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ABSTRACT

This paper deals with a problem of unsupervised multiscale

segmentation in the domain of scanning electron microscopy,

which is tackled by mathematical morphology techniques.

The proposed approach includes various steps. First, the

image is decomposed into various compact scales of repre-

sentation, where objects at each scale are homogeneous in

size. Multiscale decomposition is based on a morphologi-

cal scale-space followed by scale merging using hierarchical

clustering and earth mover distance. Then the compact scales

are segmented independently using watershed transform.

Finally the segmented scales are combined using a tree of

objects in order to obtain a multiscale segmentation.

Index Terms— multiscale segmentation, morphological

scale-space, watershed algorithm

1. INTRODUCTION

A scanning electron microscope (SEM) is a microscope that

produces images thanks to a focused beam of electrons. The

interactions between the electrons and the sample can produce

different modalities of images [1]. In this study we focus on

images acquired using backscattered electrons mode, which

is mainly used to enhance information about the sample com-

position, see two examples in Fig. 1.

Fig. 1. Two examples of backscattered electron mode SEM

images.

The purpose of the paper is to explore innovative tech-

niques from mathematical morphology to improve the auto-

matic segmentation of the “active phase” in SEM images,

which can be observed in examples of Fig. 1 as the bright

structures. Mathematical morphology is widely used for im-

age segmentation in material science microscopy imaging [2,

3, 4].

From the image processing viewpoint, it is necessary to

segment and quantify the structures of the active phase, in

order to compute for instance the distribution of size and

shape. Also unsupervised techniques are crucial to perform

automated high-throughput SEM imaging process. The main

difficulty for a such unsupervised segmentation is the fact

that the active phase can appears at different scales in the

same image (i.e., small or very large objects) and at different

intensity distributions. By the way, a simple segmentation

approach based on thresholding is not appropriate since we

need to individually separate each grain/object. This kind

of multiscale segmentation problem can be solved using dif-

ferent paradigms. In particular, mathematical morphology

provides hierarchical segmentation approaches adapted to

that purpose [5, 6, 7]. The classic idea is to first build a hier-

archial partition of the image and second to find an optimal

cut in the hierarchy which represents properly the different

scales, see for instance the recent approach [8].

We adopt here a different multiscale segmentation para-

digm summarized in the diagram of Fig. 2, which involves

four steps discussed in Section 3. The fundamental different

of our multiscale algorithm with respect to the classical hier-

archial approaches is the fact that we first perform a compact

multiscale image decomposition, used next for building the

hierarchical tree, which is finally simplified by a straightfor-

ward pruning approach.

2. NOTATIONS AND BASIC NOTIONS

Let E be a subset of the discrete space Z
2, which represents

the support space of a 2D image and T ⊆ R be the set of

intensity pixels values. Hence, it is assumed that the value at

a pixel position x ∈ E is represented by a scalar grey-level

intensity s ∈ T by means of the function f : E → T .

Morphological opening of f according to structuring ele-

ment B is defined as γB(f) = δB (εB(f)), where εB(f) and

δB(f) are respectively the erosion and the dilation of f by



Fig. 2. The process of multiscale segmentation in four steps.

the flat structuring element B [9]. More generally, an alge-

braic opening γ(f) is any operator on f following these three

properties [9]: (a) increasing, i.e., if f ≤ g then γ(f) ≤ γ(g);
(b) idempotent, i.e., γ(γ(f)) = γ(f); (c) anti-extensive, i.e.,

γ(f) ≤ f . The latter property means that bright structures are

removed from the image. Similarly, an algebraic closing ϕ is

any operator F(E, T ) → F(E, T ) being increasing, idem-

potent and extensive (i.e., acting on dark structures).

Area opening (resp. area closing) is a morphological filter

that removes from an image the bright (resp. dark) connected

components having a surface area smaller than the parameter

λ [10]. Area openings on gray-level images can be imple-

mented from an upper level set decomposition as well as using

more efficient algorithms based on max-tree [11] or compo-

nent tree [12] representations. For a recent overview of appli-

cations of area openings, see [13]. It is also possible to for-

mulate area-based operators which simultaneously filter out

bright and dark connected components and consequently be-

ing self-dual [14]. The same effect can be obtained by work-

ing a tree representation of the image called Fast Level Lines

Transform [15]. The main interest of area opening resides in

the fact that they can be seen as morphological openings with

a structuring element which locally adapts its shape to the

image structures and consequently the contours of the objects

are not deformed.

Area opening is a typical example of algebraic opening.

Given a binary image b, which can be represented by the set

of the finite union of its connected components of value 1,

i.e., C+
b = ∪kCk such that b ({Ck}) = 1, the area opening of

size 0 < λ ∈ N is defined as follows [10]:

γλ(b) =
⋃

k

{Ck|area(Ck) ≥ λ}. (1)

Therefore, γλ(b) is the union of the connected components

of b with area greater or equal than λ. By area is meant the

Lebesgue measure in Z
2.

Area openings are naturally extended to grey-scale im-

ages [10]. Since we are going to work on the connected com-

ponents of grey-scale image f ∈ F(E, T ), it is common to

decompose it into its upper level sets, where the upper level

set for a given threshold s ∈ T and a given image f is the

binary image defined as:

Xs(f)(x) =

{

1 if f(x) ≥ s

0 if f(x) < s
(2)

Using now the family of upper level set, we can easily obtain

the original image as [16]: f =
∑

s∈T Xs(f). If we have

defined the binary area opening Γλ with the attribute value λ,

the corresponding grey-scale area opening γλ of image f is

given by

γλ(f) =
∑

s∈T

Γλ(Xs(f)). (3)

3. THE ALGORITHM

3.1. Step 1: Morphological multiscale decomposition

Let us consider {γi}1≤i≤n an indexed family of area open-

ings. Thus, the scale index i is associated to the size

of the area. Morphological decomposition by the family

{γi}1≤i≤n is related to the notion of granulometry [9].

Namely, we have two fundamental axioms: i) ordering

γn(f) 6 γn−1(f) 6 . . . 6 γ2(f) 6 γ1(f) 6 f ; and

ii) semi-group law γi(γj(f)) = γj(γi(f)) = γsup(i,j)(f),
1 ≤ i, j ≤ n. By convention, we define γ0(f) = f . Using

this nonlinear scale-space schema, we have now the following

image decomposition [17]:

f =

n
∑

i=1

(γi−1(f)− γi(f)) + γn(f) (4)

By defining the residue at scale i as follows: Ri(f) =
γi−1(f) − γi(f), such that Ri(f)(x) ≥ 0, ∀x ∈ E, one

can now rewrite Eq.(4) as

f =
n
∑

i=1

Ri(f) + γn(f) = R(f) + γn(f) (5)

Therefore we have a decomposition of the initial image f into

n scales, together with the last area opening. We remark that

the residue Ri represents the difference between an image

where we keep all structures of area larger than i − 1 and

another one where structures of area larger than i are pre-

served. In other words, this residue stands for structures of

area between levels i and i− 1. Hence the set {R1, . . . , Rn},

constitutes in a way a hierarchy of area-based multiscale mor-

phological components. However by decomposing an image

into scales we have now to deal with an object of bigger di-

mensionality, moreover the decomposition is not optimal: it

depends on the discretization into n scales, the size of scale,

etc.



3.2. Step 2: Reducing multiscale decomposition

Decomposition represented by {Ri}1≤i≤n needs to be “com-

pacted”. That involves reducing the dimensionality of the hi-

erarchy (i.e., reducing the number of scales to k), according

to three main criteria:

C1: a new scale has only objects of similar size;

C2: to loss as less information as possible, such as one has a

good approximation to decomposition (5) with k < n;

C3: hierarchy has to be as sparse as possible.

C2 and C3 can be addressed as an optimisation problem that

can be handled for instance by PCA or its sparse variants.

However, such approaches do not optimise the criterion C1.

Therefore we formulate this problem as a case of unsuper-

vised classification, aiming at clustering the residues in order

to decrease the number of classes. In any case, we first use

PCA to estimate the dimensionality of the hierarchy and thus

to choose the number of reduced scales k.

For our unsupervised classification, we used Hierarchical

Ascendant Classification (HAC), with the additional constrain

that only adjacent scales can be merged. By this approach we

guarantee that criterion C1 holds. Then, we have that:

{Ri(f)}
n
i=1 −→HAC {Sj(f)}

k
j=1 (6)

where Sj(f) =
∑lj+1−1

i=lj
Ri(f) such that lj is the first initial

scale associated to class j of our HAC.

Obviously, the main ingredient in HAC is the similarity

criterion between residues. We have evaluated several alter-

natives: Earth Mover Distance (EMD)[18] [19], Kullback-

Leibler Distance, Entropy, Hausdorff Distance and Correla-

tion. Based on a study which compared the performance of

these similarity criteria (results not included by limited length

of the paper), we obtained that EMD outperforms the other

techniques.

From EMD-based HAC, we still have a full reconstruc-

tion of the initial image, i.e., f =
∑k

j=1 Sj(f) + γn(f). Ini-

tial scales can be contaminated by “noise” which will be also

present in the compact scales. Filtering this noise can be seen

as aiming at a more sparse representation, which is related to

C3. Introducing sparsity on the hierarchy involves to force to

zero as much elements as possible in {Sj}1≤j≤k. This goal is

achieved in two steps: i) shrinkage/thresholding since a noisy

structure in Sj is an object having a very low grey-level, i.e.,

S′
j = {Sj if abs(Sj) > α; 0 otherwise} and ii) size filtering

since a noisy structure in Sj is an object having a size sig-

nificantly small with respect to the typical size of the scale j,

i.e., S′′
j = γBj/2

(

S′
j

)

. Finally, after these processing steps,

we have a decomposition given by {S′′
j }1≤j≤k and thus an

appropriate approximation of the initial image:

f ≈

k
∑

j=1

S′′
j (f) + γn(f). (7)

3.3. Step 3: Segmentation of the multiscale decomposi-

tion

After having gathered the different scales (dimensionality

reduction) and filtered out the noise (forcing sparseness), the

improved hierarchy {S′′
j }1≤j≤k is ready to be segmented,

scale by scale. To perform it, we applied a marked watershed

transform [20] on each scale. More precisely, the morpho-

logical gradient of each image S′′
j (f) is computed which is

then used as the flooding function for the watershed. Conse-

quently, a region (or class of the partial partition of the image

space) is obtained for each local minimum presents in the

gradient of S′′
j (f). We note that γn(f) is in a way the back-

ground of the image, which is not useful for the segmentation

of the relevant structures.

As we can see from Fig. 3, we have the segmented im-

ages (for this example k = 7, starting from n = 20). From

the example we note that the multiscale segmentation is re-

dundant since image structures are present in various scales.

That means that sometimes the watershed transform detects

different objects whereas there is just one, and sometimes the

contrary situation. By the way, we have k partitions and our

aim is to provide a single multiscale one by merging the k

segmentations.

Scale 1 Scale 2 Scale 3 Scale 4

Scale 5 Scale 6 Scale 7

Fig. 3. Result of a marker-based watershed on each scale.

3.4. Step 4: Hierarchical segmentation

The S′′
j (f) represents the level of approximation of scale j

and consequently, we can write

f̃ =

k
∑

j=1

S′′
j (f) (8)

where f̃ represents all the relevant image structures to be seg-

mented. Now, using the k partitions, we create a tree that links

each object from f̃ with its corresponding sons at each level

of detail j, for all j ∈ [1, k], see Fig.4. To have a better under-

standing, let us consider that f̃ is segmented into N objects

and each one is denoted by Cl, l = 1 . . .N . We will write

a son of Cl at the level of approximation j, by Cl
j,i where i

is the index of this son in comparison to all his brothers at



this level of approximation. Pruning this tree is rather simple

since the cut for each Cl is done independently.

Fig. 4. A representation of a tree of optimal classes.

The cut is based on the following estimation technique.

We compare for each segmentation level j the similarity be-

tween the raw object Cl and all its segmented sons {Cl
j,i}i at

this level, and then we take the set of sons at the level j that are

the better approximation to the father Cl. We have considered

again different criteria to evaluate the similarity between Cl

and {Cl
j,i}i, such as the correlation, entropy Hausdorff dis-

tance, Kullback Leibler distance and EMD. In order to mea-

sure the optimality of each technique we have assessed them

using a ground-truth manually segmented set of images (low

false positive ratio and small false negative ration). We have

also taken into account the time of computation. Overall, the

technique based on the correlation best fit all the criteria.

4. RESULTS

We have applied the present multiscale segmentation algo-

rithm to a selection of backscattered electron mode SEM im-

ages of different catalyst materials, some examples are given

in Fig. 5.

We compared these results of this algorithm, with those of

other hierarchical segmentation techniques, in particular with

the approach of hierarchical cuts and climbing energies [8].

With this algorithm we had a false positive rate of 0.21 and an

initial true positive rate of 0.85; whereas for the same example

the approach [8] produces a true positive rate a bit weaker for

the optimization energy we tried. Other energies in [8] can

potentially outperform our results.

False positive rate can be reduced by changing the thresh-

old α used in Step 2. The appropriate choice of α should be

based on the ROC curve depicted in Fig. 6.

It is also important to note that the unique parameter of

the algorithm is the initial discretization of the area opening-

based decomposition. We have developed a strategy in order

to fit an appropriate discretization for a given number of n

scale. However this point is out of the scope of the paper.

Fig. 5. Results of the multiscale segmentation of backscat-

tered electron mode SEM images.

Fig. 6. ROC curve to determine detection threshold.

5. CONCLUSIONS

The purpose of the study was to explore innovative techniques

from mathematical morphology to achieve a fully automatic

multi-scale segmentation of SEM images. In order to perform

it, we implemented a four steps algorithm illustrated in Fig-

ure 2. With respect to other generic hierarchical approaches of

segmentation available in the state-of-the-art, we note that our

algorithm starts with an image decomposition into compact

homogenous scales of objects which involves that the final

hierarchical structure is a very simple tree of objects where

the merging step is managed independently for each zone of

the image.

The approach has been evaluated in a representative

database of images from backscattered SEM images and the

results are very promising. As natural extension of this work,

we are presently considering the generalization approach to

the case of multi-modal SEM images.
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