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An alternative proof of Shyr-Yu Theorem is given. Some generalizations are also considered using fractional root decompositions and fractional exponents of words.

Introduction

A word is primitive if it is not a power of another word. A well-known unsolved problem of theoretical computer science asks whether or not the language of all primitive words over a nontrivial alphabet is context-free or not [START_REF] Ösi | On the connection between formal languages and primitive words[END_REF][START_REF] Ösi | Formal languages and primitive words[END_REF]. Among others, this (in)famous problem motivates the study of the combinatorial properties of primitive words. In addition, they have special importance in studies of automatic sequences [START_REF] Allouche | Automatic sequences. Theory, applications, generalizations[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]. The Shyr-Yu Theorem [START_REF] Shyr | Non-primitive words in the language p + q +[END_REF] is a well-known classical result in this direction. The known proof of this result is rather involved [START_REF] Shyr | Non-primitive words in the language p + q +[END_REF]. The aim of this paper is to give a new simple proof of this well-known theorem, using some simple observations. In addition, we give the decomposition of words in the language p + q + , in particular we find fractional root decompositions and fractional exponents of the words appearing in the language.

Preliminaries

A word over Σ is a finite sequence of elements over some finite non-empty set Σ. If there is no danger of confusion, sometimes we omit the expression "over Σ". We call the set Σ an alphabet, the elements of Σ letters. Σ is called trivial if it is a singleton. Otherwise we also say that Σ is nontrivial. We also define the empty word λ consisting of zero letters. The length |w| of a word w is the number of letters in w, where each letter is counted as many times as it occurs. Thus |λ| = 0.

If u = x 1 • • • x k and v = x k+1 • • • x ℓ
are words over an alphabet Σ (with x 1 , . . . , x k , x k+1 , . . . , x ℓ ∈ Σ) then their catenation (which is also called their product

) uv = x 1 • • • x k x k+1 • • • x ℓ
is also a word over Σ. In addition, for every word u

= x 1 • • • x k over Σ (with x 1 , . . . , x k ∈ Σ), uλ = λu = u (= x 1 • • • x k ). Moreover, λλ = λ. Obviously, for every u, v ∈ Σ * , |uv| = |u| + |v|.
Clearly, then, for every words u, v, w (over Σ) u(vw) = (uv)w. In other words, uu ′ = w ′ w whenever u ′ = vw and w ′ = uv. Therefore, catenation is an associative operation and the empty word λ is the identity with respect to catenation. Let u, v, w be words with u = vw. Then we say that v is a prefix of u and w is a suffix of u. Two words u, v are said to be conjugates if there exists a word w with uw = wv. In particular, a word z is called overlapping (or bordered) if there are u, v, w ∈ Σ + with z = uw = wv. Otherwise we say that z is non-overlapping (or unbordered). Proposition 2.1 [START_REF] Lyndon | The equation a M = b N c P in a free group[END_REF] u, v are conjugates if and only if there are words p, q with u = pq and v = qp. Theorem 2.2 [START_REF] Lyndon | The equation a M = b N c P in a free group[END_REF] Let u, v ∈ Σ + with uv = vu. There exists w ∈ Σ + with u, v ∈ w + . Lemma 2.3 [START_REF] Levi | On semigroups[END_REF] If uv = pq and |u| ≤ |p| for some u, v, p, q ∈ Σ + , then p = ur and v = rq for some r ∈ Σ * . Lemma 2.4 [START_REF] Lyndon | The equation a M = b N c P in a free group[END_REF] If uv = vq, u ∈ Σ + , v, q ∈ Σ * , then u = wz, v = (wz) k w, q = zw for some w ∈ Σ * , z ∈ Σ + and k ≥ 0.

If u, v, w, z are words over Σ having z = uvw, then v is called a subword of z. The nonempty prefix, suffix, subword are also called a proper (or nontrivial) prefix, suffix, subword.

By the free monoid Σ * generated by Σ we mean the set of all words (including the empty word λ) having catenation as multiplication. We set Σ + = Σ * \ {λ}, where the subsemigroup Σ + of Σ * is said to be the free semigroup generated by Σ. Σ * and Σ + have left and right cancellation, i.e. for every elements u, v, w of Σ * or Σ + , uv = uw implies v = w and uv = wv implies u = w.

Subsets of Σ * are referred to as languages over Σ. In particular, subsets of Σ + are referred to as λ-free languages over Σ.

Given a word u, we define

u 0 = λ, u n = u n-1 u, n > 0, u * = {u n : n ≥ 0} and u + = u * \ {λ}. Thus u n with n ≥ 0 is the n-th power of u, while u * is the Kleene closure, moreover, u + is the semigroup closure of u.
Given a list c 1 , . . . , c n of integers, let gcd(c 1 , . . . , c n ) denote the greatest common divisor of c 1 , . . . , c n . Theorem 2.5 [START_REF] Fine | Uniqueness theorems for periodic functions[END_REF] Let u, v ∈ Σ * . u, v ∈ w + for some w ∈ Σ + if and only if there are i, j ≥ 0 so that u i and v j have a common prefix (suffix) of length |u| + |v| -gcd(|u|, |v|).

A primitive word (over Σ, or actually over an arbitrary alphabet) is a nonempty word not of the form w m for any nonempty word w and integer m ≥ 2. Thus λ is a nonprimitive word because of λλ = λ. The set of all primitive words over Σ will be denoted by Q(Σ), or simply by Q if Σ is understood. Let u = λ and let f be a primitive word with an integer k ≥ 1 having u = f k . We let √ u = f and call f the primitive root of the word u.

Theorem 2.6 [11] Let u, v ∈ Σ * . w i = uv for some w ∈ Σ * , i ≥ 1 if and only if there are p, q ∈ Σ * w = pq, (qp) i = vu. Furthermore, uv ∈ Q for some u, v ∈ Σ * if and only if vu ∈ Q.
The next statement shows that, for every nonempty word, the primitive root is unambiguously determined. We have a direct consequence of Theorem 2.8 as below.

Theorem 2.9 Let f, g ∈ Q, f = g. Then f m g n ∈ Q for all m ≥ 2, n ≥ 2. Lemma 2.10 [3] Let u, v ∈ Q, such that u m = v k w for some k, m ≥ 2, and w ∈ Σ * with |w| ≤ |v|.
Then exactly one of the following conditions holds: (i) u = v and w ∈ {u, λ}; (ii) m = k = 2 and there are p, q ∈ Σ + , s ≥ 1 with √ p = √ q, u = (pq) s+1 p 2 q, v = (pq) s+1 p, w = qp 2 q.

Theorem 2.11 [START_REF] Ösi | Alternative proof of the Lyndon-Schützenberger Theorem[END_REF] Let u, v ∈ Q, such that u m = v k w for some prefix w of v and k, m ≥ 2. Then u = v and w ∈ {u, λ}.

Theorem 2.12 (Shyr-Yu Theorem) [START_REF] Shyr | Non-primitive words in the language p + q +[END_REF] Let f, g ∈ Q, f = g. Then |f + g + ∩ Σ + \ Q| ≤ 1. Moreover, if f and g are also non-overlapping, then f + g + contains only primitive words.

Results

The next statement is an extended version of the first part of Theorem 2.9.

Theorem 3.1 Let f, g ∈ Q, f = g and n ≥ 1. If f g n / ∈ Q then f g n+k ∈ Q for all k ≥ 1.
Proof: Suppose the contrary and let u i = f g n , v j = f g n+k for some u, v ∈ Σ + , i, j > 1, k ≥ 1. We may assume without any restriction u, v ∈ Q. By our conditions, v j = u i g k .

First we assume k ≥ 2. Hence, by Theorem 2.8,

√ v = √ u = √ g, i.e. u = v = g. By u i = f g n , this results f = g i-n leading to √ f = √ g. Then,
by f, g ∈ Q, we have f = g, a contradiction. Now we suppose k = 1. By Theorem 2.6, there are w, z ∈ Q with w i = g n f, z j = g n f g. Then z j = w i w 1 , where w 1 is a prefix of w. Applying Theorem 2.11, w = z, which, by Theorem 2.6, implies u = v. But then k = 0, a contradiction.

Proof of Theorem 2.12 : Let f, g ∈ Q be distinct primitive words.

First we prove that the language f + g + contains at most one non-primitive word. Suppose f m g n / ∈ Q. By Theorem 2.9, m, n ≥ 2 is impossible. Therefore, we may assume either f m g / ∈ Q for some m ≥ 1 or f g n / ∈ Q for some n ≥ 1.

By Theorem 3.1, there exists at most one pair m, n ≥ 1 of positive integers with

f m g, f g n / ∈ Q. In addition, if f g / ∈ Q, then f m g, f g n ∈ Q, m, n ≥ 2.
Therefore, it is enough to prove that for every pair m, n ≥ 2, f m g / ∈ Q implies f g n ∈ Q. Suppose the contrary and let f m g = u i , f g n = v j for some m, n, i, j ≥ 2, u, v ∈ Q and let, say, |g| ≤ |f |. Using Lemma 2.10, this is possible only if m = i = 2 and there are p, q ∈ Σ + , s ≥ 1 with √ p = √ q and u = (pq) s+1 p 2 q, f = (pq) s+1 p, g = qp 2 q. By Theorem 2.5 and v j = f g n = (pq) s+1 p(qp 2 q) n , this is impossible if either |pq| + |v| ≤ |(pq) s+1 p| + |qp|, or |qp 2 q| + |v| ≤ |(qp 2 q) n |. On the other hand, if |pq| + |v| > |qp(pq) s+1 p| and |qp 2 q| + |v| > |(qp 2 q) n | simultaneously hold, then using again v j = f g n = (pq) s+1 p(qp 2 q) n , we obtain

|v 2 | + |pq| + |qp 2 q| > |v j | + |qp|. Hence |v 2 | > |v j | -|qp 2 q| which leads since |qppq| < |v| to j = 2. By v 2 = f g n , this implies v 2 = (pq) s+1 p(qp 2 q) n . By the assumptions |pq| + |v| > |qp(pq) s+1 p| and |qp 2 q| + |v| > |(qp 2 q) n |, we can reach |(qp 2 q) n-2 | < |(pq) s+1 p| < |(qp 2 q) n |. Thus 2n -5 ≤ s ≤ 2n -2 which means v = (pq) 2n-4 r 1 = r 2 (qp 2 q) n-2 , |r 1 | = |r 2 | such that r 1 r 2 = (pq) t p(qp 2 q) 2 , t ∈ {0, 1, 2, 3}. Note that, because of v ∈ Q, √ p = √ q is impossible. We distinguish the following four cases. Case 1. t = 0, r 1 = pqpz 1 , r 2 = z 2 p 2 q, z 1 z 2 = pq 2 , |z 1 | = |z 2 |. Then v = (pq) 2n-4 pqpz 1 = z 2 p 2 q(qp 2 q) n-2 . Thus z 1 is a suffix and z 2 is a prefix of pq. Hence, by |z 1 | = |z 2 | = 1 2 |p| + |q|, we get z 1 = p 2 q, z 2 = p 1 q ′ with p = p 1 p 2 , |q ′ | = |q|, |p 1 | = |p 2 | for appropriate q ′ , p 1 , p 2 ∈ Σ + . Obviously, then z 1 z 2 = p 2 qp 1 q ′ =
pq 2 . This implies p 2 = p 1 and q ′ = q. This leads to

z 1 = z 2 = p 1 q. Thus z 1 z 2 = (p 1 q) 2 = p 2 1 q 2 implying qp 1 = p 1 q. Applying Theorem 2.2, √ p 1 = √ q. By p = p 2 1 , this implies √ p = √ q, a contradiction. Case 2. t = 1, r 1 = (pq) 2 z 1 , r 2 = z 2 qp 2 q, z 1 z 2 = p 2 q, |z 1 | = |z 2 |. Then v = (pq) 2n-2 z 1 = z 2 (qp 2 q) n-1 . Thus z 1 is a suffix and z 2 is a prefix of of pq. Hence, by |z 1 | = |z 2 | = |p| + 1 2 |q|, we get z 1 = p ′ q 2 , z 2 = pq 1 with q = q 1 q 2 , |p ′ | = |p|, |q 1 | = |q 2 | for appropriate p ′ , q 1 , q 2 ∈ Σ + .
Obviously, then z 1 z 2 = p ′ q 2 pq 1 = p 2 q. Hence we get p ′ = p and q 1 = q 2 . In other words, z 1 z 2 = (pq 1 ) 2 = p 2 q 2 1 leading to q 1 p = pq 1 . By Theorem 2.2, we get

√ q 1 = √ p which is impossible because of q = q 2 1 . Case 3. t = 2, r 1 r 2 = (pq) 2 p(qp 2 q) 2 . Then r 1 = (pq) 3 p 1 , r 2 = p 2 pq 2 p 2 q with p = p 1 p 2 , |p 1 | = |p 2 |.
But then, either n = 2 or n > 2, p 2 is simultaneously a prefix and a suffix of p. Therefore, p 1 = p 2 which implies p = p 2 1 . Thus, we can write v = (p 2 1 q) 2n-4 (p 2 1 q) 3 p 1 = p 3 1 q 2 p 4 1 q(qp 4 1 q) n-2 which implies qp 1 = p 1 q either n = 2 or n > 2. By Theorem 2.2, this means

√ q = √ p 1 such that p = p 2 1 . Therefore, √ p = √ q, a contradiction.
Case 4. t = 3, r 1 r 2 = (pq) 3 p(qp 2 q) 2 . In this case, r 1 = (pq) 3 pq 1 , r 2 = q 2 p 2 q 2 p 2 q with q = q 1 q 2 , |q 1 | = |q 2 |. We observe that, either n = 2 or n > 2, q 1 is simultaneously a prefix and a suffix of q. Therefore, q 1 = q 2 with q = q 2 1 . Thus, we can write v = (pq 2 1 ) 2n-4 (pq 2 1 ) 3 pq 1 = q 1 p 2 q 4 1 p 2 q 2 1 (q 2 1 p 2 q 2 1 ) n-2 which implies pq 1 = q 1 p, if n = 2 and pq 2 1 pq 1 = q 1 p 2 q 2 1 , if n > 2. Both equalities lead to pq 1 = q 1 p. By Theorem 2.2, this leads to √ q 1 = √ p such that q = q 2 1 . Therefore, √ p = √ q, a contradiction.

It remains to show that, for every distinct pair f, g ∈ Q of unbordered primitive words, f + g + ⊆ Q. By Theorem 2.9, m, n ≥ 2 implies f m g n ∈ Q. Thus it is enough to prove that for every m, n ≥ 2, f m g, f g n ∈ Q.

Suppose that, contrary of our statement, there are u ∈ Q, i > 1 with f m g = u i . Consider u 1 , u 2 ∈ Σ * , j ≥ 0 with u = u 1 u 2 such that f m = u j u 1 and g = u 2 u i-j-1 . By Theorem 2.11, j ≤ 1. If j = 0, then g = u 2 u i-1 with i -1 > 0. Then g is bordered, a contradiction. Thus we get j = 1. Therefore,

f m = u 1 u 2 u 1 , g = u 2 (u 1 u 2 ) i-2 . If u 1 = λ, then f is bordered, a contradiction. Hence f m = u 2 , g = u i-1 2 . Clearly, then f = √ f = √ u 2 = √ g = g, a contradiction. Now we assume that, contrary of our statement, f g n = v k , v ∈ Q, k > 1.
By Theorem 2.6, there exists a word z ∈ Q having g n f = z k . We have already proved that this is impossible. This completes the proof. Definition 3.2 Let w be a finite word over the alphabet Σ. We define the fractional root of w as the shortest word noted f √ w with the property that ( f √ w) (n+α) = w where n is a positive integer and α is a positive rational number.

Example for w = abaabaab, we find (aba) (2+ 23 ) = abaabaab, thus the fractional root of w = abaabaab is f √ w = aba.

Definition 3.3 If f √ w =
√ w = w then we say that w is purely primitive (or aperiodic).

For example w = aababbb is purely primitive. The first part of Shyr-Yu Theorem could be refined in three cases according to the following statement: Theorem 3.4 Consider the language of p + q + . Then (i1) If there exists k such that p = (xq k ) i-1 x then the non-primitive factor is

W i = pq k = (xq k ) i or W i = p k ′ y(p k ′ y) i-1 .
For this case, we could find finite classes of primitive words with fractional roots constructed as pq (i2) There is a non-primitive word in the language and no finite class, thus we have infinite classes constructed by p m = p ′ y and q n = y ′ p ′ with |p ′ | maximal and m, n ≥ 1. Furthermore, if |p ′ | = 0 then the infinite classes have only purely primitive words.

= (xq k ) i-1 xq, pq 2 = (xq k ) i-1 xq 2 , • • • , pq k-1 or pq = py(p k ′ y) i-1 , p 2 q = p 2 y(p k ′ y) i-1 , • • • , p k ′ -1 q = p k ′ -1 y(p k ′ y) i-
(ii) There is no non-primitive word in the language, thus we have only infinite classes constructed by p m = p ′ y and q n = y ′ p ′ with |p ′ | maximal and m, n ≥ 1. Furthermore, if |p ′ | = 0 then the infinite classes are purely primitive.

In this variation of the first part of the Shyr-Yu Theorem, we find in each case an infinite class with words written in the form w = ( f √ w)

(1+ |p ′ | | f √ w| ) .
In fact, if |p ′ | = 0 the form remains the one used in the Shyr-Yu theorem and we can deduce that w = f √ w thus each words are purely primitive words.

Theorem 2 . 7 [ 9 ]

 279 If u = λ, then there exists a unique primitive word f and a unique integer k ≥ 1 such that u = f k . Let a m b n = c k be an equation such that a, b, c ∈ Σ * and m, n, k ≥ 2. We say that a m b n = c k has only trivial solution if a m b n = c k holds only if there exists a w ∈ Σ * with a, b, c ∈ w * . Theorem 2.8 (Lyndon-Schützenberger Theorem) [9] The equation a m b n = c k with a, b, c ∈ Σ * has only trivial solutions.

1

 1 which are primitive and not purely primitive. And infinite classes constructed by p m = p ′ y and q n = y ′ p ′ with |p ′ | maximal and m, n ≥ 1. Furthermore, if |p ′ | = 0 then the infinite classes have only purely primitive words.
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Examples :

1) p = a and q = b lead to only purely primitive words in the language p + q + . 2) p = ab and q = abb lead also to purely primitive words.

3) p = aba and q = abaab give a longest prefix of p m which is also suffix of q n namely abaab for m = 2 and n = 1.

That is for m ≥ 2 and n ≥ 1 the word w = p m q n could be written as

)

) . And for m = n = 1 we find pq = abaabaab = (aba)

Proof of Theorem 3.4 : In case of (i1), we know that there exists a unique non-primitive word, namely W i , in p + q + . We can write the general form of

In both cases we can find finite classes of words :

In each case, we can find an infinite class of words with the form w =

) where p m = p ′ y and q n = y ′ p ′ with |p ′ | maximal. We prove this fact by contradiction. Suppose that there is no p ′ which is maximal. That is we have an infinite sequence of words indexed by distinct couples (m i , n i ) with increasing length of p ′ (m i ,n i ) such that p m i = p ′ (m i ,n i ) y and q n i = y ′ p ′ (m i ,n i ) . As the sequence is infinite, we find a starting point in q = ss ′ such that we could extend the rigth part of the word to an infinite by p ω = (s ′ s) ω . By using Theorem 2.5, we have that p = z ℓ and s ′ s = z ℓ ′ . Thus p is not primitive. A contradiction.