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Lyapunov-based Controller using Singular Perturbation Theory: An

Application on a mini-UAV

Gerardo Flores† and R. Lozano⋆

Abstract— In this paper, a Lyapunov-based control using
singular perturbation theory is proposed and applied on dy-
namics of a miniature unmanned aerial vehicle (MAV). Such
controller is designed taking into account the presence of the
small parameter ǫ on vehicle dynamics, causing a time-scale
separation between the attitude and translational dynamics of
the MAV. The stability analysis is demonstrated by presenting
a scenario in which the time-scale property arises on the the
MAV dynamics. In addition, the values of the parameter ǫ for
which the control law is validated, are given. Simulations are
derived an presented to demonstrate the effectiveness of the
control law. The proposed controller has been applied to a
Quad-plane MAV experimental platform, in order to validate
the performance and to show the time-scale property.

I. INTRODUCTION

The growing development of technologies like microcom-

puters, vision systems, IMU’s and other sensor devices,

has increased the interest and research on MAVs. As a

consequence, the control and robotics community have been

interested on developing controllers that can deal with the

complexity of the MAV dynamics.

It is well known that the sub-actuated dynamics of the

MAV has a fast dynamics formed by the orientation sub-

system, and a slow dynamics formed by the translational

subsystem [1], [2]. Thus, the stabilization and tracking

trajectory problem on a MAV can be addressed by using

of the fact that, there exists a time scale separation between

the translational and rotational dynamics, leading to a hierar-

chical control. The hierarchical control scheme presents two

or more separate controllers that can be designed separately

to successively stabilize the dynamics of the vehicle, and can

be used in order to design position and orientation controllers

leading to simplify the problem.

In recent papers [3], [4], [5] the use of a hierarchical con-

trol structure has been treated, exploiting the fact that there

exists a time scale separation between MAV translational

and rotational dynamics, latter being the fast dynamics of

the system. However, the vast majority of the works only

make mention of this feature, and do not address the problem

in a theoretical point of view, using tools like the singular

perturbation theory.

Some researchers have exploited the aforementioned hier-

archical structure [1], [3], [4], [5], [6], [7], but they use the

time scale separation just to justify the implementation of two
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of Compiègne, France. email: gfloresc@hds.utc.fr

⋆ is with the Heudiasyc UMR 6599 Laboratory, UTC CNRS France and
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different controllers: a controller for the attitude subsystem

and a controller for the translational subsystem. However,

they do not use a singular perturbation structure on MAV

dynamics, to show the time-scale property. This is because

in general, the presence of such property makes the problem

hard from the numerical solution point of view [8]. However,

in a few works [9], [10] such phenomena is pointed out

justifying the time-scale separation property.

In this paper, we present a stabilization analysis of the

MAV dynamics in the six degrees of freedom, by using the

singular perturbation theory. The considered system presents

a not pure strict-feedback structure, and the control vectors

formed by the force and trust have a different relative degree

w.r.t. MAV position. In order to overcome this difficulty we

propose to use a dynamic extension on the force control vec-

tor. Furthermore, an analysis of the system is considered by

introducing the parameter ǫ on the MAV dynamics, in order

to illustrate the time-scale separation between the attitude and

translational dynamics of the MAV. The proposed control law

should be tested at simulation level, and be implemented on

an experimental platform.

The paper is organized as follows. In Section II the

problem description and the singular perturbed problem are

introduced. The MAV model is presented as a singular pertur-

bation structure in Section III. In section IV the controller is

developed and the corresponding stability proof is derived.

Simulations are given in Section V, in order to prove the

proper operation of the control law. In addition, experimental

results tested on the Quad-plane MAV platform [4], are

shown. Finally, some conclusions are drawn in Section VI.

II. PROBLEM DESCRIPTION

Singular perturbation and hence, the time-scale character

is often associated with a small parameter ǫ, multiplying

some of the state variables of the considered system. One

difficult is that such parameter does not appear in the desired

form or it may not be identifiable at all. Frequently, only by

past experience and physical insights, one can know that

a particular system has fast and slow modes. In the cases

where it is impossible to identify the parameter ǫ, one can

artificially introduce ǫ to be associate with the fast dynamics.

There exist three different approaches for the selection of

time scales [8]: linearization of the state equations, trans-

formation of the state equations and direct identification of

small parameters. However, in many aerospace problems,

no singular parameter appears explicitly on the dynamic

equations. In such cases, the parameter ǫ may be artificially

inserted for presenting a singular perturbation structure,
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which is shown below

ẋ = f(x, z, u)
ǫż = g(x, z, u)

(1)

where x ∈ ℜn, z ∈ ℜm, f and g are smooth functions,

u ∈ ℜr is a control input and ǫ ∈ (0, 1].
The first goal of the paper is to present the MAV math-

ematical model as a singular perturbation structure, as in

(1). Then, we proceed to design a Lyapunov-based control

law, which stabilizes the vehicle on a predefined three-

dimensional position. The second goal is to investigate the ǫ

values in which the proposed control can be implemented.

III. SYSTEM DESCRIPTION

In this section, an idealized mathematical model of the

MAV is described. Such model will be suitable for develop-

ing the purposed control law. We will consider the nonlinear

rigid body dynamics in terms of rotational and translational

dynamics [11] given by

ξ̇ = υ

υ̇ = RF
m

− gezI
Ṙ = RS(Ω)

Ω̇ = −J−1Ω× JΩ+ J−1τ

(2)

where ξ = (x, y, z)T and υ = (vx, vy, vz)
T are respectively,

position and velocity of the MAV relative to the inertial

frame I = (exI
, eyI

, ezI ). R ∈ SO(3) is the rotational

matrix representing MAV orientation in body coordinate

frame B = (exB
, eyB

, ezB) w.r.t. I, Ω ∈ ℜ3 is the body

angular velocity vector. F ∈ ℜ3 and τ ∈ ℜ3 are the force

and torque, respectively applied at the center of mass of the

MAV and specified w.r.t. B. J ∈ ℜ3 is the inertia matrix, m

is the mass of the body, gezI is the gravitational force and

ezI = (0, 0, 1) is a unit vector. In (2), SO(3) denotes the

special orthogonal group of ℜ3×3, and so(3) is the group of

antisymmetric matrices of ℜ3×3. Also, we define by S(v)
the operator from ℜ3 → so(3) such that

∀v ∈ ℜ3, S(v) =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 (3)

where vi denotes the ith component of vector v. Thus,

S(v)Ω = v × Ω.

It is important to note that the dynamic model (2) is not

in pure strict-feedback structure, and control vectors F and

τ have different relative degree w.r.t. the position ξ. For this

reason we take the dynamic extension of control F as

F̈ = F̃ (4)

In this way, the actual control F and its first time derivative

Ḟ , become internal variables of a dynamic controller [12].

Thus, it is possible to represent (2) as

ξ̇ = υ

υ̇ = X

Ẋ = Y

Ẏ = R
m

(

F̃ − S(F )τ̃ + 2S(Ω)Ḟ + S(Ω)S(Ω)F
)

(5)

where new states X , Y and control input τ̃ are defined as

X := RF
m

− gezI
Y := Ẋ = R

m
(S(Ω)F + Ḟ )

τ̃ := Ω̇

(6)

Thereby, new inputs F̃ , τ̃ have a relative degree equal to four

w.r.t. the state ξ. Thus, they can be assigned at the same stage,

eliminating the problem of the presence of an aggressive

control, which may lead to extreme ill-conditioning of the

remaining closed-loop system [13].

A. Modeling for the Singular Perturbation Problem

In many MAV problems or more generally, in more

aerospace problems, no singular perturbation parameter ap-

pears explicitly on the mathematical model. In such cases, a

singular perturbation parameter may be artificially inserted

to define a rapid response of a certain dynamic w.r.t. other. In

other cases, this parameter is may be inserted to suppress the

variables in the equations that are expected to have relatively

negligible effects.

The slow-fast time scale character is often associate with

a small parameter multiplying some of the state variables of

the state equations describing a physical system. However,

often that parameter may not be identifiable at all and only

by physical insight and past experiences does one know that

the system has fast and slow dynamics.

Experience indicates that among the state variables, the

position and velocity are slow relative to the dynamic of the

Euler angles. It is this separation of the states velocities, that

motivates to formulate a singular perturbation structure as

follows

ξ̇ = υ

υ̇ = X

ǫẊ = Y

ǫẎ = R
m

(

F̃ − S(F )τ̃ + 2S(Ω)Ḟ + S(Ω)S(Ω)F
)

(7)

IV. CONTROLLER DESIGN

In this section we will propose a control strategy for stabi-

lization of (7). The controller will be successively designed

as presented below.

From the last equation of (7) we can write

R

m

(

F̃ − S(F )τ̃ + 2S(Ω)Ḟ + S(Ω)S(Ω)F
)

= u (8)

where u will be taken as control input. By adding X + Y

in both sides of (8), this equation stays in balance, then we

get a feedback connection in (7) as follows

ξ̇ = υ (9)

υ̇ = X (10)

ǫẊ = Y (11)

ǫẎ = Y +X + u (12)

To be consistent with the notation used in (1), vectors x and

z are given by x = [ξ υ]T , z = [X Y ]T and f(x, z, u) =
[υ X]

T
, g(x, z, u) = [Y Y +X + u]

T
.
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The goal is to design a feedback control law which

stabilizes the system (9)-(12) at the equilibrium point ξ =
0, υ = 0, X = 0, Y = 0 and prove the asymptotic

stability of the closed-loop system. For achieve this goal, we

need to investigate a candidate Lyapunov function for such

system. The key idea is to analyze the system separately,

beginning with the slow subsystem (9)-(10) and continuing

with the fast subsystem (11)-(12). Then, find a control for

each subsystem and investigate their corresponding candi-

date Lyapunov functions. Finally, combining both candidate

Lyapunov functions in a proper way, we find the candidate

Lyapunov function for the entire system (9)-(12).

We begin by analyzing the slow system (9)-(10). Let us

assume that the open-loop system (9)-(10) is a standard

singularly perturbed system for every u ∈ Bu ⊂ ℜ3, that

is to say, the equations

0 = Y

0 = Y +X + u
(13)

have a unique root z = h(x, u).
Such control u will be composed of the sum of slow and

fast controls

u = us + uf (14)

where

us = Ξs(ξ, υ) (15)

is a feedback function of the states that compose the fast

system dynamics (11)-(12), and

uf = Ξf (ξ, υ,X, Y ) (16)

is a feedback function depending on the states (ξ, υ,X, Y ).
In order to find the control (15), we see from (13) that

X = −us (17)

and then, we propose the slow controller us given by

us = kPsξ + kDsυ (18)

Thus, with the control (18) the closed-loop reduced system

(9)-(10) results in

ξ̇ = υ

υ̇ = −kPsξ − kDsυ
(19)

Using the candidate Lyapunov function

V (ξ, υ) =
λ

2
ξT ξ +

q

2λ
υTυ + ξTυ (20)

with parameters λ > 0, q > 0 properly chosen, the derivative

of (20) w.r.t. (19) is given by

V̇ (ξ, υ) = −kPsξ
T ξ −

( q

λ
kDs − 1

)

υTυ (21)

We need to investigate a scalar function ψ(·) of vector

arguments which vanish only when its arguments are zero,

such that

V̇ (ξ, υ) ≤ −α1ψ
2(ξ, υ) (22)

where α1 > 0. The inequality (22) holds with the scalar

function

ψ(ξ, υ) =

∥

∥

∥

∥

(

|ξ|
ρ|υ|

)∥

∥

∥

∥

(23)

where‖ · ‖ is the Euclidean norm of a vector and ρ is an

arbitrary positive number to be chosen.

The boundary layer model [14] of the closed-loop system

(9)-(12) is defined as

dX
dτ

= Y
dY
dτ

= X + Y + kPsξ + kDsυ + uf
(24)

We proceed to design a fast control law (16). One inspec-

tion of (24) suggests to chose the fast control as

uf = −3(X + Y + kPsξ + kDsυ) (25)

The control (25) needs to fulfill certain requirements for

system (9)-(12) remains a standard singularly perturbed

system. The first one is that uf = Ξf (ξ, υ,X, Y ) be inactive

for z = h(x, us), i.e. Ξf (x, h(x,Ξf (x))) = 0, then

Ξf (x, h(x,Ξf (x))) = −3(X+Y +kPsξ+kDsυ) = 0 (26)

holds with X = −kPsξ−kDsυ and Y = 0. The requirement

(26) guarantees that z = h(x,Ξs(x)) is a root of

0 = Y

0 = Y +X + us + uf
(27)

In addition, (27) should have a unique root z = h(x,Ξs(x))
in a certain domain of interest Bx × Bz , which is easy to

verify from (18), (25).

We proceed to investigate a candidate Lyapunov function

W such that

∂W

∂z
g(x, z,Ξs(x) + Ξf (x, z)) ≤ −α2φ

2(z − h(x,Ξs(x)))

(28)

∀(x, z) ∈ Bx × Bz , where α2 > 0 and φ(·) is a scalar

function of vector arguments which vanish only when its

arguments are zero. Using the candidate Lyapunov function

W =
λw

2
Y TY +

qw

2λw
(X + kPsξ + kDsυ)

T

× (X + kPsξ + kDsυ)

+ (Y )T (X + kPsξ + kDsυ)

(29)

the time derivative of (29) can be calculated as

Ẇ =(−2λw + 1)Y TY

+ (−2λw +
qw

λw
− 2)(Y T )(X + kPsξ + kDsυ)

− 2(X + kPsξ + kDsυ)
T (X + kPsξ + kDsυ)

(30)

where λw > 1
2 and −2λw + qw

λw

− 2 < 0. The inequality

Ẇ ≤ −α2φ
2(z − h(x)) (31)

holds with α2 > 0 and with the function

φ(ξ, υ,X, Y ) =

∥

∥

∥

∥

(

|X + kPsξ + kDsυ|
ρw|Y |

)∥

∥

∥

∥

(32)

where ρw is an arbitrary positive number, and α2 can take

the value α2 = 1.
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In order to complete a Lyapunov function for the entire

system (9)-(12), the aforementioned Lyapunov function can-

didates, (20) for the slow system and (29) for the fast system,

should verify the next interconnection conditions

∂W

∂x
f(x, z,Ξs(x) + Ξf (x, z))

≤ γφ2(z − h(x,Ξs(x))) + β2ψ(x)φ(z − h(x,Ξs(x)))
(33)

∂V

∂x
[f(x, z,Ξs(x) + Ξf (x, z))− f(x, h(x,Ξs(x)),Ξs(x))]

≤ β1ψ(x)φ(z − h(x,Ξs(x))) (34)

We proceed to verify inequalities (33) and (34). Develop-
ing inequality (33) by using (23), (32) it leads to

[kPsυ + kDsX]T
[

qw

λw
(X + kPsξ + kDsυ) + Y

]

≤ γ |X + kPsξ + kDsυ|
2 + γρ

2
w |Y |2 (35)

+ β2

(

√

|ξ|2 + ρ2|υ|2
)

(

√

|X + kPsξ + kDsυ|2 + ρ2w|Y |2
)

adding and subtracting the term kDs[kPsξ +

kDsυ]
T
[

qw
λw

(X + kPsξ + kDsυ) + Y
]

to the LHS of

(35) and by using the triangle inequality, it leads to

∂W

∂x
f(x, z,Ξs(x) + Ξf (x, z)) ≤ (36)

|kPsυ + kDs(−kPsξ − kDsυ)|
∣

∣

∣

qw

λw
(X + kPsξ + kDsυ) + Y

∣

∣

∣

+ kDs |X + kPsξ + kDsυ|
∣

∣

∣

qw

λw
(X + kPsξ + kDsυ) + Y

∣

∣

∣

Thus, if we can verify that

kDs |X + kPsξ + kDsυ|

∣

∣

∣

∣

qw

λw
(X + kPsξ + kDsυ) + Y

∣

∣

∣

∣

≤

γ |X + kPsξ + kDsυ|
2
+ γρ2w |Y |

2
(37)

and

|kPsυ + kDs(−kPsξ − kDsυ)|
∣

∣

∣

qw

λw
(X + kPsξ + kDsυ) + Y

∣

∣

∣

≤ β2

(

√

|ξ|2 + ρ2|υ|2
)

(

√

|X + kPsξ + kDsυ|2 + ρ2w|Y |2
)

(38)

hold, then the inequality (33) holds.
We proceed to prove (37). A simple calculation leads to

γ
kDs

≥ 1.21 and qw
λw

≤ ρ2w which verify (37). For the
inequality (38) is satisfied, we need to verify that

|kPsυ + kDs(−kPsξ − kDsυ)| ≤ β21

(

√

|ξ|2 + ρ2|υ|2
)

(39)

and
∣

∣

∣

∣

qw

λw
(X + kPsξ + kDsυ) + Y

∣

∣

∣

∣

≤ β22

(

√

|X + kPsξ + kDsυ|2 + ρ2w|Y |2
)

(40)

hold, where β2 = β21β22. Inequality (39) verifies with β21 ≥
(kPskDs)(kPs + k2Ds), and (40) verifies with β22 ≥ qw

λw

.
We proceed to develop (34) as
∣

∣

∣

q

λ
υ + ξ

∣

∣

∣ |X + kPsξ + kDsυ| ≤ (41)

β1

(

√

|ξ|2 + ρ2|υ|2
)(

√

|X + kPsξ + kDsυ|2 + ρ2w|Y |2
)

which can be broken up into
∣

∣

∣

q

λ
υ + ξ

∣

∣

∣ ≤ β11

(

√

|ξ|2 + ρ2|υ|2
)

(42)

and

|X + kPsξ + kDsυ| ≤

β12

(

√

|X + kPsξ + kDsυ|2 + ρ2w|Y |2
) (43)

where β1 = β11β12. Inequality (42) is satisfied with q
λ
≤ ρ2

and β11 ≥ 2. Inequality (43) verifies with β12 ≥ 1.
In order to prove stability of the system (9)-(12) together

with controller (14) composed by (18) and (25), we choose a
candidate Lyapunov function given by

ν(ξ, υ,X, Y ) = (1− d)V (ξ, υ) + dW (X,Y ) (44)

where d ∈ (0, 1). The derivative of (44) along the closed-loop
system (9)-(12)-(14) is given by

ν̇ ≤ (1−d)
∂V

∂x
f(x, z)+

d

ǫ

∂W

∂z
g(x, z)+d

∂W

∂x
f(x, z) (45)

such Lyapunov function (45) can be represented as

ν̇ ≤ (1− d)
∂V

∂x
f(x, h(x))+

+ (1− d)
∂V

∂x
[f(x, z)− f(x, h(x))]

+
d

ǫ

∂W

∂z
g(x, z) + d

∂W

∂x
f(x, z)

(46)

with inequalities (21), (28) and (33), (34) we get

ν̇ ≤− (1− d)α1ψ
2(x) + (1− d)β1ψ(x)φ(z − h(x))

−
d

ǫ
α2φ

2(z − h(x)) + dγφ2(z − h(x))

+ dβ2ψ(x)φ(z − h(x)) ≤ −ΦTAΦ

(47)

where Φ = [ψ(x) φ(z − h(x))]T and A is given by

A =

(

(1− d)α1
1
2 (1− d)β1 −

1
2dβ2

1
2 (1− d)β1 −

1
2dβ2 d

(

α2

ǫ
− γ

)

)

(48)

The quadratic form given in (47) is negative-definite when

ǫ <
α1α2

α1γ + ((1−d)β1+dβ2)2

4d(1−d)

:= ǫd (49)

Thus, the system (9)-(12) with the controller (14) is asymp-
totically stable ∀ǫ < ǫd.

A. Real Input Controls

In order to express the control inputs τ̃ and F̃ , let us
consider the notation

ǫẎ = Z (50)

From (7) and (12) it follows that

F̃ − S(F )τ̃ = mRT (u+X + Y )− S(Ω)F

−mRTY (S(Ω) + 1)−mRTX := ũ
(51)

where the auxiliary variable Z and the vector ũ ∈ ℜ3 are
functions of known signals. Thus, using (4), (6) and (51),
the original inputs F and τ can be recovered by simple
calculations.
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V. NUMERICAL SIMULATIONS AND EXPERIMENTAL

RESULTS

In this section we describe the numerical simulations and
the experiments that demonstrate the effectiveness of the
controller presented in section IV.

The entire fast system is comprised by the rotational dy-

namics composed by the states: (θ, θ̇, φ, φ̇, ψ, ψ̇). The slow
system is composed by the translational dynamics which is
comprised by the states: (x, ẋ, y, ẏ, z, ż). For simplicity, we
present simulations and experimental results only for two
states representing the entire fast system: the roll dynamics,

i.e. (φ̇, φ) and for two states representing the slow system: the
lateral position dynamics, i.e. (ẏ, y).

A. Numerical Results

In order to emphasize the time-scale separation property,
and to show the faster convergence on the fast dynamics, we
chose the same initial conditions for all states as φ(0) =
φ̇(0) = y(0) = ẏ(0) = 3. We have simulated the proposed
controller for three different values of ǫ: ǫ = 0.5, ǫ = 0.25
and ǫ = 0.1. In Fig. 2, the first row shows results for ǫ = 0.5,
the second row for ǫ = 0.25 and the third row for ǫ = 0.1.
The simulation have been performed with the same control
parameters.

The case when ǫ = 0.5 is depicted in Fig. 1, and its
corresponding controller in Fig. 3. The region of rapid re-
sponse named boundary layer, exists near the initial point
and is shown in Fig. 1. The state φ converges faster than
the state y, and its convergence depends on the the ǫ value.
From the simulations shown in Fig. 2, the rotational dynamics
converge faster than the translational dynamics, according to
the parameter ǫ. In addition, the boundary layer or region of
rapid transition occurs near to t = 0.
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Fig. 1. The state φ (the fast dynamics), converges faster than the state y

(the slow dynamics). The boundary layer exists near the initial condition.

The fast and slow control, (25) and (18) respectively, are
shown in Fig. 3. Where the fast control presents a faster
response regarding the slow control. Such controller corre-
sponds to ǫ = 0.5.
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Fig. 2. The states corresponding to the fast dynamics ((φ̇, φ): dashed
line) converge faster than the states corresponding to the slow dynamics
((ẏ, y): solid line). Depending on the value of ǫ, the convergence is faster.
In addition, the size of the boundary layer, shown in Fig. 1, is proportional
to ǫ.

0 2 4 6 8 10 12 14
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

time [s]

u
s
,
u
f

Slow response

Fast response

Fig. 3. Slow control us is represented by the solid line while the fast
control uf is represented by the dashed line. The time scale separation
property is also presented on both controllers.

B. Experimental Results

The proposed controller has been tested on the Quad-Plane
experimental platform illustrated in Fig. 4. With the Quad-
plane at y = 0, ẏ = 0, the desired position is set to y = 0,
during 40 seconds.

The experiment consist in an autonomous landing, after the
vehicle needs to go forward on x, following a line on the
floor using its embedded visual system, while maintaining a y
relative position equal to zero w.r.t. the estimated line. Thus,
the desired position and orientation in the roll dynamics and
y-position is zero.

Fig. 5 illustrates the behavior of the proposed controller, in
which the vehicle is stabilized on the desired position. The
Quad plane is disturbed on the roll angle at t = 32 sec. as
it is shown in Fig. 5. The system has been disturbed in order
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to show the rapid response on the fast dynamics represented

by the pitch dynamics (φ, φ̇) in comparison with the slow
dynamics represented by the the position dynamics (y, ẏ).

Fig. 4. Quad-plane experimental platform, developed at HEUDIASYC
laboratory.

As we see in Fig. 5, the performance of the controller is
satisfactory.
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Fig. 5. Experimental results showing the effectiveness of the controller. In
the first row the translational dynamics is shown while in the second row the
rotational dynamics is illustrated. Beyond the inherent noise, the response
in translational dynamics behaves slower than the rotational dynamics. We
have disturbed the vehicle on the roll angle at t = 32.

VI. CONCLUSION

A controller based on the singular perturbation approach
has been proposed so that the closed loop behavior achieves
the desired performance. We have associated the translational
displacement with the slow dynamics and the rotational dis-
placement with the fast dynamics. For this purpose we have
introduced the parameter ǫ on the dynamic equations. The
introduction of this parameter leads to a time-scale separation
of the MAV system. A Lyapunov function was proposed for
the entire system and stability of the closed loop system was
proved for all ǫ < 1.

The Lyapunov-based controller using singular perturbation
theory has been tested in numerical simulations. The con-
troller has been also successfully applied to a Quad-plane
experimental platform showing good performance.
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