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Riemann�Hilbert problem approah fortwo-dimensional �ow inverse sattering∗A.D. Agaltsov1, R.G. Novikov2AbstratWe onsider inverse sattering for the time-harmoni wave equa-tion with �rst-order perturbation in two dimensions. This problemarises in partiular in the aousti tomography of moving �uid. Weonsider linearized and nonlinearized reonstrution algorithms forthis problem of inverse sattering. Our nonlinearized reonstru-tion algorithm is based on the non-loal Riemann�Hilbert problemapproah. Comparisons with preeding results are given.Key words: aousti tomography, moving �uid, wave equation with�rst-order perturbation, inverse sattering, Riemann�Hilbert prob-lem.1 IntrodutionWe onsider the equation
−∆ψ − 2iA(x)∇ψ + V (x)ψ = Eψ, x = (x1, x2) ∈ R2, E > 0, (1.1)where ∆ = ∂2x1

+ ∂2x2
, ∇ = (∂x1

, ∂x2
), ∂xk

= ∂/∂xk, k = 1, 2, and A = (A1, A2)and V are vetor and salar potentials on R2, respetively. In addition weassume that
A1, A2 and V are su�iently regular funtions on R2with su�ient deay at in�nity. (1.2)Equation (1.1) an be onsidered as a model equation for the time-harmoni

exp(−iωt) aousti pressure ψ in a two-dimensional moving �uid, see e.g. [RW℄,[RE℄. In this setting
E =

(
ω

c0

)2

, A(x) =
ω

c0
u(x), V (x) =

(
1− n2(x)

) ( ω

c0

)2

, (1.3)where c0 is a referene sound speed, n(x) is a salar index of refration, u(x) isa normalized �uid veloity vetor.
∗The main part of the work was ful�lled during the stage of the �rst author in the Centrede Math�ematiques Appliqu�ees of Eole Polytehnique in Otober�Deember 20131119991, Lomonosov Mosow State University, Faulty of Computational Mathematis andCybernetis, Mosow, Russia; email: agalets�gmail.om2CNRS (UMR 7641), Centre de Math�ematiques Appliqu�ees, Eole Polytehnique, 91128Palaiseau, Frane; IEPT RAS, 117997, Mosow, Russia; Mosow Institute of Physis andTehnology, Dolgoprudny, Russia; email: novikov�map.polytehnique.fr1



Equation (1.1) an be also onsidered as the two-dimensional Shr�odingerequation at �xed energy E with magneti potential A and eletri potential v,where
V (x) = A2(x)− i divA(x) + v(x)

= A2
1(x) +A2

2(x)− i

(
∂A1(x)

∂x1
+
∂A2(x)

∂x2

)
+ v(x),

(1.4)see e.g. [HN1℄, [ER2℄.For equation (1.1) we onsider the lassial sattering solutions ψ+ ontinu-ous and bounded on R2 with their �rst derivatives and spei�ed by the followingasymptotis as |x| → ∞:
ψ+(x, k) = eikx + C(|k|)e

i|k||x|

|x|1/2 f
(
k, |k| x|x|

)
+ o

(
1

|x|1/2
)
, (1.5)

x ∈ R2, k ∈ R2, k2 = E, C(|k|) = −πi
√
2πe−iπ/4|k|1/2,where a priori unknown funtion f = f(k, l), k, l ∈ R2, k2 = l2 = E, arisingin (1.5) is the lassial sattering amplitude for (1.1).Given potentials A, V , to determine ψ+ and f one an use the followingLippmann�Shwinger integral equation (1.6) and formula (1.8) (see e.g. [HN1℄):

ψ+(x, k) = eikx +

∫

R2

G+(x− y, k)×

×
(
−2iA(y)∇yψ

+(y, k) + V (y)ψ+(y, k)
)
dy,

(1.6)
G+(x, k) = −(2π)−2

∫

R2

eiξx dξ

ξ2 − k2 − i0
= − i

4
H1

0 (|x||k|), (1.7)where x ∈ R2, k ∈ R2, k2 = E, H1
0 is the Hankel funtion of the �rst kind;

f(k, l) = (2π)−2

∫

R2

e−ily
(
−2iA(y)∇yψ

+(y, k) + V (y)ψ+(y, k)
)
dy, (1.8)where k ∈ R2, l ∈ R2, k2 = l2 = E. Atually, we onsider (1.6) and itsdi�erentiated version, where ∇ is applied to both sided of (1.6), as a system oflinear integral equations for ψ+ and ∇ψ+.One an see that the sattering amplitude f for equation (1.1) at �xed E isde�ned on

ME =
{
k ∈ R2, l ∈ R2 : k2 = l2 = E

}
, E > 0. (1.9)Note that f on ME is invariant with respet to the gauge transformations

A→ A+∇ϕ,
V → V − i∆ϕ+ (∇ϕ)2 + 2A∇ϕ,

(1.10)where ϕ is a su�iently regular funtion on R2 with su�ient deay at in�nity,see e.g. [HN2℄, [ER2℄. In addition, ψ+ is transformed as
ψ+ → e−iϕψ+ (1.11)2



with respet to (1.10).In this work we onsider the following inverse sattering problem for equa-tion (1.1) under assumptions (1.2):Problem 1.1. Given sattering amplitude f on ME at �xed E > 0, �nd po-tentials A and V on R2 (at least approximately).Problem 1.1 for the ase when A ≡ 0 was studied, in partiular, in [N1℄,[GM℄, [N3℄, [GN2℄, [N4℄, [BBMRS℄, [BAR℄ and in [N2℄, [Buk℄.Problem 1.1 for the general ase was onsidered, in partiular, on page 457of [N3℄ and in [X℄.Problem 1.1 is also related with several other inverse problems for the Shr�odingerequation in magneti �eld (and for the time-harmoni wave equation with �rst-order perturbation) in dimension d ≥ 2. Conerning these other inverse prob-lems see [DKN℄, [Sh℄, [HN2℄, [Nor℄, [RW℄, [RE℄, [BBS℄, [ER1℄, [NSU℄, [A℄, [ER2℄,[Ni℄, [WY℄, [GT℄, [IY℄ and referenes therein.Note that approximate �nding A and V in Problem 1.1 means, in partiular,�nding modulo transformations (1.10). However, for real-valued A and V thereis no gauge nonuniqueness (1.10) in Problem 1.1 ! In addition, A and V offormulas (1.3) (of moving �uid aoustis) are real if n is real.In this work we are mainly motivated by appliations to the aousti tomog-raphy of moving �uid disribed in [Nor℄, [RW℄, [RE℄, [BBS℄. Note that in theirreonstrution results works [Nor℄, [RW℄, [RE℄, [BBS℄ proeed from near-�eldsattering data (e.g. from some near �eld information on ψ+) instead of thesattering amplitude f . But it is also known that near-�eld sattering data anbe transformed into values of f , see e.g. [Ber℄, [BBS℄.Results of the present work an be desribed as follows:In Setion 2 we give formulas for solving Problem 1.1 in the Born approxi-mation. To our knowledge these formulas were not yet given expliitely in theliterature for the ase when A 6≡ 0. These formulas are proved in Setion 5.In Setion 3 we give a nonlinearized reonstrution algorithm for Problem1.1. For the ase when A ≡ 0 this algorithm is redued to the algorithm of[N4℄ and was implemented numerially in [BAR℄. For the general ase this al-gorithm an be also regarded as simpliation and development of the algorithmmentioned on page 457 of [N3℄ and based on the Riemann�Hilbert�Manakovproblem approah of [GN1℄, [N1℄. A derivation of the reonstrution algorithmof Setion 3 is given in Setion 6.In Setion 4 we show that in the Born approximation the algorithm of Se-tion 3 is redued to formulas of Setion 2. Related proofs are given in Setion 7.In a similar way with results of [NS℄ the reonstrution algorithm of Setion 3an be generalized to the multi-hannel ase. This generalization will be givenin a subsequent work.In the present work we are foused on approximate reonstrutions for Prob-lem 1.1, admitting stable numerial implementation. Issues related with the-orems of uniqueness and examples of nonuniqueness for Problem 1.1 will beonsidered in a subsequent work. 3



2 Inverse sattering in the Born approximationIf A = (A1, A2) and V satisfy (1.2) and are su�iently small, then proeedingfrom (1.6), (1.8) we have the following Born approximation formulas for diretsattering:
ψ+(x, k) ≈ eikx, ∇ψ+(x, k) ≈ eikxik,

f(k, l) ≈ f lin(k, l), (2.1)
f lin(k, l) def

== (2π)−2

∫

R2

ei(k−l)x
(
2kA(x) + V (x)

)
dx, (2.2)where x, k, l ∈ R2, k2 = l2 = E. In partiular, formulas (2.1) an be spei�edas (2.14).Note that f lin on ME is invariant with respet to the gauge transformations

A→ A+∇ϕ, V → V − i∆ϕ, (2.3)where ϕ is a su�iently regular funtion on R2 with su�ient deay at in�nity.This invariane follows from (2.2), (2.3), integrating by parts and using that
k2 − l2 = 0. We onsider (2.3) as a linearization of (1.10) for small A, V and ϕ.In this setion we onsider the following linearized inverse sattering problemfor equation (1.1) under assumptions (1.2):Problem 2.1. Given linearized sattering amplitude f lin onME at �xed E > 0,�nd potentials A and V on R2 (at least approximately).Note that approximate �nding A and V in Problem 2.1 means, in partiular,�nding modulo transformations (2.3). However, in a similar way with Problem1.1, there is no gauge nonuniqueness (2.3) in Problem 2.1 for the ase of real-valued A and V .Problem 2.1 is a linearization of Problem 1.1.To study Problem 2.1 it is onvenient to introdue ϕdiv, Adiv,0, V div,0 and
ϕ±, A±,0, V ±,0 suh that:

∆ϕdiv(x) = − divA(x), ϕdiv(x) → 0 as |x| → ∞,

Adiv,0(x) = A(x) +∇ϕdiv(x), V div,0(x) = V (x)− i∆ϕdiv(x), (2.4)where x ∈ R2;
∂zϕ

−(x) = −1

2
(A1(x) − iA2(x)), ϕ−(x) → 0 as |x| → ∞,

A−,0(x) = A(x) +∇ϕ−(x), V −,0(x) = V (x) − i∆ϕ−(x),
(2.5)

∂z̄ϕ
+(x) = −1

2
(A1(x) + iA2(x)), ϕ+(x) → 0 as |x| → ∞,

A+,0(x) = A(x) +∇ϕ+(x), V +,0(x) = V (x)− i∆ϕ+(x),
(2.6)4



where
∂z =

1

2
(∂x1

− i∂x2
), ∂z̄ =

1

2
(∂x1

+ i∂x2
), x = (x1, x2) ∈ R2. (2.7)One an see that

divAdiv,0(x) = 0, A−,0
1 (x) − iA−,0

2 (x) = 0, A+,0
1 (x) + iA+,0

2 (x) = 0,where x ∈ R2, A±,0 = (A±,0
1 , A±,0

2 ).It is also onvenient to transform formula (2.2) to the form
f lin(k, l)− f lin(−l,−k) = 2(k + l)Â(k − l),

f lin(k, l) + f lin(−l,−k) = 2(k − l)Â(k − l) + 2V̂ (k − l),
(2.8)

Â(p) = (2π)−2

∫

R2

eipxA(x) dx, V̂ (p) = (2π)−2

∫

R2

eipxV (x) dx, (2.9)where (k, l) ∈ME , p ∈ R2.Note that
(k, l) ∈ME =⇒ k − l ∈ B2

√
E ,

p ∈ B2
√
E =⇒ p = k − l for some (k, l) ∈ME ,

(2.10)where
Br = {p ∈ R2 : |p| ≤ r}, r > 0. (2.11)We de�ne

CN,σ(R2) =
{
u ∈ CN (R2) : ‖u‖N,σ < +∞

}
,

‖u‖N,σ = max
|n|6N

sup
x∈R2

(1 + |x|2)σ/2|∂nu(x)|, N ∈ N ∪ {0}, σ > 0,
(2.12)where CN (R2) is the spae of N -times ontinously di�erentiable omplex-valuedfuntions on R2,

∂n = ∂n1

x1
∂n2

x2
, n = (n1, n2) ∈

(
N ∪ {0}

)2
, |n| = n1 + n2. (2.13)Note that if A1, A2, V ∈ C0,σ(R2) for some σ > 2 and ‖Aj‖0,σ ≤ q, j = 1, 2,

‖V ‖0,σ ≤ q, then
ψ+(x, k) = eikx +O(q), ∇ψ+(x, k) = eikxik +O(q),

f(k, l) = f lin(k, l) +O(q2) as q → +0,
(2.14)uniformly with repset to x, k, l ∈ R2, k2 = l2 = E, at �xed E > 0.Theorem 2.1. Suppose that A1, A2, V are real-valued and A1, A2, V ∈

CN,σ(R2) for some N ≥ 3, σ > 2. Then the following formulas for solving5



Problem 2.1 are valid:
Â(k − l) =

f lin(k, l)− f lin(l, k)
2

k − l

|k − l|2 +
f lin(k, l)− f lin(−l,−k)

2

k + l

|k + l|2 ,

V̂ (k − l) =
f lin(l, k) + f lin(−l,−k)

2
, (2.15)where Â, V̂ are de�ned by (2.9) and (k, l) ∈ME;

A(x) = Aappr(x,E) +Aerr(x,E), x ∈ R2, E > 0,

Aappr(x,E) =

∫

|p|≤2
√
E

e−ipxÂ(p) dp, Aerr(x,E) =

∫

|p|≥2
√
E

e−ipxÂ(p) dp, (2.16)
V (x) = Vappr(x,E) + Verr(x,E), x ∈ R2, E > 0,

Vappr(x,E) =

∫

|p|≤2
√
E

e−ipxV̂ (p) dp, Verr(x,E) =

∫

|p|≥2
√
E

e−ipxV̂ (p) dp, (2.17)where Â(p) and V̂ (p) for |p| ≤ 2
√
E are given in terms of f lin on ME aordingto (2.10), (2.15) and

|Aerr,j(x,E)| ≤ c1(N, σ)‖Aj‖N,σE
−N−2

2 , (2.18)
|Verr(x,E)| ≤ c1(N, σ)‖V ‖N,σE

−N−2

2 , (2.19)where x ∈ R2, j = 1, 2, Aerr = (Aerr,1, Aerr,2), E ≥ 1
4 and

c1(N, σ) =
4

(N − 2)(σ − 2)
. (2.20)Theorem 2.2. Suppose that A1, A2, V ∈ CN,σ(R2) for some N ≥ 4 and σ > 2.Let Adiv,0, V div,0 be de�ned aording to (2.4). Then the following formulas forsolving Problem 2.1 are valid:

Âdiv,0(k − l) =
f lin(k, l)− f lin(−l,−k)

2

k + l

|k + l|2 ,

V̂ div,0(k − l) =
f lin(k, l) + f lin(−l,−k)

2
,

(2.21)where Âdiv,0, V̂ div,0 are the Fourier transforms of Adiv,0, V div,0 (see (2.9)) and
(k, l) ∈ME;

Adiv,0(x) = Adiv,0appr (x,E) +Adiv,0err (x,E), x ∈ R2, E > 0, (2.22)
Adiv,0appr (x,E) =

∫

|p|≤2
√
E

e−ipxÂdiv,0(p) dp, Adiv,0err (x,E) =

∫

|p|≥2
√
E

e−ipxÂdiv,0(p) dp,
V div,0(x) = V div,0appr (x,E) + V div,0err (x,E), x ∈ R2, E > 0, (2.23)

V div,0appr (x,E) =

∫

|p|≤2
√
E

e−ipxV̂ div,0(p) dp, V div,0err (x,E) =

∫

|p|≥2
√
E

e−ipxV̂ div,0(p) dp,6



where Âdiv,0(p) and V̂ div,0(p) for |p| ≤ 2
√
E are given in terms of f lin on MEaording to (2.10), (2.21) and

|Adiv,0err,j (x,E)| ≤ (1 +
√
2)c1(N, σ)‖A‖N,σE

−N−2

2 , (2.24)
|V div,0err (x,E)| ≤ c1(N, σ)

(
‖V ‖N,σE

−N−2

2 +
√
2‖A‖N,σE

−N−3

2

)
, (2.25)

‖A‖N,σ = max
(
‖A1‖N,σ, ‖A2‖N,σ

)
, (2.26)where x ∈ R2, j = 1, 2, E ≥ 1

4 , Adiv,0err = (Adiv,0err,1, Adiv,0err,2) and c1(N, σ) is de�nedby (2.20). Furthermore, if divA = 0 then Adiv,0 = A, V div,0 = V .Theorem 2.3. Suppose that A1, A2, V ∈ CN,σ(R2) for some N ≥ 4 and σ > 2.Let A±,0, V ±,0 be de�ned aording to (2.5)�(2.6). Then the following formulasfor solving Problem 2.1 are valid:
Â±,0

1 (k − l) =
1

2

f(k, l)− f(−l,−k)
k1 + l1 ± i(k2 + l2)

, Â±,0
2 (k − l) = ±iÂ±,0

1 (k − l),

V̂ ±,0(k − l) =
(l1 ± il2)f(k, l) + (k1 ± ik2)f(−l,−k)

k1 + l1 ± i(k2 + l2)
,

(2.27)where Â±,0, V̂ ±,0 are the Fourier transforms of A±,0, V ±,0 (see (2.9)) and
(k, l) ∈ME;

A±,0(x) = A±,0appr(x,E) +A±,0err (x,E), x ∈ R2, E > 0, (2.28)
A±,0appr(x,E) =

∫

|p|≤2
√
E

e−ipxÂ±,0(p) dp, A±,0err (x,E) =

∫

|p|≥2
√
E

e−ipxÂ±,0(p) dp,

V ±,0(x) = V ±,0appr(x,E) + V ±,0err (x,E), x ∈ R2, E > 0, (2.29)
V ±,0appr(x,E) =

∫

|p|≤2
√
E

e−ipxV̂ ±,0(p) dp, V ±,0err (x,E) =

∫

|p|≥2
√
E

e−ipxV̂ ±,0(p) dp,where Â±,0(p) and V̂ ±,0(p) for |p| ≤ 2
√
E are given in terms of f lin on MEaording to (2.10), (2.27) and

|A±,0err,j(x,E)| ≤ (1 +
√
2)c1(N, σ)‖A‖N,σE

−N−2

2 , (2.30)
|V ±,0err | ≤ c1(N, σ)

(
‖V ‖N,σE

−N−2

2 +
√
2‖A‖N,σE

−N−3

2

)
, (2.31)where x ∈ R2, j = 1, 2, A±,0err = (A±,0err,1, A±,0err,2), ‖A‖N,σ is de�ned by (2.23)and c1(N, σ) is given by (2.20). Furthermore, if A1 ± iA2 = 0 then A = A±,0,

V = V ±,0.Theorems 2.1�2.3 are proved in Setion 5.7



3 Nonlinearized inverse sattering3.1. Some notations. To study Problem 1.1 it is onvenient to introdue ϕdiv,
Adiv, V div and ϕ±, A±, V ±, where ϕdiv and ϕ± are de�ned aording to (2.4)�(2.6) and

Adiv = A+∇ϕdiv, V div = V − i∆ϕdiv + (∇ϕdiv)2 + 2A∇ϕdiv,
A± = A+∇ϕ±, V ± = V − i∆ϕ± + (∇ϕ±)2 + 2A∇ϕ±.

(3.1)In this setion we give a nonlinearized algorithm for approximate �nding A±,
V ± and Adiv, V div on R2 from f on ME . This algorithm takes into aountmultiple sattering e�ets and an be regarded as a nonlinear version of formulasfor A±,0appr, V ±,0appr, Adiv,0appr , V div,0appr of (2.28), (2.29), (2.22), (2.23).It is onvenient to use the following notations:

z = x1 + ix2, z̄ = x1 − ix2, (3.2)
λ = E−1/2(k1 + ik2), λ′ = E−1/2(l1 + il2), (3.3)where x = (x1, x2) ∈ R2, k = (k1, k2) ∈ ΣE , l = (l1, l2) ∈ ΣE ,

ΣE =
{
m = (m1,m2) ∈ C2 : m2

1 +m2
2 = E

}
, E > 0. (3.4)In these notations

k1 =
1

2
E1/2(λ + λ−1), k2 =

i

2
E1/2(λ−1 − λ), (3.5)

l1 =
1

2
E1/2(λ′ + λ′−1), l2 =

i

2
E1/2(λ′−1 − λ′), (3.6)

exp(ikx) = exp

(
i

2
E1/2(λz̄ + λ−1z)

)
, (3.7)where λ, λ′ ∈ C \ {0}, z ∈ C2, k, l ∈ ΣE .In addition, using formulas (1.9), (3.3), (3.4), (3.5), (3.6) one an see that

ΣE
∼= C \ {0},

ΣE ∩ R2 = S1√
E
∼= T,

ME
∼= T × T,

(3.8)where
S1r =

{
m ∈ R2 : |m| = r

}
, r > 0,

T =
{
λ ∈ C : |λ| = 1

}
.

(3.9)In addition, the funtions ψ+, f of (1.5)�(1.8) an be written as
ψ+ = ψ+(z, λ, E), f = f(λ, λ′, E), (3.10)where λ, λ′ ∈ T , z ∈ C, E > 0. 8



3.2. Reonstrution algorithm. Our nonlinearized algorithm for approximate�nding A±, V ± and Adiv, V div on R2 from f on ME has the following sheme
f −→ h± −→ µ+ −→ µ± −→ A±appr, V ±appr −→ Adivappr, V divappr (3.11)and onsists of the following steps:Step 1. Find funtions h±(λ, λ′, E), λ, λ′ ∈ T , from the following linear integralequations:

h±(λ, λ
′, E)− πi

∫

T

h±(λ, λ
′′, E)χ

(
±i

[
λ

λ′′
− λ′′

λ

])
×

×f(λ′′, λ′, E) |dλ′′| = f(λ, λ′, E),

(3.12)where
χ(s) =

{
1 for s ≥ 0,
0 for s < 0. (3.13)Step 2. Solve the following linear integral equation for µ+(z, λ, E), z ∈ C, λ ∈ T ,

E > 0:
µ+(z, λ, E) +

∫

T

B(λ, λ′, z, E)µ+(z, λ′, E) |dλ′| = 1, (3.14)where
B(λ, λ′, z, E) =

1

2

∫

T

h−(ζ, λ
′, z, E)χ

(
−i

[
ζ

λ′
− λ′

ζ

])
dζ

ζ − λ(1 − 0)
−

−1

2

∫

T

h+(ζ, λ
′, z, E)χ

(
i

[
ζ

λ′
− λ′

ζ

])
dζ

ζ − λ(1 + 0)
, (3.15)

h±(λ, λ
′, z, E)

def
== h±(λ, λ

′, E)×

× exp

(
−i

√
E

2

(
(λ− λ′)z̄ + (λ−1 − λ′−1)z

))
,

(3.16)and λ, λ′ ∈ T , z ∈ C, E > 0.Step 3. De�ne funtions µ±(z, λ, E), z ∈ C, λ ∈ T , E > 0, by formulas
µ±(z, λ, E) = µ+(z, λ, E) + πi

∫

T

h±(λ, λ
′, z, E)×

×χ
(
±i

[
λ

λ′
− λ′

λ

])
µ+(z, λ′, E) |dλ′|,

(3.17)where funtions h±(λ, λ′, z, E) are given by (3.16) and χ is de�ned by(3.13). 9



Step 4. Funtions A±appr,j(x,E), V ±appr(x,E), x ∈ R2, j = 1, 2, E > 0, are de�nedby formulas
A−appr,1(x,E) =

i

4
a−z (z, E), A−appr,2(x,E) =

1

4
a−z (z, E),

a−z (z, E) = 4∂z̄ ln

∫

T

µ+(z, ζ, E) |dζ|,

V −appr(x,E) =

√
E

π

∫

T

∂zµ−(z, ζ, E) dζ,

(3.18)
and

A+appr,1(x,E) =
i

4
a+z̄ (z, E), A+appr,2(x,E) = −1

4
a+z̄ (z, E),

a+z̄ (z, E) = −4∂z ln

∫

T

µ+(z, ζ, E) |dζ|,

V +appr(z, E) = 2i
√
E∂z̄

(∫

T

µ+(z, ζ, E)
dζ

ζ2

/ ∫

T

µ+(z, ζ, E)
dζ

ζ

)
,

(3.19)where z is given by (3.2).Step 5. Find Adivappr,j(x,E), V divappr(x,E), x ∈ R2, j = 1, 2, E > 0, from formulas
Adivappr,1(x,E) =

i

8
(a−z (z, E) + a+z̄ (z, E)),

Adivappr,2(x,E) =
1

8
(a−z (z, E)− a+z̄ (z, E)), (3.20)

V divappr(x,E) =
1

2

(
V −appr(x,E) + V +appr(z, E)

)
− 1

8
a−z (z, E)a+z̄ (z, E),where z is de�ned by (3.2) and funtions a−z , a+z̄ , V ±appr are de�ned in (3.18),(3.19).A derivation of this reonstrution algorithm is based on the method of theRiemann�Hilbert problem and on the ∂̄-method. This derivation is given inSetion 6.For the ase when A ≡ 0 this algorithm is redued to the algorithm of [N4℄for approximatie �nding V on R2 from f onME . The algorithm of [N4℄ onsistsof the same aforementioned steps 1, 2, 3 and the formula Vappr = V −appr, where

V −appr is de�ned in (3.18). This algorithm of [N4℄ was implemented numeriallyin [BAR℄.For the general ase this algorithm an be also regarded as simpliation anddevelopment of the algorithm mentioned (in few lines) on page 457 of [N3℄.Atually, in [N3℄ the part of the algorithm onsisting in �nding µ± from h±10



is realized in a more ompliated way. In addition, in [N3℄ the algorithm ismentioned for the ase when
A1 = A1, A2 = A2, −2i divA+ V = V, (3.21)i.e. for the self-adjoint ase, whereas this assumption is not neessary for thealgorithm.3.3. Properties of the algorithm. Let
‖u1‖L2(T ) =

(∫

T

|u1(λ)|2 |dλ|
)1/2

,

‖u2‖L2(T 2) =

(∫

T 2

|u2(λ, λ′)|2 |dλ| |dλ′|
)1/2

, T 2 = T × T,

(3.22)where u1 and u2 are test funtions on T and T 2, respetively.Proposition 3.1. Let E > 0 be �xed. Suppose that
f ∈ L2(T 2), ‖f‖L2(T 2) <

1

π
, (3.23)where f = f(λ, λ′, E). Then equation (3.12) is uniquely solvable for h± ∈ L2(T 2)and

‖h±‖L2(T 2) <
‖f‖L2(T 2)

1− π‖f‖L2(T 2)
, (3.24)

‖B‖L2(T 2) <
2π‖f‖L2(T 2)

1− π‖f‖L2(T 2)
, (3.25)where B is de�ned by (3.15), (3.16) (at �xed z, E). In addition, if

‖f‖L2(T 2) <
1

3π
, (3.26)then ‖B‖L2(T 2) < 1, equation (3.14), at �xed z, E, is uniquely solvable for

µ+ ∈ L2(T ) and
‖µ+‖L2(T ) <

(2π)1/2

1− ‖B‖L2(T 2)
, ‖µ+ − 1‖L2(T ) <

(2π)1/2‖B‖L2(T 2)

1− ‖B‖L2(T 2)
, (3.27)

‖µ± − 1‖L2(T ) <
3π(2π)1/2‖f‖L2(T 2)

1− 3π‖f‖L2(T 2)
, (3.28)where µ± are de�ned by (3.17). In addition, at least, if

‖f‖L2(T 2) <
1

6π
, (3.29)11



then ∫

T

µ+(z, λ, E) |dλ| 6= 0 for all z ∈ C, (3.30)and A±appr,j, Adivappr,j, j = 1, 2, as well as V ±appr, V divappr are bounded on R2.Proposition 3.1 is based on solving the linear integral equations (3.12) and(3.14) by the method of suessive approximations in L2(T 2) and L2(T ), re-spetively, and on standard estimates of L2-analysis for B, h±, µ± of (3.15),(3.16), (3.17) and for the integral of (3.30).Note that assumptions (3.23), (3.26), (3.29) of Proposition 3.1 are only somesurplus su�ient onditions on f for unique solvability of integral equations(3.12), (3.14), ful�lment of (3.30) and for boundedness of Adivappr, V divappr.Theorem 3.1. Let f ∈ L2(T 2) at �xed E > 0. Suppose that f satis�es (3.29)and is a smooth funtion on T 2 and Adivappr, V divappr are onstruted from f viathe algorithm of Subsetion (3.2). Then Adivappr,1, Adivappr,2, V divappr are boundedfuntions on R2, deaying at in�nity. In addition, f is the sattering amplitudefor equation (1.1) with A = Adivappr(x,E), V = V divappr(x,E).For simpliity one an assume that f ∈ C∞(T 2) in Theorem 3.1. However,very limited smoothness of f is already su�ient. As regards to smoothness of
Adivappr,1, Adivappr,2, V divappr of Theorem 3.1 (whih are omplex-valued, in general),these funtions are real-analyti funtions of x ∈ R2. In addition, it is just forsimpliity that we assume (3.29) in Theorem 3.1.The proof of Theorem 3.1 is similar to the proof of Theorem 9.2 of [N3℄ forthe ase when A ≡ 0. Results of this type go bak to [N1℄. In the present workrestritions in time prevent us from proving Theorem 3.1 in details.Finally, suppose that f = f(λ, λ′, E) is the sattering amplitude for equation(1.1) under assumptions (1.2) and that Adivappr = Adivappr(x,E), V divappr = V divappr(x,E)are onstruted from f via the algorithm of Subsetion 3.2 at �xed E. In thepresent work restritions on time prevent us from obtaining estimates for Adiv−
Adivappr(·, E) and V div−V divappr(·, E) for su�iently large E. For the linearized asesuh error estimates are given by formulas (2.24), (2.25). For the nonlinearizedase with A ≡ 0 suh error estimates were given in [N4℄.4 Redution of the nonlinearized reonstrutionalgorithm to inversion formulas of the Born ap-proximationSuppose that we are given f on ME

∼= T × T = T 2 at �xed E, where
f ∈ L2(T 2), ‖f‖L2(T 2) ≤ ε. (4.1)

12



Proposition 4.1. Suppose that f satis�es (4.1) at �xed E > 0. Then, for
ε→ +0, the nonlinearized reonstrution algorithm of Subsetion 3.2 is reduedto the following formulas at �xed E > 0:

A±appr,j(x,E) = A±appr,j(x,E) +O(ε2), j = 1, 2,

V ±appr(x,E) = V±appr(x,E) +O(ε2),
(4.2)

Adivappr(x,E) = Adivappr,j(x,E) +O(ε2), j = 1, 2,

V divappr(x,E) = Vdivappr(x,E) +O(ε2),
(4.3)where O(ε2) is onsidered in the uniform sense with respet to x ∈ R2 and wherefuntions A±appr,j, V±appr, j = 1, 2, and Adivappr,j, Vdivappr, j = 1, 2, are de�ned bythe following linear formulas with respet to f :

A−appr,1(x,E) = − i

4

√
E

∫

T 2

sgn

(
1

i

[
λ

λ′
− λ′

λ

])
(λ− λ′)f(λ, λ′, z, E) |dλ| |dλ′|,

A−appr,2(x,E) = −iA−appr,1(x,E), (4.4)
V−appr(x,E) = i

E

2

∫

T 2

(1− λλ
′
) sgn

(
1

i

[
λ

λ′
− λ′

λ

])
f(λ, λ′, z, E) |dλ| |dλ′|,

A+appr,1(x,E) =
i

4

√
E

∫

T 2

sgn

(
1

i

[
λ

λ′
− λ′

λ

])
(λ − λ′)f(λ, λ′, z, E) |dλ| |dλ′|,

A+appr,2(x,E) = iA+appr,1(x,E), (4.5)
V+appr(x,E) = −iE

2

∫

T 2

(1− λλ′) sgn

(
1

i

[
λ

λ′
− λ′

λ

])
f(λ, λ′, z, E) |dλ| |dλ′|,

Adivappr,j(x,E) =
1

2

(
A+appr,j(x,E) +A−appr,j(x,E)

)
, j = 1, 2,

Vdivappr(x,E) =
E

2

∫

T 2

∣∣∣∣
1

2i

(
λ

λ′
− λ′

λ

)∣∣∣∣ f(λ, λ′, z, E) |dλ| |dλ′|,
(4.6)where

f(λ, λ′, z, E)
def
== f(λ, λ′, E)×

× exp

(
−i

√
E

2

(
(λ− λ′)z̄ + (λ−1 − λ′−1)z

))
,

(4.7)
λ ∈ T , λ′ ∈ T and z, z̄ are given by (3.2).Proposition 4.2. Suppose that A1, A2, V ∈ C2,σ(R2) for some σ > 2, where
CN,σ(R2) is de�ned by (2.12). Let f lin be de�ned by (2.2) and let Adiv,0appr,j, V div,0appr ,
A±,0appr,j, V ±,0appr, j = 1, 2, be de�ned by (2.21), (2.22), (2.23), (2.27), (2.28), (2.29)in terms of f lin. Suppose also that funtions Adivappr,j, Vdivappr, A±appr,j, V±appr, j = 1,
2, are given by (4.6), (4.4), (4.5) with f = f lin. Then the following equalities13



are valid:
Adiv,0appr,j(x,E) = Adivappr,j(x,E),

V div,0appr (x,E) = Vdivappr(x,E),
(4.8)

A±,0appr,j(x,E) = A±appr,j(x,E),

V ±,0appr(x,E) = V±appr(x,E),
(4.9)where x ∈ R2, j = 1, 2, E > 0.Propositions 4.1 and 4.2 are proved in Setion 7.5 Proofs of Theorems 2.1, 2.2, 2.3Let us use the notations

û(p) = (2π)−2

∫

R2

eipxu(x) dx, uerr(x,E) =

∫

|p|≥2
√
E

e−ipxû(p) dp, (5.1)where p ∈ R2, x ∈ R2, E > 0.Lemma 5.1. Let u ∈ CN,σ(R2), where N ≥ 3, σ > 2. Then the followingformula holds:
|uerr(x,E)| ≤ c1(N, σ)‖u‖N,σE

−N−2

2 , (5.2)where x ∈ R2, E ≥ 1/2 and c1(N, σ) is de�ned by (2.20).Proof of Lemma 5.1. We have that
∂̂nu(p) = (−ip1)n1(−ip2)n2 û(p),where ∂n is de�ned in (2.13), p = (p1, p2) ∈ R2, n = (n1, n2) ∈ (N ∪ {0})2,

|n| ≤ N . Using this equality we obtain that
|û(p)| ≤ 2N−1

π(σ − 2)
‖u‖N,σ

(
1 + |p|2

)−N

2for eah p ∈ R2, |p| ≥ 1. Using the latter inequality we obtain (5.2).Proof of Theorem 2.1. Sine potentials A and V are real-valued it follows from(2.8) that the following formula holds:
f lin(k, l)− f lin(l, k) = 2(k − l)Â(k − l), (5.3)where (k, l) ∈ ME. We onsider (2.8), (5.3) as a system of linear equations for�nding Â(k − l) and V̂ (k − l). In addition, we use that (k − l)(k + l) = 0 for

(k, l) ∈ME , i.e. that vetors (k − l) and (k + l) are orthogonal. As a result weobtain formulas (2.15).Formulas (2.16), (2.17) an be regarded as de�nitions ofAappr, Aerr, Vappr, Verr.Estimates (2.18), (2.19) follow from Lemma 5.1.14



Lemma 5.2. Suppose that A1, A2 ∈ CN,σ(R2), where N ≥ 4, σ > 2. Let ϕdivbe the solution of (2.4). Let ∇̂ϕdiv, (∇ϕdiv)err, ∆̂ϕdiv, (∆ϕdiv)err be de�nedaording to (5.1). Then the following estimates hold:
∣∣(∂jϕdiv)err(x,E)

∣∣ ≤
√
2 c1(N, σ)‖A‖N,σE

−N−2

2 ,
∣∣(∆ϕdiv)err(x,E)

∣∣ ≤
√
2 c1(N, σ)‖A‖N,σE

−N−3

2 ,
(5.4)where x ∈ R2, j = 1, 2, E ≥ 1/4, ‖A‖N,σ is de�ned by (2.26) and c1(N, σ) isde�ned by (2.20).Proof of Lemma 5.2. The solution ϕdiv of (2.4) is given by:

ϕdiv(x) = −i
∫

R2

e−ipx
(
pÂ(p)

)
|p|−2 dp, x ∈ R2. (5.5)Using (5.1), (5.5) we obtain that

∇̂ϕdiv(p) = −p
(
pÂ(p)

)
|p|−2, ∆̂ϕdiv(p) = ipÂ(p), (5.6)where p ∈ R2 \ {0}. Formulas (5.6) imply the following inequalities:

∣∣∂̂jϕdiv(p)∣∣ ≤ √
2 max
k=1,2

|Âk(p)|,
∣∣∆̂ϕdiv(p)∣∣ ≤ √

2 |p| max
k=1,2

|Âk(p)|, (5.7)where p ∈ R2 \ {0}, j = 1, 2.We have that
∂̂nAj(p) = (−ip1)n1(−ip2)n2Âj(p),where p = (p1, p2) ∈ R2, n = (n1, n2) ∈ (N∪{0})2, |n| ≤ N . Using this equalitywe obtain that

|Âj(p)| ≤
2N−1

π(σ − 2)
‖Aj‖N,σ(1 + |p|2)−N

2 (5.8)for p ∈ R2, |p| ≥ 1, j = 1, 2. Formulas (5.7), (5.8) imply the estimates
∣∣∂̂jϕdiv(p)∣∣ ≤ √

2
2N−1

π(σ − 2)
‖A‖N,σ(1 + |p|2)−N

2 ,

∣∣∆̂ϕdiv(p)∣∣ ≤ √
2

2N−1

π(σ − 2)
‖A‖N,σ(1 + |p|2)−N−1

2 ,

(5.9)where p ∈ R2, |p| ≥ 1, j = 1, 2. Using (5.9) we obtain (5.4).Proof of Theorem 2.2. Taking into aount invariane of f lin with respet totransformations (2.3) and using (2.4), (2.8) we obtain the following equalities:
(k − l)Âdiv,0(k − l) = 0,

f lin(k, l)− f lin(−l,−k) = 2(k + l)Âdiv,0(k − l),

f lin(k, l) + f lin(−l,−k) = 2V̂ div,0(k − l),

(5.10)15



where (k, l) ∈ME. Using (5.10) and orthogonality of vetors (k− l) and (k+ l)we obtain (2.21).Formulas (2.22), (2.23) an be regarded as de�nitions of Adiv,0appr , Adiv,0err , V div,0appr ,
V div,0err .From (2.4), (2.22), (2.23) we derive

Adiv,0err,j (x,E) = (Aj)err(x,E) + (∂jϕ
div)err(x,E), j = 1, 2,

V div,0err (x,E) = Verr(x,E)− i(∆ϕdiv)err(x,E),
(5.11)where x ∈ R2, E > 0, and (A1)err, (A2)err, Verr, (∇ϕdiv)err, (∆ϕdiv)err arede�ned aording to (5.1).From (5.11) using inequalities (5.2) for (A1)err, (A2)err, Verr and using in-equalities (5.4) we obtain formulas (2.24), (2.25).Lemma 5.3. Suppose that A1, A2 ∈ CN,σ(R2), where N ≥ 4, σ > 2. Let

ϕ−, ϕ+ be the solutions of (2.5), (2.6), respetively. Let ∇̂ϕ±, (∇ϕ±)err, ∆̂ϕ±,
(∆ϕ±)err be de�ned aording to (5.1). Then the following estimates hold:

∣∣(∂jϕ±)err(x,E)
∣∣ ≤

√
2 c1(N, σ)‖A‖N,σE

−N−2

2 ,
∣∣(∆ϕ±)err(x,E)

∣∣ ≤
√
2 c1(N, σ)‖A‖N,σE

−N−3

2 ,
(5.12)where x ∈ R2, j = 1, 2, E ≥ 1/4, ‖A‖N,σ is de�ned by (2.26) and c1(N, σ) isde�ned by (2.20).Proof of Lemma 2.3. The solutions ϕ± of (2.5), (2.6) are given by:

ϕ±(x) = −i
∫

R2

e−ipx Â1(p)± iÂ2(p)

p1 ± ip2
dp, x ∈ R2. (5.13)Using (5.1), (5.13) we obtain that

∇̂ϕ±(p) = − Â1(p)± iÂ2(p)

p1 ± ip2
p, ∆̂ϕ±(p) = i

Â1(p)± iÂ2(p)

p1 ± ip2
|p|2, (5.14)where p ∈ R2 \ {0}. Formulas (5.14) imply the following inequalities:

∣∣∂̂jϕ±(p)
∣∣ ≤

√
2 max
k=1,2

|Âk(p)|,
∣∣∆̂ϕ±(p)

∣∣ ≤
√
2 |p| max

k=1,2
|Âk(p)|, (5.15)where p ∈ R2 \ {0}, j = 1, 2.As in the proof of Lemma 5.2 we have estimates (5.8). Formulas (5.8), (5.15)imply the following estimates:

∣∣∂̂jϕ±(p)
∣∣ ≤

√
2

2N−1

π(σ − 2)
‖A‖N,σ(1 + |p|2)−N

2 ,

∣∣∆̂ϕ±(p)
∣∣ ≤

√
2

2N−1

π(σ − 2)
‖A‖N,σ(1 + |p|2)−N−1

2 ,

(5.16)where p ∈ R2, |p| ≥ 1, j = 1, 2. Using (5.16) we obtain (5.12).16



Proof of Theorem 2.3. Taking into aount invariane of f lin with respet totransformations (2.3) and using (2.5), (2.6), (2.8) we obtain the following equal-ities:
A±,0

2 (k − l) = ±iA±,0
1 (k − l),

f lin(k, l)− f lin(−l,−k) = 2
(
k1 + l1 ± i(k2 + l2)

)
Â±,0

1 (k − l), (5.17)
f lin(k, l) + f lin(−l,−k) = 2

(
k1 − l1 ± i(k2 − l2)

)
Â±,0

1 (k − l) + 2V̂ ±,0(k − l),where (k, l) ∈ME. Using (5.17) and orthogonality of vetors (k− l) and (k+ l)we obtain (2.27).Formulas (2.28), (2.29) an be regarded as de�nitions of A±,0appr, A±,0err , V ±,0appr,
V ±,0err .From (2.5), (2.6), (2.28), (2.29) we derive formulas

A±,0err,j(x,E) = (Aj)err(x,E) + (∇ϕ±)err(x,E), j = 1, 2,

V ±,0err (x,E) = Verr(x,E)− i(∆ϕ±)err(x,E),
(5.18)where x ∈ R2, E > 0, and (A1)err, (A2)err, Verr, (∇ϕ±)err, (∆ϕ±)err are de�nedby (5.1).From (5.18) using inequalities (5.2) for (A1)err, (A2)err, Verr and using in-equalities (5.12) we obtain formulas (2.30), (2.31).6 Derivation of the reonstrution algorithm ofSetion 36.1. Faddeev funtions. For equation (1.1), under assumptions (1.2), we onsiderthe Faddeev funtions ψ, h (see e.g. [F1℄, [F2℄ and subsetion 5.1 of [HN℄):

ψ(x, k) = eikxµ(x, k),

µ(x, k) = 1 +

∫

R2

g(x− y, k)×

×
(
−2iA(y)∇yµ(y, k) +

(
2A(y)k + V (y)

)
µ(y, k)

)
dy,

(6.1)
g(x, k) = −(2π)−2

∫

R2

eiξx

ξ2 + 2kξ
dξ, (6.2)where x ∈ R2, k ∈ ΣE \ R2;

h(k, l) = (2π)−2

∫

R2

ei(k−l)y×

×
(
−2iA(y)∇yµ(y, k) +

(
2A(y)k + V (y)

)
µ(y, k)

)
dy,

(6.3)where k, l ∈ ΣE \ R2, Im k = Im l. Here (6.1) and its di�erentiated version,where ∇ is applied to both sides of (6.1), are onsidered as a system of linearintegral equations for bounded µ and ∇µ, ΣE is de�ned by (3.4).17



We reall that ψ are ¾growing¿ solutions of (1.1), in the sense of [F1℄,parametrized by k ∈ ΣE \ R2, and G = eikxg is the Faddeev's Green fun-tion for the operator ∆+ k2.Equation (6.1) for µ and formula (6.3) for h are analogs in omplex domainin k of equation (1.6) for ψ+ and formula (1.8) for f .Note that
k, l ∈ ΣE \ R2, Im k = Im l =⇒ l = k or l = −k. (6.4)Therefore, the funtion h of (6.3) splits to the funtions
a(k) = h(k, k), b(k) = h(k,−k), k ∈ ΣE \ R2. (6.5)Note also that a and b are invariant with respet to transformations (1.10) and

ψ, µ are transformed as
ψ → e−iϕψ, µ→ e−iϕµ (6.6)with respet to (1.10).6.2. Analyti properties of ψ. Using notations of Subsetion 3.1 oe�ients

A1, A2, V of equation (1.1), funtions ψ+, f of (1.6), (1.8) and funtions ψ, µ,
b of (6.1), (6.5) an be written as

A1 = A1(z), A2 = A2(z), V = V (z),

ψ+ = ψ+(z, λ, E), f = f(λ, λ′, E), λ, λ′ ∈ T,

ψ = ψ(z, λ, E), µ = µ(z, λ, E), b = b(λ,E), λ ∈ C \ (T ∪ 0),

(6.7)where z ∈ C, E > 0.It is known that the funtion ψ (or µ) has the following properties at �xed
z ∈ C and E > 0 (see page 448 of [N3℄):

∂

∂λ
µ(z, λ, E) = r(λ, z, E)µ

(
z,− 1

λ
,E

)
, (6.8)for λ ∈ C \ (T ∪ 0), where

r(λ, z, E) = exp

(
−i

√
E

2

(
λz +

z

λ
+ λz +

z

λ

))
×

×π
λ
sgn

(
λλ− 1

)
b(λ,E);

(6.9)
µ(z, λ, E) = µ−

0 (z) + o(1) for λ→ ∞,

µ(z, λ, E) = µ+
0 (z) + o(1) for λ→ 0,

(6.10)where
∂z̄µ

+
0 (z) =

1

2i

(
A1(z) + iA2(z)

)
µ+
0 (z),

∂zµ
−
0 (z) =

1

2i

(
A1(z)− iA2(z)

)
µ−
0 (z),

µ±
0 (z) → 1 as z → ∞;

(6.11)18



ψ±(z, λ, E) = ψ+(z, λ, E) + πi

∫

T

h±(λ, λ
′′, E)χ

(
±i

[
λ

λ′′
− λ′′

λ

])
×

×ψ+(z, λ′′, E) |dλ′′|
(6.12)for λ ∈ T , where

ψ±(z, λ, E) = ψ(z, λ(1∓ 0), E) = exp
(
i

√
E

2

(
λz +

z

λ

))
×

×µ±(z, λ, E), µ±(z, λ, E) = µ(z, λ(1± 0), E), λ ∈ T,

(6.13)
ψ+ is the funtion of (1.6), (6.7), h± are the funtions related with the satteringamplitude f by equations (3.12), χ is de�ned by (3.13).More preisely, equation (6.8) is ful�ed if the system of linear equations for
µ and ∇µ related with (6.1) is uniquely solvable for k =

(
k1(λ,E), k2(λ,E)

)for �xed λ ∈ C \ (T ∪ 0), where k1, k2 are given by (3.5), and relation (6.12)is ful�led if the aforementioned system is uniquely solvable for k =
(
k1(λ(1 ∓

0), E), k2(λ(1 ∓ 0), E)
) for �xed λ ∈ T . In partiular, all these onditions areful�led if oe�ients A1, A2, V of (1.1) are su�iently small for �xed E.6.3. Inverse sattering from f and b. Using the de�nitions of ϕ±, A±, V ± of(2.5), (2.6), (3.1), the invariane of f and b with respet to (1.10) and formulas(1.11), (6.6) one an see thatfor A, V transformed to A±, V ± (respetively) formulas(6.8)�(6.13) are ful�led with µ±

0 ≡ 1 (respetively). (6.14)Properties (6.8)�(6.14) of ψ, µ yield the following approah to inverse satteringfor equation (1.1) from f and b:1. �nd ψ, µ satisfying (6.8)�(6.10), (6.12), (6.13) with a priori unknown ψ+in (6.12), where µ−
0 ≡ 1, µ(z, ·, E) ∈ C(C \ T ), h± are related with f by(3.12);2. �nd A−, V − using that

A−
1 (z)− iA−

2 (z) = 0, A−
1 (z) + iA−

2 (z) = 2i∂z̄ lnµ
+
0 (z), (6.15)

V −(z)ψ(z, λ, E) =
(
4∂z∂z̄+

+2i
(
A−

1 (z) + iA−
2 (z)

)
∂z + E

)
ψ(z, λ, E),

(6.16)where z ∈ C, λ ∈ C \ (T ∪ 0).Or alternatively:1'. �nd ψ, µ satisfying (6.8)�(6.10), (6.12), (6.13) with a priori unknown ψ+in (6.12), where µ+
0 ≡ 1, µ(z, ·, E) ∈ C

(
(C ∪∞) \ T

), h± are related with
f by (3.12); 19



2'. �nd A+, V + using that
A+

1 (z)− iA+
2 (z) = 2i∂z lnµ

−
0 (z), A+

1 (z) + iA+
2 (z) = 0, (6.17)

V +(z)ψ(z, λ, E) =
(
4∂z∂z̄+

+2i
(
A+

1 (z)− iA+
2 (z)

)
∂z̄ + E

)
ψ(z, λ, E),

(6.18)where z ∈ C, λ ∈ C \ (T ∪ 0).Note that (6.15) arises from (6.11) with µ−
0 ≡ 1, (6.17) arises from (6.11) with

µ+
0 ≡ 1, (6.16) and (6.18) arise from equation (1.1) for the Faddeev funtions ψof Subsetions 6.1, 6.2 in the gauge setting related with A−, V − and A+, V +,respetively. In addition, ψ, µ, µ+

0 of steps 1,2 and ψ = ψ′, µ = µ′, µ−
0 of steps1', 2' are related by the formulas

ψ′(z, λ, E) =
(
µ+
0 (z)

)−1
ψ(z, λ, E),

µ′(z, λ, E) =
(
µ+
0 (z)

)−1
µ(z, λ, E), µ−

0 (z) =
(
µ+
0 (z)

)−1
,

(6.19)where z ∈ C, λ ∈ C \ (T ∪ 0).As soon as A, V are reovered as A−, V − or A+, V +, then these oe�ientsan be transformed from A−, V − or from A+, V + to other possible gauge settingvia (1.10) and, in partiular, to Adiv, V div of (3.1).Note that di�erent ideas of the aforementioned approah to inverse satteringgo bak to [M℄, [ABF℄, [GN1℄, [GM℄, [N3℄, [N4℄. In partiular, �nding ψ, µ ofthe aforementioned steps 1 or 1' for the ase when b ≡ 0 at �xed E is reduedto solving a non-loal Riemann�Hilbert problem for holomorphi funtions, seeSubsetion 6.4. Suh non-loal Riemann�Hilbert problems go bak to [M℄.6.4. Inverse sattering with b ≡ 0 at �xed E. In the Born approximation at�xed E we have that
f(k, l) ≈ f lin(k, l) = 2kÂ(k − l) + V̂ (k − l), (k, l) ∈ME, (6.20)
b(k) ≈ blin(k) = 2kÂ(2Re k) + V̂ (2Re k), k ∈ ΣE \ R2, (6.21)where Â, V̂ are de�ned by (2.9). Here formula (6.20) is equivalent to theformulas for f of (2.1), (2.2) and formula (6.21) follows from (6.1), (6.3), (6.5)in a similar way that (6.20) follows from (1.6), (1.8). Note also that

k ∈ ΣE \ R2 =⇒ 2Re k ∈ R2 \B2
√
E , E > 0, (6.22)where Br is de�ned by (2.11).Using (2.10), (6.20) and (6.21), (6.22) one an see that the expression for

f lin involves Â, V̂ on B2
√
E , only, and the expression for blin involves Â, V̂ on

R2 \B2
√
E , only, at �xed E. Further, using also (2.21)�(2.23), (2.27)�(2.29) onean see that the expressions for A±,0appr, V ±,0appr, Adiv,0appr , V div,0appr involve f lin, only,and are independent of blin at �xed E.In a similar way, in Setion 3 in order to onstrut nonlinear analogs of

A±,0appr, V ±,0appr, Adiv,0appr , V div,0appr we use inverse sattering of Subsetion 6.3 without
b or, in other words, with b ≡ 0 at �xed E.20



In this ase steps 1 and 1' of Subsetion 6.3 onsist in solving the followingnon-loal Riemann�Hilbert problems for holomorphi funtions:1. �nd ψ = exp
(
(i/2)

√
E(λz + z/λ)

)
µ(z, λ, E), z ∈ C, λ ∈ C \ (T ∪ 0),satisfying (6.12), (6.13) with a priori unknown ψ+ in (6.12), where

∂

∂λ
µ(z, λ, E) = 0, λ ∈ C \ (T ∪ 0),

µ(z, λ, E) → 1, as λ→ ∞,

µ(z, ·, E) ∈ C(C \ T ),

(6.23)or, alternatively:1'. �nd ψ = exp
(
(i/2)

√
E(λz + z/λ)

)
µ(z, λ, E), z ∈ C, λ ∈ C \ (T ∪ 0),satisfying (6.12), (6.13) with a propri unknown ψ+ in (6.12), where

∂

∂λ
µ(z, λ, E) = 0, λ ∈ C \ (T ∪ 0),

µ(z, λ, E) → 1, as λ→ 0,

µ(z, ·, E) ∈ C((C ∪∞) \ T ).

(6.24)We reall that h± of (6.12) are related with f by (3.12). Atually, it is alsoassumed that µ(z, ·, E) admits ontinuous extension on T from its both sides.Now due to onsiderations of Setion 2 of [N4℄ we have that �nding µ of step1 is redued to: (a) solving the linear integral equation (3.14) for µ+(z, ·, E)on T , where ψ+ = exp
(
(i/2)

√
E(λz + z/λ)

)
µ+(z, λ, E), z ∈ C, λ ∈ T , (b)�nding µ±(z, ·, E) on T by formulas (3.17) (or, in other words, by formulas(6.12) rewritten in terms of µ± and µ+), () �nding µ(z, ·, E) on C \ T by theCauhy formulas:

µ(z, λ, E) =
1

2πi

∫

T

µ+(z, ζ, E)

ζ − λ
dζ, |λ| < 1,

µ(z, λ, E) = 1− 1

2πi

∫

T

µ−(z, ζ, E)

ζ − λ
dζ, |λ| > 1,

(6.25)
z ∈ C, λ ∈ C \ T .In addition, due to (6.19), (6.25), �nding ψ = ψ′, µ = µ′ of step 1' is reduedto �nding ψ, µ of step 1 and to the formulas

ψ′(z, λ, E) =
(
µ+
0 (z)

)−1
ψ(z, λ, E), µ′(z, λ, E) =

(
µ+
0 (z)

)−1
µ(z, λ, E),

µ+
0 (z) =

1

2πi

∫

T

µ+(z, ζ, E)

ζ
dζ, (6.26)where z ∈ C, λ ∈ C \ (T ∪ 0). 21



In addition, due to (6.25) we have that
µ(z, λ, E) = 1 + µ−

1 (z)λ
−1 +O(λ−2) as λ→ ∞,

µ(z, λ, E) = µ+
0 (z) + µ+

1 (z)λ+O(λ2) as λ→ 0,
(6.27)where z ∈ C, λ ∈ C \ (T ∪ 0), µ+

0 (z) is given in (6.26),
µ+
1 (z) =

1

2πi

∫

T

µ+(z, ζ, E)

ζ2
dζ,

µ−
1 (z) =

1

2πi

∫

T

µ−(z, ζ, E) dζ.

(6.28)Note that the non-loal Riemann�Hilbert problems of steps 1 and 1' arebetter known in the literature (going bak to [M℄) for the ase when relation(6.12) between ψ+ and ψ− on T with a priori unknown ψ+ is given in the form
ψ+(λ) = ψ−(λ) +

∫

T

ρ(λ, λ′)ψ−(λ
′) |dλ′|, λ ∈ T, (6.29)see e.g. [M℄, [GN1℄, [GM℄, [N3℄. Note also that in our ase h± of (3.12), (6.12)are related with ρ of (6.29) by the following formulas and equations:

h1(λ, λ
′, E) = χ

(
i

[
λ′

λ
− λ

λ′

])
h+(λ, λ

′, E)−

− χ

(
−i

[
λ′

λ
− λ

λ′

])
h−(λ, λ

′, E),

h2(λ, λ
′, E) = χ

(
i

[
λ′

λ
− λ

λ′

])
h−(λ, λ

′, E)−

− χ

(
−i

[
λ′

λ
− λ

λ′

])
h+(λ, λ

′, E),

(6.30)
ρ(λ, λ′, E) + πi

∫

T

ρ(λ, λ′′, E)χ

(
−i

[
λ′

λ′′
− λ′′

λ′

])
×

× h1(λ
′′, λ′, E) |dλ′′| = −πih1(λ, λ′, E),

ρ(λ, λ′, E) + πi

∫

T

χ

(
i

[
λ′

λ′′
− λ′′

λ′

])
×

× h2(λ
′′, λ′, E) |dλ′′| = −πih2(λ, λ′, E),

(6.31)
where λ, λ′ ∈ T , see [N3℄.Futher, due to results of [GN1℄, [N3℄ and of Proposition 3.1 of the presentwork we have that, at least under assumption (3.26), the non-loal Riemann�Hilbert problems for ψ and for ψ = ψ′ of steps 1 and 1' are uniquely solvable22



and
(
−4∂z∂z̄ + a−z (z)∂z + V −(z)

)
ψ(z, λ, E) = Eψ(z, λ, E), (6.32)

a−z (z) = 4∂z̄ lnµ
+
0 (z), V −(z) = 2i

√
E∂zµ

−
1 (z), (6.33)

(
−4∂z∂z̄ + a+z̄ (z)∂z̄ + V +(z)

)
ψ′(z, λ, E) = Eψ′(z, λ, E), (6.34)

a+z̄ (z) = 4∂z ln
1

µ+
0 (z)

, V +(z) = 2i
√
E∂z̄

µ+
1 (z)

µ+
0 (z)

, (6.35)where z ∈ C, λ ∈ C \ (T ∪ 0), µ+
0 , µ−

1 , µ+
1 are the oe�ients of (6.27). Here(6.32), (6.33) orrespond to (6.15), (6.16) and (6.34), (6.35) orrespond to (6.17),(6.18).Formulas (3.18), (3.19) follow from (6.32)�(6.35) and the integral expressionfor µ+

0 , µ−
1 , µ+

1 of (6.26), (6.28).Finally, formulas (3.20) arise from onsiderations of the gauge transforma-tions (1.10) between A−, V − and A+, V + and Adiv, V div of (3.1). In partiular,in these onsiderations we use that for equation (1.1) written as
(
−4∂z∂z̄ + az∂z + az̄∂z̄ + V

)
ψ = Eψ,

az = −2i(A1 + iA2), az̄ = −2i(A1 − iA2),
(6.36)the gauge transformations (1.10), (1.11) an be written as

az → az − 4i∂z̄ϕ, az̄ → az̄ − 4i∂zϕ,

V → V − 4i∂z∂z̄ϕ+ 4∂zϕ∂z̄ϕ+ iaz∂zϕ+ iaz̄∂z̄ϕ,

ψ → e−iϕψ,

(6.37)and that the equations for ϕdiv, ϕ−, ϕ+ of (2.4)�(2.6), (3.1) an be written as
8i∂z∂z̄ϕ

div = ∂zaz + ∂z̄az̄, ϕdiv(z) → 0 as |z| → ∞,

4i∂zϕ
− = az̄, ϕ−(z) → 0 as |z| → ∞,

4i∂z̄ϕ
+ = az, ϕ+(z) → 0 as |z| → ∞.

(6.38)7 Proofs of Propositions 4.1 and 4.2Proof of Proposition 4.1. The method of suessive approximations for solving(3.12) with repset to h± ∈ L2(T 2) and assumptions (4.1) imply that
h± = f +O(ε2), ε→ +0, (7.1)where O(ε2) is onsidered in the sense of ‖ · ‖L2(T 2).Consider the following operators ating in L2(T )

(C±u)(λ) =
1

2πi

∫

T

u(ζ)

ζ − λ(1 ∓ 0)
dζ, λ ∈ T, (7.2)23



where u is a test funtion. We reall that
‖C±u‖L2(T ) ≤ ‖u‖L2(T ). (7.3)Using (3.15), (3.16), (7.1), (7.3) and the equality

∣∣∣∣exp
(
−i

√
E

2

(
(λ − λ′)z̄ + (λ−1 − λ′−1)z

))∣∣∣∣ = 1,

λ, λ′ ∈ T, z ∈ C, E > 0,

(7.4)we obtain that
B(λ, λ′, z, E) =

1

2

∫

T

f(ζ, λ′, z, E)χ

(
−i

[
ζ

λ′
− λ′

ζ

])
dζ

ζ − λ(1− 0)
−

−1

2

∫

T

f(ζ, λ′, z, E)χ

(
i

[
ζ

λ′
− λ′

ζ

])
dζ

ζ − λ(1 + 0)
+O(ε2),

(7.5)where λ, λ′ ∈ T , z ∈ C, f(ζ, λ′, z, E) is given by (4.7), O(ε2) is onsidered inthe sense of ‖ · ‖L2(T 2) and is uniform with respet to z ∈ C.From (3.14) we derive the following equalities:
∂zµ

+(z, λ, E) +

∫

T

B(λ, λ′, z, E)∂zµ
+(z, λ′, E) |dλ′| =

= −
∫

T

∂zB(λ, λ′, z, E)µ+(z, λ′, E) |dλ′|,

∂z̄µ
+(z, λ, E) +

∫

T

B(λ, λ′, z, E)∂z̄µ
+(z, λ′, E) |dλ′| =

= −
∫

T

∂z̄B(λ, λ′, z, E)µ+(z, λ′, E) |dλ′|,

(7.6)
where λ ∈ T , z ∈ C, E > 0.The method of suessive approximations for solving (3.14) and (7.6) withrespet to µ+ ∈ L2(T ) and ∂zµ+, ∂z̄µ+ ∈ L2(T ) and estimates (4.1), (7.5) implythat:

µ+(z, λ, E) = 1 +O(ε),

∂zµ
+(z, λ, E) = −

∫

T

∂zB(λ, λ′, z, E) |dλ′|+O(ε2),

∂z̄µ
+(z, λ, E) = −

∫

T

∂z̄B(λ, λ′, z, E) |dλ′|+O(ε2),

(7.7)where z ∈ C, λ ∈ T , O(ε), O(ε2) are onsidered in the sense of ‖ · ‖L2(T ) andare uniform with respet to z ∈ C. 24



Using (3.17), (7.1), (7.7) we obtain that
µ±(z, λ, E) = 1 +O(ε),

∂zµ±(z, λ, E) = −
∫

T

∂zB(λ, λ′, z, E) |dλ′|+

+ πi

∫

T

∂zf(λ, λ
′, z, E)χ

(
±i

[
λ

λ′
− λ′

λ

])
|dλ′|+O(ε2),

∂z̄µ±(z, λ, E) = −
∫

T

∂z̄B(λ, λ′, z, E) |dλ′|+

+ πi

∫

T

∂z̄f(λ, λ
′, z, E)χ

(
±i

[
λ

λ′
− λ′

λ

])
|dλ′|+O(ε2),

(7.8)
where λ ∈ T , f(λ, λ′, z, E) is given by (4.7) and O(ε), O(ε2) are onsidered inthe sense of ‖ · ‖L2(T ) and are uniform with repset to z ∈ C.Using (3.18), (3.19), (7.8) we obtain that:
V −appr(x,E) = −

√
E

π

∫

T 2

∂zB(λ, λ′, z, E) dλ |dλ′|+

+ i
√
E

∫

T 2

∂zf(λ, λ
′, z, E)χ

(
−i

[
λ

λ′
− λ′

λ

])
dλ |dλ′|+O(ε2),

V +appr(x,E) =

√
E

π

∫

T 2

∂z̄B(λ, λ′, z, E)λ−2dλ |dλ′|−

− i
√
E

∫

T 2

∂z̄f(λ, λ
′, z, E)χ

(
i

[
λ

λ′
− λ′

λ

])
λ−2dλ |dλ′|+O(ε2),

a−z (z, E) =
2i

π

∫

T 2

∂z̄B(λ, λ′, z, E)λ−1dλ |dλ′|+ (7.9)
+ 2

∫

T 2

∂z̄f(λ, λ
′, z, E)χ

(
i

[
λ

λ′
− λ′

λ

])
λ−1dλ |dλ′|+O(ε2),

a+z̄ (z, E) = −2i

π

∫

T 2

∂zB(λ, λ′, z, E)λ−1dλ |dλ′|−

− 2

∫

T 2

∂zf(λ, λ
′, z, E)χ

(
i

[
λ

λ′
− λ′

λ

])
λ−1dλ |dλ′|+O(ε2),where x ∈ R2, z is given by (3.2), and O(ε2) is onsidered in the uniform sensewith respet to x ∈ R2. 25



Note that the following formulas hold for eah u ∈ L2(T ):
∫

T

(C+u)(λ) dλ = 0,

∫

T

(C−u)(λ) dλ = −
∫

T

u(λ) dλ,

∫

T

(C+u)(λ)
dλ

λ
=

∫

T

u(λ)
dλ

λ
,

∫

T

(C−u)(λ)
dλ

λ
= 0,

∫

T

(C+u)(λ)
dλ

λ2
=

∫

T

u(λ)
dλ

λ2
,

∫

T

(C−u)(λ)
dλ

λ2
= 0,

(7.10)
where C± are de�ned by (7.2).Formulas (7.5), (7.9), (7.10) imply estimates

V −appr(x,E) = i
√
E

∫

T 2

s(λ, λ′)∂zf(λ, λ
′, z, E) dλ |dλ′|+O(ε2),

V +appr(x,E) = i
√
E

∫

T 2

s(λ, λ′)∂z̄f(λ, λ
′, z, E)λ−2dλ |dλ′|+O(ε2),

a−z (z, E) = −2

∫

T 2

s(λ, λ′)∂z̄f(λ, λ
′, z, E)λ−1dλ |dλ′|+O(ε2),

a−z (z, E) = 2

∫

T 2

s(λ, λ′)∂zf(λ, λ
′, z, E)λ−1dλ |dλ′|+O(ε2),

s(λ, λ′)
def
== sgn

(
1

i

[
λ

λ′
− λ′

λ

])
,

(7.11)
where x ∈ R2, z is given by (3.2), and O(ε2) is onsidered in the uniform sensewith respet to x ∈ R2.In addition, due to (4.7) we have that

∂zf(λ, λ
′, z, E) = −i

√
E

2

(
λ−1 − λ′−1

)
f(λ, λ′, z, E),

∂z̄f(λ, λ
′, z, E) = −i

√
E

2

(
λ− λ′

)
f(λ, λ′, z, E),

(7.12)for eah λ, λ′ ∈ T , z ∈ C, E > 0.Formulas (4.2), (4.3), (4.4), (4.5), (4.6) follow immediately from (3.18),(3.19), (3.20), (7.11), (7.12).Proposition 4.1 is proved.Lemma 7.1. Let E > 0 be �xed. Let u(λ, λ′, E), (λ, λ′) ∈ T 2, be a omplexvalued funtion suh that u ∈ L1(T 2) and
u(λ, λ′, E) = u(−λ′,−λ,E), (λ, λ′) ∈ T 2. (7.13)26



Suppose that g(p,E), p = (p1, p2) ∈ R2, |p| ≤ 2
√
E, is the funtion de�nedby the formula

g

(√
ERe(λ− λ′),

√
E Im(λ− λ′), E

)
= u(λ, λ′, E), (7.14)where (λ, λ′) ∈ T 2. Then

∫

|p|≤2
√
E

e−ipxg(p,E) dp =
E

2

∫

T 2

u(λ, λ′, z, E)

∣∣∣∣
1

2i

(
λ

λ′
− λ′

λ

)∣∣∣∣ |dλ| |dλ′|,

u(λ, λ′, z, E)
def
== u(λ, λ′, E)×

× exp

(
−i

√
E

2

(
(λ− λ′)z̄ + (λ−1 − λ′−1)z

))
,

(7.15)where x ∈ R2, z is given by (3.2).Atually, (7.15) arises from the following hange of variables in the integra-tion with respet to p:
p1 =

√
ERe(λ − λ′) =

√
E(cosφ− cosφ′),

p2 =
√
E Im(λ− λ′) =

√
E(sinφ− sinφ′),

(7.16)where λ = eiφ, λ′ = eiφ
′ .Proof of Proposition 4.2. Let λ ∈ T , λ′ ∈ T be de�ned by (3.3). It follows from(3.5), (3.6) that the following formulas are valid:

2(k1 + l1) =
√
E
(
λ+ λ−1 + λ′ + λ′−1

)
,

2(k2 + l2) = −i
√
E
(
λ− λ−1 + λ′ − λ′−1

)
,

k1 ± ik2 =
√
Eλ±1, l1 ± il2 =

√
Eλ′±1,

k1 + l2 ± i(k2 + l2) =
√
E
(
λ±1 + λ′±1

)
,

|k + l|2 = E|λ+ λ′|2,

(7.17)where (k, l) ∈ME .Using Lemma 7.1 and formulas (7.17) we derive from (2.21), (2.22), (2.23),
27



(2.27), (2.28), (2.29) the following formulas:
Adiv,0appr,j(x,E) =

E

2

∫

T 2

Ãdiv,0appr,j(λ, λ′, z, E)

∣∣∣∣
1

2i

(
λ

λ′
− λ′

λ

)∣∣∣∣ |dλ| |dλ′|,

V div,0appr (x,E) =
E

2

∫

T 2

Ṽ div,0appr (λ, λ′, z, E)

∣∣∣∣
1

2i

(
λ

λ′
− λ′

λ

)∣∣∣∣ |dλ| |dλ′|,

A±,0appr,1(x,E) =
E

2

∫

T 2

Ã±,0appr,1(λ, λ′, z, E)

∣∣∣∣
1

2i

(
λ

λ′
− λ′

λ

)∣∣∣∣ |dλ| |dλ′|,

V ±,0appr(x,E) =
E

2

∫

T 2

Ṽ ±,0appr(λ, λ′, z, E)

∣∣∣∣
1

2i

(
λ

λ′
− λ′

λ

)∣∣∣∣ |dλ| |dλ′|,

(7.18)
where j = 1, 2, x ∈ R2, 2, z is given by (3.2) and where

Ãdiv,0appr,1(λ, λ′, z, E) =
f lin(λ, λ′, z, E)− f lin(−λ′,−λ, z, E)

4
√
E

×

×
(

1

λ−1 + λ′−1
+

1

λ+ λ′

)
,

Ãdiv,0appr,2(λ, λ′, z, E) =
f lin(λ, λ′, z, E)− f lin(−λ′,−λ, z, E)

4i
√
E

×

×
(

1

λ−1 + λ′−1
− 1

λ+ λ′

)
,

Ṽ div,0appr (λ, λ′, z, E) =
f lin(λ, λ′, z, E) + f lin(−λ′,−λ, z, E)

2
,

Ã±,0appr,1(λ, λ′, z, E) =
1

2
√
E

f(λ, λ′, z, E)− f(−λ′,−λ, z, E)

λ±1 + λ′±1
,

Ṽ ±,0appr(λ, λ′, z, E) =
λ′±1f lin(λ, λ′, z, E) + λ±1f lin(−λ′,−λ, z, E)

λ±1 + λ′±1
,

(7.19)
where λ, λ′ ∈ T , z ∈ C, f lin(λ, λ′, z, E) is de�ned aording to (4.7).Now using (7.19) we represent eah integral of (7.18) as a sum of the integralontaining f lin(λ, λ′, z, E) and the integral ontaining f lin(−λ′,−λ, z, E) withinthe integrands.Making the hange of variables (λ, λ′) → (−λ′,−λ) in eah integral ontain-ing f lin(−λ′,−λ, z, E) and taking into aount (2.27) for Â±
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