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Introduction

Global change, in particular climate change, will affect agri-
culture worldwide in many ways: increased drought or
flooding amplitude and frequency, variable temperature in-
creases, loss of natural depuration of waters, soil erosion, loss
of soil carbon content, invasion by alien species, increased
pest events, changes in plant phenology, increased sensitivity

of crops to stress and diseases etc. (Fisher et al. 2005; Howden
et al. 2007). These anticipated or even already occurring
stresses raise concerns about the sustainability of production
and the ability of agriculture to feed human populations. All
these changes could lead to an increased use of pesticides
(Kattwinkel et al. 2011). Moreover, demographic pressure
continues to rise, in particular in tropical and sub-tropical
regions, where greater threats to agriculture and food
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sustainability are anticipated by the Intergovernmental
Panel on Climate Change (IPCC) (Easterling et al. 2007).
These trends will certainly lead to mounting conflicts in-
volving water uses (irrigation versus drinking water pro-
duction or freshwater ecosystem maintenance, sanitation
etc.) and food production. This appeals to an “ecologically
intensive agriculture” (Griffon 2006), i.e. a sustainable
agriculture providing ecosystem services more efficiently
than today and causing fewer adverse impacts on the envi-
ronment and water resources.

With EU Directive 2009/128/EC (EC 2009a) enforcement,
requesting Member States to adopt action plans aiming to
reduce risks and impacts related to pesticide uses, there will
be a focus in the public and political debates in Europe on
achieving a more sustainable use of pesticides. This should
consequently lead to a reduction of the risks or impacts of
pesticides on the environment. In Europe, there is currently a
strong focus on source (including dose) reduction. This ap-
proach may nevertheless be too restrictive if the goal is to
reduce the agriculture footprint while maintaining or increas-
ing yield. Depending on the chemical properties of pesticides
as well as environmental factors, decreasing the amounts of
pesticides applied to crops will not automatically produce a
decrease in the risk to non-target species or water supply.

How could society meet the challenge of the forthcoming
climate change? What adaptations should be envisaged for
agriculture/pesticide risk management (RM)? These changes
will probably have a profound effect on agricultural systems
(crop selection, farming practices etc.) and to a lesser extent
influence the fate and effects of chemicals (Schiedek et al.
2007). These questions have been addressed by two European
research networks, namely Euraqua (the European Network of
Freshwater Research Organisations, http://www.euraqua.org/)
and PEER (Partnership for European Environmental
Research, http://www.peer.eu/), which organised a workshop
aiming to identify research needs and strategies induced by
these questions in October 2011 in Montpellier, France.

The workshop's specific goals were to (1) discuss the
pesticide risk assessment (RA) approach, its limitations (e.g.

spatial scale and multi-stress situations), the connections be-
tween different policies (pesticide regulation and Water
Framework Directive), the use of models, (2) review integrat-
ed practices and innovative technologies which could or are
intended to reduce pesticides' environmental impacts and (3)
contribute to the future research and development agenda.
This review summarises the workshop discussions.

Climate change

Implications for ecosystems

The Earth's average surface temperature is predicted to rise at a
faster rate than previously experienced by human civilisation
(Parmesan & Yohe 2003; Thomas et al. 2004). Furthermore,
the global water cycle is altered by climate change, which in
turn affects local aquatic ecosystems (Vörösmarty et al. 2010).
Although there are major uncertainties in the estimates of
climate change, future shifts in hydrological regimes and in-
creased temperatures are likely to place considerable environ-
mental stress on many natural systems in the near future.
Profound changes have already been reported from many
vulnerable ecosystems in recent decades (e.g. (Schofield
et al. 2010)) and by inference from experimental studies, either
natural (e.g. (Woodward et al. 2010)) or in man-made set-ups
(e.g. (Ledger et al. 2013)). The effects of climate change will
permeate all levels of biological organisation, from species to
ecosystem-level impacts. Several studies have demonstrated
enhanced toxicity for organisms not adapted to increased tem-
peratures (Ferrando et al. 1987; Lydy et al. 1999; Prato et al.
2008). Subtle changes in environmental conditions or key
species abundance can cause shifts in species population
ranges (e.g. (Levinsky et al. 2007)) as well as impacts on
ecological networks (Meerhoff et al. 2007; Woodward
et al. 2010; Ledger et al. 2013). Elevated temperatures
are likely to increase overall metabolism and nutrient up-
take of freshwater ecosystems, making them susceptible to
eutrophication (Demars et al. 2011). Furthermore, cold
stenotherms will disappear, and this could alter beta-
diversity (Woodward et al. 2010; Friberg et al. 2013).
Experiments have shown that the entire food web structure
can collapse with the loss of apex predators under drought
conditions (e.g. (Ledger et al. 2013)).

However, uncertainties surrounding climate change im-
pacts remain high, as stressed by a recent SETAC workshop
(Stahl et al. 2013): (1) human-mediated mitigation of, and
adaptation to, climate change impacts may have as much
influence on the fate and distribution of chemicals as climate
change, and modelled predictions should be interpreted cau-
tiously. (2) Climate change and chemical toxicity affect each
other mutually. (3) The effects of climate change may be slow,
variable and difficult to detect, though some highly vulnerable

M. Stenrød
Norwegian Institute for Agricultural and Environmental Research
(Bioforsk), Høgskoleveien 7, 1432 Aas, Norway

J. Tournebize
Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, CS 10030,
92761 Antony, France

F. Vernier
Irstea, UR ADBX, 50 avenue de Verdun – Gazinet,
33612 Cestas, France

E. Vindimian
Irstea, SGMO, 361 rue Jean-François Breton,
34196 Montpellier, France

Environ Sci Pollut Res

http://www.euraqua.org/
http://www.peer.eu/


populations and communities may exhibit responses sooner
and more dramatically than others. (4) Future approaches to
human and ecological RAs will need to incorporate multi-
ple stressors and cumulative risks considering the wide
spectrum of potential impacts stemming from climate
change. (5) Baseline/reference conditions for estimating
resource injury and restoration/rehabilitation will continu-
ally shift due to climate change and represent significant
challenges to practitioners.

The consequences of climate change are a challenge for
risk assessors and risk managers, as they will create different
ecological communities from the current ones (no-analogue
communities), making it difficult to define a priori deviations
from reference conditions (Landis et al. 2013). Type III
errors, i.e. when a correct analysis is conducted on erroneous
premises, are therefore likely to occur. The above-mentioned
SETAC workshop pointed out four fundamental consider-
ations that could help risk assessors to cope with climate
change (Landis et al. 2013): (1) consider interactions among
stressors, including those related to climate change—new
temperature and precipitation regimes, modified hydrologi-
cal processes; (2) adopt more appropriate regulatory end-
points than the current hazard quotient or its variant; (3)
develop an understanding of stochasticity, tipping points
and multi-stressor interactions; and (4) given that biological
responses to environmental stressors will likely be nonlinear,
specially under climate change, the previous reliance on null
hypothesis models needs to be discarded. Furthermore, these
authors develop different principles for guiding future RAs,
in particular to consider the importance of climate change-
related factors in the RA process and subsequent manage-
ment decisions because climate change will not always be an
important factor in future RAs, to express assessment end-
points as ecosystem services, to consider positive as well as
adverse responses of ecosystem services (endpoints), to
develop multiple-stressor approaches and to implement
conceptual cause–effect diagrams that consider relevant
management decisions as well as appropriate spatial and
temporal scales to allow consideration of both direct and
indirect effects of climate change. They also suggest iden-
tifying the major drivers of uncertainty and continuing the
process as management activities are implemented, and
finally plan for adaptive management to account for chang-
ing environmental conditions and consequent changes to
ecosystem services.

Implications for agriculture and potential consequences
for pesticide emissions

The possible direct effects of climate change on the diffuse
emissions of pesticides are difficult to estimate because of
the uncertainties associated with the forecast of climate
change itself and the fact that the anticipated effects can be

contradictory (Jacob et al. 2007). Indeed, changes in the
seasonal variation of rainfall, its intensity and frequency,
can lead to a decrease in the spring and winter rainy event
occurrence, but also to an increase in their intensity. The
majority of predictions agree that, in addition to an increase
in temperature, spring will become wetter in North-Western
Europe, whereas the frequency of extreme precipitation
events will increase in summer (e.g. (Lehner et al. 2006)).
This change in climate will increase surface run-off events in
periods when agricultural production is high and could lead
to an increased risk of pesticide exposure of the aquatic biota.
A temperature increase can imply a subsequent rise in the
biodegradation rates of chemicals, in both aquatic and ter-
restrial ecosystems. In freshwater ecosystems, increasing
temperature will reduce their ability to cope with increased
nutrient levels (Friberg et al. 2009; Jeppesen et al. 2010). In
soil ecosystems, biodegradation is dependent on sufficient
soil moisture (Bouseba et al. 2009). Climate change along
with intensive and unsustainable agricultural practices con-
tribute to soil degradation and loss of biodiversity (Jeffery
et al. 2010; Turbé et al. 2010). The ability of soil and water to
recover from pesticide contamination is primarily dependent
on the presence of an abundant and diverse microbial com-
munity with the ability to remove contaminants (Barra
Caracciolo et al. 2013). The sensitivity or resilience of eco-
systems to chemicals might also be affected. At the European
scale, climate change impacts are likely to lead to contrasted
outcomes. Future projected trends in European agriculture
include a northward shift of crop suitability zones and in-
creasing crop productivity in Northern Europe, but declining
productivity and crop viability in southern areas (Olesen &
Bindi 2002; Falloon & Betts 2010). Climate change impacts
differ per crop and per CO2 emission scenario; whereas crops
planted in autumn and winter may benefit from the increas-
ing CO2 concentrations, those planted in spring may benefit
less because of the increasing temperature and reduced rain-
fall (Supit et al. 2012). Climate change will alter the envi-
ronmental conditions for crop growth and require adjust-
ments in management practices at the field scale such as
irrigation and fertilisation. These factors can be modelled
using crop growth models, but the currently available models
are not able to simulate biotic components of cropping
systems, especially pests, plant diseases, weeds and benefi-
cial organisms (Bergez et al. 2010; Lehmann et al. 2013).
Finally, some (e.g. (Bloomfield et al. 2006; Kattwinkel et al.
2011) argue that, over the long term, most of the modifica-
tions induced to agricultural systems by climate change will
be indirect, i.e. not governed by direct impacts of changes in
water temperature on organisms but by indirect impacts
related to changes in farming practices, and therefore quite
difficult to anticipate through adaptation measures.

In the meantime, it will become even more critical to
address both quantitative and qualitative aspects in water
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management, in order to reconcile the requirements for
drinking water, irrigation and ecosystem integrity.

Pesticide risk assessment and management: the need
for a more holistic approach

The ecological RA and management of pesticide use in
Europe and the protection goals of related ecosystems have
recently been debated by a stakeholders' panel appointed by
the European Food Safety Authority (EFSA). Specific pro-
tection goals need to be defined based on a combination of
(1) the ecological entity to be protected (e.g. individual,
population and functional group), (2) the relevant attribute
of that entity (e.g. behaviour, abundance and function), (3)
the magnitude of the effect for the attribute (e.g. small,
medium and large), (4) the temporal scale (e.g. days, weeks
and months) and (5) the spatial scale of the effect (e.g. field,
edge of field and landscape; (Nienstedt et al. 2012)).

Conceptually, pesticide RA and management activities can
be represented as a cycle alternating RA, RM and monitoring
in a continuous improvement process (Fig. 1). The Euraqua-
PEER workshop attendees discussed the approaches available
or desirable for exposure or effect assessments, as well as RM
and monitoring. They also acknowledged that this cycle tends
to be virtual, in that the steps are often disconnected.

Within the European Union, current pesticide RAs are
performed on one hand under the 1107/2009 Regulation
(EC 2009b) dealing with issuing plant protection products
to the market, and the “sustainable use” directive (EC
2009a), which together replace the former 91/414/EEC di-
rective, and on the other hand the Water Framework
Directive (WFD, (EC 2000)). Conceptually very different,
these texts might lead to contradictions. The WFD addresses

both short- and long-term risks, expressed as Maximum
Acceptable Concentrations (MACs) Environmental Quality
Standards (EQSs) and Annual Average EQSs (AA-EQSs),
respectively, and does not explicitly envisage a tiered ap-
proach. Pesticide regulation also distinguishes short- and
long-term risks but follows a tiered approach (Brock et al.
2011). None of these assessment procedures account for
multiple stressors (e.g. nutrients and pesticides), nor do they
address the spatial–temporal variability of exposure condi-
tions. This appeals for coupling fate and exposure modelling
with toxicity testing, either standard tests or higher-tier test-
ing and mesocosm studies. The current risk characterisation
approach, based either on hazard quotients or species sensi-
tivity distribution, is deemed to target the structure of com-
munities and abundance of (sensitive) species. As such, it
does not consider whether or not, and if yes at which rate,
populations will recover (Kefford et al. 2012).

Another conclusion of the workshop pointed to the loose
or missing link(s) between the different stages of the RM
cycle. A management measure, such as a nominal reduction
of applied doses, may be decided without any prior RA.
Moreover, management measure efficiency is often not mon-
itored. Ex ante assessment of management measure efficien-
cy would assume being able to model their consequences at
the right scale, i.e. to quantify the resulting evolution of the
water-quality indicators. However, while relevant models
simulating pesticides' fate at the field scale are available
(Adriaanse et al. 1996; Tiktak et al. 2000; Vanclooster et al.
2000; Carsel et al. 2003; Larsbo et al. 2005), there is still a
need to develop tools at the catchment scale. Indeed, fully or
semi-distributed hydrological models exist at the catchment
scale, such as HSPF (Donigian et al. 1983), SWRRB (Arnold
et al. 1991) or SWAT (Neitsch et al. 2009), but they poorly
account for the influence of landscape characteristics. For
example, the semi-distributed hydrologic response unit
(HRU) approach used in SWAT does not properly assess
the influence of man-made structures, such as vegetative
strips, hedges, ditches or constructed wetlands, subsurface
drainage systems and even the road network, on pesticide
fate and transport to the surface water network, whereas the
role of these features has been demonstrated in several stud-
ies (e.g. (Doppler et al. 2012)). The influence of such fea-
tures on water flows at a small catchment scale was included
in distributed models such as ANTHROPOG (Carluer & De
Marsily 2004) and MHYDAS (Moussa et al. 2007).
Nevertheless, these examples are primarily research models,
which are difficult to use for management purposes.
Management-oriented approaches combining pesticide fate
models and indicators might be more efficient (Gascuel-
Odoux et al. 2009); similarly, (Dubus et al. 2009) combined
the output of the field-scale runoff and erosion model PRZM
with a grid-based routing to the surface water network.
Furthermore, in a catchment, not all areas contribute equallyFig. 1 The risk management cycle (adapted from USEPA 1998)

Environ Sci Pollut Res



to pesticide inputs into surface waters, and so-called critical
source areas (CSAs) provide the major part of the contaminant
load to surface water (Leu et al. 2004; Freitas et al. 2008; Frey
et al. 2009; Doppler et al. 2012). It is important for RA and
management to identify and properly model the CSA, but this
requires the availability of high-resolution spatial input data
(notably a digital landscape model including man-made fea-
tures) and a fully distributed hydrological model.

Another difficulty is to define and choose the indicator (or
set of indicators) on which to rely to define whether or not
management measures are efficient regarding water quality:
such an indicator should give information on both extreme
and average contamination as well as cover several species
and, ideally, functional changes in the ecosystem. One can
easily understand that a single indicator cannot answer all
these questions. The overall consequences of management
measures, such as reducing soil erosion and nutrient losses
may be overlooked to a large extent. There is a need to
establish a better knowledge base to enable proper weighting
of contrasting environmental concerns in relation to the soil
and water ecosystem services in the desired indicator or set
of indicators.

Information systems in support of a modern management
of agro-ecosystems

A successful implementation of RM measures can only be
achieved by a better understanding of the interactions between
land use (pesticide pressure) and the environment. One way of
doing this is to calculate agro-environmental indicators (AEI),
which account for both pressure and vulnerability of sur-
rounding ecosystems. However, this approach requires an
effective information system that can process both the char-
acteristics of the river basin and the agricultural activities at
different scales: the small agricultural catchment scale for
action by farmers, monitoring of protected areas and a larger
watershed scale for public decision making. Such environ-
mental information systems would benefit from the spatial
data warehouse technology. These information systems can
qualify agricultural activities (Schneider 2008; Pinet et al.
2010) along with river basin characteristics and can calculate
various integrated indicators, or conversely disentangled ones,
at different scales.

Risk assessment

Effect assessment: is the current approach sufficient?

In regulatory RAs, many pesticides do not meet the first-tier
criteria and are subject to higher-tier assessments. For these
higher-tier-effect assessments, laboratory and outdoor mi-
crocosms or mesocosms are good compromises between

the “real” field tests and standard laboratory tests (Brock
et al. 2006). They can be conducted under different natural
conditions, e.g. temperature, light or humidity, in order to
evaluate the fate and effects of pesticides in different environ-
mental exposure scenarios. Furthermore, theymake it possible
to study multiple stressors, such as pesticide mixtures, co-
presence of nutrients and organic contaminants, and the com-
bination of climatic factors with contaminants (Arts et al.
2006; Barra Caracciolo et al. 2013). They can also be designed
so as to encompass indirect effects on the food web. The
microcosm/mesocosm approach using realistic exposure con-
ditions could therefore be used for assessing the effects of
multiple pesticide applications in realistic worst-case scenari-
os at higher ecological levels (Arts et al. 2006).

Ecological modelling is currently very much in progress
(Grimm et al. 2009; Galic et al. 2010; Hommen et al. 2010;
Zhang et al. 2013). Results gained from experiments in the
context of higher-tier assessments have to be extrapolated to
the field under various scenarios; these extrapolations need to
account for multiple pesticide applications and climate
change. However, it is a big challenge to have these ecological
models fit for the purposes of use in chemical RAwhile being
relevant for ecosystems. (Moe et al. 2013) and (Galic et al.
2010) recommend developing this type of ecological model-
ling on the basis of species traits, representing life-history
traits, population vulnerability, sensitivity to toxicants and
sensitivity to climate change, as a promising approach for
predicting the combined impacts of climate change and toxi-
cants on populations and communities.

The effects of climate change on soil communities need
to be more adequately addressed

Under the European Pesticide Regulation, lower-effect as-
sessment tiers are based on rather simple means and a rather
conservative interpretation, while higher tiers are more eco-
logically relevant, as they account for pesticide fate and
ecological interactions, but are much more complex and less
reproducible (Brock et al. 2006).

Decision trees and higher-tier ecological RAs are well
developed for aquatic ecosystems (Brock et al. 2006; Brock
et al. 2011) but not for terrestrial ecosystems. Currently, the
ecotoxicology effects assessment required for the approval of
pesticides only includes ecotoxicology studies on single target
species of soil fauna and only crude measures of soil microbial
activity. Since many of the ecosystem services provided by
soils are related to the microbial community's diversity and
functioning (Turbé et al. 2010), including the maintenance of
soil and water quality (DeLong & Pace 2001; Barra
Caracciolo et al. 2010a; Barra Caracciolo et al. 2010b;
Mocali & Benedetti 2010), there is a need to compile infor-
mation on species distribution and composition of other soil
functional groups (e.g. soil microbial communities, meso- and

Environ Sci Pollut Res



macro-fauna communities) currently not covered in the stan-
dard RA procedures (EFSA 2010). Moreover, microbial com-
munities are also likely to be early indicators of increased
temperature effects in the climate change context (e.g.
(Perkins et al. 2012)).

Technical advances call for the implementation of the
more specific ecotoxic-genomic methods in the effects as-
sessment of pesticides and other environmental stressors
(van Straalen & Feder 2012).

One may argue that the only realistic approach to obtain
aquatic ecotoxicological data consists of conducting in situ
studies. However, in the field, distinguishing between pol-
lutant effects and those related to other physical, chemical or
biological environmental variables remains very challeng-
ing, especially in light of climate change (Stahl et al. 2013).
Pollution-induced community tolerance (PICT) is probably
one of the best-adapted approaches to achieve this goal
because tolerance to one toxicant is less sensitive to natural
variations at sampling sites than other community character-
istics (Schmitt-Jansen et al. 2008; Pesce et al. 2009). To
improve the PICT methodology, special attention should be
paid to co-tolerance patterns and to developing new short-
term tests designed to evaluate tolerance capacities, especial-
ly with a view to broadening the range of toxicants moni-
tored (Blanck 2002; Tlili & Montuelle 2011).

Even though pesticides frequently occur in mixtures (e.g.
(Rabiet et al. 2010)), data on the effects of pesticide mixtures
is scarce, especially when considering community-level ef-
fects (Van den Brink et al. 2009; Pesce et al. 2012). However,
there is still debate over the best way to address this issue
(Knauert et al. 2008; Knauert et al. 2009), and it can be
argued that the assessment of mixture effects is in its infancy
(Belden et al. 2007). Both WFD and pesticide regulations
consider single substance risks separately. However, moni-
toring results show that in practice, aquatic ecosystems are
exposed to a cocktail of pesticides at the same time (e.g.
(Beketov et al. 2009; Rasmussen et al. 2013). These concen-
trations are quite often relatively low and usually do not
exceed the individual EQS or probable no-effect concentra-
tions (PNECs). However, the combined effect of these sub-
stances is not accounted for. To assess the risks of chemicals,
advanced modelling predictive methods such as the msPAF
(multi-species potentially affected fraction) method (Van De
Meent & Huijbregts 2005), models such as the
Metapopulation model for assessing spatial and temporal
effects of pesticides (MASTEP; Van Den Brink et al. 2007)
or indices such as the SPEAR index (Liess & Beketov 2011)
could be used, but would not suffice for interactions with
nutrients. Combining passive samplers at monitoring sites
with bioassays to assess the toxicity of mixtures directly
extracted from the environment has also been suggested.
This approach may constitute a simple and cost-effective
way to determine potential acute effects of contaminant

mixtures in various aquatic environments (e.g. (Muller
et al. 2007; Liscio et al. 2009; Shaw et al. 2009). Until
now, this type of approach has mainly used microbial
mono-specific bioassays, but (Pesce et al. 2011) showed that
passive samplers can easily be combined with community-
level toxicity testing, offering new perspectives for ecologi-
cal RA, especially with a view to implementing PICT as-
sessment for mixtures (Morin et al. 2012).

Laboratory and outdoor microcosms or mesocosms allow
to study predator–prey relationships (Edwards 2002), while
controlling for some sources of variability (Burrows &
Edwards 2002). They can also be applied as instruments to
study the effects of climate change in a more controlled
setting (Netten et al. 2010). A combination of modelling
and experimental data sets enables extrapolation to higher
spatial and temporal scales (Van Den Brink et al. 2007; Galic
et al. 2010; Hommen et al. 2010). Laboratory microcosms, in
which soil or water microbial communities are collected
from natural environments, enable the evaluation of the
pesticide biodegradation potential and of the effects on the
soil's microbial community structure, abundance and func-
tioning (Barra Caracciolo et al. 2010a; Barra Caracciolo et al.
2011; Udikovic-Kolic et al. 2011).

Transfer and exposure assessment: fate studies
and modelling in a regulatory context

Regulatory exposure assessment, based for instance on
(FOCUS 2001), involves several modelling steps, from very
simple to more complex, all relying on a few generic “real-
istic worst case” scenarios. There are two main issues with
these scenarios: representativeness and realism. First, it is
almost impossible to assess the representativeness (or “pro-
tectiveness”) of a few hypothetical scenarios for a whole
zone or country. However, the issue of representativeness
can be overcome by performing spatially probabilistic, GIS-
based modelling for the entire area of interest (Dubus et al.
2009), either directly for RA purposes or for deriving a set of
scenarios with a known cumulative probability of being
vulnerable. Several unrealistic scenario assumptions in the
FOCUS surface water scenarios have been identified so far,
for instance the short simulation period of 12 and 16 months
for calculating pesticide concentrations in surface water,
which makes it impossible to account for the inter-annual
weather variability. The design of more realistic regulatory
exposure scenarios seems highly desirable so as to improve
the realism of the predicted exposure patterns. An example
of such a scenario would address pesticide fate at the hill
slope scale and consider interactions between different kinds
of flow (surface runoff, erosion, lateral subsurface flow,
drain flow and percolation). However, more realistic and
comprehensive scenarios also require the development of
more realistic and comprehensive regulatory models. For
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example, none of the four official regulatory models used in
Europe for pesticide losses from fields is able to simulate all
relevant pesticide transport pathways. It is worth noting here,
as an important step towards more realistic exposure assess-
ment, that regulatory vegetative filter strip scenarios are
being developed (Brown 2011) for the explicit modelling
of grassed buffer strips with the VFSMOD-W model
(Muñoz-Carpena & Parsons 2011).

Risk assessment: linking fate and effects

At all tiers, effect and exposure assessments have to be
adequately connected (Boesten et al. 2007; Brock et al.
2010). Exposure regimes considered in higher-tier models
and experiments are assumed to be realistic worst cases
(FOCUS 2001). At the field level, multiple and simultaneous
applications as well as time-variable and chronic exposure
regimes prevail. Adequate linking of fate and effects there-
fore needs the translation of complicated field-exposure pat-
terns into representative and realistic worst-case exposure
scenarios to be tested in mesocosms, to be evaluated in
modelling and to be compared with ecological scenarios.

Simulation models of pesticide transfers through, for ex-
ample, spray drift, surface runoff and drainage provide esti-
mates of fluxes of water and pesticides from which the
amounts of compounds entering water bodies can be calcu-
lated. Further, outputs of the models can be used to simulate
exposure of aquatic organisms to a series of pesticides. Such
models have been used to compare exposure scenarios
resulting from conventional vs. low pesticide input crop
protection programs implemented on a pea/wheat/oilseed
rape culture rotation in pond mesocosms (Lagadic 2011).
The effects of this combination and/or succession of com-
pounds were assessed on both structural and functional at-
tributes of algae and invertebrate communities. The simulta-
neous measurement of structural and functional parameters
demonstrated clear relations between community changes
induced by pesticides and their functional consequences in
terms of leaf-litter breakdown (Auber et al. 2011). While the
overall absence of effects below ten times the PNEC sug-
gested that these criteria are quite conservative, significant
and sometimes important effects occurred when this value
was exceeded.

Risk management

General management practices

The above-mentioned European regulations (EC 2000; EC
2009a; EC 2009b) have brought the use phase of pesticides
into clearer focus. Unintended losses of pesticides to water
originating from point sources can and should be avoided;

those resulting from diffuse sources (e.g. run-off, drainage
and spray drift) should also be largely reduced. An efficient
RM depends first and foremost on stakeholders' risk aware-
ness. Second, it needs a practical and understandable tool-
box, making it possible to set a diagnosis at the appropriate
scale and to select relevant mitigation measures.

In this perspective, a prerequisite is the operators' awareness
on the correct use of pesticides, based on Best Management
Practices (BMPs). In parallel, infrastructures and sprayer tech-
niques must be steadily improved. Point-source RM is mainly
concerned about the operator, optimised spray equipment and
infrastructure to manage contaminated liquids on the farm,
such as biobeds (Vischetti et al. 2004; Castillo et al. 2008).

Mitigation of pesticide entries into water from diffuse
sources is more complex given that not all relevant factors
can be controlled (e.g. weather, and more specifically the
time interval between pesticide application and the first
significant rainfall event; the meteorological forecast should
now make it possible to prevent unduly short delays). RM
should be designed and organised simultaneously at the
watershed and individual plot scales. Mitigation measures
concern not only individual farmers but also the community
of farmers active in the same watershed. Buffer strips, for
example, cannot be an effective mitigation measure if
farmers do not work together in a commonly agreed way
(buffers across fields). RM therefore requires practical miti-
gation measures but also needs to organise the social accep-
tance of certain measures. This often implies effective
knowledge exchanges between all stakeholders.

Demonstration tools, helping to understand the risks and
propose appropriate mitigation measures have been devel-
oped for either point or diffuse sources. Many of these (e.g.
Aquasite or Aquavalle) are basically case studies, used for
training farmers and technical advisors. Several European
projects have recently been carried out for similar purposes,
such as TOPPS (Train Operators to prevent Pollution from
Point Sources), EOS (Environmentally Optimized Sprayers)
or TOPPS-Prowadis (Protect Water from Diffuse Sources
http://www.topps-life.org/). These projects allow those
concerned to share views, tools and expertise throughout
Europe and are expected to foster broader acceptance and
support of practices adapted, eventually reducing risks. Pilot
sites are also powerful demonstration tools, and may help to
gather long-term observations in the meantime.

Fatemodelsmay usefully complement these demonstration
tools. Nevertheless, those simulating pesticide transfer at the
plot scale are most often one-dimensional. Furthermore, their
design has in general focussed on one type of flow and paid
less attention to the others and the interactions between these
types. There is accordingly a need for catchment models
which take into account both the different types of flow and
the spatial variability occurring at the catchment scale (vari-
ability of soils, soil occupation and man-made structures).
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Only this type of model will be able to explain locally why
water quality standards may be exceeded for some substances,
and to identify which solution can remediate this situation.

Besides the data from fate studies acquired for RA, long-
term data gathered in the field are useful to assess the
respective influences of soil heterogeneity, climate and agri-
cultural practices on pesticide transfer and adjust the prac-
tices so as to reduce pesticide transfers in different combina-
tions of soil composition and climate.

Indicators for pesticide RM

An indicator is a picture (e.g. a number or a class) built with a
limited set of relevant variables. Thus, a risk indicator should
be a variable which provides a quantitative or qualitative
estimate of risk. Risk indicators for pesticides provide sim-
plified assessments of environmental and health risks and
can thus help to promote more sustainable agriculture. For
their relative simplicity, indicators may be particularly useful
under conditions of limited data availability and resources
(Feola et al. 2011). The most important purpose of a risk
indicator is to enable a risk manager, who is not necessarily a
scientist, to evaluate the risk and make informed decisions.
However, in practice, there is a proliferation of indicators
which are often misleading, inappropriate for the context at
hand, lack scientific rigour or use misleading proxies of risk,
or are insufficiently validated (Devillers et al. 2005; Yli-
Viikari et al. 2007). As a consequence, the need to develop
a framework optimising and harmonising the use of pesticide
risk indicators in the European Union remains current (Reus
et al. 2002). The above-mentioned impacts of climate change
on ecosystems are also an issue for the use of indicators, in
that the initial reference conditions may no longer be en-
countered, or the underlying process(es) summarised by
indicators may be disturbed.

Ecological engineering

Part of the amount of pesticides applied is exported from the
agricultural plot to ground- and surface waters. Groundwater
can then contribute to the contamination of surface water
through the discharge zone, explaining why streams are still
contaminated by substances that have been banned for de-
cades (Milosevic et al. 2012). Concerning groundwater, only a
reduction of pesticide pressure is possible. For surface water,
however, some complementary mitigation strategies could be
implemented (Reichenberger et al. 2007; Gregoire et al.
2009). The main objective is to reduce the transfer by way
of buffer zones such as vegetative filter strips, artificial wet-
lands and forested buffers. Interception of agricultural water
between the plot and the receiving water body is the key. Then
ecological engineering makes it possible to value landscape
components to buffer pesticide fluxes.

Pesticide dissipation in buffer zones such as buffer strips or
constructed wetlands depends on complex interactions be-
tween abiotic (pesticide physicochemical properties, residence
time/water flow and adsorption/desorption kinetics) and biotic
factors (plant cover, soil microbial diversity, abundance and
activity) gathered into retention and biodegradation processes,
respectively. Taking into account that one of the factors limit-
ing the purifying capability of buffer zones is the low pesticide
concentration, ecological engineering approaches aiming at
enhancing the interception of pesticide fluxes as well as the
degrading capabilities of environmental microbial communi-
ties (soil and sediment) could (1) enhance the retention of
pesticides in the buffer zones, so as to limit their dispersion
in adjacent environmental compartments, or on the contrary,
(2) favour the biodegradation of pesticides in buffer zones so as
to diminish their persistence and consequently their dispersion
in the environment (Pesce et al. 2009). Stabilisation of pesti-
cides in the buffer zone could be improved by several means
such as soil amendment with different compounds, e.g. organic
matrices such as biochar, improving adsorption properties or
phyto-stabilisation. Furthermore, pesticide biodegradation
could be improved by promoting the development of the soil
microflora through either nutrient supply or by inoculating
microbes (Cheyns et al. 2012), or by the “rhizosphere effect”
(Piutti et al. 2002), that is the selection of a plant cover
favourable to soil microflora development. A meta-analysis
from (Stehle et al. 2011) compared buffer efficiencies obtained
from the ARTWET project (Mitigation of agricultural
nonpoint-source pesticide pollution and phytoremediation in
artificial wetland ecosystems) with previously published re-
sults. The authors showed that different kinds of vegetative
systems reduce pesticide fluxes, and efficiency depends a great
deal on pesticide properties (KOC), leading to a wide range of
efficiency rates (from 0 % to 100 %).

Still pending questions concern the possible transfer of
pesticides and their metabolites via sub-surface flow below
the buffer zone (Dousset et al. 2010), or the accumulation of
bound residues in this zone (Pesce et al. 2009), possibly
causing delayed contamination of adjacent water resources.
Implementation of buffers is not always easy and acceptance
on the part of farmers cannot be taken for granted (Tournebize
et al. 2012). All the stakeholders should be committed from
the beginning of the mitigation process in order to reach a
certain level of efficiency, while accepting compromises.

Monitoring

Aims and design

Monitoring has two functions within the RM cycle. First, it is
a key element in the evaluation of the effectiveness of mea-
sures adopted for reducing risk. The monitoring outcomes
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can be used accordingly in the RM process. Second, moni-
toring can be used to assess the overall quality of the aquatic
compartment. Because the respective expected outcomes are
different, monitoring studies dedicated to both purposes may
differ in terms of frequency, sample location, (number of)
substances etc., and thus be conducted separately. Whatever
its goal, monitoring is (or should be) an iterative process that
is revised periodically.

Monitoring studies are mostly oriented towards compli-
ance checking. In this perspective, percentiles of measured
concentrations are compared with EQSs. In Europe, this has
essentially stemmed from the WFD implementation, but the
compounds and locations targeted may not be the most
relevant for the agricultural sector. The focus is on a limited
set of priority substances (EC 2012), with no consideration
of effective use for some of them. Conversely, the on-going
re-authorisation process in Europe is reducing the number of
substances available on the market, and accordingly increas-
ing the amounts of the remaining authorised compounds
marketed. On the other hand, introducing new priority sub-
stances and developing EQSs is a complex and lengthy
process, which is somewhat doomed to be behind the times.
More flexible monitoring strategies clearly linked to RM
decisions are therefore needed, when it comes to assessing
the efficiency of these decisions. Such strategies would be
adapted to local RM, including stakeholder involvement in
environmental protection policies. In the same perspective,
monitoring studies should support the authorisation/re-au-
thorisation process, and show whether the exposure assess-
ments performed within this process are realistic. This pro-
cess is currently being tested in the Netherlands, following
the process described in Fig. 2. Monitoring results are used to
prioritise substances, according to EQS exceedance in water
bodies. Then registration holders have to analyse the poten-
tial causes of exceedance, and submit a plan for reducing
emissions. This could lead to authorisation adjustments or
other management measures. Interestingly, “plausible” rela-
tionships between uses and EQS exceedance, instead of
causal relationships, are deemed sufficient. If the EQS ex-
ceedance occurred only at the edge of field ditches, the
substance would not be on the priority list.

Moreover, there is no harmonised strategy among juris-
dictions for sampling site location. Monitoring locations for
compliance checking within the WFD context are mostly
situated in large rivers and lakes, far downstream of agricul-
tural areas, where there is no longer a strong relation between
the aqueous concentrations measured and (changes in) up-
stream agricultural practices. Besides, a fixed-interval mon-
itoring strategy is mostly adopted to assess the presence of
pesticides, neglecting the exposure patterns in the field. This
rigid monitoring strategy most likely underestimates the
aquatic ecosystems' exposure to pesticides, as the infrequent
exposure pattern of these compounds will, to a large extent,

remain undetected. Should monitoring provide an extensive
spatial coverage of catchments or focus on trends and pro-
cesses, meaning a more intensive approach in representative
catchments? Ideally, a nested design combining two ap-
proaches—(1) sampling a large number of catchments with
a low temporal resolution and (2) sampling a few represen-
tative catchments with a high temporal resolution—would
address both goals, but there is currently no example of such
a design, and its potential cost remains an unexplored issue.
Detailed knowledge of the actual amounts of pesticide ap-
plied may not be necessary to identify qualitatively vulner-
able water bodies or catchments. The availability of actual
pesticide application data is nevertheless a prerequisite for
quantitatively estimating the transferred amounts. We there-
fore argue that these data, which have to be documented by
every farmer in the EU for cross-compliance, should be
made available in an anonymous and aggregated form to
researchers and risk assessors.

Fate models could help to either design efficient (cost-
effective) monitoring studies, i.e. help to design a sampling
strategy adapted to the monitoring objectives, by identifying
the mobile compounds, the probable transfer periods, or pro-
vide estimates of peak or mean expected concentrations.
However, current predicted environmental concentrations
(PECs) or pesticide exposure indicators based on modelling
(FOCUS 2001) are often difficult to compare to monitoring
data (Gauroy & Carluer 2011). The reasons for this statement
are many, including different spatial scales and types of water
body or sampling site location, different temporal scales, scale

Fig. 2 Proposed flow chart for adaptive management of authorised
pesticides based on monitoring results in the Netherlands
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extrapolation by modelling and monitoring design leading to
missing peak concentrations.

Passive samplers

Especially when monitoring pesticides, passive samplers
have an advantage compared to grab sampling, as they
generate a time-integrated picture of the substances which
entered the aquatic compartment during the sampling dura-
tion. Although peak concentrations will not be detected as
such, the time-integrative nature of the technique will signif-
icantly reduce the possibility of missing trends in the pres-
ence of fluctuating concentrations or episodic peaks of con-
centrations (Allan et al. 2006; Vrana et al. 2010). Moreover,
passive samplers provide lower limits of quantification be-
cause they sample higher volumes of water than grab sam-
pling (Allan et al. 2006; Mills et al. 2011). An array of
passive samplers is available. Although questions remain
on validation, reproducibility and repeatability, it is time to
use them more routinely. In particular, partition-based pas-
sive samplers such as semipermeable membrane devices
(SPMDs) and silicon rubber have been shown to generate
reliable results, mostly for hydrophobic compounds
(Huckins et al. 1999). With the use of performance reference
compounds (PRCs), concentrations on the sampler can be
translated to aqueous concentrations (Huckins et al. 2002;
Vrana et al. 2010). As for adsorption samplers such as the
Polar Organic Chemical Integrative Sampler (POCIS;
Alvarez et al. 2004), further developments are needed to
correct for exposure conditions (Mazzella et al. 2010;
Harman et al. 2011). Currently, POCIS can only be used to
estimate the order of magnitude of water concentrations
(Harman et al. 2011). A guidance specifying when and
how the various samplers could be used is currently needed.
If passive samplers were to be used for compliance-checking
purposes in the context of the WFD, an additional issue
would have to be addressed, namely the establishment of
relationships between the dissolved concentrations measured
with the samplers and the EQSs, which are expressed as a
“total” concentration (i.e. dissolved + adsorbed on suspended
particles). This could be performed by considering dissolved
organic carbon to water (KDOC) and organic carbon to water
(KOC) partition coefficients (Allan et al. 2009) or by adjusting
EQSs to dissolved concentrations, which seems possible since
the underlying data are mostly based on laboratory tests, and
less frequently mesocosm studies.

Conclusions and recommendations

Climate change will affect pesticide RA and RM in many
ways. There is accordingly an urgent need for more realistic
pesticide fate and effect assessment.

& This more realistic fate and effect assessment should
account for varying exposure and multiple stresses at
the level of ecosystems (i.e. communities for the biolog-
ical component of ecosystems).

& Consideration of multiple stress and interactions among
stressors is even more important in the context of climate
change; therefore, the effect assessment step should account
for these factors, using probabilities of co-occurrence. The
results of this analysis should be included in authorisation
rules.

& Combined with ecological modelling, the effects assessed
under experimental conditions could be extrapolated to
higher spatial and temporal scales.

& Standard RA procedures should account for an appropri-
ate range of important groups of organisms, some of
them (e.g. soil microorganisms) still underrepresented
in the RA procedure in Europe.

& The overall relevance of RA as well as its realism could
benefit from a better understanding of the links between
biodiversity and ecosystem services (see (Landis et al.
2013)), and how these services are likely to be affected
by climate change. Nevertheless, the preservation of bio-
diversity should remain as an overarching objective, what-
ever the link to ecosystem services targeting human
welfare.

& In this perspective, more consideration should also be
given to time in the higher-tier effect assessment, so that
organism recovery, differential effects on different bio-
logical traits as well as pesticide fate in the long term can
be addressed.

& A better understanding of how climate change is likely to
impact the fate of compounds (transport, degradation and
persistence) is becoming urgent.

& These considerations might lead to an adaptation of
existing tiers of the current RA framework, either by
introducing a specific tier or preferably by introducing
considerations of climate change impacts at higher tiers.

RM of pesticides must be adapted to climate change: this
should lead to the development of adaptive management
strategies.

& Land use (crop distribution) and occurrence of pests/
weeds/diseases will evolve accordingly, leading to
changes in application patterns, application periods, ap-
plied quantities, location and extension of treated areas.
Whereas these changes cannot be all anticipated at the
authorisation step, post-authorisation monitoring is nec-
essary. Based on current monitoring programs (e.g. in the
context of WFD implementation), this process could lead
to adjusted use rules (doses, application techniques etc.).

& Besides regulatory monitoring, which occurs at a rela-
tively large scale and targets average contamination,
pesticide RM would benefit from focussed monitoring
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studies fitted to the application patterns and compounds'
characteristics or to management measures.

& The efficiency of management measures close to the field
such as buffer strips or constructed wetlands has to be
assessed over the long term (fate of substances and
bound residues) as does their sensitivity to varying cli-
matic conditions.

& Fate models and risk indicators should be coupled to
predict the efficiency of management measures at several
scales, from the plot to the watershed scale. A framework
for optimizing the selection of appropriate indicators,
harmonising their use and evaluating how climate change
would affect their responses (baseline, range of values and
class boundaries) should be designed and adopted.
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