
HAL Id: hal-00939204
https://hal.science/hal-00939204v1

Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPS/INS/optic flow data fusion for position and
Velocity estimation

Diego Mercado, Gerardo Ramon Flores Colunga, Pedro Castillo, Juan
Antonio Escareño, Rogelio Lozano

To cite this version:
Diego Mercado, Gerardo Ramon Flores Colunga, Pedro Castillo, Juan Antonio Escareño, Rogelio
Lozano. GPS/INS/optic flow data fusion for position and Velocity estimation. International Con-
ference on Unmanned Aircraft Systems (ICUAS 2013), May 2013, Atlanta, Georgia, United States.
pp.486 - 491. �hal-00939204�

https://hal.science/hal-00939204v1
https://hal.archives-ouvertes.fr


GPS/INS/Optic Flow Data Fusion for Position and Velocity estimation*

D. A. Mercado1, G. Flores1, P. Castillo1,2, J. Escareno3 and R. Lozano1,2

Abstract— This paper presents a simple and easy to imple-
ment sensor data fusion algorithm, using a Kalman filter (KF)
in a loosely coupled scheme, for estimation of the velocity
and position of an object evolving in a three dimensional
space. A global positioning system (GPS) provides the position
measurement while the velocity measurement is taken from the
optical flow sensor, finally, the inertial navigation system (INS)
gives the acceleration, which is considered as the input of the
system. Real time experimental results are shown to validate
the proposed algorithm.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become important
tools for exploration, surveillance, search and rescue
applications thanks to the great advances in sensors
manufacturing which permit improving the accuracy of
the measurements, miniaturization and cost reduction.
However, a precise knowledge of the position and velocity
of the UAVs for outside hover flight position control
applications is still a big challenge. Not expensive GPS
sensors can provide this information, however, the errors,
of 2m at best, are not suitable for precise applications,
neither their low measurement rate of about 5Hz. Even
more, GPS signal can be easily lost leaving the system
without a position measurement. Another alternative
widely studied are the optical flow sensors which use
vision algorithms for estimating the motion velocity of
a system. Nevertheless they are sensible for lighting changes.

Several related works to data fusion for UAV loaclization
can be found in the literature, however, the most of them use
post-processed data took from a fast moving object, while for
this work, real time experiments for static objects are also
of interest, since that is the case for an helicopter in hover
flight. For example, in [1] several GPS/INS fusion algorithms
are presented using both, extended Kalman filter (EKF) and
unscented Kalman filter (UKF) in a loosely coupled scheme
for attitude estimation and validated in experiments with
post-processed data. Similarly in [2], the authors present
an attitude estimation algorithm with data from GPS and
INS sensors using a KF. A tightly coupled EKF scheme
is employed in [3], for delivering all available information
from the satellites to an INS/GPS sensor fusion algorithm,
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even when only one satellite is observable (traditional loosely
coupled filters require at least four observed satellites to work
properly). Additionally, an EKF with covariance matching
based adaptation algorithm is implemented in [4] using GPS,
INS and optical flow measurements. In [5] two KFs are
used to fusion data from GPS, INS, computer vision and
a laser range finder. Sensor fusion using Kalman filters is
also widely used for improving data obtained from com-
puter vision. For example, in [6] an EKF is presented for
target tracking and optical flow navigation in a GPS denied
environment using computer vision and INS data, while in
[7] different optical flow algorithms are integrated by a KF
for a better estimation of velocity. A different approach is
shown in [8] where using multiple UAVs, the position of a
particular UAV can be estimated when the GPS signal has
been lost, by measuring the distance with respect to the other
UAVs and employing an EKF. These positioning strategies
have also a great potential of application outside the mobile
robotics field, for example, in [9] they are used for aiding
blind pedestrian positioning.
The aim of this work is to take information from multiple
different kinds of sensors in order improve data and have a
precise and reliable estimation of the position and velocity.
In order to do so, the use of a KF is explored in a loosely
coupled scheme for fusing the information obtained from
GPS, INS and optical flow sensors.
This work is organized as follows: In section II, the problem
of interest is settled, as well as a reminder of the basic
Kalman filter’s equations to be used to solve it. In section
III, the data fusion formulation is presented together with
the optic flow algorithm. Experimental platform is described
and results are shown in section IV. Finally, conclusions are
made and future work is established in section V.

II. PROBLEM STATEMENT

A low-cost GPS unit generally provides an estimate of
the position within a few meters, by means of an internal
Kalman filter. However, such GPS estimation is likely to
be noisy; readings vary rapidly, though always remaining
within a few meters of the real position. This inaccurate
position estimation is not enough to accomplish the high
demands required in emerging micro and mini aerial vehicles
(MAV) applications [10], [11]. This estimation gives an error
depending on some surrounding conditions; like number and
geometry of satellites in view, the quality of GPS receiver or
the presence of objects that interfere with the signals from
the satellites [14]. An estimate for the accuracy is provided in
the GPS data-stream and is called accP for the position and
accV for the velocity. This accuracy changes dynamically
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depending on the actual conditions and represents an estimate
of the error’s magnitude, or in other words, the reliability of
the measurement.
Therefore, the idea is to provide extra information from other
sensors to improve the estimate of the position and velocity,
especially when the accuracy value of the GPS tends to be
too big. Let us consider a Kalman filter.

A. Discrete Kalman Filter

The Kalman filter is a well know, widely used optimal
state estimator [12], [13] of a discrete time linear dynamic
system perturbed by white noise

ξk = Aξk−1 +Buk−1 +ωk−1 (1)

Zk = Hξk +νk (2)

considering the state vector ξ , the input vector u and the
measurement vector Z. A, B and H stand for the state
transition, input and observation matrices, respectively, and
subindex k is the discrete time index. The process and
measurement noise ω, ν are supposed to be white with
normal probability distributions, i.e.

ω ∼ N(0,Q) (3)

ν ∼ N(0,R) (4)

with Q, R being the process noise covariance and the
measurement noise covariance, respectively.
Then, the a priori state estimates ξ̂

−
k is given by

ξ̂
−
k = Aξ̂k−1 +Buk−1 (5)

the a priory error covariance P−k can be calculated as

P−k = APk−1AT +Q (6)

Now, the Kalman gain matrix Kk can be determined

Kk = P−k HT (HP−k HT +R)−1 (7)

and after measuring the process, the a posteriori state esti-
mate ξ̂ and error covariance Pk are respectively

ξ̂k = ξ̂
−
k +Kk(Zk−Hξ̂

−
k ) (8)

Pk = (I−KkH)P−k (9)

III. GPS/INS/OPTIC FLOW DATA FUSION
A. System Model

Consider the state vector

ξ = [x y z V x V y V z]T (10)

which represents the position (x, y, z) and velocity
(V x, V y, V z) of an object moving in the three dimensional
space, with respect to the inertial frame I fixed to the ground.
Thus, the motion equations of the system can be written as

ξ̇ =


ẋ
ẏ
ż

V̇x
V̇y
V̇z

+ω =


V x
V y
V z
u

+ω (11)

where u = [ax ay az]
T are the inputs of the system. In our

case the accelerations measured from the INS sensor, and
ω ∈ℜ6 stands for the process noise. Then the measurement
vector is given by

Z =


xGPS
yGPS
zGPS
VOFx

VOFy

V zh

=


x
y
z

V x
V y
V z

+ν (12)

with [xGPS yGPS zGPS]
T being the position computed from the

GPS sensor, VOFx and VOFy define the translational velocities
in the horizontal plane calculated from an optical flow
algorithm, and V zh denotes the vertical velocity. ν ∈ ℜ6

represents the measurement noise.
In order to implement the KF, the system (11) has to be
discretized. By means of the Euler’s forward method one
gets

ξk =


xk−1 +TV xk−1
yk−1 +TV yk−1
zk−1 +TV zk−1
V xk−1 +Taxk−1
V yk−1 +Tayk−1
V zk−1 +Tazk−1

+ωk−1 (13)

Zk = ξk +νk (14)

where T defines the sampling period.

B. Optical Flow

In this study we consider the camera-experimental plat-
form arrangement moving in a 3-dimensional space with
respect to a rigid scene. The camera velocities in the inertial
frame are given by (Vx,Vy,Vz). The optical flow computed
at an image point (xi,yi) is composed of a translational and
rotational part as follows [15][

OFxi
OFyi

]
= TOF +ROF (15)

where the rotational part ROF is given as

ROF =

 xiyi
fx

−( fx +
(xi)

2

fx
) yi

( fy +
(yi)

2

fy
) − xiyi

fy
−xi

 ωx
ωy
ωz

 (16)

and the translational part as

TOF =
1
z

[
− fx 0 xi

0 − fy yi

] ẋc

ẏc

żc

 (17)

From (15), OFxi and OFyi are the optical flow components in
the x and y coordinates, respectively, of the (xi,yi) feature.
(ẋc, ẏc, żc), in (17), are the camera translational velocities and
(wx,wy,wz) are the camera rotation rates. The focal lengths
of the camera are fx and fy.

The optical flow is computed by using the pyramidal im-
plementation of the Lucas-Kanade algorithm [16]. With the
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Fig. 1. Experimental platform.

purpose of obtaining a better estimation, the Lucas-Kanade
algorithm is coupled with a rich texture point detector .

When computing the optical flow, all the (xi,yi) feature’s
coordinates are known, furthermore, they all share the same
movement. By using all the tracked features, a mean value
for the optical flow can be expressed as

¯OFx = V̄OFx +KxV̄OFz + R̄OFx (18)
¯OFy = V̄OFy +KyV̄OFz + R̄OFy (19)

where ¯OFx and ¯OFy are the means of the optical flow sensed
in the image coordinate system, V̄OFz represents the relative
depth and Kx and Ky are known scale factors depending on
intrinsic parameters of the camera. The rotational optical
flow terms R̄OFx and R̄OFy are despicable for this study
since the camera movement is fixed to the horizontal plane,
otherwise, they have to be compensated. Then, the pseudo-
speeds (V̄OFx ,V̄OFy ,V̄OFz) can be represented as

V̄OFx = − fx
ẋ
z

(20)

V̄OFy = − fy
ẏ
z

(21)

V̄OFz =
ż
z

(22)

In the experimental setup, the camera is mounted on the
experimental platform, thus both of them share the same
translational movement, i.e, (ẋc, ẏc, żc) = (ẋ, ẏ, ż).

IV. EXPERIMENTAL RESULTS

In order to validate in real time the proposed fusion
schema, it was developed an experimental platform consist-
ing of a wheeled table equipped with a GPS, an INS and a
camera for the optical flow (see Fig. 1). All the algorithms
are performed in a portable computer attached to the table.
To simplify the experiment, only the states in the xy plane
are estimated, therefore, the height z is fixed at a constant
value. In order to extend the estimation to a 3-dimensional
space, with variable height, a height sensor is required. The

OpenCV libraries are used to capture the image from the
camera, perform the optical flow and estimate the horizontal
velocities. Similarly, the KFilter library is used to implement
the Kalman filter. A GPS provides the measurements of
the position at a rate of 5Hz with an error of 2m in the
best scenario. The vision algorithm is executed at a rate of
40Hz and the INS sensor measures the accelerations using
accelerometers. Notice that the developed platform can be
easily used to test other data fusion configurations including
nonlinear formulations.
Test results for the case when the object is fixed to a point in
an outside urban environment, surrounded by buildings using
only natural light (in this case a parking area with sunlight),
are presented in Figures 2 - 10. The process noise matrix Q
is set diagonal with very little values, i.e

Q =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.005 0 0
0 0 0 0 0.005 0
0 0 0 0 0 0.005

 (23)

It is hard to know the exact value for the measurement covari-
ance matrix R, since the GPS data stream does not provide
it, and the experimental conditions are always changing (e.g.
the number of satellites in range and its position, or the
lighting). However, this parameter can be used to inform the
filter about the reliability of a measurement. In addition, we
propose to relate the estimate accuracy parameter from the
GPS (accP) to matrix R such that when the GPS’s conditions
are not appropriate, the Kalman filter stops trusting the GPS
measurements and bases its estimations on the process model
and the other measurements. Hence, the measurement noise
covariance matrix R is selected diagonal with values directly
proportionals to the GPS accuracy estimation (accP), for
position measurements from the GPS and small ones for the
corresponding to the optical flow velocity measurements, i.e.

R =


accP 0 0 0 0 0

0 accP 0 0 0 0
0 0 accP 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 (24)

The accelerations of the system, measured by the INS, are
shown in Fig. 2. As expected, they are very close to zero
since the object is not moving. Figures 3 and 4 present,
respectively, the position and velocity of the object measured
from the GPS sensor. As it is well known, the GPS is not
reliable under these conditions (remaining in a static position,
in an urban area surrounded by buildings which interfere
with the satellites signals), as can be observed from Fig.
5 which displays the GPS accuracy (under ideal conditions
it is supposed to be of 2m). Velocity computed from the
optical flow algorithm is exhibit in Fig. 6, while the estimated
estates from the Kalman filter are shown in Fig. 7 and 8 for
the position and velocity, respectively. Finally, a comparison
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Fig. 2. Accelerations measured from the INS.
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Fig. 3. GPS position.

between the position estimated only by the GPS and the one
estimated using the proposed fusion algorithm is presented in
Fig. 9 for the xy plane and in Fig. 10 for a three dimensional
space view.

V. CONCLUSIONS AND FUTURE WORK

In this work, a GPS/INS/Optic flow data fusion algorithm
using a KF was developed and implemented, for velocity
and position estimation. Experimental results were shown
and, from them, it can be observed that under bad GPS
conditions and a good velocity measurement from the optical
flow sensor, the estimate position and velocity were improved
with respect to the direct measurement from the GPS. Further
experiments are required to completely validate the proposed
observer scheme.
KF implies a tradeoff between measured data from the
sensors and expected state from the dynamic model, this
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Fig. 4. GPS velocities.
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Fig. 5. GPS accuracy.
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Fig. 6. Optic flow velocity.
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Fig. 10. GPS vs KF position space view.

tradeoff is somehow related to the process and measurement
noise (bigger measurement noise implies less reliable mea-
surements). This can be used to improve results in changing
environments, where noise is hard to model, by changing
dynamically the process noise covariance matrix in order to
rely on the measured data when the conditions are ideal for
the sensors and otherwise to rely on the process.
Future work includes implementation and analysis of other
data fusion formulations with these three sensors (GPS, INS
and camera) to find out the best solution for the considered
problem. Also, it is highly desired to implement this data
fusion algorithms embedded in an UAV for solve the po-
sition and trajectory tracking control problems for outside
applications.
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