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Gerardo Flores*, Shuting Zhou*, Rogelio Lozano!, and Pedro Castillo*

Abstract— This paper addresses the issue of real-time optimal
trajectory generation of a micro Air Vehicle (MAV) in unknown
urban environments. The MAV is required to navigate from
an initial and outdoor position to a final position inside a
building. To achieve this objective, we develop a safe path
planning method using the information provided by the GPS
and a consumer depth camera. With the purpose to develop
a safe path planning with obstacle avoidance capabilities, a
model predictive control approach is developed, which uses the
environment information acquired by the navigation system.

I. INTRODUCTION

Recently, there has been an ever-growing interest on
development of micro air vehicles (MAV) due to its capa-
bilities to fly in indoor/outdoor environments. MAVs can be
used to explore terrains and acquire visual information in
scenarios where it would be impossible for land vehicles.
Additionally, they are very suitable for various applications
such as surveillance and reconnaissance operations, traffic
monitoring, rescue missions in disaster sites, etc., where
manned or regular-sized aerial vehicles are not able to
accomplish these missions, even with their full operational
capabilities.

To accomplish an efficient exploratory navigation in clut-
tered environments, the MAV must be able to plan and
follow three dimensional trajectories avoiding collisions with
obstacles and leading through objects. Traditional navigation
systems based on the wireless transmitted information, such
as Global Positioning System (GPS), is widely used to assure
the self-position task. However, most indoor environments
remain inaccessible to external positioning systems, limiting
the navigation ability of the satellite-based GPS systems.

Vision-based navigation arises as a complementary system
for the GPS. Although based on stereo techniques and
share many properties with stereo cameras, RGB-D cameras
achieve better performance in the spatial density of depth
data. Since RGB-D cameras illuminate a scene with a
structured light pattern, they can estimate depth in areas
with poor visual texture [1]. Thus structured light RGB-D
camera is chosen as the vision-based system which plays a
supplementary role in the GPS-denied environment. However
most RGB-D cameras function in a limited range and cannot
achieve a satisfactory navigation when used as the only
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sensor for long distances. As a result, we combine GPS with
an on-board RGB-D camera to provide the MAV with fast
and reliable state estimation and collision-free path planning.

There have been previous studies conducted on the MAVs’
path planning with avoidance of collision. The Rapidly-
exploring Random Tree (RRT) variant is proposed by Yang
[2] to generate collision free piecewise paths and linear
Model Predictive Control (MPC) is applied to follow this
path. Yang has evaluated the robustness of the system by
flying over, flying beneath or flying through obstacles -
using doors and windows of a building. Rasche and Stern
[3] applied the approach based on artificial potential fields
and a gradient method to calculate paths, which ensures
the multiple UAVs complete a fast exploration of unknown,
partially or completely known environments consisting of
complex objects. In terms of on-board vision system for
determining obstacles and objects, Huang [1] developed a
system for visual odometry and mapping applying an RGB-
D camera which enables an autonomous flight in cluttered
environments using only onboard sensor data. Similarly,
Henry [4] presented a RGB-D Mapping system that utilizes
a novel joint optimization algorithm to generate dense 3D
maps of indoor environment.

In this paper, we require that the MAV accomplishes the
task of identifying a window and fly through it, in order to
access into a building. The fulfillment of this objective will
be quite significant for various military and civil missions of
MAVs. In this work, we present a solution to the real-time
optimal trajectory generation of a MAV by integrating MPC
and vision-based window estimation.

This paper is organized as follows: Section II addresses the
problem of real-time trajectory planning. Section III presents
the path-planning algorithm and obstacle avoidance method.
Simulation results of the proposed path-planning algorithm
are presented in Section IV. The vision-based window detec-
tion algorithm is introduced in Section V. Finally, Section VI
draws a conclusion and gives a perspective on future work
of the related research.

II. PROBLEM STATEMENT

Fig.1 shows a three dimensional example of an obstacle
avoidance problem. The first goal is to obtain a piecewise
continuous function u(t) that drives the MAV from the
starting point xg to the intermediate state x;, using the
optimal MPC approach. As one can see in Fig.1, the presence
of obstacles in an arbitrary urban environment are inherented.
Urban elements like lampposts, trees, light poles, power
cables and other civil buildings are considered as obstacles
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for the considered system. Hence, the state x(¢) of the
dynamical system cannot take arbitrary values. We proceed
with the problem statement:

Problem Statement

Find a trajectory that allows the MAV to navigate from an
arbitrary point pg with coordinates (xo, Yo, 2o) to the inter-
mediate point p; with coordinates (xT,yr, 2T, Y1), avoiding
collisions with n, obstacles in the environment. Once the
MAV has achieved the point p;, detects the parameters of the
target(window model) and minimizes the distance between
the centroid of the target and the center of gravity of the
MAV, then flies through the window and finally enters the
building.

Fig. 1. Scheme of the MAV application. The vehicle should compute a
trajectory with obstacle avoidance capabilities using a vision system and
GPS information.

A. Optimal control formulation

The equations representing the motion of the MAV can
take different forms such as 1) nonlinear fully coupled, 2)
nonlinear semi-coupled, 3) nonlinear decoupled, 4) linear
coupled, and 5) linear decoupled [5]. Due to the inherent load
of any optimization process, the linear decoupled version of
the MAV dynamic model is chosen to generate the desired
trajectory. The position dynamics of such model can be
represented in its discrete form as follows

x(k+1) = =x(k)+Tu(k) (1)
y(k) = Cua(k)
where x = (z,y,z) is the vector representing the MAV

position in the inertial frame, u = (v, vy, v,) is the input
control, y is the output vector, C' is a matrix of appropriate
dimensions and 7T is the sampling time.

It is important to note that the linear and decoupled
system (1) will be used by the optimization algorithm
only to produce the desired trajectory. The trajectory block
containing the path-following controller, will be responsible
of following the generated trajectory, as shown in Fig.2.

We assume that the MAV is capable of receiving obstacle
information at any path-planning trajectory by means of

(o202,9,)" (Uit t5,u,)

Path- ing MAV

7
Predefined | Model | (62 Vi)
Algorithm | Dynamics

Trajectory b Predictive ——————>+ —>
Control

On-board
Sensors

Fig. 2. Control scheme.

onboard sensors. In order to achieve the desired trajectory,
we need to solve the following discrete-time optimal control
problem.

Fig. 3. Window model estimation. In this scenario, the MAV has achieved
the intermediate point p; provided by the GPS system.

B. Optimal trajectory generation using MPC approach

Find the optimal sequence {u*(k)}1_! such that
{u*(k)}i-] = argmin W (x, u, k) ()

where the positive definite cost function W (x,u, k) is chosen

as
T-1

W(x,u,k) =@ (x(T)) + »_ £(x(k),uk) 3

k=1

In order to find the optimal control law (2), for system (1),
we propose a nonlinear model predictive control approach.

We proceed by starting from the initial state x(1) and then
implementing the optimal input {u*(k)};_] from 1 <7 <
T to the state x(7 + 1) at k =7+ 1.

The key idea behind the MPC approach is the combination
of the potential field concept with the online optimization
with preview. In this way, the function W (x,u, k) is mini-
mized by the optimal control sequence (2), i.e.

W(x,u*, k) <W(x,uk), YueU 4
III. REAL-TIME TRAJECTORY PLANNING

In this section, we present trajectory generation algorithm
for the task described in the previous section.
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A. Trajectory Planning

Consider the navigation problem from pg to p;, where pg
is the initial position of the MAV given by the GPS system,
and p; is a point near to the window to be estimated, given by
the user, also provided by the GPS system (Fig.3). In order to
achieve the desired position in the presence of obstacles, we
proceed by using the procedure developed in Section II-B.
We consider an initial reference trajectory given by a straight
line, but any other reference trajectory can be used.

Consider a cost function term for (2)-(3) as

D((T) & X (T)Sx(T) )
(x(k)u(k)) 2 2t (x(k),u(k) + £ (x(k), u(k))
where
& (x(k), m(k) = 5 (5~ %) Q (e — %)
: (6)
+ iuTRll

B. Obstacle Sensing

For collision avoidance, we choose £° (x(k), u(k)) in (5)
such that

£ (x(), u(k) = D S0 %) )

and the function f(x,x;) is defined as

F(x,%1) = ag exp (Jx(k)x(k)))

+ ay exp <_(y(k);2:;(k))2> ®)
+ 4z exp (_W)

where (x;, yi, 2;) are the coordinates of the i-th obstacle in
the inertial frame. The parameters a;, ay, ay, ¢ are chosen
to determine how far the vehicle can be approximated to the
obstacle. Thus, the penalty function (8) serves as a repelling
field.

IV. SIMULATION RESULTS

In order to test the effectiveness of the derived controller,
in this section we will show some simulations results.

The aforementioned optimization procedure will result in
the desired trajectory which will be tracked by the path-
following algorithm, see Fig.2. First, we apply the optimiza-
tion procedure for a navigation problem in which a MAV is
requested to fly from the initial point py = (0,0,0) to the
intermediate point p; = (10, 10,10). We have simulated the
presence of an obstacle in the coordinates (x;, yi, 2z;) =
(5,5,5). This type of situation often arises in an urban area,
as can be seen in Fig.1.

The MAV resolves the collision maintaining a safe dis-
tance from nearest point of nearby obstacles as it travels.
Fig.4 shows the output trajectory. In Fig.5 the velocities
generated by the algorithm are depicted. Such velocities and
the corresponding positions, are used in the feedback control

loop as a reference to the position control loop of the MAV.

5

z [m] v [m]

Fig. 4. Computed path. An obstacle is positioned in the coordinate (5, 5, 5).

0 2 4 6 8 10
X [m]

Fig. 5. Velocities generated by the algorithm.

By choosing different values of the parameter c, it can be
possible to avoid obstacles from a longer distance as can be
seen in Fig.6.

V. VISION-BASED WINDOW ESTIMATION

In order to solve the second part of the problem statement
presented in Section II, a vision-based algorithm is proposed
in this part of the paper. An RGB-D camera, which will be
used by the MAV to acquire the images, can capture RGB
color images accompanying with the corresponding depth
data at each pixel. Such cameras manage all the information
with a set of vertices in a three-dimensional coordinate
system called point cloud. Point cloud is a collection of
massive points in the same spatial reference system, which
expresses the spatial distribution and the surface properties
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Fig. 6. Trajectories.

Procedure 1 EstimateTargetPlane (PC: input point cloud,
n: number of points in PC)
PC_d = DownSample(PC)
cloudfiltered = PC_d
i=0
while size_cloud_filtered >n*8% do
plane_i = ExtractInliers(cloud_filtered)
cloud-filtered = cloud-filtered - plane_i
i++
end while
return plane_1

of the target. Three-dimensional coordinates of each sample
point on the target surface (z,y,z) and the corresponding
color information (RGB) can be acquired from the point
cloud.

In hope of identifying the window model and estimate the
window centroid precisely and effectively, we take advantage
of the programs available in the open source point cloud
library [6].

A. Algorithm Description

In order to estimate a model representing a window,
a vision algorithm is developed in this section, as it is
explained below.

The algorithm executes down-sampling process on the
input point cloud to improve the running efficiency. Then
the iterative estimation process is performed to extract the
inliers of planes existing in the point cloud until the target
plane is detected. The approach applied for plane detection
is RANdom SAmple Consensus (RANSAC) algorithm. The
basic idea of RANSAC is to estimate the plane parameters
using the minimum number of data possible (random three
points) and then to check which of the remaining data points
fit the model estimated [7]. Here in our case two planes are
present in the input point cloud, the larger one is the plane of
the wall, the smaller one is the plane representing the surface
of the window model, which we are interested in. Procedure
1 in Fig.7 describes the target plane identification process.

RGB color Depth
‘ image information ‘

\fl

‘ Input 3D point cloud ‘

l Proc1

‘ Target plane identification ‘

l Proc 2

‘ Key points extraction ‘

!

‘ Window centroid estimation ‘

Fig. 7. Window identification process scheme.

Procedure 2 ExtractKeyPoints (PC: point cloud of plane)
range_image = CreateRangelmage(PC)
points[] = DetectNarfKeypoints(range_image)
return points[]

With the estimated target plane, we continue to extract
some key points representing the critical features to estimate
the centroid of target surface. Procedure 2 in Fig.7 describes
how the key points are extracted from the point cloud of
the estimated plane. Here we apply the Normal Aligned
Radial Feature method (NARF) for interest point detection
and feature descriptor calculation in 3D range data [8].
As NARF method takes information about borders and the
surface structure into account, the position of target plane
centroid can be estimated by applying the edge information
extracted by NARF detection algorithm. Some preliminary
results are presented in the following subsection.

B. Experiments

In this subsection, several tests have been carried out just
using the RGB-D camera.

To verify the algorithm described previously, a simple hy-
pothesis is proposed to simplify the vision-based estimation
problem. By sticking a box on the wall, the surface of the
box is viewed as the target window.

Placed opposite to the target surface of the box, the RGB-
D camera collects sufficient position information of the target
plane, see Fig.8. The execution time of the vision-based
window estimation algorithm lasts about 800ms, which can
be performed in real-time MAV navigation system.

The results of our first test are shown in Figs.10 and 11.
The distance between the RGB-D camera and the box is
0.92m. Fig.9 shows the input 3D point cloud captured by
RGB-D camera.

From the figure we can clearly recognize the surfaces of
the wall and the target box. Fig.10 shows the plane point
cloud detected by the target plane identification algorithm.
The target surface of the box is completely extracted from
the input point cloud. Fig.11 shows four key points extracted
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Window model

Fig. 8. Experimental setup.

Fig. 9. Input point cloud.

Fig. 10. Detected target plane.

from the range image of target plane. They can be approx-
imately regarded as the four vertices of the target plane.
Then the centroid of the target plane can be obtained by
intersecting the diagonals of the four key points. By pushing
the table that places RGB-D camera towards the target box,
the distance between the camera and the box decreases.
Figs.12,13 and 14 show the corresponding results.

C. Experimental setup

In order to perform the real-time implementation
of our strategy, we use a Microsoft Kinect sensor
(http://www.xbox.com/kinect, Fig.15). As a low-cost RGB-
D sensor developed by PrimeSense, Kinect is equipped with
three lenses, the lens in the middle is the RGB color camera,

Fig. 11.

Extraction of four key points.

(a) distance = 0.81m

(b) distance = 0.59m

Fig. 12. Input point cloud at closer distances.

and the lenses in the left and right side are the infrared
transmitter and infrared CMOS camera which constitute a
3D structured light depth sensor.

Based on the light coding, Kinect projects a known in-
frared pattern onto the scene and determines depth based on
the pattern’s deformation captured by the infrared CMOS
imager [9]. Functioning in this way, Kinect can provide
a 320X240 depth image at 30fps and a 640X480 RGB
color image at 30fps. When stripped down to its essential
components, the Kinect weighs 115g - light enough to be
carried by a MAV.

Here there is one thing to note is that the function of kinect
is affected by the light intensity because of the infrared lens
it uses. The kinect always achives better performance in poor
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(a) distance = 0.81m

(b) distance = 0.59m

Fig. 13. Target plane at closer distances.

light or cloudy days since the infrared pattern produced by
the Kinect will not be overridden by the infrared radiation
of the sun.

VI. CONCLUSION

In this work we present a new approach to the real-time
optimal trajectory generation of a MAV by integrating MPC
and vision-based window estimation algorithm. We have also
extended some preliminary experimental results to verify the
vision algorithm.

There also exists some limitations in our algorithm which
requires further improvements. Firstly, the real window
model is more complicated and shows some special prop-
erties such as poor reflected information, so we should make
our algorithm more robust and adapt to the real environment.
Besides, to ensure the MAV enter the Kinect depth sensor
range (from 0.8m to 4.0m), it is not sufficient that the GPS
serves as a standalone sensor for local positioning, maybe
other sensors should be involved to improve the positioning
accuracy such as the barometer.

Future work will be developping a more robust vision-
based algorithm, establishing the experimental platform and
implementing the proposed navigation control strategy for a
MAV.
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