {u € CN(R?): |ju||n,» < +o0},

(2.12)

lullve = max sup (1+ [22)7/2|0"u(x), N eNU{0}, o3>0,
[n|<N zeRr2

where CV (R?) is the space of N-times continously differentiable complex-valued
functions on R?,

" =010, n=(n1,n2) € (NU {0})27 [n| = ny + no. (2.13)

xr1 “x2?
Note that if A1, A2, V € C%9(R?) for some o > 2 and || A;ll00 < g, j =1, 2,
Vo, < g, then
(@, k) = e* 1+ 0(q), VYT (z,k) = ik + O(q),

. ) (2.14)
[k, 1) ="k 1)+ O(q") as ¢ — +0,
uniformly with repsect to z, k, I € R%, k? = [?> = E, at fixed E > 0.

Theorem 2.1. Suppose that Ay, As, V are real-valued and A, Az, V €
CN-7(R2) for some N > 3, 0 > 2. Then the following formulas for solving



Problem 211 are valid:
fin(k, 1) — flin(l k) k—1 N fin(k, 1) — fon(—1,—k) k+1
2 |k — 1) 2 |k + 1
T k) + (=1, —k)
9 ;
where 2, V are defined by Z9) and (k,l) € Mg;
A(x) = Agppr(, E) + Appp(, E), z€R? E >0,
Agppr(z, E) = / e A(p)dp, Aep(z, E) = / e~ A(p) dp, (2.16)
Ip|<2vE Ip|>2VE
V(2) = Vappr(2, E) + Verr(z, E), z € R E >0,
Vappr(z, E) = /e*imf/(p) dp, Verr(z,E) = / e*i’”’“’r/(p) dp, (2.17)
Ip|<2vE Ip|>2VE

where A(p) and V (p) for |p| < 2VE are given in terms of f'™ on Mg according
o 210), @I3) and

Ak —1) =

Vik—1) = (2.15)

N—2
|Acrrj(@, B)| < e1(N,0)| 4| no B~ T, (2.18)
Verr(2, E)| < e1(N,0) |V | noE~ 2, (2.19)
where x € RQ, j=12, Aerr = (Aerr,lvAerr,Q)a E > i and
4
N = — 2.2
a(N.9) = 3D (2.20)

Theorem 2.2. Suppose that Ay, Az, V € CV:7(R?) for some N > 4 and o > 2.
Let A%0:0 v div.0 pe defined according to (Z4). Then the following formulas for
solving Problem [2Z1] are valid:
frr (e, 1) — f™(=1 k) k+1

2 |k +12
flm(k,l) flm( Z _ )

2 )

where A%:0 V4.0 gre the Fourier transforms of Adiv:0, V/div,0 (see (Z9)) and
(k, l) € Mg;

A\div,O(k _ l) _
(2.21)

"}div,U(k —1) =

ATO(x) = A (2, B) + ALY (2, B), x € R, B >0, (222)
AL (g, B) = / e A (p) dp,  ALR(x, E) = / e P AN (p) dp,
Ip|<2VE |p|>2VE
VO (z) = iy B) + VIMO(2, B), z€R? E >0, (2.23)
Vi O(y, B) = / eIy dp VIO (y B) = / e=IPTY A0 (1) dp,
Ip|<2vE lp|>2VE



where Ed“”o(p) and ‘A/d“”o(p) for |p| < 2V/E are given in terms of f" on Mg
according to (Z10), 221) and

1A% 02 B)| < (14 V2)er (N, 0)| Al v B 7, (2.24)

err,j

N N-3

IVlxoE 5" 4 VE| Al B3 ) (2.25)

[Ven(2, E)| < e1(N, 0)

err

7 N

[Allx.0 = max([| A1 ]| n.0. [ A2]lv.0), (2.26)

where v € R?, j=1,2, E > 1, A%v0 = (A%w:0 AB00y und ¢y (N, o) is defined

err err,1)““err,2

by @20). Furthermore, if div A =0 then A%v0 = A, V40 =,

Theorem 2.3. Suppose that Ay, Az, V € CN:7(R?) for some N > 4 and o > 2.
Let A®0 V0 be defined according to (25)-(@28). Then the following formulas
for solving Problem [2.1] are valid:

_ lf(kal) — f(*lv *k)
2k +Z1ii(k’2+l2)’

Iy = Z‘l2)f(kv l) + (kl + ik2)f(*la *k)
ki+ 1 i’L(kJQ +l2) ’

AEO(k 1) A0k —1) = i A0k — 1),

(2.27)

PO 1) = ¢

where A¥0, VE0 are the Fourier transforms of AT0, VX0 (see (ZJ)) and
(k, l) S ME,'

AFO(z) = ALO (v, E) + AL0(2,E), z€R? E>0, (2.28)
A5 B) = [R50 E) = [ A dp
lp|<2vVE lp|>2vVE
VEN2) = VES (v, E) + VE (2, E), x€R? E >0, (2.29)
Vopor(@, B) = / e~ PTVEO Y dp, VE (2, E) = / e~ PV E0 () dp,
Ip|<2vVE |p|>2VE

where /Ali’o(p) and ‘A/i’o(p) for |p| < 2VE are given in terms of f' on Mg
according to (Z10), 227) and

AL (@, B) < 1+ V2)er (N, o) | Allno B~ 7 (2.30)
VEY] < er(N,0) (IIVIIN,UE‘N22 i ﬁnAnN,aE-”f) (2.31)

where x € R?, j =1, 2, AL? = (Aei,jgl,Aei,jgg), |A||nv,o is defined by (2.23)

and ¢ (N, o) is given by @Z20). Furthermore, if Ay +iAy = 0 then A = AT,
vV =V+0,

Theorems 2.1-2.3 are proved in Section 5.



3 Nonlinearized inverse scattering

8.1. Some notations. To study Problem [Tl it is convenient to introduce @1,
AN VAV and ot AT VE where 011 and ¢ are defined according to (2.4)-
28) and

Adiv = A+ V@div, Vdiv -V - iA(pdiv + (V@div)2 + QAV(pdiv,

3.1
AT = A4+ VT, VE=V —iApT + (VpT)? + 24V, 31

In this section we give a nonlinearized algorithm for approximate finding A*,
V* and A%V, V4V on R? from f on Mg. This algorithm takes into account
multiple scattering effects and can be regarded as a nonlinear version of formulas
for AZ50e, Vapprs Adpprs Vappe of @228), 229), 222), 2.23).

It is convenient to use the following notations:

z=x1 +1ix2, Z =11 —iTs, (3.2)

A=E"Y2(k 4 iky), N =E"Y2(l; +ily), (3.3)
where z = (Il,Ig) S R2, k= (k’l,kg) S EE, = (11,12) S EE,
Yp={m=(mi,ms) €C*:mi+mi=E}, E>DO0. (3.4)

In these notations

k= %EUQ()\ +A7Y, k= %El/Q(xl -\, (3.5)
) :

=SBV 4N,y = SEV2NT - X), (3.6)
exp(ikx) = exp<%E1/2()\2 + Alz)) , (3.7

where A\, ' € C\ {0}, z€ C?, k, [l € 2.
In addition, using formulas (1.9), (3.3), (3.4), (3.5), (3.6) one can see that
g =C\{0},
SeNR? =8, =T, (3.8)
Mp=TxT,

where
St={meR®: |m|=r}, r>0,

3.9
T={XeC:|N=1}. (39)

In addition, the functions %, f of (1.5)—(1.8) can be written as
er :er(Za)‘aE)a f:f(AaA/aE)v (310)

where \, N €T, 2 C, E > 0.



3.2. Reconstruction algorithm. Our nonlinearized algorithm for approximate
finding A*, V* and A4V, VI on R? from f on Mg has the following scheme

f—hy —pt — e — AL VE L — AQY VY (3.11)

and consists of the following steps:

Step 1. Find functions hy (A, N, E), A\, X' € T, from the following linear integral

equations:
)\ )\//
he( M N E) fm'/hi()\,)\”, E)x <j:z [)\” — T]) X
0 (3.12)
XfN' N EY|dN'| = f(LNE),
where ;
1 for s >0,
X(s) = { 0 fors<0. (3.13)
Step 2. Solve the following linear integral equation for p* (2, \, E), 2 € C, A € T,
E > 0:
pt(z,\, E) + /B()\,)\',Z,E)u+(z,)\',E) l[d\'| = 1, (3.14)
T
where
1 ¢ N d¢
BN, 2,E)== [ h_(¢, N, 2, E)x -
A= 2/ exen(-i[5-7]) iy
1 , ¢ X dg
—= E == — 1
2/h+<m,z, w(ily -3 =i e
T
ha\ N, 2, B) 2L ha(\ N, B)x
VE (3.16)

X exp(—iT(()\ ~ )+ (A - )\/—1)2)),
and \, N €T,2€C, E>0.

Step 3. Define functions py(z, A\, E), z € C, A€ T, E > 0, by formulas

ui(z,)\,E):;ﬁ(z,)\,E)+m‘/hi()\,)\’,z,E)x
T (3.17)
axc (2 |2 221 v, By )
X Z A/ )\ /’[/ Z, b b

where functions hy (A, N, 2, FE) are given by ([BI6) and x is defined by
(3.13).



Step 4. Functions A
by formulas

(z,B), Vi (2,E),z € R? j=1,2, F >0, are defined

appr,j appr

A5, B) = 502 (5. B), - Agyp (e, B) = qa (2 B),
0z (2, B) = 40 In T/ s (2,C, B) dC), .
Voo, ) = V2 / Ot (,C, E) dC,
and
Apes (@) = 107 (2, B, Adyyrale, B) = — a3 (2, B),
0t (5 B) = <4010 [ a2, B) ) 510

V+

T
. d d
& (e E) = 2iv/Eo. ( T/ (G B S / T/ u+(z,<,E>§),

where z is given by ([B2).

Step 5. Find AQY (x, E), Vs (¢, E), x € R?, j =1, 2, E > 0, from formulas

iv (-
Agppr 1(1"E) = é(az (ZvE) + a;r(sz))a

1
Agll:)‘;)r 2(5E,E) = é(a;(sz)ia;r(sz))a (320)
v 1
Vaope (@ B) = 5 (Vappe (2, B) + Vi (2, ) = 505 (2, E)ai (2, E),
where 2 is defined by (B2) and functions a, a, V5, are defined in (B.I8),

BI9.

A derivation of this reconstruction algorithm is based on the method of the
Riemann-Hilbert problem and on the d-method. This derivation is given in
Section 6.

For the case when A = 0 this algorithm is reduced to the algorithm of [N4]
for approximatie finding V on R? from f on Mg. The algorithm of [N4] consists

of the same aforementioned steps 1, 2, 3 and the formula Vappr = V, ., where
Vappr is defined in (3.18). This algorithm of [N4] was implemented numerically
in [BARJ.

For the general case this algorithm can be also regarded as simplication and
development of the algorithm mentioned (in few lines) on page 457 of [N3].
Actually, in [N3] the part of the algorithm consisting in finding p+ from hy

10



is realized in a more complicated way. In addition, in [N3] the algorithm is
mentioned for the case when

A =4, Ay=4,, —2idivA+V =V, (3.21)

i.e. for the self-adjoint case, whereas this assumption is not necessary for the
algorithm.
3.8. Properties of the algorithm. Let

1/2
fallzzery = (TP 1)
T

12 (3.22)
||u2||L2(T2) = (/ |u2()\, )\/)|2 |d)\| |d)\l|) s T2 =T x T,
T2
where u; and us are test functions on T and T2, respectively.
Proposition 3.1. Let E > 0 be fized. Suppose that
22 1
FeL (T), |fllezr) < py (3.23)

where f = f(\, X', E). Then equation (3.12) is uniquely solvable for hy € L*(T?)
and

Il fll2(r2)

h < 3.24
At L2 (72 Ty P (3.24)
27| f |l 2 (72
Bl p2pe) < — W NLAT?) 3.25
1Bl z2(r2) < 1= =y (3.25)
where B is defined by (3.15), (3.16) (at fixed z, E). In addition, if
1
[ fllL2(re) < 5= (3.26)

3’

then ||B||2(r2y < 1, equation (3.14), at fired z, E, is uniquely solvable for
pt € L*(T) and

)12 (22 B o

S <(77 1,2 < ( )’ (3'27)
3m(2m) 2| £l 22
T e 3.28
e = Hleren) < g o
where p+ are defined by (8.17). In addition, at least, if
1

1z < = (3.29)

61’

11



then

/,u+(z, MNE) AN #0  for all z € C, (3.30)
T

+ div L + div 2
and A, i Agporgs 3 =1, 2, as well as Vg, Vo are bounded on R*.

Proposition 3.1 is based on solving the linear integral equations (3.12) and
(3.14) by the method of successive approximations in L?(T?) and L?(T), re-
spectively, and on standard estimates of L2-analysis for B, h4, u+ of (3.15),
(3.16), (3.17) and for the integral of (3.30).

Note that assumptions (3.23), (3.26), (3.29) of Proposition 3.1 are only some
surplus sufficient conditions on f for unique solvability of integral equations
(3.12), (3.14), fulfilment of (3.30) and for boundedness of Al div

appry Yappr-

Theorem 3.1. Let f € L*(T?) at fized E > 0. Suppose that f satisfies (3.29)
and is a smooth function on T? and A% Vi = are constructed from f via

the algorithm of Subsection (3.2). Then Ar . Adv ., VIv are bounded
functions on R2, decaying at infinity. In addition, f is the scattering amplitude

for equation (1.1) with A = A% (z E), V = Vi (z F).

appr appr

For simplicity one can assume that f € C°°(T?) in Theorem 3.1. However,
very limited smoothness of f is already sufficient. As regards to smoothness of
AQ 1, ASY o, VO of Theorem 3.1 (which are complex-valued, in general),
these functions are real-analytic functions of € R?. In addition, it is just for
simplicity that we assume (3.29) in Theorem 3.1.

The proof of Theorem 3.1 is similar to the proof of Theorem 9.2 of [N3] for
the case when A = 0. Results of this type go back to [N1]. In the present work
restrictions in time prevent us from proving Theorem 3.1 in details.

Finally, suppose that f = f(\, N, E) is the scattering amplitude for equation
(1.1) under assumptions (1.2) and that AJY = AJY (z, E), Voy =V (z, E)
are constructed from f via the algorithm of Subsection 3.2 at fixed E. In the
present work restrictions on time prevent us from obtaining estimates for A —
AdN (-, E) and VIV — VI (. E) for sufficiently large E. For the linearized case
such error estimates are given by formulas (2.24), (2.25). For the nonlinearized
case with A = 0 such error estimates were given in [N4].

4 Reduction of the nonlinearized reconstruction
algorithm to inversion formulas of the Born ap-
proximation

Suppose that we are given f on Mg =T x T = T? at fixed E, where

feL*T?), |fllrere) <e. (4.1)
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Proposition 4.1. Suppose that f satisfies (A1) at fized E > 0. Then, for
€ — +0, the nonlinearized reconstruction algorithm of Subsection 3.2 is reduced
to the following formulas at fized E > 0:

Ai (va) - ‘Ai (va) + 0(52)a j=12,

appr,j appr,] (4 2)
+ + 2 .
Vappr(l'a E) = Vappr(xv E) + O(E )ﬂ
Al (2, E) = A% (2,E) +0(?), j=1,2, ws)
Vi (1, B) = VI (1, B) + O(c?), '

where O(g?) is considered in the uniform sense with respect to x € R? and where

functions Afpm’j, V;tppr, j=1,2, and Agi’;r,j, vg;};,,, j =1, 2, are defined by

the following linear formulas with respect to f:
_ z\/— 1Tax X , , ,
Appr (T, E) = ~1 E [ sgn Tlv oy A=)\ N, 2z, BE) |dA] |dN],
T2

A, (l‘, E) - 77:"4;1);»7‘,1(1‘7 E)’ (44)

appr,2

_ B —~ IR IPNDY
Vappela, E) =iy [(1- 3 )sgn(; {y - X])f()\,)\’,z,E) JdA] X',
T2

AL (@, E) = i\/ﬁ/sgn (% [i _ A_D A= N)FO N, 2, E) [dA] [dN],
T2

DYDY
A—ai_ppﬂg(m’ E) = Z'A?:ppr,l(x7 E)a (45)
E - N DN
+ I e - ’ LA A , ,
Voppr(, E) = 12/(1 AA)sgn<Z, L, A])f(A,)\,z,E)|d>\||d)\|,
T2

appr,j appr,j appr,j

. 1
Adw (va) = §(A+ (va) + A, ‘(va))a Jj=12

- E [|1 /X N (4.6)
div I _ - 4 /
v B =5 [ |5 (5 - 3 )| f0xo B jax,
T2
where
FON, 2, BE) 2L p(\ N, E)x
(4.7)

X exp<i@(()\ —\)z4+ (A - )\’l)z)),
ANeT, N eT and z, Z are given by (B2).

Proposition 4.2. Suppose that A1, Ay, V € C%7(R?) for some o > 2, where
CN-7(R2) is defined by (2.12). Let f' be defined by Z2) and let A%"0 v div.0

appr,j’ "’ appr ?

+,0 .
AL, VD, G = 1,2, be defined by (22D, 222, 229), @20, B2, @2
in terms of fY". Suppose also that functions Az;};m, Vg;f[’,r, A;tppr’j, V;tppr,j =1,

2, are given by [@B), @), @I) with f = f¥. Then the following equalities
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are valid:

Aty B) = A% (x, E),

ap;fr,j az')pr,] (48)
Vappr. (2, B) = Vi, (@, B),
+.,0 =

Aﬂppr;j(x’ E) - Aappr,j(xa E)7 (49)
Va:‘;)}g"(xﬂ E) = chzli)pr(xv E)a

where x € R%, j=1,2, E> 0.

Propositions 4.1 and 4.2 are proved in Section 7.

5 Proofs of Theorems 2.1, 2.2, 2.3

Let us use the notations
i) = ) [u) e, venwB) = [0 61
R? lp|>2VE
where p € R?, z € R%, E > 0.

Lemma 5.1. Let u € CN7(R?), where N > 3, 0 > 2. Then the following
formula holds:
N-—2
[uerr(z, B)| < er(N, 0)|[u]| N o B~ 72, (5.2)

where x € R, E > 1/2 and c¢1(N, o) is defined by Z20).
Proof of Lemma 5.1. We have that
Omu(p) = (—ip1)™ (—ip2)"u(p),

where 9" is defined in (2.13), p = (p1,p2) € R%, n = (n1,n2) € (NU{0})?,
[n| < N. Using this equality we obtain that

2N—1 ) N
SV < 2 e N
) < ——gsllulwo 1+ 1oP)
for each p € R?, |p| > 1. Using the latter inequality we obtain (5.2). O

Proof of Theorem 2.1. Since potentials A and V are real-valued it follows from
23) that the following formula holds:

Fin (k1) — fin(l, k) = 2(k — D A(k — 1), (5.3)

where (k,1) € Mg. We consider (2.8)), (5:3) as a system of linear equations for
finding A(k — 1) and V(k — 1). In addition, we use that (k — )(k + 1) = 0 for
(k,1) € Mg, i.e. that vectors (k — ) and (k 4 [) are orthogonal. As a result we
obtain formulas (ZI3]).
Formulas (Z.16), (Z17) can be regarded as definitions of Aappr, Aerrs Vapprs Verr-
Estimates (2.18), 219) follow from Lemma 511 O
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Lemma 5.2. Suppose that Ay, Ay € CN7(R?), where N > 4, o > 2. Let o™
be the solution of (Z4). Let V@™, (V@) 0, Ap®? (Apd),,,. be defined
according to [1). Then the following estimates hold:

(@4 e, B)| < VE ex(N,0)|| Al B~ 5
3

. i (5.4)
[(AQ®?) (i, B)| < V2 1 (N, 0) | Al w0 B~

where v € R?, j = 1,2, E > 1/4, |A||n.o is defined by @26) and c1(N, o) is
defined by (2.20).

Proof of Lemma 5.2. The solution % of (Z4) is given by:

@ﬂm)_-f/eW%wu»mr%m s € R (5.5)
R2
Using (51), (B.35) we obtain that
Vel (p) = —p(pAP)Ip| 7% 2™ (p) = ipA(p), (5.6)

where p € R? \ {0}. Formulas (5.6)) imply the following inequalities:
0,0 (p)| < V2 max |4k ()], [Ae™ (p)] < V2 |p| max |Ax(p)],  (5.7)

where p € R2\ {0}, 7 =1, 2.
We have that - R
0" A;(p) = (—ip1)™ (—ip2)" A;(p),
where p = (p1,p2) € R, n = (n1,n2) € (NU{0})?, |n| < N. Using this equality
we obtain that

~ 2N_1 N
Ai(p)| < —||A;l|v.o(1 =2 5.8
A0 < g Il 1+ o) 6.9
for p € R?, |p| > 1, j =1, 2. Formulas (5.7)), (5.8) imply the estimates
d1v 2 Nt —ﬂ
00" ()] < V2 ( )||A||Ng<1+ bl
(5.9)
— . N-—-1
A (p)] < V2 ( )||A||N0(1+ pl*)~ 7,
where p € R2, |p| > 1, j = 1, 2. Using (5.9) we obtain (5.4). O

Proof of Theorem 2.2. Taking into account invariance of fi" with respect to
transformations (2.3)) and using (24)), (2.8)) we obtain the following equalities:

(k — DAYk — 1) =0,
£, 1) = f (=1, —k) = 2(k + 1) AT (6 — 1), (5.10)
flin(k, l) + flin(—l, —k’) _ 2‘7div70(k, _ l),

15



where (k,1) € Mg. Using (5.10) and orthogonality of vectors (k — 1) and (k +1)

we obtain (227)).
Formulas 2.22), [2.23) can be regarded as definitions of AJv0 AdN-0 div.0,
de 0

err

From (Z4), [222), 223) we derive
A 0($a E) = (Aj)err(xa E) + (aj@div)err(xa E), Jj=12,

err,j

ydiv, O(z E) = Ver(a, E) — i(AgpdiV)err(x, E),

err

(5.11)

where z € RQ: E > 0, and (Al)erra (AQ)erra err, (VQD )erra (A(pdiv)err are
defined according to (5)).

From (BI1)) using inequalities (&2) for (Ai)err, (A2)err, Verr and using in-
equalities (0.4) we obtain formulas (2.24)), (225]). O
Lemma 5.3. Suppose that Ay, Ay € CN9(R?), where N > 4, 0 > 2. Let
0=, ¢t be the solutions of 1)), B), respectively. Let Vo*, (VoT) e, Ap™T,
(Ap™) opr be defined according to (51). Then the following estimates hold:

|(aj50i)err(xaE)| < \/561(]\7, o)Al N0
|(ApT)err(z, B)| < V2 e1(N, 0) | Al w0
where v € R?, j = 1,2, E > 1/4, |A||ln.o is defined by @26) and c1(N, o) is
defined by (2.20).
Proof of Lemma 2.3. The solutions p* of ([Z3), ([Z.6) are given by:

ot (x) = fi/e_im—Al(p) = Z,AZ(p) dp, ze€R% (5.13)
p1 £ ip2

(5.12)

R2

Using (@), (5I3) we obtain that
A(p) +ids(p)

S A (p) + i4s(p)
Vok(p) = — , . Ap SO =P 2, (514
¢ (p) o, D O¥ F(p) = pa— (5.14)
where p € R? \ {0}. Formulas (5.14) imply the following inequalities:
|056* ()] < V2 max |Ai(p),  [Ap*(p)| < V2 Ip| max [Au(p)l,  (5.15)

where p € R2\ {0}, 7 =1, 2.
As in the proof of Lemma[5.2] we have estimates (5.8). Formulas (5.8), (515)
imply the following estimates:

— oN-— _N
0;0% (p)] < V2 e )||A||Na(1 +p*)z
v (5.16)
|Ap™(p)] < V2 o gy Ml (4 )~
where p € R2, |p| > 1, j = 1, 2. Using (5.16) we obtain (5.12). O
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Proof of Theorem 2.3. Taking into account invariance of fU with respect to
transformations (2:3) and using (23), [2.6), (2.8) we obtain the following equal-
ities:

Ai Ok —1) = 1iAT(k — 1),
FI (k1) — Fi (1, k) = 2(ky + 11 £ (ks + 12)) AT O(k — 1), (5.17)
Fim (k1) + fh“(— , —k) =2(k1 =l £i(ks — o)) AT (k — 1) + 2VE0(k — 1),

where (k,1) € Mg. Using (517) and orthogonality of vectors (k —1) and (k +1)

we obtain ([2.27).

iEormulas ([228), Z29) can be regarded as definitions of ALS, ALS, VEO
Vv,

err

From (Z3), (Z08), Z2]), (229) we derive formulas
AZO (2, E) = (4))err (2, B) + (Vo) ere(2, E), 5 =1,2,

err,j

V:e:rtro(x E) V:err(va) _i(A(Pi)err(x7E)a

where x € R2, E > 0, and (Ay)err, (A2)errs Verrs (Vo )errs (ApT )err are defined
by (G.T).

From (BI8)) using inequalities ([B.2) for (A1)err, (A2)errs Verr and using in-
equalities (5.12) we obtain formulas (Z30), (23T]). O

(5.18)

6 Derivation of the reconstruction algorithm of
Section 3

6.1. Faddeev functions. For equation (1.1), under assumptions (1.2), we consider
the Faddeev functions 1, h (see e.g. [F1], [F2] and subsection 5.1 of [HN]):

w(% k) = eikz:u(ma k)v

ple k) =1+ /g(fv —y, k)% (6.1)
R2
X(—QiA(y)Vyu(y,k) ( y)k+V(y)uly, k)) dy,
zfa:
g(z, k) /52 + 2k§ (6.2)

where € R% k € ¥ \ R?;

h(k,1) = (27)~2 / ¢ilh=Dy
R2
X (=2iAW)Vyuly k) + (2AW)k + V() uly. k) dy,
where k, I € ¥p \ R%, Imk = Im!. Here (6.1) and its differentiated version,

where V is applied to both sides of (6.1), are considered as a system of linear
integral equations for bounded p and Vu, g is defined by (3.4).

(6.3)
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We recall that ¢ are «growing» solutions of (1.1), in the sense of [F1],
parametrized by k € Yz \ R%, and G = ¢**g is the Faddeev’s Green func-
tion for the operator A + k2.

Equation (6.1) for x4 and formula (6.3) for h are analogs in complex domain
in k of equation (1.6) for ¢ and formula (1.8) for f.

Note that

k1eYp\R? Imk=Iml = l=korl=—k. (6.4)
Therefore, the function h of (6.3) splits to the functions
a(k) = h(k,k), b(k)=h(k,—k), kecXg\R>% (6.5)

Note also that a and b are invariant with respect to transformations (1.10) and
¥, v are transformed as

Ve Y, p—e (6.6)

with respect to (1.10).

6.2. Analytic properties of 1. Using notations of Subsection 3.1 coefficients
Ay, Az, V of equation (1.1), functions ¢+, f of (1.6), (1.8) and functions v, u,
b of (6.1), (6.5) can be written as

Aq :Al(z)a A :A2(z)a V:V(Z),
P =9tz NE), f=fONE), AN EeT, (6.7)
P = 1/)(2, AaE)a n= N(ZaAaE)a b= b()‘aE)v A€ (C\ (TU O)a
where z € C, E > 0.

It is known that the function v (or u) has the following properties at fixed
z € Cand E > 0 (see page 448 of [N3]):

%M(Z7)‘5E):T()‘7Z7E)M(Za_%7E)a (68)

for A € C\ (T'U0), where

r(\ 2z, E) exp<z‘@()\§+§+xz+§))x ©9)
x=sgn(AX — 1)b(\, E);
w(z, \,E) = pg (2) +o(1) for A — oo, (6.10)
w(z, \, E) = pd (2) +o(1) for A — 0, '
where 1
Ozi1g () = 5z (A1 (2) +i42(2)) g (2),
0.1 (2) = 5 (Ar(2) — ids(2)) g (2) (6.11)



V(2 E) = ot (20, E) + m’/hi()\, N, By (i [% - Aﬂ)x o

Xy (2, N, E) |d\"|
for A € T, where

V2 (2 A E) = (=01 F0), ) = exp(i S (47 + ) (613)
Xﬂi(Z,)\,E), ‘LL:t(Z,)\,E):‘LL(Z,)\(li()),E), ANET,

¢ is the function of (1.6), (6.7), h are the functions related with the scattering
amplitude f by equations (3.12), x is defined by (3.13).

More precisely, equation (6.8) is fulfied if the system of linear equations for
v and Vp related with (6.1) is uniquely solvable for k = (ki (\, E), k2(\, E))
for fixed A € C\ (T'UO0), where ki, ko are given by (3.5), and relation (6.12)
is fulfiled if the aforementioned system is uniquely solvable for & = (kl()\(l F
0), E), k2(A(1 F0), E)) for fixed A € T. In particular, all these conditions are
fulfiled if coefficients Ay, A2, V of (1.1) are sufficiently small for fixed E.

6.3. Inverse scattering from f and b. Using the definitions of ¢+, A V* of
(2.5), (2.6), (3.1), the invariance of f and b with respect to (1.10) and formulas
(1.11), (6.6) one can see that

for A, V transformed to AT, V* (respectively) formulas

(6.8)~(6.13) are fulfiled with uF =1 (respectively). (6.14)

Properties (6.8)—(6.14) of ¢, u yield the following approach to inverse scattering
for equation (1.1) from f and b:

1. find ¢, u satisfying (6.8)—(6.10), (6.12), (6.13) with a priori unknown 3+
n (6.12), where puy =1, p(z,-, E) € C(C\ T), hy are related with f by
(3.12);

2. find A, V™ using that
A7 (2) —iA5 (2) =0, A7 (2)+iA5 (2) = 2i0s Inud (2), (6.15)
V= ()Y (z,\,E) = (48282—1— (6.16)
+2i(A7 (2) +iA5 (2))0. + E)Y(2,\, E), '
where z € C, A e C\ (T'UO0).

Or alternatively:

1. find ¥, u satisfying (6.8)— (6 10) (
n (6.12), where ud =1, u(z
f by (3.12);

3) with a priori unknown ¢+

12 ), (6.1
(CUo)\T), hy are related with

6.
yel
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2. find AT, VT using that
AT (2) —iAS (2) = 2i0, Inpg (2), AT (2) +iAF(2) =0, (6.17)
V()2 A, B) = (40:0:+
+2i(Af (2) — 143 (2)) 0z + E) ¢ (2, A, E),
where z € C, A e C\ (T'UO0).

Note that (6.15) arises from (6.11) with ug = 1, (6.17) arises from (6.11) with
pd =1, (6.16) and (6.18) arise from equation (1.1) for the Faddeev functions v
of Subsections 6.1, 6.2 in the gauge setting related with A=, V~ and A*, V1,
respectively. In addition, ¥, p, ua' of steps 1,2 and ¢ = ', u = ', pg of steps
1’, 2’ are related by the formulas

V(2 \E) = (g (2) " (2, \ E),
WM E) = (15 (2) N E), g (2) = (e (),

where z € C, A\ e C\ (T'UD0).

As soon as A, V are recovered as A=, V~ or AT, VT, then these coefficients
can be transformed from A=, V= or from A*, VT to other possible gauge setting
via (1.10) and, in particular, to A4, V4V of (3.1).

Note that different ideas of the aforementioned approach to inverse scattering
go back to [M], [ABF], [GN1], [GM], [N3], [N4]. In particular, finding ¢, u of
the aforementioned steps 1 or 1’ for the case when b = 0 at fixed E is reduced
to solving a non-local Riemann—Hilbert problem for holomorphic functions, see
Subsection 6.4. Such non-local Riemann—Hilbert problems go back to [M].

6.4. Inverse scattering with b = 0 at fized E. In the Born approximation at
fixed £ we have that

(6.18)

(6.19)

D)~ fim (k1) = 2kA(k — D)+ V(k—1), (k)€ Mg, (6.20)
b(k) ~ b (k) = 2kA(2Rek) + V(2Rek), ke Sg\R? (6.21)

where A, V are defined by (2.9). Here formula (6.20) is equivalent to the
formulas for f of (2.1), (2.2) and formula (6.21) follows from (6.1), (6.3), (6.5)
in a similar way that (6.20) follows from (1.6), (1.8). Note also that

keYp\R* = 2Rek € R*\ B, 5, E >0, (6.22)

where B, is defined by (2.11).

Using (2.10), (6.20) and (6.21), (6.22) one can see that the expression for
fin involves E, V on B, /g, only, and the expression for bl involves /T, V on
RZ\ B, /5, only, at fixed E. Further, using also (2.21)-(2.23), (2.27)-(2.29) one
can see that the expressions for Afﬁ;gr, Vaipbor, Adivd Va0 involve f1i, only,
and are independent of b'"™ at fixed E.

In a similar way, in Section 3 in order to construct nonlinear analogs of
ALO Y0 - Adiv0 ydiv.0 e yse inverse scattering of Subsection 6.3 without

appr> “appr» “‘apprs Yappr
b or, in other words, with b = 0 at fixed E.

20



In this case steps 1 and 1’ of Subsection 6.3 consist in solving the following
non-local Riemann—Hilbert problems for holomorphic functions:

1. find ¢ = exp((i/2)VE(\Z + z/\)u(2, \,E), = € C, A € C\ (T U0),
satisfying (6.12), (6.13) with a priori unknown %" in (6.12), where

((%,u(z,A,E)zO, AeC\ (Tuo),

p(z, \,E) =1, as A — oo, (6.23)

w(z, -, E) e C(C\T),

or, alternatively:

1. find ¥ = exp((i/2)VE(\Z + 2/A\))u(2, N\, E), z € C, A € C\ (T U0),
satisfying (6.12), (6.13) with a propri unknown %™ in (6.12), where

é%,u(z,)\,E)zo, AeC\ (Tuo),

wz, \,E) =1, as A —0, (6.24)

u(z, E) € C((CUo0)\ T).

We recall that hy of (6.12) are related with f by (3.12). Actually, it is also
assumed that u(z,-, ') admits continuous extension on T from its both sides.

Now due to considerations of Section 2 of [N4] we have that finding ;1 of step
1 is reduced to: (a) solving the linear integral equation (3.14) for u*(z,-, E)
on T, where ¢* = exp((i/2)VE(\Z + 2/\))ut (2, N\, E), z € C, A € T, (b)
finding p4(z,-,E) on T by formulas (3.17) (or, in other words, by formulas
(6.12) rewritten in terms of uy and pt), (c) finding u(z,-, F) on C'\ T by the
Cauchy formulas:

1 z,(, B
u(z,A,E)Q—m./%dc, A <1,
T

L [p(50B)
peAB) =1 oo [ A28 8a >,
T

(6.25)

z€C, AeC\T.
In addition, due to (6.19), (6.25), finding ¢ = ', u = p’ of step 1’ is reduced
to finding v, u of step 1 and to the formulas

V(N E) = (uf(2)) (M E), W (20 B) = (55 (2)) " 2\ B),

pi () = QLM / L(Z&C’E) dc, (6.26)
T

where z € C, A € C\ (T'"U0).
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In addition, due to (6.25) we have that

Wz, A\ E) =1+ pu; ()N 1+ 0(N?) as A — oo,

(2 A E) = i (2) + 1 (DA + 0(A2) as A — 0, (6.27)
where 2 € C, A\ € C\ (T'U0), ug (2) is given in (6.26),
1 ) 7E
pi(z) =5 / %dg,
1 ' (6.28)
pi(2) = 5= | n(2,¢ B)dC.
T

Note that the non-local Riemann—Hilbert problems of steps 1 and 1’ are
better known in the literature (going back to [M]) for the case when relation
(6.12) between 1, and ) on T with a priori unknown 7 is given in the form

B (V) = - (N) + / P XY (W) |AX], AeT, (6.20)

T

see e.g. [M], [GN1], [GM], [N3]. Note also that in our case hy of (3.12), (6.12)
are related with p of (6.29) by the following formulas and equations:

!

hi(\ N, E) = X<i R - %Dm(x, N, E)—

(i3]

v (6.30)
PREENACIE\
(A s
)\/ )\//
p(AM N E) + m'/p()\,)\”,E)X<i [V - 7}) X
T
BN N B [dN'| = —ihn (A, N, E), 651

. TN A\
p()\,)\”E)+7rz/X<z [V — 7]>x
T

x ha(N', N, E) |d\'| = —miha(\, N, E),

where A\, X € T', see [N3].

Futher, due to results of [GN1], [N3] and of Proposition 3.1 of the present
work we have that, at least under assumption (3.26), the non-local Riemann—
Hilbert problems for ¢ and for ¢ = ¢’ of steps 1 and 1’ are uniquely solvable
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and

(—40.0: + a7 ()0, + V= (2))¥(2,\, E) = EY(2,\, E), (6.32)

a7 (2) =40:Inpd (2), V7 (2) = 2iVEd.uy (2), (6.33)

(—40.0: + af (2)0: + VT (2))¢' (2, \, E) = EY/(z, A\, E), (6.34)
1 ) Tz

at(z) = 40, In el VH(z) = 22@0253—8, (6.35)

where z € C, A € C\ (T UO), ug, py, p are the coefficients of (6.27). Here
(6.32), (6.33) correspond to (6.15), (6.16) and (6.34), (6.35) correspond to (6.17),
(6.18).

Formulas (3.18), (3.19) follow from (6.32)—(6.35) and the integral expression
for ud, puy, pi of (6.26), (6.28).

Finally, formulas (3.20) arise from considerations of the gauge transforma-
tions (1.10) between A=, V~ and A*, V* and A%V, V4V of (3.1). In particular,
in these considerations we use that for equation (1.1) written as

(_48,282 + azaz + aiai + V)w = va

6.36
a, = —2’L'(A1 + iAg), az = —2i(A1 — ’L'AQ), ( )
the gauge transformations (1.10), (1.11) can be written as
a, = a, —4i0zp, az — az — 4i0,p,
V =V —4i0,03¢ + 40,00z + ia,0,¢ + iaz0z¢, (6.37)

P — e,
and that the equations for v, o=, T of (2.4)-(2.6), (3.1) can be written as

8i0,0:0 = d,a, + Osas, godi"(z) — 0 as |z| = oo,
410, =az, ¢ (2) =0 as|z| = oo, (6.38)

4i0z0" = a,, ¢1(2) =0 as |z] = oo.

7 Proofs of Propositions 4.1 and 4.2

Proof of Proposition 4.1. The method of successive approximations for solving
(BI12) with repsect to hy € L*(T?) and assumptions (@I)) imply that

hi = f+O0(?), &— +0, (7.1)

where O(e?) is considered in the sense of || - || 2(72).
Consider the following operators acting in L*(T')

(Cou)(\) = % / % i, MeT, (7.2)
T
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where v is a test function. We recall that
CxullL2(r) < [Jullp2(1)- (7.3)

Using (3.15), 316), (1), (Z3) and the equality

exp<—z£((A Mz+ (A - )\'_l)z))' =1,
MNeT, 2eC, E>0,

(7.4)

we obtain that

B(AN, 2, E) = /fcsz) (Z[AC,%'D%

e[ 2]ty o

where \, ' € T, z € C, f(¢,N,2,E) is given by [@T), O(¢?) is considered in
the sense of || - || 2(72) and is uniform with respect to z € C.
From ([B.14) we derive the following equalities:

(7.5)

out(z,\, E) + /B()\,)\',Z,E)ﬁz,u+(z,)\',E) |\ | =
T
—/823()\, N,z B)it (2, N, E) |aX,
(7.6)
o:ut (2, \, E) + /B()\,)\’,Z,E)ﬁngr(z,)\’,E) |\ | =
T

- /C%B()\, Nz, B)u (2, N, E) |dN],

where A\ e T,z € C, E > 0.

The method of successive approximations for solving ([314) and (T.8) with
respect to iy € L?(T) and 0,44, Oy € L*(T) and estimates (&), (Z.5) imply
that:

P (2, E) =1+ 0(e),

D4 (2, A, F) = /8B)\XZE)|dX|+O()
Dpt (2,0, E) = /8B)\>\’ZE)|dX|+O()

where z € C, A € T, O(e), O(e?) are considered in the sense of || - || 27 and
are uniform with respect to z € C.
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Using BI7), (1), (T we obtain that
ui(z, )\, E) =1+ 0(6),
Ot (2, \,E) = — /c%B(A,X,z,E) [dX |+
T

AN
+ i azf()\,)\’,z,E)x(ii {—, — —D |dN'| + O(e?),
T/ rA (7.8)

Ozpis (2, ), E) = —/@B(A,A’,z,E) |dN |+
T

!
+7ri/8zf()\,)\’,z,E)x(ii {% — %D |dN | + O(e?),
T

where A € T, f(\, N, z, E) is given by [@7) and O(e), O(g?) are considered in
the sense of || - ||z2(7) and are uniform with repsect to z € C.

Using (318), B19), (T8) we obtain that:

appr

Vo (2, E) = {TE/(?ZB()\,X,Z,E)deXH
T2

/
+ i\/E/é)Zf()\,)\’,z,E)x (—z’ {% - AXD dX|dN| + O(£?),
T2

V+

appr

(z,FE) = @/@B(/\, N, z, E) \"2d\|dN |~
™
T2

/
- Z’\/E/é)gf()\,)\’,z,E)x (z [% - %D A72dN AN | + O(e?),
T2

.
aZ (2, E) = —Z/c‘)gB()\,X,z,E) AL |dN [+ (7.9)
™
T2

/
+ 2/85f(>\, X,Z,E)X(i [Ai _ %D AN |dN| + O(e2),
T2

o
at(z,E) = ——Z/azB()\,)\’,z,E) ALdA AN |~
™

T2
/

_ 2/82]”()\, X,z,E)X(z' [Ai _ %D ALdN AN + O(e2),
T2

where z € R?, 7z is given by ([3.2), and O(g?) is considered in the uniform sense
with respect to =z € R?.
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Note that the following formulas hold for each u € L*(T):

/(C+u)()\) dr =0, /(C_u)()\) r=— /u()\) dx,

T T T
JewwS = [un S [eomS =0 g
JewmG=[unG [ecom -0

where C are defined by (2]).
Formulas (7.3), (Z9), (ZI0) imply estimates

appr

Vo (z, E) :i\/E/s()\, ML f(N N, z, E)dX|dN |+ O(£2),
T2

Vit (2, E) = iVE / SONID=F(0, X, 2, B) A-2dA [N | + O(2),
T2

0= (2, B) = 72/5()\, N)OsfOWN, 2, E) A\ NN AN + 0(2),  (7.11)
T2
0 (2, B) = 2/5()\, N)O.FOL N, 2, E) A~LdA |dN| + O(22),
T2

e 1 !
SO0 X) 2L g <; [% - %]) |

where x € R?, z is given by (3.2)), and O(£?) is considered in the uniform sense
with respect to z € R2.
In addition, due to (£7) we have that

azf()H)\/;ZaE) = 71‘g(>‘71 - Alil)f(AaA/azaE)a

aif()‘7)‘laZaE) = —Z?

(7.12)
()‘ - )‘l)f()‘v Nz, E),

foreach A\, N € T, z€ C, E > 0.

Formulas (@2), @3), @), (3), (#8) follow immediately from (BI]),

Proposition 4.1 is proved. o

Lemma 7.1. Let E > 0 be fived. Let u(\, N, E), (\,\') € T2, be a complex
valued function such that w € L*(T?) and

uMN,E) =u(=N, -\ E), (M) eT? (7.13)
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Suppose that g(p, E), p = (p1,p2) € R?, |p| < 2VE, is the function defined
by the formula

g(\/ERe()\ — ), VEIm(A = \), E) =u(\, N, E), (7.14)
where (A\,\') € T?. Then

, E 1 /X N
—ipx Edp = = AN o /
/ e g(p, E)dp = 3 /U( ,A,z,E)‘—% <—)\, —)\>‘|dA| ldN],
Ip|<2VE T

u(\, N, 2, E) 2 u(\, N, E)x (7.15)

X exp(i@(()\ “Mz4+ (- X‘l)Z)),

where © € R?, z is given by [B.2).
Actually, (CI5) arises from the following change of variables in the integra-

tion with respect to p:
p1 = VERe(A —\) = VE(cos ¢ — cos ¢'),

7.16
p2 = VEIm(A — \) = VE(sin ¢ — sin ¢'), (7.16)

where A = ¢/, N = ¢’
Proof of Proposition 4.2. Let A € T, X' € T be defined by ([B.3). It follows from
B3), 36) that the following formulas are valid:
2k +11) = VEA+ AT+ N+ X7,
2ka + o) = —iVEA = A7+ N = N7,
ky +iky = VENTY, 1 £ily = VEN*, (7.17)
ki +lo £i(ks + o) = VE(NE + X,
k+ 1 = B+ NP2,

where (k,1) € Mg.
Using Lemma [[1] and formulas (CI7) we derive from (Z21)), [2:22), (223),
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227, 228), 229) the following formulas:

div,0 E [ ~ivo , L/x X ,
Aappr,j(I’E) = 5 Aappr,j()\7)\ 7Z,la) Z y — X |d}\| |d)\ |,
T2
. E [~ 1 /X XN
div,0 _ div,0
‘/appr (:L'aE) - E/Vappr (>‘a )‘/azaE)‘?i (y - X)‘ |d>‘| |d)‘/|7
ET2 Y (7.18)
+,0 _ e
Aappr71(1',E) - E /Aappr,l(Aﬂ )\/,Z,E)‘Q—i <Y - X) ‘ |d>\| |d>\/|a
T2
E [~ 1 /X X
+,0 _ +,0
Vappr(x’E) - g/vappr()‘a )‘lvsz)‘E (y - X) ‘ |d)‘| |d)‘l|a
T2
where j =1, 2, x € R2, 2, 2 is given by ([B.2) and where
~q: lin !/ E) — lin/__ y/ _ E
Aglli)\;;r(')l()\))‘l7z7E): f ()\7)\,2, ) f ( )\, )\,Z, )X
’ 4E
y 1 + 1
AL AN )
lin / lin /
1div,0 f ()\,)\,Z,E)*f (7)‘a7>‘azaE)
Aapprﬂ()‘a )‘/7 2, E) = 42.@ X
1 1
_ (7.19)
8 (A1+X1 >\+>\’)’
lin / lin /
1 7div,0 _ f ()\,)\,Z,E)+f (7)‘a7>‘azaE)
Vappr (>‘a )‘/7sz) - 2 ;
1+£,0 1 f()‘7)‘laZaE)_f(_)‘la_)‘aZaE)
Aappml()‘a )‘I7Z7E) = 2\/E >\:|:1 + )\/:I:I ’
- )\/:Izlflino\ Nz E)+)\i1f1in(f)\’ Az E)
+.,0 _ s Ny <y ) ) %y
Vappr(>‘a )‘/7 2, E) - A\EL + VEL ;

where A\, \' € T, z € C, fi"(\, X, z, E) is defined according to (@T).

Now using (Z.I9) we represent each integral of (T.I]) as a sum of the integral
containing f1"(\, ', z, E) and the integral containing f1"(—\, -\, z, F) within
the integrands.

Making the change of variables (A, \') — (=X, —\) in each integral contain-
ing (=), =\, z, E) and taking into account (Z27) for AY we obtain formulas

@3), @9). O
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