
HAL Id: hal-00939124
https://hal.science/hal-00939124

Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated reasoning techniques as proof-search in
sequent calculus

Mahfuza Farooque

To cite this version:
Mahfuza Farooque. Automated reasoning techniques as proof-search in sequent calculus. 2013. �hal-
00939124�

https://hal.science/hal-00939124
https://hal.archives-ouvertes.fr

École Polytechnique

Thèse de Doctorat

Spécialité Informatique

Automated reasoning techniques
as proof-search in sequent calculus

(Pre-defence version)

Présentée par

Mahfuza Farooque

au jury composé de

Sylvain Conchon Rapporteur
Stéphane Graham-Lengrand Directeur de thèse
Chuck C. Liang Examinateur
Assia Mahboubi Examinateur
Dale Miller Examinateur
Aaron Stump Rapporteur
Benjamin Werner Président

To my parents, siblings and my friends
(who always inspire me in my hard time)

Abstract

This thesis designs a theoretical and general framework where proof-search can modularly interact
with domain-specific procedure(s). This framework is a focussed sequent calculus for polarised
classical logic, with quantifiers, and it is designed in the view of capturing various computer-aided
reasoning techniques that exist in logic programing, goal-directed systems, proof-assistants, and
automated provers.

This thesis starts with a survey of focused sequent calculi for polarised classical logic, as a
journey from Gentzen’s original sequent calculus to Liang-Miller’s LKF.

It then introduces a new system LKp(T) which extends, with on-the-fly polarisation and calls
to decision procedures, Liang-Miller’s LKF. Key results of the meta-theory of the system are
proved: the cut-elimination property, the property that changing the polarity of connectives does
not change the provability of formulae, and finally, the logical completeness of LKp(T). While
Gentzen’s original rules offer a lot of non-determinism in proof-search, focusing provides a tight
control on the breadth of the search space. Together with on-the-fly polarisation of literals, this
equips the sequent calculus LKp(T) with features that are particularly appropriate for computer-
aided reasoning:

For instance, a widely-used technique for solving propositional satisfiability (SAT) problems
(whether or not a formula over Boolean variables can be made true by choosing truth values for
its variables) is the DPLL procedure. Satisfiability-modulo-Theories (SMT) problems generalise
SAT problems by the presence of a background theory for which a decision procedure is known,
and can be solved by correspondingly generalising DPLL into DPLL(T), which most SMT-solvers
implement.

This thesis investigates how each of the steps of DPLL(T) can be emulated as the standard
steps of proof-search in LKp(T): the gradual and goal-directed construction of a proof-tree. This
allows the DPLL(T) algorithm to be applied up-to-a-point, where a switch to another technique
can be made (depending on the newly generated goals). This differs from previous work where an
SMT-technique is called until it finishes.

The proof-search control that is provided by focusing and on-the-fly polarisation allows us to
derive a stronger result than the mere simulation of DPLL(T): the proofs in LKp(T) that are the
images of those DPLL(T) runs concluding that a formula is unsatisfiable, can be characterised
by a simple criterion only involving the way formulae are placed into the focus of sequents (the
device implementing focusing). From this criterion we directly get a simple proof-search strategy
that is bi-similar to DPLL(T) runs: that which performs the depth-first completion of incomplete
proof-trees (starting with the leftmost open leaf), using any inference steps satisfying the given
criterion on polarities and focusing. That way, we ensure that bottom-up proof-search in LKp(T)
can be as efficient as the DPLL(T) procedure.

Finally, clause and connection tableaux are other widely used techniques of automated reason-
ing, of a rather different nature from that of DPLL. This thesis also described how such tableaux
techniques can be described as bottom-up proof-search in LKp(T). The simulation is given for both
propositional and first-order logic, opening up new perspectives of generalisation and collaboration
between tableaux techniques and DPLL, even in presence of a background theory.

5

Contents

1 Introduction 9

2 Focusing Gentzen’s sequent calculus for classical logic: a survey 13
2.1 Gentzen’s sequent calculus . 13
2.2 Linear logic and the sequent calculus LC for classical logic 17

2.2.1 Linear logic and its sequent calculus . 17
2.2.2 The sequent calculus LC . 20

2.3 Introducing focusing in linear logic . 23
2.3.1 Preliminaries . 24
2.3.2 The triadic system LLF . 25

2.4 The focused sequent calculus LKF for classical logic 27

3 A sequent calculus for classical logic modulo theories 31
3.1 LKp(T): Definitions . 31
3.2 Admissibility of basic rules . 34
3.3 Invertibility of the asynchronous phase . 34
3.4 On-the-fly polarisation . 40
3.5 Cut-elimination . 45

3.5.1 Cuts with the theory . 46
3.5.2 Safety and instantiation . 48
3.5.3 More general cuts . 52

3.6 Changing the polarity of connectives . 58
3.7 Completeness . 72

4 Simulating SMT-solving in the sequent calculus 79
4.1 Variations on Davis-Putnam-Logemann-Loveland 79

4.1.1 DPLL . 80
4.1.2 DPLL-modulo-theories . 82
4.1.3 The Elementary DPLL(T) system . 83

4.2 Preliminaries . 85
4.3 An indirect simulation of DPLL(T) . 87

4.3.1 The LKDPLL(T) system . 88
4.3.2 Simulation of DPLL(T) in LKDPLL(T) . 91
4.3.3 Simulation of LKDPLL(T) in LKp(T) . 96

4.4 Direct simulation of DPLL(T) . 99
4.4.1 Simulating Elementary DPLL(T) . 100
4.4.2 Turning the simulation into a bisimulation 104
4.4.3 Extending the simulation with backjump and lemma learning 105

7

8 CONTENTS

5 Simulating clause and connection tableaux in the sequent calculus 111
5.1 Clause and connection tableaux . 111
5.2 Simulation of clause tableaux (modulo theories) . 115
5.3 Simulation of weak connection tableaux . 118
5.4 Simulation of strong connection tableaux . 120
5.5 Extending the simulations to pure first-order logic 123

5.5.1 Preliminaries . 123
5.5.2 Clause and connection tableaux in first-order logic 124
5.5.3 The LKpdF system and the simulation of clause tableaux 125
5.5.4 The LKpdpF system and the simulation of weak connection tableaux 128

6 Conclusion 131

Index 136

List of figures 138

Chapter 1

Introduction

Proofs play a central role in computer science; they are used to certify the correctness of both
software and hardware behaviour. Structural proof theory is a branch of mathematical logic that
considers mathematical proofs as objects of study and investigates the structure of such objects
in the prospect, for instance, of building semantics for them. We seek to derive logical properties
from the analysis of the structure of proofs.

In this thesis we investigate the notions of proofs that are given by systems of inference rules,
which are used to prove a new proposition using previously proved ones. Proofs are then presented
as trees, where each node, together with its children, forms a valid instance of some inference rule.
A natural process of proof-search is then specified by the gradual construction of proof-trees,
starting from the formula to be proved, and trying to apply inference rules bottom-up until a full
tree is constructed.

A central question is what kind of inference systems are best appropriate to specify interesting
or efficient proof-search procedures. Sequent calculi are such systems, with an ambivalent role:
they both define the notion of provability for a logic as well as specify reasonable proof-search
procedures.

However, Gentzen’s original sequent calculus has major defects for proof-search: the freedom
with which rules can be applied leads to a very broad and redundant search space. It needs to be
refined, or controlled, to produce reasonable proof-search procedures.

Structural proof theory and its semantics have evolved the concepts of polarities and focusing,
which greatly impact the way we understand the proof-search mechanisms: Miller et al. introduce
a notion of uniform proofs [MNPS91] which is used to extend the concepts of logic programing
beyond the logical fragment of Horn clauses, and uniform proofs themselves can be generalised as
the concept of focusing, which gives sequent calculus proof enough structure to specify reasonable
proof-search procedures in linear [And92], intuitionistic, and classical logic [LM09].

More generally, focused sequent calculi can be used to describe goal-directed proof-search -the
foundational paradigm of a broad range of tools from logic programming to higher-order proof-
assistants. Indeed, goal-directed proof-search is used in type theories [Bar92] for type inhabitation
and higher-order unification, and in [LDM11] it is shown that these mechanisms can be specified
by the focusing mechanism of sequent calculus. This is used as the foundation for the new proof
contraction engine in Coq 8.4 [Coq], a proof assistant for Interactive Theorem Proving.

Focusing in sequent calculus thus seem to be a versatile concept for specifying proof-search.
Our aim is to propose focused sequent calculi as a theoretical and general framework to cap-
ture various computer-aided reasoning techniques from logic programming, goal-directed systems,
proof-assistants, and automated provers. The hope is to open up the possibility of generalising
such techniques to more expressive fragment, making them collaborate, and provide trusted way
to implement them.

In this thesis, we investigate how a focused sequent calculus can be used to capture techniques
from automated reasoning.

9

10 Chapter 1. Introduction

The main area tackled by this thesis is SAT and SMT-solving:
SAT stands for propositional satisfiability, where we seek to determine whether a (quantifier-

free) formula over Boolean variables, usually given in Conjunctive Normal Form, is true by choosing
true/false values for its variables. SAT-solvers are often based on the Davis,Putnam, Logemann
and Loveland (DPLL) procedure [DP60, DLL62].

SMT-problems generalise propositional SAT problems, as they are concerned with the satisfiab-
ility of (quantifier-free) formulae over atomic propositions from a theory such as linear arithmetic
or bit vectors. Given a procedure deciding the consistency with respect to such a theory of a
conjunction of atoms or negated atoms, SMT-solving organises a cooperation between this pro-
cedure and SAT-solving techniques, thus providing a decision procedure for SMT-problems. This
smart extension of successful SAT-solving techniques opened a prolific area of research and led
to the implementation of ever-improving tools, namely SMT-solvers, now crucial to a number of
applications in software verification.

The architecture of SMT-solvers is based on an extension of the DPLL procedure, called
DPLL(T) [NOT06], that supports the integration of the theory-specific decision procedure, there-
fore addressing SMT-problems.

The second area of automated reasoning tackled in this thesis is that of Tableaux calculi.
The popularity of tableaux calculi is in large part due to its successful practical and theoretical
implementation in computer science [RV01]. These calculi are used in automated and interactive
theorem provers to be used in software verification fields.

Tableaux calculi are usually designed as a refutational method, i.e. considering how the neg-
ation of what we want to prove could have a model, and the main and common idea of tableaux
calculi is to construct a finitely branching tree of possibilities (some kind of case analysis) for such a
model to exist. Beyond this, there are many variants of tableaux calculus: clause tableaux, connec-
tion tableaux, hyper tableaux, matrices, mating, model elimination, model generation and so on.
Among them, we have considered clause tableaux to implement in our focused sequent calculus, as
well as restrictions of clause tableaux that significantly reduce the search space: weak connection
tableaux and strong connection tableaux. Connection tableaux also form a notion of goal-directed
proof-search, like other computer-aided reasoning techniques that have been previosuly described
as proof-search in a focused sequent calculus. They are therefore a natural candidate for our
general methodology. In propositional logic, it is easy enough to build a correspondence between
clause or connection tableaux and some proof-search procedure for a focused sequent calculus; but
it is more difficult to do it in first-order logic. We also consider a simulation of clause tableaux
modulo theories [Tin07] in sequent calculus. This simulation is an opportunity to relate DPLL(T)
and clause tableaux modulo theories.

The structure of this thesis is outlined below:

• Chapter 2 presents a survey of the history of focused sequent calculus for polarised classical
logic. We present Gentzen’s sequent calculus LK and a popular variant G3c. We discuss
the cut-elimination procedure and its non-deterministic nature in Gentzen sequent calculus,
mostly due to the structural rules of contraction and weakening. We then give an overview
of two contributions by Girard: linear logic [Gir87] on the one hand, and a refinement
of Gentzen’s sequent calculus for classical logic on the other hand [Gir91]. Indeed, as it
is difficult to see constructive aspects in LK, Girard introduced the concept of polarity in
classical sequent calculus and refined LK into a new system LC. Linear logic, on the other
hand, is the framework in which Andreoli introduced the key concept of focusing and its
impact on proof-search and logic programming [And92]. We review this, and finally how
Liang and Miller [LM09] eventually imported those concept in a sequent calculus LKF for
polarised classical logic, with the view of proof-search in mind.

In brief, this chapter discusses the above systems, their proof-search mechanisms and their
cut-elimination procedures.

11

• Chapter 3 introduces a new system LKp(T) which extends system LKF [LM09] to a back-
ground theory. The novelty of this system is that it can call a decision procedure for that
theory, and integrate those calls to the natural proof-search procedure of sequent calculus.
This system also allows proof-search to set the polarities of literals on-the-fly. The calls to
the decision procedure jeopardise the elimination of cuts, but we identify a condition on se-
quents, called safety, that guarantees that cuts deriving safe sequents are indeed admissible
in LKp(T). Besides the cut-elimination procedure of LKp(T), we also show that the system
is complete. In presence of a background theory, changing the polarities of literals affects the
provability of formulae (in contrast to what happens with the empty theory). Yet, changing
the polarities of connectives does not affect the provability of formulae. To prove this we
present a system LK+(T) which is a slightly relaxed version of LKp(T).

• Chapter 4 then shows how the main technique for SMT-solving, namely DPLL(T), can be
simulated in the focused sequent calculus LKp(T) for polarised classical logic modulo theories.
Our work does not try to improve the DPLL(T) technique itself, or current SMT-solvers
based on it, but makes a step towards the integration of the technique into a sequent calculus
framework.
A now wide literature achieves the integration of SMT-tools in various frameworks using
the blackbox approach. For instance, several proof assistants propose an infrastructure
allowing the user to call an external SMT-solver as a blackbox and re-interpret its output
to reconstruct a proof within the system [Web11, AFG+11, BCP11, BBP11].
Here, we aim at a new and deeper integration where DPLL(T) is performed within the
system. Recently, an internal implementation of some SMT-techniques was made available
in the Coq proof assistant [LC09], but this implement remains specific to Coq’s reflection
feature [Bou97] (and therefore can hardly be adapted to a framework without reflection).
We rather investigate a broader and more basic context where we can perform each of the
steps of DPLL(T) as the standard steps of proof-search in sequent calculus: the gradual and
goal-directed construction of a proof-tree. This allows the DPLL(T) algorithm to be applied
up-to-a-point, where a switch to another technique can be made (depending on the newly
generated goals), whereas the use of reflection or of a blackbox call only works when the
entire goal can be treated by a run of DPLL(T).
More precisely, we identify an elementary version of DPLL(T) that is the direct extension
of the Classical DPLL procedure to a background theory T , as well as being a restriction
of the Abstract DPLL Modulo Theories system, that allows more advanced features such as
backjumping both of which can be found in [NOT06].
We present the simulation of DPLL(T) into LKp(T) in two ways: (i) an indirect simulation
and (ii) a direct simulation.
The indirect simulation splits the simulation of DPLL(T) to LKp(T) into two parts: First
we show a simulation of DPLL(T) into an intermediate inference system introduced by
Tinelli [Tin02]; and then we make a simulation of that system into LKDPLL(T).
The direct simulation of DPLL(T) to LKp(T) allows us to derive a stronger result than
the mere simulation of DPLL(T): The proofs in LKp(T) that are the images of Elementary
DPLL(T) runs finishing on UNSAT, can be characterised by a simple criterion only involving
the way polarities are assigned to literals, and the way formulae are placed into the focus
of sequents (the device implementing focusing). From this criterion we directly obtain a
simple proof-search strategy that is bisimilar to Elementary DPLL(T) runs: That which
performs the depth-first completion of incomplete proof-trees (starting with the leftmost
open leaf), using any inference steps satisfying the given criterion on polarities and focusing.
In this way, we ensure that bottom-up proof-search in sequent calculus can be as efficient
as the (Elementary) DPLL(T) procedure. Beyond Elementary DPLL(T), we also show the
simulation of the standard DPLL(T) procedure into LKp(T), but with weaker results than
with Elementary DPLL(T).

12 Chapter 1. Introduction

• Lastly, Chapter 5 presents a simulation of clause and connection tableaux into LKp(T) for
both propositional and first-order logic. Moreover, we also present a simulation of clause
tableaux modulo theories [Tin07] into LKp(T). In the propositional case, we present an iso-
morphic image of clause tableaux, clause tableaux modulo theories and connection tableaux
into sequent calculus.

Chapter 2

Focusing Gentzen’s sequent
calculus for classical logic: a
survey

Classical sequent calculus LK was first introduced by Gentzen in 1934. The main purpose of this
chapter is to investigate how classical sequent calculus can be modified and constructed with the
features of focus and polarity. We therefore make a survey from Gentzen’s classical sequent calculus
LK to the focused sequent calculus LKF which is introduced by Liang and Miller [LM09]. To make
a focused sequent calculus for classical logic, linear logic plays an important role. Therefore we
also present linear logic and linear sequent calculus[Gir87].

This chapter is presented with the following sections: Section 2.1 presents Gentzen’s LK system
and one of its variants G3c. In Section 2.2 we introduce linear logic and its sequent calculus
LL; then we present Girard’s system LC for classical logic, where the concept of polarity is first
introduced. Section 2.3 presents the focused sequent calculus LLF for linear logic. Section 2.4
presents system LKF, a version of LLF for classical logic. For each system we discuss cut-elimination
and its properties.

2.1 Gentzen’s sequent calculus
Gentzen [Gen35] introduced the sequent calculus as a formalism of mathematical logic and reason-
ing, and sequent calculus is now a class of deduction systems. Perhaps the most well-known one is
for classical first-order logic, but the notation and general principles are useful for many different
logics and type theories, etc. We have already mentioned that proofs are labelled finite trees with
a single root, with axioms at the top nodes, and each node-label connected with the labels of the
successor nodes (if any) according to one of the rules. In (a bi-sided) sequent calculus, rules are
divided into left-(L) and right-(R) rules. For any logical operator ∗, L∗ (resp. R∗) indicates the
rules where a formula with ∗ as main operator as introduced on the left (resp. right). Gentzen’s
original system for classical logic is called the LK system which is presented in Figure 2.1.

In this figure, a denotes an atomic formula and the notation {t�x}A represents the (capture-
avoiding) substitution of a (first-order) term t for x in the (first-order) formula A. Moreover, the
left-hand side and the right-hand side of a sequent are here lists of formulae (hence the presence
of the exchange rules (LExc) and (RExc)).

Remark 1 It is useful to see that we could have used alternative rules for (L∧) and (R∨), namely
the four following rules (where i is 1 or 2):

Γ, Ai ` ∆
(Li∧)

Γ, A1 ∧A2 ` ∆
Γ ` Ai,∆

(Ri∨)
Γ ` A1 ∨A2,∆

13

14 Chapter 2. Focusing in classical logic: a survey

Identity axiom
(Ax)

a ` a

Negation Rules

Γ ` A,∆
(L¬)

Γ,¬A ` ∆
Γ, A ` ∆

(R¬)
Γ ` ¬A,∆

Logical Rules

Γ, A,B ` ∆
(L∧)

Γ, A ∧B ` ∆
Γ ` A,∆ Γ ` B,∆

(R∧)
Γ ` A ∧B,∆

Γ, A ` ∆ Γ, B ` ∆
(L∨)

Γ, A ∨B ` ∆
Γ ` A,B,∆

(R∨)
Γ ` A ∨B,∆

Γ ` A,∆ Γ, B ` ∆
(L⇒)

Γ, A⇒ B ` ∆
A,Γ ` B,∆

(R⇒)
Γ ` A⇒ B,∆

Γ,
{
t�x
}
A ` ∆

(L∀)
Γ,∀xA ` ∆

Γ ` A,∆
(R∀)∗

Γ ` ∀xA,∆

Γ, A ` ∆
(L∃)∗

Γ,∃xA ` ∆
Γ `

{
t�x
}
A,∆

(R∃)
Γ ` ∃xA,∆

Structural Rules

Γ1, B,A,Γ2 ` ∆
(LExc)

Γ1, A,B,Γ2 ` ∆
Γ ` ∆1, B,A,∆2

(RExc)
Γ ` ∆1, A,B,∆2

Γ ` ∆
(LW)

Γ, A ` ∆
Γ ` ∆

(RW)
Γ ` A,∆

Γ, A,A ` ∆
(LC)

Γ, A ` ∆
Γ ` A,A,∆

(RW)
Γ ` A,∆

(∗) x is not free in Γ,∆

Figure 2.1: The LK system for classical logic

The connectives defined with the above rules are provably equivalent to those defined by the rules
of Fig. 2.1, and the proofs of those equivalences critically rely on the structural rules.

Variants of Gentzen’s sequent calculus (system LK) for classical logic are presented in [TS00].
We will present here a popular variant: G3c, where structural rules are absorbed into the logical
rules.

2.1. Gentzen’s sequent calculus 15

G3c system
We now look at the G3c system.

Definition 1 (G3c system) Sequents of G3c system are of the form Γ ` ∆. Here, Γ and ∆ are
finite multisets of formulae, and are called the context: more precisely, Γ is called the antecedent and
∆ is called the succedent of a sequent. The formula that appears explicitly in the conclusion of each
rule is called the principal formula or main formula. The formulae in the premises from which the
principal formula is derived are the active formulae. The other formulae are called side formulae. The
G3c system is defined in Figure 2.2, where a denotes an atomic formula.1 ※

(Ax)
a,Γ ` a,∆

(L⊥)
Γ,⊥ ` ∆

Γ, A,B ` ∆
(L∧)

Γ, A ∧B ` ∆
Γ ` A,∆ Γ ` B,∆

(R∧)
Γ ` A ∧B,∆

Γ, A ` ∆ Γ, B ` ∆
(L∧)

Γ, A ∨B ` ∆
Γ ` A,B,∆

(R∧)
Γ ` A ∨B,∆

Γ ` A,∆ Γ, B ` ∆
(L⇒)

Γ, A⇒ B ` ∆
A,Γ ` B,∆

(R⇒)
Γ ` A⇒ B,∆

∀xA,Γ,
{
t�x
}
A ` ∆

(L∀)
Γ,∀xA ` ∆

Γ ` A,∆
(R∀)∗

Γ ` ∀xA,∆

Γ, A ` ∆
(L∃)∗

Γ,∃xA ` ∆
Γ `

{
t�x
}
A,∆,∃xA

(R∃)
Γ ` ∃xA,∆

(∗) x is not free in Γ,∆

Figure 2.2: The G3c system for classical logic

Gentzen’s original system for classical logic has structural rules, but in the G3c system, the
structural rules of weakening and contraction are "absorbed" with the rules and axioms. Indeed,
these rules are admissible in this system:

Γ ` ∆
Γ, A ` ∆

Γ ` ∆
Γ ` A,∆

Γ, A,A ` ∆
Γ, A ` ∆

Γ ` A,A,∆
Γ ` A,∆

In order to prove the completeness of a sequent calculus, it is often convenient to extend it
with one or several cut rule(s) such as:

Γ ` A,∆ A,Γ ` ∆
(cut)

Γ ` ∆
or

Γ ` A,∆ A,Γ′ ` ∆′
(cut)

Γ,Γ′ ` ∆,∆′
and then prove that every sequent that has a proof using that rule also has a proof not using it
(see the next subsection).

Cut-rules express a form of transitivity of `, and can be seen as general forms of a lemma:
it says that when a formula A is in the succedent of a proved sequent and in the antecedent of
another proved sequent, then by “cutting out” the formula A (which is called the cut-formula)
we build a proof of the remaining context; in other words, to prove Γ ` ∆, we first prove A as a
lemma, and then continue the proof with A as an extra assumption.

1In rule Ax, both occurrences of a are principal; in L⊥ the occurrence of ⊥ is principal.

16 Chapter 2. Focusing in classical logic: a survey

But an important property of the rules of Fig. 2.2 is the sub-formula property: every formula
in the premises of a rule is the sub-formula of some formula in the conclusion of the rule. This is
not the case of cuts, as it is not necessary that the cut-formula A in the premises is a sub-formula
of a formula in Γ,∆. This is problematic for bottom-up proof-search, as the formula A has to be
guessed (and there are infinitely many possibilities).

Cut-elimination

However, a major theorem of sequent calculus is the Hauptsatz [Gen35] or cut-elimination theorem.
This theorem says that cuts are admissible; i.e. every formula that is provable using cuts, is also
provable without cuts.

In [TS00], the cut-elimination proof is based on certain local transformation steps, defining an
algorithm that permutes for instance cut-rules upwards, over the other rules, or replaces a cut on
a compound formula A by some cuts on its immediate sub-formulae.

Notice that the permutation of cuts over other cuts may lead to termination problems, as
illustrated below:

Γ ` ∆, A Γ′ ` ∆′, B
Γ,Γ′ ` ∆,∆′, B B,Γ′′′ ` ∆′′

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
reduces to

Γ ` ∆, A
Γ′ ` ∆′, B B,Γ′′ ` ∆′

A,Γ,Γ′ ` ∆′,∆′′

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′

However, by either forbidding a cut to permute over another cut, or by carefully controlling
when that happens, it is possible to make the cut-elimination procedure strongly normalising.

Another question is confluence: The design of a cut-elimination process by local rewrite steps
raises the question of whether, when permuting a cut upwards, we should start pushing it into its
left-hand-side branch first or into its right-hand-side branch first. The following example is due to
Lafont:

Consider two distinct (cut-free) proofs, π1 and π2, of the sequent Γ ` ∆. Since weakenings
are admissible, we can easily get two proofs π′1 and π′2 of Γ ` ∆, A and Γ, A ` ∆, respectively. In
essence, these are the same as π1 and π2, but with an extra formula that is added to every sequent
of the proof-tree, not participating to any of the inference rules. Cutting them gives a new proof
of Γ ` ∆:

π′1

Γ ` ∆, A
π′2

Γ, A ` ∆
Γ ` ∆

Eliminating that cut can be done in two ways: pushing the cut to the left eventually yields π1,
erasing π2, while pushing the cut to the right eventually yields π2, erasing π1.

This shows that, in general, this kind of cut-elimination in classical logic is not confluent, as the
complete duality illustrated by De Morgan’s laws leads to a symmetry that gives us no particular
reason to give priority to the left or to the right.

A similar example (actually more problematic than the one above) can be build with con-
tractions: Consider two distinct (cut-free) proofs, π1 and π2, of the sequents Γ ` ∆, A,A and
Γ, A,A ` ∆, respectively. Since contractions are admissible, we can easily get two proofs π′1 and
π′2 of Γ ` ∆, A and Γ, A ` ∆, respectively. Cutting them gives a proof of Γ ` ∆:

π′1

Γ ` ∆, A
π′2

Γ, A ` ∆
Γ ` ∆

2.2. Linear logic and the LC calculus for classical logic 17

Eliminating that cut can again be done in two ways: pushing the cut to the left duplicates π2,
while pushing the cut to the right duplicates π1.

2.2 Linear logic and the sequent calculus LC for classical
logic

In this section, we discuss linear logic and a sequent calculus for it [Gir87]; then we present a
polarised sequent calculus LC for classical logic, inspired by linear logic.

2.2.1 Linear logic and its sequent calculus
Linear logic is a refinement of e.g. classical and intuitionistic logic, with new connectives that
can be used to decompose the usual connectives. This logic plays an important role in modern
computer science and engineering. Now, we give a brief idea of linear logic and then we present a
sequent calculus LL.

An important feature of linear logic is a duality between connectives and formulae, similar
to the De Morgan duality of classical logic. As in classical logic, a great role is played by the
involutive negation function, here called linear negation and denoted (·)⊥; we use it to internalise
De Morgan laws for all connectives and quantifiers. For instance, ∃xA is the dual of ∀xA⊥ and
A = A⊥⊥.

The main feature of linear logic is the controlled use of the structural rules of weakening and
contraction. Girard criticised these structural rules from Gentzen’s sequent calculus in [Gir95],
because weakening generates “fake dependencies”, for instance when proving A ⇒ (B ∨ ¬B).
Hence the introduction of a linear implication (, where the premise must be “used” exactly once.

Restricting the structural rules of weakening and contraction leads to breaking the property
described in Remark 1: the choice of inference rules for the conjunction and disjunction becomes
critical, and the two versions then lead to two different connectives that are not equivalent.

Therefore, linear logic presents two disjunctions: ⊕ (plus) and ` (par). Intuitively, a ⊕
disjunction is proved by proving one (and only one) of its two sides (as in intuitionistic logic),
whereas a ` disjunction can be proved by “keeping” both sub-formulae and possibly relate them,
just like A∨¬A can be proved in classical logic. Moreover, similarly to classical logic, an implication
A(B can be seen as an abbreviation for (A)⊥ `B.

Dually, there are also two conjunctions in linear logic: ⊗ (times) and & (with). The former is
the dual of ` and the latter is the dual of ⊕.

This duality plays an important role in the proof of cut-elimination, which also hold in linear
logic (see next section) and whose details give an intuition about the connectives: Both conjunc-
tions express the “availability of two possibilities”, but in the case of &, only one of the possibilities
will be used during cut-elimination (as it will face a ⊕ disjunction), and in the case of ⊗, both
possibilities will be used.

Linear quantifier ∀ is close to & and ∃ is close to ⊕.
Now, weakening and contractions are not completely ruled out of the system, they are controlled

by two new connectives: ! and ?, that are called exponentials.
Girard also presents a sequent calculus LL for linear logic [Gir87]. The preliminaries for LL

and the system are given below:

Definition 2 (Formulae, negation)
The notion of atoms from Gentzen’s sequent calculus is here enriched as the notion of literals:

atoms equipped with an involutive negation function mapping a literal a to a literal a⊥.
Formulae of LL are given by the following grammar:

A,B, . . . := a | 1 | ⊥ | > | 0 | A⊗B | A`B | A&B | A⊕B | ∀xA | ∃xA |!A |?A
where a ranges over literals.

Negation is then extended by De Morgan Laws, and linear implication is also defined as connective:

18 Chapter 2. Focusing in classical logic: a survey

1⊥ := ⊥ ⊥⊥ := 1
>⊥ := 0 0⊥ := >
(A⊗B)⊥ := A⊥ `B⊥ (A`B)⊥ := A⊥ ⊗B⊥

(A&B)⊥ := A⊥ ⊕B⊥ (A⊕B)⊥ := A⊥&B⊥
(!A)⊥ := ?A⊥ (?A)⊥ := !A⊥
(∀xA)⊥ := ∃xA⊥ (∃xA)⊥ := ∀xA⊥

A(B := A⊥ `B

※

Definition 3 (LL system)
We use the De Morgan duality to avoid the redundancy of having both the left-introduction rule(s)

for a connective and the right-introduction rule(s) for the dual connective:2
The sequent calculus LL is mono-sided , with sequents of the form ` ∆ where ∆ is a multiset of

formulae. Its rules are given in Figure 2.3. ※

Identity
(Identity)

` a, a⊥

Logical inference rules

(one)
` 1

` Γ
(false)

` Γ,⊥

` Γ, A ` ∆, B
(times)

` Γ, A⊗B,∆

` Γ, A,B
(par)

` Γ, A`B

(true)
` Γ,> (no rule for zero)

` Γ, A ` Γ, B
(with)

` Γ, A&B
` Γ, A

(left plus)
` Γ, A⊕B

` Γ, B
(right plus)

` Γ, A⊕B

` ?Γ, A
(of course)

` ?Γ, !A
` Γ

(weakening)
` Γ, ?A

` Γ, A
(dereliction)

` Γ, ?A
` Γ, ?A, ?A

(contraction)
` Γ, ?A

` Γ, A
(∀)∗

` Γ,∀xA
` Γ,

{
t�x
}
A

(∃)
` Γ,∃xA

(∗) x is not free in Γ

Figure 2.3: The LL system for linear logic

Linear connectives are presented in three categories:
• Multiplicative connectives: The connectives ⊗, `, (, together with the neutral elements 1

(w.r.t. ⊗) and ⊥ (w.r.t. `) are called multiplicative connectives.
2the rules are the exact duals of each other

2.2. Linear logic and the LC calculus for classical logic 19

• Additives connectives: The connectives & and ⊕, together with the neutral elements > (w.r.t
&) and 0 (w.r.t ⊕) are called additive connectives.

• Exponential connectives: The connectives ! and ? are called exponential connectives, and are
also called linear modalities.

It is interesting to note that:
• ⊗ is multiplicative and conjunctive with neutral 1,
• ⊕ is additive and disjunctive with neutral 0,
• ` is disjunctive with neutral ⊥ and
• & is conjunctive with neutral >.
The cut rule of LL is:

` Γ, A ` A⊥,∆
` Γ,∆

Cut-elimination
Once again, designing a cut-elimination process by local rewrite steps raises the question of
whether, when permuting a cut upwards, we should start pushing it into its left-hand-side branch
first or into its right-hand-side branch.

And in linear logic as in classical logic, the complete duality illustrated by De Morgan’s laws
leads to a symmetry that gives us no particular reason to give priority to the left or to the right.

However, the two examples of non-confluence in the previous section are prevented in linear
logic by its tight control on the structural rules: weakenings and contractions can only be done on
formulae of the form ?A, which will only be cut against the formula !A⊥ that cannot be weakened
or contracted; hence, there cannot be a weakening on both sides of the cut, nor a contraction.
This gives hope for a confluent cut-elimination procedure; however, the choice of pushing a cut to
the left or to the right still allows the following example:

` Γ, A
(r)

` Γ′, A
` A⊥,∆

(s)
` A⊥,∆′

cut
` Γ′,∆′

where r (resp. s) abstractly represents the application of some inference rules not involving A
(resp. A⊥).

There is no natural way to eliminate this cut, since the unspecified rules (r) and (s) do not act
on A or A⊥; we have the choice of pushing the cut to the right first:

` Γ, A ` A⊥,∆
cut

` Γ,∆
(r)

` Γ′,∆
(s)

` Γ′,∆′
or to the left first:

` Γ, A ` A⊥,∆
cut

` Γ,∆
(s)

` Γ,∆′
(r)

` Γ′,∆′
and the resulting proofs will remain different even when a cut-free proof is eventually produced.

To solve this problem, Girard presents the cut-elimination procedure of LL by means of proof-
nets. A proof net is constructed on the base of a proof-structure. A proof-structure is a graph
whose vertices are formulae and whose edges are links; each formula is the conclusion of exactly
one link and the premise of at most one link [Gir87]. The formulae which are not premises
are the conclusions of the structure. Among a proof-structures, proof-nets are those which are

20 Chapter 2. Focusing in classical logic: a survey

obtained as the interpretation of sequent calculus proofs. To obtain a sequent calculus proof from
a proof-net, we need the proof-structure to come with a sequentialisation that indicates in which
order the vertices and edges of the proof-structure have been constructed. The existence of a
sequentialisation for a given proof-structure can be characterised by a geometrical criterion on the
proof-structure itself [Gir87].

In proof-nets, the cut and axiom links are represented as:

a a⊥ a a⊥

The cut-elimination of LL is presented with proof-nets in [Gir87]. It is defined by case analysis
on the vertices above a and a⊥ in the left-hand side picture above.

• The following configuration

a⊥ a a⊥

is for instance replaced by:

a⊥

...

...
. . . bearing in mind that a proof-structure such as

a a⊥

does not satisfy the correctness criterion and is therefore not a proof-net.
• As another example, if the cut-formulae are conclusions of logical links for ⊗ and `,

...
B

...
C

B ⊗ C

...
B⊥

...
B⊥

B⊥OC⊥

is replaced by:

B

...
C

...
B⊥

...
C⊥

...

This cut-elimination procedure is shown to be strongly normalising [Gir87, Dan90], and there-
fore cuts are admissible in LL.

This cut-elimination procedure has some nice features. For instance, it is confluent. It also
allows a high level of parallelism since (at least in the multiplicative fragment) the cuts are local
and all cut-links can be simultaneously reduced. Finally, the linear features of linear logic provide
a tight control on the complexity of the cut-elimination process, which has made linear logic play
a key role in the field of Implicit Computational Complexity.

2.2.2 The sequent calculus LC
Girard introduced a polarised sequent calculus LC for classical logic [Gir91] which is an improve-
ment of LK. The main purpose of this system is to make classical logic more constructive3 and

3A system is called constructive when it is able to define a “reasonable” semantics of proofs, compatible with
cut-elimination [Gir91].

2.2. Linear logic and the LC calculus for classical logic 21

deterministic. Gentzen’s sequent calculus LK is non-deterministic, as illustrated by the non-
confluence examples. Girard first introduced the notion of polarity of a formula of classical logic.
The main idea of polarities is to get rid of the non-determinism of cut-elimination that pertains
to Gentzen’s sequent calculus. To do this, Girard extends the LK system to system LC with the
notion of polarity.

Definition 4 (Formulae) The formulae of LC are defined in the following grammar:4

A,B, . . . := a | ¬a | A ∧B | A ∨B | ∀xA | ∃xA | V | F | ¬V | ¬F

As in linear logic, the constants for "true" and "false" come in two versions: V , F , ¬V , ¬F .
Negation is defined via De Morgan’s laws:

(a)⊥ := ¬a (¬a)⊥ := a

(V)⊥ := ¬V (¬V)⊥ := V

(F)⊥ := ¬F (¬F)⊥ := F

(A ∧B)⊥ := A⊥ ∨B⊥ (A ∨B)⊥ := A⊥ ∧B⊥

(∀xA)⊥ := ∃xA⊥ (∃xA)⊥ := ∀xA⊥

Negation is an involutive function; therefore A⊥⊥ is identical to A and A ⇒ B abbreviates A⊥ ∨ B.
※

Definition 5 (Polarity) The notion of polarity of a formula in classical logic (either positive (+)
or negative (-)) is defined as follows:

• Atomic formulae a, as well as V and F , are positive.

• Negations of atomic formulae ¬a, as well as ¬V and ¬F , are negative.

• For compound formulae, polarities depend on the polarities of sub-formulae, according to the
following rules:

A B A ∧B A ∨B ∀xA ∃xA
+ + + + − +
− + + − − +
+ − + −
− − − −

With such a definition, the polarities for⇒ and the negation operation satify the following table:

A⇒ B A⊥

− −
+ +
−
−

※

4Here, we come back to Gentzen’s notion of atoms, denoted a, b, etc, rather than the notion of literal, which we
could define as atoms a, b and negated atoms ¬a, ¬b, etc.

22 Chapter 2. Focusing in classical logic: a survey

Some remarks:
• Atomic formula V is not identified with the negation of F , in order to get positive constants

for the two truth values.
• Interestingly enough, polarities of the connectives ∧, ∨, ⇒, (·)⊥ follow the usual truth

table where “+” stands for false and “-” stands for “true”. This polarity table is actually
isomorphic to the truth table.

• Quantifiers have a forced polarity.
• Note that we can always turn a formula A into a positive formula A+ that is (classically)

equivalent to A: A+ := A ∧ V . Similarly, we can always turn a formula A into a negative
formula A− that is (classically) equivalent to A: A− := A ∨ ¬V .

Now, we discuss the LC system.

Definition 6 (The LC system) The LC system is a mono-sided sequent calculus, with sequents
of the form of ` Γ; Π where Γ and Π are multisets of formulae,5 and Π is either empty or consists of
exactly one positive formula. The space after ";" is called the stoup, Γ is called the body and what
is in the stoup is called the head . The rules of the LC sequent calculus are presented in Figure 2.4.
In this system, P , Q, R refer to positive formulae, L, M , N refer to negative formulae and A, B, C
refer to “undefined” formulae whose polarity is not specified. ※

Identity
Identity

` ¬P ;P

Logic

` ;V ` Γ,¬F ;Π

` Γ;P ` ∆;Q
` Γ,∆;P ∧Q

` Γ, A,B;Π
when A ∨B is negative

` Γ, A ∨B;Π

` Γ;P ` ∆, N ;
` Γ,∆;P ∧N

` Γ,M ; ` ∆;Q
` Γ,∆;M ∧Q

` Γ,M ;Π ` Γ, N ;Π
` Γ,M ∧N ;Π

` Γ;P
` Γ;P ∨Q

` Γ;Q
` Γ;P ∨Q

` Γ, A;Π
∗

` Γ,∀xA;Π
` Γ,

{
t�x
}
N ;

` Γ;∃xN
` Γ;

{
t�x
}
P

` Γ;∃xP

Structure

` Γ;P
dereliction

` Γ, P ;
` Γ;Π

weakening
` Γ, A;Π

` Γ, A,A;Π
contraction

` Γ, A;Π

(∗) x is not free in Γ

Figure 2.4: The LC system for classical logic

There are two cuts in the LC system:
5Girard introduced the system with sequences of formulae and an exchange rule similar to Gentzen’s.

2.3. Introducing focusing in linear logic 23

` Γ;P ` P⊥,∆;Π
p-cut

` Γ,∆;Π
` Γ, N ; ` N⊥,∆;Π

n-cut
` Γ,∆;Π

and these can be used to prove the following theorem.
First, notice that the sequents of the LK system straightforwardly translate as sequents of

system LC with empty stoups. If a sequent of LK is provable (in LK), then its corresponding
sequent in LC (with an empty stoup) is provable in LC [Gir91].

This translation introduces cuts, i.e. certain cut-free proofs in LK will translate in LC to proofs
with cuts.

Cut-elimination
The sequent calculus LC admits the above cuts: in [Gir91], a syntactic cut-elimination procedure
is sketched that has the interesting property of preserving a certain denotational semantics of
proofs (with or without cuts). This would clearly not be the case of the general cut-elimination
procedure of LK or G3c (unless it is restricted in some ways) as illustrated by the non-confluence
examples.

The preservation of semantics by cut-elimination is a key feature in the interpretation of proofs
as programs (Curry-Howard correspondence), which can be seen for instance between natural
deduction for minimal logic and the simply-typed λ-calculus, and therefore LC gives an interesting
light on the computational interpretation of classical proofs and their “constructive” contents.
This is strengthened by some variants of the disjunction property and the existential property that
hold in LC for the formula in the stoup:

• if ` ;P ∨Q is provable then either ` ;P or ` ;Q is provable;
• if ∃xP is provable then for some term t, ` ;P [t/x] is provable.
Finally, an important aspect of LC is that the polarity of a formula does not change the

provability of the formula; it only affects the shape of its proofs.
Girard identifies several directions for further work, of which we will mention two:
1. materialise the computational contents of LC proofs with a syntax that would be to LC

what typed λ-calculus is to LJ, and an hopefully confluent normalisation that represents
cut-elimination;

2. put classical, intuitionistic and linear logic inside the same system in such a way that these
three systems appears as fragments, since several notions seem to be common features (stoup,
polarities, etc).

2.3 Introducing focusing in linear logic
The concept of focusing has been introduced in [And92] in the context of linear logic, although it
relates both to Girard’s work on LC for classical logic and to the work by Miller et al. [MNPS91]
on the concept of uniform proofs for Hereditary Harrop formulae (in intuitionistic logic).

Both [And92] and [MNPS91] explicitly take the view of proof-search, as in logic programming.
At the basis of logic programming, proof-search on Horn clauses can be understood as a meaningful
computational paradigm because this class of formulae makes a simple goal-directed proof-search
strategy logically complete (with well-identified backtrack points and a reasonably efficient covering
of the proof-search space). In [MNPS91], this is shown to still hold when the class is extended to
Hereditary Harrop formulae.

Andreoli’s aim is to design a notion of Logic Programming in linear logic, and use for this the
“natural” proof-search process specified by the rules of an inference system:

Namely, this proof-search incrementally builds a proof-tree for the item to be proved (typically,
a sequent); it starts with an incomplete proof-tree made of only one node labelled by the item,
and then tries to applies the inference rules bottom-up so as to gradually construct a bigger and
bigger incomplete proof-tree, and eventually “close” its branches with inference rules that have no

24 Chapter 2. Focusing in classical logic: a survey

premises; if and when all branches become closed, then the resulting object is a complete proof-tree
of the original item.

Of course, at each node, the process must choose a rule instance to apply, and if after that
choice the incomplete proof-tree cannot be completed, then the process needs to backtrack and
make another choice.

Andreoli’s point is that the inference rules of LL are too permissive for this natural proof-search
process to be efficient.

The main advantage of focusing regarding this natural proof-search process is that, instead of
trying to search for all the possible proofs of a sequent, we only search for proofs of a particular
shape. Such proofs should form a subset of all proofs that is logically complete: the proofs from
this subset can be viewed as "normal" representatives of equivalence classes of proofs, in this case
P-equivalence6 classes.

2.3.1 Preliminaries
Logical inference rules lead to multiple cases of permutation of inferences. Therefore, to apply a
logical inference bottom-up, at a given node of the proof-search, we encounter problems in making
a selection. These are namely to:

• Select, in the sequent of the node, a principal formula to be decomposed.
• Select an instance of the logical inference rule associated with the topmost connective of the

selected principal formula.
To make the proof-search more deterministic, the connectives of linear logic are partitioned

into two groups:
• The positive connectives:

– Multiplicative: 1, ⊗, !
– Additive: 0, ⊕, ∃

• The negative connectives :
– Multiplicative: -, `, ?
– Additive: >, &, ∀

It is important to note that the dual of an negative connective is positive and vice versa.
A non-atomic formula whose top-most connective is positive (resp. negative) is called a positive
(resp. negative) formula. Andreoli’s focusing results [And92] are informally described below:

• Negative connectives can be decomposed, in sequent calculus style, with invertible inference
rules that are called asynchronous: a proof-search strategy can perform the bottom-up
application of those rules as basic proof-search steps without loss of generality (if the goal
was provable, it remains provable after applying the step); in other words, no backtracking
is necessary on the application of such steps, even though other steps were possible.

• Positive connectives are the (De Morgan’s) duals of negative connectives, and their decom-
position rules, which are called synchronous, are not necessarily invertible.

Clearly, asynchronous rules can be applied eagerly, i.e. can be chained, without creating backtrack
points and losing completeness.

Quite surprisingly, it turns out that synchronous rules (although possibly creating backtrack
points) can also be chained without losing completeness [And92].

This result can be expressed as the completeness of a sequent calculus with a focus device,
which syntactically highlights a formula in the sequent and forces the next proof-search step
to decompose it with a synchronous rule, keeping the focus on its newly-revealed sub-formulae.
Focusing considerably reduces the proof-search space, otherwise heavily redundant when Gentzen-
style inference rules are used.

6Two proofs are said to be P-equivalent if each of them is obtained from the other by simple permutations of
inference rules and elimination or introduction of useless “loops”.

2.3. Introducing focusing in linear logic 25

This relates to the stoup in Girard’s LC: if a formula is in the stoup, then the next inference
rule decomposes it. The chaining of synchronous rules then relates to the behaviour of the LC
rules

` Γ;P ` ∆;Q
` Γ,∆;P ∧Q

` Γ;P
` Γ;P ∨Q

` Γ;Q
` Γ;P ∨Q

` Γ;
{
t�x
}
P

` Γ;∃xP
where the direct sub-formulae of the formula being decomposed in the stoup are themselves kept
in the stoup as long as they remain positive.

2.3.2 The triadic system LLF
Now, we present the triadic system LLF that is used in [And92] to materialise those ideas in linear
logic.

Definition 7 (LLF)
First, we split the set of literals into a set of positive literals and a set of negative literals, such that

a is positive if and only if a⊥ is negative.
A triadic sequent is of one of the following forms:

Focused sequent: ` Θ:∆⇓F where F is a formula said to be in the stoup or in focus
Unfocused sequent: ` Θ:∆⇑L where L is an ordered list of formulae;

where Θ and ∆ are multisets of formulae, and ∆ contains only literals and positive formulae. The
LLF sequent calculus is given by the rules of Figure 2.5. Here, F , G stand for formulae, p stands for
a positive literal. ※

• A sequent ` Θ:∆⇑L corresponds to the case where the sequent possibly contains a negative
formula (in L).

• A sequent ` Θ : ∆ ⇓F corresponds to the case where all the negative formulae have been
decomposed and a formula F has been selected as principal formula.

Negative formulae are decomposed immediately as soon as they appear in the sequent. Positive
formulae are delayed until all the negative formulae have been decomposed, and must be non-
deterministically selected to be processed: in other words, positive connectives “synchronise” the
selection process and the decomposition process (hence the name synchronous). When a positive
formula starts being decomposed, it keeps on being decomposed until an atomic or a negative
formula is reached. The grouping of synchronous rules is called a synchronous phase, while the
grouping of asynchronous rules is called an asynchronous phase.

The kind of non-determinism involved in the synchronous phases (including the selection of
the positive formula to be placed in the stoup) is a don’t know non-determinism (if the wrong
choice is made, backtracking will be needed to make another choice); that which appears in
the asynchronous phase is a don’t care non-determinism (no backtracking is necessary on the
application of asynchronous rules, even though other rule applications were possible).

More precisely:

• When all the negative formulae have been decomposed in an ⇑-sequent (i.e. L is empty),
a principal formula must be non-deterministically selected by the Decision rule and a new
synchronous phase is started (with⇓ sequents). The principal formula may be picked either
inside the second field of the sequent, containing the non-negative formulae which have been
delayed by the Reaction rule [R⇑] above (Decision [D1]), or in the first field, i.e. the ’reserve
tank’ of unrestricted formulae (Decision [D2]) where a copy of the selected formula is kept.

• The Reaction rule [R ⇓] is triggered when an negative formula is reached at the end of a
synchronous phase. The arrow is just turned upside down, which means that the synchronous
phase is finished and the negative formula must be decomposed.

26 Chapter 2. Focusing in classical logic: a survey

Identities

(I1)
` Θ:p⊥⇓p

(I2)
` Θ, p⊥ : ⇓p

Synchronous rules

(1)
` Θ: ⇓1

` Θ:∆1⇓F ` Θ:∆2⇓G
(⊗)

` Θ:∆1,∆2⇓F ⊗G

` Θ: ⇑F
(!)

` Θ: ⇓ !F

` Θ:∆⇓F
(⊕l)

` Θ:∆⇓F ⊕G
` Θ:∆⇓G

(⊕r)
` Θ:∆⇓F ⊕G

` Θ:∆⇓
{
t�x
}
F

(∃)
` Θ:∆⇓∃xF

Asynchronous rules

` Θ:∆⇑L
(⊥)

` Θ:∆⇑L,⊥
` Θ:∆⇑L,F,G

(`)
` Θ:∆⇑L,F `G

` Θ, F :∆⇑L
(?)

` Θ:∆⇑L, ?F

(>)
` Θ:∆⇑L,>

` Θ:∆⇑L,F ` Θ:∆⇑L,G
(&)

` Θ:∆⇑L,F &G

` Θ:∆⇑L,F
(∀)∗

` Θ:∆⇑L,∀xF

Reaction⇑: if F is a (negative) literal or a positive formula
` Θ:∆, F ⇑L

(R⇑)
` Θ:∆⇑L,F

Reaction⇓: if F is negative
` Θ:∆⇑F

(R⇓)
` Θ:∆⇓F

Decisions: If F is not a negative literal
` Θ:∆⇓F

(D1)
` Θ:∆, F ⇑

` Θ, F :∆⇓F
(D2)

` Θ, F :∆⇑

(∗) x is not free in Θ,∆, L

Figure 2.5: The LLF system for linear logic

• When a positive literal p is reached at the end of a synchronous phase, an Identity rule must
be used, so that p⊥ must be found in the rest of the sequent, either as a restricted resource
in the second field (Identity [I1]), or as an unrestricted resource in the first field (Identity
[I2]).

• When a formula prefixed with the negative modality ? is encountered, it is immediately
stored in the first field of the sequent for possible future use, instead of being put back in
the third field of the sequent for further decomposition of negative connectives, as in the
standard negative case.

• The modality !, unlike standard positive connectives, terminates a synchronous phase, but
it requires that, at the moment of the interruption, the second field of the sequent is empty.

2.4. The focused sequent calculus LKF for classical logic 27

The focusing discipline considerably reduces the amount of non-determinism involved in the
proof-search, while still being logically complete. Proving completeness can be done in different
ways, one of which goes through the elimination of the following cut-rule:

` Θ:∆⇓A ` Θ:∆⇓A⊥
cut

` Θ:∆,∆′⇑

Notice that polarities are such that, in the above cut, only one formula out of A and A⊥

is positive and only one is negative. Therefore the focusing structure of the proof proving the
left premise must me radically different from that proving the right premise, and therefore the
sophisticated structure of the sequent calculus breaks the left-right symmetry. This reduces the
non-determinism of the cut-elimination process (which [And92] does not explicitly give for the
triadic system), and focusing can thus be seen as an alternative to proof-nets to define a meaningful
computational interpretation of cut-elimination in linear logic.

This idea will be imported back into classical logic, for which the right notion of proof-nets
may be more difficult to identify.

Indeed, following Girard’s and Andreoli’s work on linear logic, a substantial literature invest-
igated the impact of proof-nets, polarities, and focusing on classical logic: Among such literature,
polarised classical logic emerged [Lau02], acknowledging the fact that the choice of inference rules
for ∧ and ∨ defines two versions of the connectives, namely ∧+ (resp. ∨+) and ∧− and (resp. ∨−),
which, although provably equivalent, differ in their proofs, in the semantics of their proofs, and
in their proof-search mechanisms. This work also relates to a rich literature aiming at giving an
computational interpretation of cut-elimination in classical logic, inspired by its various transla-
tions in linear and intuitionistic logics (e.g. [DJS95, DJS97, CH00, LQdF05]). Polarised classical
logic develops and enriches Girard’s work on LC, in particular by explaining the proof theory of
classical formulae as given by LC as a combination of

• an encoding from classical formulae to polarised classical formulae

• a proof theory for polarised classical logic.
The next section describes a proof-theoretical approach to polarised classical logic, with the

specific view of proof-search in mind and therefore along the lines of Andreoli’s work for linear
logic.

2.4 The focused sequent calculus LKF for classical logic

Liang and Miller introduced in [LM09] a focused sequent calculus LJF for intuitionistic logic and
a focused sequent calculus LKF for polarised classical logic which builds on, extends, and clarifies
LC with the polarities and focusing concepts of [And92, Lau02] applied to classical logic.

As already said, proof-search on Hereditary Harrop formulae can be understood as a meaningful
computational paradigm [MNPS91], because this class of formulae makes a simple goal-directed
proof-search strategy logically complete (with well-identified backtrack points and a reasonably
efficient covering of the proof-search space).

LLF and LKF show that this still holds for linear logic and polarised classical logic, respectively,
where logical connectives and literals have polarities: positive or negative.

A sequent with a positive literal in focus must be proved immediately by an axiom (a.k.a iden-
tity) on that literal; hence, the polarity of literals greatly affects the shape of proofs. As illustrated
in e.g. [LM09], the following sequent expresses the Fibonacci logic program together with a goal
fib(n, p) (where n and p are closed terms):7

7Of course, addition is used in the example and needs to makes sense in the logic programming system; one
way of doing this is to define it in a logic programming style, another way is to have arithmetic primitively in the
system, as we shall develop in the next chapter.

28 Chapter 2. Focusing in classical logic: a survey

fib(0, 0),
fib(1, 1),
∀ip1p2(fib(i, p1)⇒ fib(i+ 1, p2)⇒ fib(i+ 2, p1 + p2))
` fib(n, p)

The goal will be proved with backward-reasoning if the fib literals are negative (yielding a
proof of exponential size in n), and forward-reasoning if they are positive (yielding many proofs,
one of which being linear).

In classical logic, polarities of connectives and literals do not affect the provability of formulae,
but still greatly affect the shape of proofs, and hence the basic proof-construction steps.

Definition 8 (Formulae, negation) As in LLF, literals are classified as either positive or negative,
and a⊥ has the opposite polarity of the literal a.

Positive formulae := p | >+ | ⊥+ | A∧+B | A∨+B | ∃xA
Negative formulae := p⊥ | >− | ⊥− | A∧−B | A∨−B | ∀xA

where p ranges over positive literals.
Negation is extended as usual using De Morgan’s laws, such that the negation of a positive formula

is negative and vice versa. ※

Definition 9 (LKF system) There are two kinds of sequents:

Focused sequent: ` Θ⇓A where A is in focus
Unfocused sequent: ` Θ⇑∆

where Θ is a multiset of positive formulae and negative literals and ∆ is a multiset of formulae.
The rules of LKF are defined in Figure 2.6, where P is positive, N is negative, C is a positive

formula or negative literal, and p is a positive literal. ※

Synchronous rules
` Θ⇓A ` Θ⇓B
` Θ⇓A∧+B

` Θ⇓Ai
` Θ⇓A1∨+A2

` Θ⇓
{
t�x
}
A

` Θ⇓∃xA ` Θ⇓>+

Asynchronous rules
` Θ⇑∆, A ` Θ⇑∆, B

` Θ⇑∆, A∧−B
` Θ⇑∆, A,B
` Θ⇑∆, A∨−B

` Θ⇑∆, A
x not free in Θ,∆

` Θ⇑∆, (∀xA)

` Θ⇑∆,>−
` Θ⇑∆
` Θ⇑∆,⊥−

Structure rules
` Θ, C⇑∆

Store
` Θ⇑∆, C

` P,Θ⇑P
Select

` P,Θ⇑
` Θ⇑N

Release
` Θ⇓N

Id
` p⊥,Θ⇓p

Figure 2.6: The LKF system for classical logic

Again, as in LLF, the gradual proof-tree construction defined by the bottom-up application of
the inference rules of LKF, is a goal-directed mechanism whose intuition can be given as follows:

Asynchronous rules are invertible: they are applied eagerly when trying to construct the proof-
tree of a given sequent; Store is applied when hitting a positive formula or a negative literal on
the right-hand side of a sequent, storing it.

2.4. The focused sequent calculus LKF for classical logic 29

When the right-hand side of a sequent becomes empty, a choice must be made to place a
positive formula in focus, using rule (Select), before applying synchronous rules.

Each such rule decomposes the formula in focus, keeping the revealed sub-formulae in the focus
of the corresponding premises, until a positive literal or a non-positive formula is obtained: the
former case must be closed immediately with Id, and the latter case uses the Release rule to drop
the focus and start applying asynchronous rules again. The synchronous and the structural rules
are in general not invertible,8 so each application of those yields in general a backtrack point in
the proof-search.

Remark 2 Defining negative implication A⇒−B as (A⊥)∨−B and positive implication A⇒+B
as (A⊥)∨+B, we derive the following rules for those connectives:

` Θ⇓A⊥

` Θ⇓A⇒+B

` Θ⇓B⊥

` Θ⇓A⇒+B

` Θ⇑∆, B,A⊥

` Θ⇑∆, A⇒−B

The LKF system can be translated into the LLF system. And it is sound and complete for
classical logic, regardless of which polarities are placed on literals and connectives [LM09]. The
following cut rules are admissible
` Θ⇑∆, C ` Θ′⇑∆′, C⊥

Cutp
` Θ,Θ′⇑∆,∆′

` Θ⇓B ` Θ′⇑∆′, B⊥
Cutk

` Θ,Θ′⇑∆′
` Θ, P ⇓B ` Θ′⇑P⊥

Cutf
` ΘΘ′⇓B

A syntactic argument for the admissibility of these cuts is sketched in [LM09].
System LKF assumes that all literals come with a pre-determined polarity. In the sequent

calculi that we develop in the rest of this thesis, we will generalise this to allow the polarity of
literals to be determined on-the-fly during proof-search: the root of a proof-tree might have none
of its literals polarised, but literals may become positive or negative as progress is made in the
proof-search.

8(but they may be so, e.g. for ∧+)

Chapter 3

A sequent calculus for classical
logic modulo theories

In this chapter we briefly review the proof-search motivation for focused proof systems, and
present the focused sequent calculus LKp(T) for (polarised) classical logic modulo a theory.

3.1 LKp(T): Definitions
The sequent calculus LKp(T) manipulates the formulae of first-order logic, with the specificity that
connectives are of one of two kinds: positive ones and negative ones, and each boolean connective
comes in two versions, one of each kind. This section develops the preliminaries and the definition
of the LKp(T) system.

Definition 10 (Terms and literals) Consider an infinite set of elements called variables.
The set of terms over a first-order (function) signature FΣ is defined by:

t, t1, t2, . . . := x | f(t1, . . . , tn)
with f/n (f of arity n) ranging over FΣ and x ranging over variables.

Let PΣ be a first-order predicate signature equipped with an involutive and arity-preserving function
called negation. The negation of a predicate symbol P is denoted P⊥.

Let L> be the set {P (t1, . . . , tn) | P/n ∈ PΣ, t1, . . . tn terms}, to which we extend the involutive
function of negation with:

(P (t1, . . . , tn))⊥ := P⊥(t1, . . . , tn)
The substitution, in a term t′, of a term t for a variable x, denoted {t�x}t′, is defined as usual, and

straightforwardly extended to elements of L>.
In the rest of this chapter, we consider a subset L ⊆ L>, of elements called literals and denoted

l, l1, l2 . . ., that is closed under negation and under substitution.1
For a set A of literals, we write {t�x}A for the set {{t�x}l | l ∈ A}. The closure of A under all

possible substitutions is denoted A↓. ※

Notation 11 We often write V,V ′ for the set or multiset union of V and V ′.

Remark 3 Negation obviously commutes with substitution.

Definition 12 (Inconsistency predicates)
An inconsistency predicate is a predicate over sets of literals
1. satisfied by the set {l, l⊥} for every literal l;
1Very often we will take L = L>, but it is not a necessity.

31

32 Chapter 3. A sequent calculus modulo theories

2. that is upward closed (if a subset of a set satisfies the predicate, so does the set);
3. such that if the sets A, l and A, l⊥ satisfy it, then so does A.
4. such that if a set A satisfies it, then so does {t�x}A.
The smallest inconsistency predicate is called the syntactical inconsistency predicate2. If a set A

of literals satisfies the syntactical inconsistency predicate, we say that A is syntactically inconsistent,
denoted A |=. Otherwise A is syntactically consistent.

In the rest of this chapter, we specify a “theory” T by considering another inconsistency predicate
called the semantical inconsistency predicate. If a set A of literals satisfies it, we say that A is
semantically inconsistent, denoted by A |=T . Otherwise A is semantically consistent. ※

Remark 4
• In the conditions above, (1) corresponds to basic inconsistency, (2) corresponds to weakening,

(3) corresponds to cut-admissibility and (4) corresponds to stability under instantiation.
Contraction is built-in because inconsistency predicates are predicates over sets of literals
(not multisets).

• If A is syntactically consistent, {t�x}A might not be syntactically consistent.

Definition 13 (Formulae)
The formulae of polarised classical logic are given by the following grammar:

Formulae A,B, . . . ::= l
| A∧+B | A∨+B | ∃xA | >+ | ⊥+

| A∧−B | A∨−B | ∀xA | >− | ⊥−

where l ranges over L.
The set of free variables of a formula A, denoted FV(A), and α-conversion, are defined as usual

so that both ∃xA and ∀xA bind x in A.
The size of a formula A, denoted](A), is its size as a tree (number of nodes).
Negation is extended from literals to all formulae:

(A∧+B)⊥ := A⊥∨−B⊥ (A∧−B)⊥ := A⊥∨+B⊥

(A∨+B)⊥ := A⊥∧−B⊥ (A∨−B)⊥ := A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

(>+)⊥ := ⊥− (>−)⊥ := ⊥+

(⊥+)⊥ := >− (⊥−)⊥ := >+

The substitution in a formula A of a term t for a variable x, denoted {t�x}A, is defined in the usual
capture-avoiding way. ※

Notation 14 For a set (resp. multiset) V of literals / formulae, V⊥ denotes {A⊥ | A ∈ V}
(resp. {{A⊥ | A ∈ V}}). Similarly, we write {t�x}V for {{t�x}A | A ∈ V} (resp. {{{t�x}A | A ∈ V}}),
and FV(V) for the set

⋃
A∈V FV(A).

Definition 15 (Polarities)
A polarisation set P is a set of literals (P ⊆ L) that is syntactically consistent, and such that

FV(P) is finite.
Given such a set, we define P-positive formulae and P-negative formulae as the formulae generated

by the following grammars:
P-positive formulae P, . . . ::= p | A∧+B | A∨+B | ∃xA | >+ | ⊥+

P-negative formulae N, . . . ::= p⊥ | A∧−B | A∨−B | ∀xA | >− | ⊥−

where p ranges over P.
In the rest of the chapter, p, p′,. . . will denote a literal that is P-positive, when the polarisation set

P is clear from context.
2It is the predicate that is true of a set A of literals iff A contains both l and l⊥ for some l ∈ L.

3.1. LKp(T): Definitions 33

Let UP be the set of all P-unpolarised literals, i.e. literals that are neither P-positive nor P-negative.
※

Remark 5 Notice that the negation of a P-positive formula is P-negative and vice versa. On the
contrary, nothing can be said of the polarity of the result of substitution on a literal w.r.t. the po-
larity of the literal: e.g. l could be in P-positive, while {t�x}l could be P-negative or P-unpolarised.

Definition 16 (LKp(T)) The sequent calculus LKp(T) manipulates two kinds of sequents:
Focused sequents Γ `P [A]
Unfocused sequents Γ `P ∆

where P is a polarisation set, Γ is a (finite) multiset of literals and P-negative formulae, ∆ is a
(finite) multiset of formulae, and A is said to be in the focus of the (focused) sequent.

By litP(Γ) we denote the sub-multiset of Γ consisting of its P-positive literals (i.e. P ∩Γ as a set).
The rules of LKp(T), given in Figure 3.1, are of three kinds: synchronous rules, asynchronous

rules, and structural rules. These correspond to three alternating phases in the proof-search process
that is described by the rules. ※

Synchronous rules
Γ `P [A] Γ `P [B]

(∧+)
Γ `P [A∧+B]

Γ `P [Ai]
(∨+)

Γ `P [A1∨+A2]
Γ `P [

{
t�x
}
A]

(∃)
Γ `P [∃xA]

(>+)
Γ `P [>+]

litP(Γ), l⊥ |=T
(Init1) l is P-positive

Γ `P [l]
Γ `P N

(Release) N is not P-positive
Γ `P [N]

Asynchronous rules
Γ `P A,∆ Γ `P B,∆

(∧−)
Γ `P A∧−B,∆

Γ `P A1, A2,∆
(∨−)

Γ `P A1∨−A2,∆

Γ `P A,∆
(∀) x /∈ FV(Γ,∆,P)

Γ `P (∀xA),∆

Γ `P ∆
(⊥−)

Γ `P ∆,⊥−
(>−)

Γ `P ∆,>−
Γ, A⊥ `P;A⊥ ∆

(Store) A is a literal
or is P-positiveΓ `P A,∆

Structural rules
Γ, P⊥ `P [P]

(Select) P is not P-negative
Γ, P⊥ `P

litP(Γ) |=T
(Init2)

Γ `P

where P;A := P, A if A ∈ UP
P;A := P if not

Figure 3.1: System LKp(T)

The gradual proof-tree construction defined by the inference rules of LKp(T) is a goal-directed
mechanism whose intuition can be given as follows:

Asynchronous rules are invertible: (∧−) and (∨−) are applied eagerly when trying to construct
the proof-tree of a given sequent; (Store) is applied when hitting a literal or a positive formula on
the right-hand side of a sequent, storing its negation on the left.

When the right-hand side of a sequent becomes empty, a sanity check can be made with (Init2)
to check the semantical consistency of the stored (positive) literals (w.r.t. the theory), otherwise
a choice must be made to place a formula in focus which is not P-negative, before applying

34 Chapter 3. A sequent calculus modulo theories

synchronous rules like (∧+) and (∨+). Each such rule decomposes the formula in focus, keeping
the revealed sub-formulae in the focus of the corresponding premises, until a positive literal or a
non-positive formula is obtained: the former case must be closed immediately with (Init1) calling
the decision procedure, and the latter case uses the (Release) rule to drop the focus and start
applying asynchronous rules again. The synchronous and the structural rules are in general not
invertible, and each application of those yields a potential backtrack point in the proof-search.

Remark 6 The polarisation of literals (if not already polarised) happens in the (Store) rule,
where the construction P;A plays a crucial role. It will be useful to notice the commutation
P;A;B = P;B;A unless A = B⊥ ∈ UP .

3.2 Admissibility of basic rules
In this section, we show the admissibility and invertibility of some rules, in order to prove the
meta-theory of LKp(T).

Lemma 7 (Weakening and contraction) The following rules are height-preserving admissible in
LKp(T):

Γ `P ∆
(Wl)

Γ, A `P ∆

Γ `P [B]
(Wf)

Γ, A `P [B]

Γ, A,A `P ∆
(Cl)

Γ, A `P ∆

Γ, A,A `P [B]
(Cf)

Γ, A `P [B]
Γ `P ∆, A,A

(Cr)
Γ `P ∆, A

Proof: By induction on the derivation of the premiss. �

Lemma 8 (Identities) The identity rules are admissible in LKp(T):

(Id1) l is P-positive
Γ, l `P [l]

(Id2)
Γ, l, l⊥ `P

Proof: It is trivial to prove Id1.
If l or l⊥ is P-positive, the Id2 rule can be obtained by a derivation of the following form:

(Id1)
Γ, l, l⊥ `P [l]

Γ, l, l⊥ `P
where l is assumed to be the P-positive literal.

If l ∈ UP , we polarise it positively with
Γ, l, l⊥, l `P,l

(Store)
Γ, l, l⊥ `P l⊥

(Release)
Γ, l, l⊥ `P [l⊥]

Γ, l, l⊥ `P
�

3.3 Invertibility of the asynchronous phase
We have mentioned that the asynchronous rules are invertible; now in this section, we prove it.

Lemma 9 (Invertibility of asynchronous rules) All asynchronous rules are invertible in LK(T).

3.3. Invertibility of the asynchronous phase 35

Proof: By induction on the derivation proving the conclusion of the asynchronous rule con-
sidered.

• Inversion of A∧−B: by case analysis on the last rule actually used
– (∧−)

Γ `P A∧−B,C,∆′ Γ `P A∧−B,D,∆′

Γ `P A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ `P A,C,∆′ Γ `P A,D,∆′

Γ `P A,C∧−D,∆′

and
Γ `P B,C,∆′ Γ `P B,D,∆′

Γ `P B,C∧−D,∆′

– (∨−)
Γ `P A∧−B,C,D,∆′

Γ `P A∧−B,C∨−D,∆′

By induction hypothesis we get

Γ `P A,C,D,∆′

Γ `P A,C∨−D,∆′

and
Γ `P B,C,D,∆′

Γ `P B,C∨−D,∆′
– (∀)

Γ `P A∧−B,C,∆′
x /∈ FV(Γ,∆′, A∧−B)

Γ `P A∧−B, (∀xC),∆′

By induction hypothesis we get

Γ `P A,C,∆′
x /∈ FV(Γ,∆′, A)

Γ `P A, (∀xC),∆′

and
Γ `P B,C,∆′

x /∈ FV(Γ,∆′, B)
Γ `P B, (∀xC),∆′

– (Store)
Γ, C⊥ `P;C⊥ A∧−B,∆′

C literal or P-positive formula
Γ `P A∧−B,C,∆′

By induction hypothesis we get

Γ, C⊥ `P;C⊥ A,∆′
C literal or P-positive formula

Γ `P A,C,∆′

and
Γ, C⊥ `P;C⊥ B,∆′

C literal or P-positive formula
Γ `P B,C,∆′

36 Chapter 3. A sequent calculus modulo theories

– (⊥−)
Γ `P A∧−B,∆′

Γ `P A∧−B,⊥−,∆′

By induction hypothesis we get

Γ `P A,∆′

Γ `P A,⊥−,∆′

and
Γ `P B,∆′

Γ `P B,⊥−,∆′

– (>−)

Γ `P A∧−B,>−,∆′

We get

Γ `P A,>−,∆′ and Γ `P B,>−,∆′

• Inversion of A∨−B: by case analysis on the last rule
– (∧−)

Γ `P A∨−B,C,∆′ Γ `P A∨−B,D,∆′

Γ `P A∨−B,C∧−D,∆′

By induction hypothesis we get

Γ `P A,B,C,∆′ Γ `P A,B,D,∆′

Γ `P A,B,C∧−D,∆′

– (∨−)
Γ `P A∨−B,C,D,∆′

Γ `P A∨−B,C∨−D,∆′

By induction hypothesis we get

Γ `P A,B,C,D,∆′

Γ `P A,B,C∨−D,∆′
– (∀)

Γ `P A∨−B,C,∆′
x /∈ FV(Γ,∆′)

Γ `P A∨−B, (∀xC),∆′

By induction hypothesis we get

Γ `P A,B,C,∆′
x /∈ FV(Γ,∆′)

Γ `P A,B, (∀xC),∆′
– (Store)

Γ, C⊥ `P;C⊥ A∨−B,∆′
C literal or P-postive formula

Γ `P A∨−B,C,∆′

By induction hypothesis we get

Γ, C⊥ `P;C⊥ A,B,∆′
C literal or P-positive formula

Γ `P A,B,C,∆′

3.3. Invertibility of the asynchronous phase 37

– (⊥−)
Γ `P A∨−B,∆′

Γ `P A∨−B,⊥−,∆′

By induction hypothesis we get

Γ `P A,B,∆′

Γ `P A,B,⊥−,∆′

– (>−)

Γ `P A∨−B,>−,∆′

We get

Γ `P A,B,>−,∆′

• Inversion of ∀xA: by case analysis on the last rule
– (∧−)

Γ `P (∀xA), C,∆′ Γ `P (∀xA), D,∆′

Γ `P (∀xA), C∧−D,∆′

By induction hypothesis we get

Γ `P A,C,∆′ Γ `P A,D,∆′
x /∈ FV(Γ,∆′)

Γ `P A,C∧−D,∆′

– (∨−)
Γ `P (∀xA), C,D,∆′

Γ `P (∀xA), C∨−D,∆′

By induction hypothesis we get

Γ `P A,C,D,∆′

Γ `P A,C∨−D,∆′

– (∀)
Γ `P (∀xA), D,∆′

x /∈ FV(Γ,∆′)
Γ `P (∀xA), (∀xD),∆′

By induction hypothesis we get

Γ `P A,D,∆′
x /∈ FV(Γ,∆′)

Γ `P A, (∀xD),∆′

– (Store)
Γ, C⊥ `P;C⊥ (∀xA),∆′

C literal or P-positive formula
Γ `P (∀xA), C,∆′

By induction hypothesis we get

Γ, C⊥ `P;C⊥ A,∆′
C literal or P-positive formula

Γ `P A,C,∆′

38 Chapter 3. A sequent calculus modulo theories

– (⊥−)
Γ `P (∀xA),∆′

Γ `P (∀xA),⊥−,∆′

By induction hypothesis we get

Γ `P A,∆′

Γ `P A,⊥−,∆′

– (>−)

Γ `P (∀xA),>−,∆′

We get

Γ `P A,>−,∆′

• Inversion of (Store): where A is a literal or P-positive formula.
By case analysis on the last rule
– (∧−)

Γ `P A,C,∆′ Γ `P A,D,∆′

Γ `P A,C∧−D,∆′

By induction hypothesis we get

Γ, A⊥ `P;A⊥ C,∆′ Γ, A⊥ `P;A⊥ D,∆′

Γ, A⊥ `P;A⊥ C∧−D,∆′

– (∨−)
Γ `P A,C,D,∆′

Γ `P A,C∨−D,∆′

By induction hypothesis
Γ, A⊥ `P;A⊥ C,D,∆′

Γ, A⊥ `P;A⊥ C∨−D,∆′
– (∀)

Γ `P A,D,∆′
x /∈ FV(Γ,∆′)

Γ `P A, (∀xD),∆′

By induction hypothesis we get

Γ, A⊥ `P;A⊥ D,∆′
x /∈ FV(Γ,∆′)

Γ, A⊥ `P;A⊥ (∀xD),∆′
– (Store)

Γ, B⊥ `P;B⊥ A,∆′
B literal or P-positive formula

Γ `P A,B,∆′

By induction hypothesis we can construct:
Γ, A⊥, B⊥ `P;B⊥;A⊥ ∆′

Γ, A⊥ `P;A⊥ B,∆′

provided P;B⊥;A⊥ = P;A⊥;B⊥, which is always the case unless A = B⊥ and A ∈ UP ,
in which case we build:

3.3. Invertibility of the asynchronous phase 39

(Id2)
Γ, A⊥, B⊥ `P;A⊥;B⊥ ∆′

Γ, A⊥ `P;A⊥ B,∆
– (⊥−)

Γ `P A,∆′

Γ `P A,⊥−,∆′

By induction hypothesis we get

Γ, A⊥ `P;A⊥ ∆′

Γ, A⊥ `P;A⊥ ⊥−,∆′

– (>−)

Γ `P A,>−,∆′

We get

Γ, A⊥ `P;A⊥ >−,∆′

• Inversion of (⊥−): by case analysis on the last rule
– (∧−)

Γ `P ⊥−, C,∆′ Γ `P ⊥−, D,∆′

Γ `P ⊥−, C∧−D,∆′

By induction hypothesis we get

Γ `P C,∆′ Γ `P D,∆′

Γ `P C∧−D,∆′

– (∨−)
Γ `P ⊥−, C,D,∆′

Γ `P ⊥−, C∨−D,∆′

By induction hypothesis
Γ `P C,D,∆′

Γ `P C∨−D,∆′
– (∀)

Γ `P ⊥−, D,∆′
x /∈ FV(Γ,∆′)

Γ `P ⊥−, (∀xD),∆′

By induction hypothesis we get

Γ `P D,∆′
x /∈ FV(Γ,∆′)

Γ `P (∀xD),∆′
– (Store)

Γ, B⊥ `P;B⊥ ⊥−,∆′
B literal or P-positive formula

Γ `P ⊥−, B,∆′

By induction hypothesis we get

Γ, B⊥ `P;B⊥ ∆′
B literal or P-positive formula

Γ `P B,∆′

40 Chapter 3. A sequent calculus modulo theories

– (⊥−)
Γ `P ⊥−,∆′

Γ `P ⊥−,⊥−,∆′

By induction hypothesis we get
Γ `P ∆′

Γ `P ⊥−,∆′

– (>−)

Γ `P >−,⊥−,∆′

We get

Γ `P >−,∆′

• Inversion of (>−): Nothing to do.
�

3.4 On-the-fly polarisation
The side-conditions of the LKp(T) rules make it quite clear that the polarisation of literals plays
a crucial role in the shape of proofs. The less flexible the polarisation of literals is, the more
structure is imposed on proofs. We therefore concentrated the polarisation of literals in just one
rule: (Store). In this section, we describe more flexible ways of changing the polarity of literals
without modifying the provability of sequents. We do this by showing the admissibility and
invertibility of some “on-the-fly” polarisation rules.

Lemma 10 (Invertibility) The following rules are invertible in LKp(T):
Γ `P,l ∆

(Pol) litP,l(Γ,∆⊥), l⊥ |=T
Γ `P ∆

Γ `P,l [A]
(Poli) litP,l(Γ), l⊥ |=T

Γ `P [A]
where l ∈ UP .

Proof: By simultaneous induction on the derivation of the conclusion (by case analysis on the
last rule used in that derivation):

• (∧−),(∨−),(∀),(⊥−),(>−)
For these rules, whatever is done with the polarisation set P can be done with the polarisation
set P, l:

Γ `P A,∆ Γ `P B,∆
Γ `P A∧−B,∆

Γ `P,l A,∆ Γ `P,l B,∆
Γ `P,l A∧−B,∆

Γ `P A,B,∆
Γ `P A∧−B,∆

Γ `P,l A,B,∆
Γ `P,l A∨−B,∆

Γ `P A,∆
Γ `P ∀xA,∆

Γ `P,l A,∆
Γ `P,l ∀xA,∆

Γ `P ∆
Γ `P ⊥−,∆

Γ `P,l ∆
Γ `P,l ⊥−,∆

Γ `P >−,∆ Γ `P,l >−,∆

3.4. On-the-fly polarisation 41

• (Store): We assume

Γ, A⊥ `P;A⊥ ∆
A is a literal or is P-positive

Γ `P A,∆

Notice that A is either a literal or a P, l-positive formula, so can prove
Γ, A⊥ `P,l;A

⊥
∆

Γ `P,l A,∆

provided we can prove the premiss.
– If A 6= l, then P, l;A⊥ = P;A⊥, l and applying the induction hypothesis finishes the

proof (unless A = l⊥ in which case the derivable sequent Γ, A⊥ `P;A⊥ ∆ is the same
as the premiss to be proved);

– If A = l, we build
litP′,l(Γ, l⊥,Γ′), l⊥ |=T

(Init1)
Γ, l⊥,Γ′ `P

′,l [l]
Γ, l⊥,Γ′ `P

′,l

(Store)
Γ,Γ′ `P

′,l l
(Store)==============

Γ `P,l l,∆
for some P ′ ⊇ P and some Γ′ ⊇ litL(∆⊥). The closing condition litP′,l(Γ, l⊥,Γ′), l⊥ |=T
holds, since litP,l(Γ, l⊥,∆⊥), l⊥ ⊆ litP′,l(Γ, l⊥, litL(∆⊥)), l⊥ is assumed inconsistent.

• (Select): We assume
Γ `P [A] A is not P-negative

A⊥ ∈ ΓΓ `P

– If A 6= l⊥, then A is not P, l-negative and we can use the induction hypothesis (invert-
ibility of Poli) to construct:

Γ `P,l [A]
Γ `P,l

– If A = l⊥, then l ∈ Γ and the hypothesis can only be derived by
Γ, l `P,l

Γ `P l⊥

Γ `P [l⊥]
Γ `P

as P; l = P, l; then we can construct:
Γ, l `P,l

(Cl)
Γ `P,l

• (Init2): We assume
litP(Γ) |=T

Γ `P

We build
litP,l(Γ) |=T

Γ `P,l

42 Chapter 3. A sequent calculus modulo theories

• (∧+),(∨+),(∃),(>+)
Again, for these rules, whatever is done with the polarisation set P can be done with the
polarisation set P, l:

Γ `P [A] Γ `P [B]
Γ `P [A∧+B]

Γ `P,l [A] Γ `P,l [B]
Γ `P,l [A∧+B]

Γ `P [Ai]
Γ `P [A1∨+A2]

Γ `P,l [Ai]
Γ `P,l [A1∨+A2]

Γ `P [
{
t�x
}
A]

Γ `P [∃xA]
Γ `P,l [

{
t�x
}
A]

Γ `P,l [∃xA]

Γ `P [>+] Γ `P,l [>+]
• (Release): We assume

Γ `P A
Γ `P [A]

where A is not P-positive.
– If A 6= l, then we build:

Γ `P,l A
Γ `P,l [A]

since A is not P, l-positive, and we close the branch by applying the induction hy-
pothesis (invertibility of Pol), whose side-condition litP,l(Γ, A⊥), l⊥ |=T is implied by
litP,l(Γ), l⊥ |=T .

– if A = l then we build
litP,l(Γ), l⊥ |=T

Γ `P,l [l]
where litP,l(Γ), l⊥ |=T is the side-condition of (Poli) that we have assumed.

• (Init1) We assume

Γ `P [l′]

with litP(Γ), l′⊥ |=T and l′ is P-positive.
We build:

Γ `P,l [l′]

since l′ is P, l-positive and litP,l(Γ), l′⊥ |=T .
�

Corollary 11 The following rules are admissible in LKp(T):
Γ, A⊥ `P ∆

(Store=)
Γ `P A,∆

Γ `P ∆
(Wr)

Γ `P ∆,∆′
where A is a literal or a P-positive formula.

Proof: For the first rule: if A is polarised, we use (Store) and it does not change P; otherwise
A is an unpolarised literal l and we build

Γ, l⊥ `P ∆
Γ, l⊥ `P,l

⊥
∆

(Store)
Γ `P l,∆

3.4. On-the-fly polarisation 43

The topmost inference is the invertibility of (Pol), given that litP,l⊥(Γ, l⊥), l |=T .
For the second case, we simply do a multiset induction on ∆′, using rule (Store=) for the base

case, followed by a left weakening. �

Now we can show that removing polarities is admissible:

Lemma 12 (Admissibility) The following rules are admissible in LKp(T):
Γ `P,l ∆

(Pol)
Γ `P ∆

Γ `P,l [A]
(Pola) l /∈ Γ or litP(Γ), l⊥ |=T

Γ `P [A]
where l ∈ UP .

Proof: By a simultaneous induction on the derivation of the premiss, again by case analysis on
the last rule used in the assumed derivation.

• (∧−),(∨−),(∀),(⊥−),(>−)
For these rules, whatever is done with the polarisation set P, l can be done with the polar-
isation set P:

Γ `P,l A,∆ Γ `P,l B,∆
Γ `P,l A∧−B,∆

Γ `P A,∆ Γ `P B,∆
Γ `P A∧−B,∆

Γ `P,l A,B,∆
Γ `P,l A∨−B,∆

Γ `P A,B,∆
Γ `P A∧−B,∆

Γ `P,l A,∆
Γ `P,l ∀xA,∆

Γ `P A,∆
Γ `P ∀xA,∆

Γ `P,l ∆
Γ `P,l ⊥−,∆

Γ `P ∆
Γ `P ⊥−,∆

Γ `P,l >−,∆ Γ `P >−,∆

• (Store): We assume

Γ, A⊥ `P,l;A
⊥

∆
A is a literal or P, l-positive

Γ `P,l A,∆

Notice that A is either a literal or a P-positive formula.
– If A = l⊥, we build

Γ, A⊥ `P,A
⊥

∆
(Store)

Γ `P A,∆

whose premiss is the derivable sequent Γ, A⊥ `P,l;A
⊥

∆.
– If A = l, we build

Γ, A⊥ `P ∆
(Store=)

Γ `P A,∆
using the admissibility of Store=, and we can prove the premiss from the induction
hypothesis, as we have P, l;A⊥ = P, l.

– In all other cases, we build
Γ, A⊥ `P;A⊥ ∆

(Store)
Γ `P A,∆

whose premiss is provable from the induction hypothesis, as we have P, l;A⊥ = P;A⊥, l.

44 Chapter 3. A sequent calculus modulo theories

• (Select): We assume
Γ `P,l [A] A⊥ ∈ Γ

and A not P, l-negativeΓ `P,l

– If l ∈ Γ then we can build:
Γ `P;l

(Wl)
Γ, l `P;l

Γ `P l⊥

Γ `P [l⊥]
Γ `P

and we close with the assumption since P; l = P, l.
– If l 6∈ Γ then litP,l(Γ) = litP(Γ)

Using the induction hypothesis (admissibility of Pola) we construct :

Γ `P [A]
Γ `P

since A is not P-negative.

• (Init2): We assume
litP,l(Γ) |=T

Γ `P,l

– If l ∈ Γ then again we can build:
Γ `P;l

(Wl)
Γ, l `P;l

Γ `P l⊥

Γ `P [l⊥]
Γ `P

and we close with the assumption since P; l = P, l.
– If l 6∈ Γ, litP,l(Γ) = litP(Γ), then we can build:

litP(Γ) |=T
Γ `P

• (∧+),(∨+),(∃),(>+)
Again, for these rules, whatever is done with the polarisation set P, l can be done with the
polarisation set P:

Γ `P,l [A] Γ `P,l [B]
Γ `P,l [A∧+B]

Γ `P [A] Γ `P [B]
Γ `P [A∧+B]

Γ `P,l [Ai]
Γ `P,l [A1∨+A2]

Γ `P [Ai]
Γ `P [A1∨+A2]

Γ `P,l [
{
t�x
}
A]

Γ `P,l [∃xA]

Γ `P [
{
t�x
}
A]

Γ `P [∃xA]

Γ `P,l [>+] Γ `P [>+]

3.5. Cut-elimination 45

• (Release): We assume
Γ `P,l A

Γ `P,l [A]

where A is not P, l-positive.
By induction hypothesis (admissibility of Pol) we can build:

Γ `P A
Γ `P [A]

• (Init1): We assume

Γ `P,l [l′]

where l′ is P, l-positive and litP,l(Γ), l′⊥ |=T .
– If l′ 6= l, then l′ is P-positive and we can build

litP(Γ), l′⊥ |=T
Γ `P [l′]

The condition litP(Γ), l′⊥ |=T holds for the following reasons:
If l /∈ Γ, then litP(Γ) = litP,l(Γ) and the condition is that of the hypothesis.
If l ∈ Γ, then the side-condition of (Pola) implies litP(Γ), l⊥ |=T ; moreover, the condi-
tion of the hypothesis can be rewritten as litP(Γ), l, l′⊥ |=T ; the fact that semantical
inconsistency admits cuts then proves the desired condition.

– If l′ = l then we build
Γ, l⊥ `P,l

⊥

Γ `P l
Γ `P [l]

which we close as follows: If l ∈ Γ then we can apply Id2, otherwise we apply Init2: the
condition litP,l⊥(Γ, l⊥) |=T holds because litP,l⊥(Γ, l⊥) = litP(Γ), l⊥ = litP,l(Γ), l⊥ and
the condition of the hypothesis is litP,l(Γ), l⊥ |=T .

�

Corollary 13 The (Store=) rule is invertible, and the (Select−) rule is admissible:
Γ, A⊥ `P ∆

(Store=) A is literal
or is P-positiveΓ `P A,∆

Γ, l⊥ `P,l
⊥

[l]
(Select−)

Γ, l⊥ `P,l
⊥

Proof:
(Store=) Using the invertibility of (Store), we get a proof of Γ, A⊥ `P;A⊥ ∆. If A is polarised, then

P;A⊥ = P and we are done. Otherwise we have a proof of Γ, A⊥ `P,A
⊥

∆ and we apply
the admissibility of (Pol) to conclude.

(Select−) The ony proof of Γ, l⊥ `P,l
⊥

[l] comes from Γ, l⊥, l⊥ `P,l
⊥
, then we use the admissibility of

contraction.
�

3.5 Cut-elimination
In Chapter 2, we discuss the cut-elimination property in sequent calculus. The cut rule usually
allows the encoding of other inference systems into sequent calculus. Therefore the cut-elimination

46 Chapter 3. A sequent calculus modulo theories

property is often the key property to prove the completeness of a sequent calculus. In particular,
this is how we prove completeness of LKp(T): using the admissibility of following cut rule:

Γ `P A,∆ Γ `P A⊥,∆
cut7

Γ `P ∆
To prove that cut7 is admissible, we will use inductions, relying on the admissibility of six other

form of cuts: cut1, cut2, cut3, cut4, cut5, cut6.
Moreover, another form of cut cut8, deriving from cut7, we also be proved admissible and will

be used to simulate the DPLL(T) procedure as proof-search in LKp(T) (see Chapter 4)

3.5.1 Cuts with the theory
Theorem 14 (cut1 and cut2)

The following rules are admissible in LKp(T), assuming l /∈ UP :
litP(Γ), l⊥ |=T Γ, l `P ∆

cut1
Γ `P ∆

litP(Γ), l⊥ |=T Γ, l `P [B]
cut2

Γ `P [B]

Proof:
By simultaneous induction on the derivation of the right premiss.
We reduce cut1 by case analysis on the last rule used to prove the right premiss.

• (∧−)

litP(Γ), l⊥ |=T

Γ, l `P B,∆ Γ, l `P C,∆
Γ, l `P B∧−C,∆

cut1
Γ `P B∧−C,∆

reduces to
litP(Γ), l⊥ |=T Γ, l `P B,∆

cut1
Γ `P B,∆

litP(Γ), l⊥ |=T Γ, l `P C,∆
cut1

Γ `P C,∆
Γ `P B∧−C,∆

• (∨−)

litP(Γ), l⊥ |=T

Γ, l `P B1, B2,∆
Γ, l `P B1∨−B2,∆ cut1

Γ `P B1∨−B2,∆

reduces to
litP(Γ), l⊥ |=T Γ, l `P B1, B2,∆ cut1

Γ `P B1, B2,∆
Γ `P B1∨−B2,∆

• (∀)

litP(Γ), l⊥ |=T

Γ, l `P B,∆
Γ, l `P ∀xB,∆

cut1
Γ `P ∀xB,∆

reduces to
litP(Γ), l⊥ |=T Γ, l `P B,∆

cut1
Γ `P B,∆

Γ `P ∀xB,∆

• (Store) where B is a literal or P-positive formula.

litP(Γ), l⊥ |=T

Γ, l, B⊥ `P;B⊥ ∆
Γ, l `P B,∆

cut1
Γ `P B,∆

reduces to
litP;B⊥(Γ, B⊥), l⊥ |=T Γ, l, B⊥ `P;B⊥ ∆

cut1
Γ, B⊥ `P;B⊥ ∆

Γ `P B,∆

We have litP;B⊥(Γ, B⊥), l⊥ |=T since litP(Γ), l⊥ ⊆ litP;B⊥(Γ, B⊥), l⊥ and we assume se-
mantical inconsistency to satisfy weakening.

3.5. Cut-elimination 47

• (⊥−)

litP(Γ), l⊥ |=T

Γ, l `P ∆
Γ, l `P ⊥−,∆

cut1
Γ `P ⊥−,∆

reduces to
litP(Γ), l⊥ |=T Γ, l `P ∆

cut1
Γ `P ∆

Γ `P ⊥−,∆

• (>−)

litP(Γ), l⊥ |=T Γ, l `P >−,∆
cut1

Γ `P >−,∆
reduces to Γ `P >−,∆

• (Select) where P⊥ ∈ Γ, l and P is not P-negative.

If P⊥ ∈ Γ,

litP(Γ), l⊥ |=T

Γ, l `P [P]
Γ, l `P

cut1
Γ `P

reduces to
litP(Γ), l⊥ |=T Γ, l `P [P]

cut2
Γ `P [P]

Γ `P

If P⊥ = l, then as P is not P-negative and l /∈ UP we get that l⊥ is P-positive, so

litP(Γ), l⊥ |=T

litP(Γ), l |=T
Γ, l `P [l⊥]

Γ, l `P
cut1

Γ `P

reduces to
litP(Γ) |=T Init2

Γ `P

since semantical inconsistency admits cuts.

• (Init2)

litP(Γ), l⊥ |=T

litP(Γ), l |=T
Γ, l `P

cut1
Γ `P

reduces to
litP(Γ) |=T

Γ `P

since semantical inconsistency admits cuts.
We reduce cut2 again by case analysis on the last rule used to prove the right premiss.

• (∧+)

litP(Γ), l⊥ |=T

Γ, l `P [B] Γ, l `P [C]
Γ, l `P [B∧+C]

cut2
Γ `P [B∧+C]

reduces to

litP(Γ), l⊥ |=T Γ, l `P [B]
cut2

Γ `P [B]
litP(Γ), l⊥ |=T Γ, l `P [C]

cut2
Γ `P [C]

Γ `P [B∧+C]

• (∨+)

litP(Γ), l⊥ |=T

Γ, l `P [Bi]
Γ, l `P [B1∨+B2]

cut2
Γ `P [B1∨+B2]

reduces to
litP(Γ), l⊥ |=T Γ, l `P [Bi] cut2

Γ `P [Bi]
Γ `P [B1∨+B2]

• (∃)

48 Chapter 3. A sequent calculus modulo theories

litP(Γ), l⊥ |=T

Γ, l `P [
{
t�x
}
B]

Γ, l `P [∃xB]
cut2

Γ `P [∃xB]

reduces to
litP(Γ), l⊥ |=T Γ, l `P [

{
t�x
}
B]

cut2
Γ `P [

{
t�x
}
B]

Γ `P [∃xB]

• (>+)

litP(Γ), l⊥ |=T Γ, l `P [>+]
cut2

Γ `P [>+]
reduces to Γ `P [>+]

• (Release)

litP(Γ), l⊥ |=T

Γ, l `P N
Γ, l `P [N]

cut2
Γ `P [N]

reduces to
litP(Γ), l⊥ |=T Γ, l `P N

cut1
Γ `P N

Γ `P [N]

• (Init1)

litP(Γ), l⊥ |=T

litP(Γ), l, p⊥ |=T
Γ, l `P [p]

cut2
Γ `P [p]

reduces to
litP(Γ), p⊥ |=T

Γ `P [p]

since weakening gives litP(Γ), l⊥, p⊥ |=T and semantical inconsistency admits cuts.
�

3.5.2 Safety and instantiation
Now we would like to prove the admissibility of other cuts, where both premisses are derived as a
judgement of LKp(T). Unfortunately, the expected cut-rules are not necessarily admissible unless
we consider the following notion of safety.

Definition 17 (Safety)
• A pair (Γ,P) (of a context and a polarisation set) is said to be safe if:

for all Γ′ ⊇ Γ, for all semantically consistent sets of literals R with litP(Γ′) ⊆ R ⊆ litP(Γ′)∪U↓P ,
and for all P-positive literal l, if R, l⊥ |=T then litP(Γ′), l⊥ |=T .

• A sequent Γ `P [A] (resp. Γ `P ∆) is said to be safe
if the pair (Γ,P) (resp. ((Γ,∆⊥),P)) is safe.

※

Remark 15 Safety is a property that is monotonic in its first argument: if (Γ,P) is safe and
Γ ⊆ Γ′ then (Γ′,P) is safe (this property is built into the definition by the quantification over Γ′).

When restricted to safe sequents, the expected cuts are indeed admissible. In order to show
that the safety condition is not very restrictive, we show the following lemma:

Lemma 16 (Cases of safety)
1. Empty theory:

When the theory is empty (semantical inconsistency coincides with syntactical inconsistency),
the safety of (Γ,P) means that either litP(Γ) is syntactically inconsistent, or every P-positive
literal that is an instance of a P-unpolarised literal must be in Γ (i.e. P ∩ U↓P ⊆ Γ).
In the particular case of propositional logic ({t�x}l = l for every l ∈ L), every sequent is safe.

3.5. Cut-elimination 49

2. Full polarisation:
When every literal is polarised (UP = ∅), every sequent (with polarisation set P) is safe.

3. No polarisation:
When every literal is unpolarised (UP = L), every sequent (with polarisation set P) is safe.

4. Safety is an invariant of proof-search:
for every rule of LKp(T), if its conclusion is safe then each of its premisses is safe.

Proof:
1. In the case of the empty theory, if R is consistent then R, l⊥ |=T means that l ∈ R, so either
l ∈ litP(Γ′) or l ∈ U↓P ; that this should imply litP(Γ′), l⊥ |=T means that l ∈ litP(Γ′) anyway,
unless litP(Γ′) is syntactically inconsistent. In particular for Γ′ = Γ.
In the case of propositional logic, there are no P-positive literals that are in U↓P = UP , so
every sequent is safe.

2. When every literal is polarised (UP = ∅), then R = litP(Γ′) and the result is trivial.
3. When every literal is unpolarised (UP = L), the property holds trivially.
4. For every rule of LKp(T), if its conclusion is safe then each of its premisses is safe.

Every rule is trivial (considering monotonicity) except (Store), for which it suffices to show:
Assume (Γ,P) is safe and A ∈ Γ; then (Γ, (P;A)) is safe.
Consider Γ′ ⊇ Γ and R such that litP;A(Γ′) ⊆ R ⊆ litP;A(Γ′) ∪ U↓P;A.

• If A ∈ UP , then P;A = P, A and the inclusions can be rewritten as
litP(Γ′), A ⊆ R ⊆ litP(Γ′), A ∪ U↓P,A

Since UP,A ⊆ UP we have U↓P,A ⊆ U↓P and therefore

litP(Γ′) ⊆ R ⊆ litP(Γ′) ∪ U↓P
Hence, R is a set for which safety of (Γ,P) implies litP(Γ′), l⊥ |=T for every l ∈ P such
that R, l⊥ |=T .
For l = A, then trivially litP,A(Γ′), l⊥ |=T as A ∈ Γ′.

• If A 6∈ UP , then P;A = P and the result is trivial.
�

Now cut-elimination in presence of quantifiers relies heavily on the fact that, if a proof can
be constructed with a free variables x, then it can be replayed when x is instantiated by a par-
ticular term throughout the proof. In a polarised world, this is made difficult by the fact that a
polarisation set P (i.e. a set that is syntactically consistent) might not remain a polarisation set
after instantiation (i.e. {t�x}P might not be syntactically consistent: imagine p(x, 3) is P-positive
and p(3, x) is P-negative, then after substituting 3 for x, what is the polarity of p(3, 3)?). Hence,
polarities will have to be changed and therefore the exact same proof may not be replayed, but
under the hypothesis that the substituted sequent is safe, we manage to reconstruct some proof.
The first step to prove this is the following lemma:

Lemma 17 (Admissibility of instantiation with the theory) Let P be a polarisation set such
that x 6∈ FV(P), let l1, . . . , ln be n literals, A be a set of literals, x be a variable and t be a term with
x /∈ FV(t).

Let Pi := P; l1; . . . ; li with P0 := P, and similarly let P ′i := P; {t�x}l1; . . . ; {t�x}li with P ′0 := P.
Assume
• for all i such that 1 ≤ i ≤ n, we have li ∈ Γ;
• ({t�x}Γ,P ′n) is safe;
• litPn

(Γ),A |=T .
Then either litP′n(Γ), {t�x}A |=T or {t�x}Γ `P

′
n is derivable in LKp(T).

50 Chapter 3. A sequent calculus modulo theories

Proof: Let {l′1, . . . , l′m} be the set of literals {l ∈ litPn
(Γ) | {t�x}l is not P ′n-positive}. We have

{t�x}litPn(Γ) ⊆ litP′n({t�x}Γ), {t�x}l′1, . . . , {t�x}l′m
Since litPn

(Γ),A |=T and semantical inconsistency is stable under instantiation and weakening,
we have litP′n({t�x}Γ), {t�x}l′1, . . . , {t�x}l′m, {t�x}A |=T .

• If all of the sets (litP′n({t�x}Γ), {t�x}l′j
⊥)1≤j≤n are semantically inconsistent, then from

litP′n({t�x}Γ), {t�x}l′1, . . . , {t�x}l′m, {t�x}A |=T
we get litP′n({t�x}Γ), {t�x}A |=T , since semantically inconsistency admits cuts.

• Otherwise, there is some l′j ∈ litPn
(Γ) such that {t�x}l′j is not P ′n-positive and such that

R := litP′n({t�x}Γ), {t�x}l′j
⊥ is semantically consistent.

Notice that l′j is not P-positive, otherwise {t�x}l′j would also be P-positive (since x /∈ FV(P)),
so l′j = li for some i such that 1 ≤ i ≤ n, with li ∈ UPi−1 .
Now, if {t�x}Γ is syntactically inconsistent, we build

Id2{t�x}Γ `P
′
n

If on the contrary {t�x}Γ is syntactically consistent, then {{t�x}l1, . . . , {t�x}ln} is also syn-
tactically consistent (as every element is assumed to be in {t�x}Γ).
Therefore, {t�x}li must be P-negative, otherwise it would ultimately be P ′n-positive.
So {t�x}l⊥i is P-positive, and ultimately P ′n-positive.
Now ({t�x}Γ,P ′n) is assumed to be safe, so we want to apply this property to Γ′ := Γ, to
the semantically consistent set R, and to the P ′n-positive literal {t�x}l⊥i , so as to conclude

litP′n({t�x}Γ), {t�x}li |=T
To apply the safety property, we note that that R, {t�x}li |=T and that

litP′n({t�x}Γ) ⊆ R ⊆ litP′n({t�x}Γ) ∪ U↓P′n
provided we have li ∈ UP′n .
In order to prove that proviso, first notice that li ∈ UP , since li ∈ UPi

. Now we must have
x ∈ FV(li), otherwise li = {t�x}li and we know that {t�x}li is P-negative. Since none of the
literals ({t�x}lk)1≤k≤n have x as a free variable, we conclude the proviso li ∈ UP′n .
Therefore safety ensures litP′n({t�x}Γ), {t�x}li |=T and we can finally build

Init1{t�x}Γ `P
′
n [
{
t�x
}
l⊥i]

Select {
t�x
}

Γ `P
′
n

as {t�x}l⊥i is P ′n-positive.
�

We can finally state and prove the admissibility of instantiation:

Lemma 18 (Admissibility of instantiation) Let P be a polarisation set such that x 6∈ FV(P),
let l1, . . . , ln be n literals, x be a variable and t be a term with x /∈ FV(t).

Let Pi := P; l1; . . . ; li with P0 := P, and similarly let P ′i := P; {t�x}l1; . . . ; {t�x}li with P ′0 := P.
The following rules are admissible in LKp(T):3

Γ `Pn ∆
(Inst){

t�x
}

Γ `P
′
n
{
t�x
}

∆
Γ `Pn [B]

(Instf){
t�x
}

Γ `P
′
n [
{
t�x
}
B] or

{
t�x
}

Γ `P
′
n

where we assume
3The admissibility of (Instf) means that if Γ `Pn [B] is derivable in LKp(T) then either

{
t�x
}

Γ `P
′
n [
{
t�x
}
B]

or
{
t�x
}

Γ `P
′
n is derivable in LKp(T).

3.5. Cut-elimination 51

• for all i such that 1 ≤ i ≤ n, we have li ∈ Γ;
• {t�x}Γ `P

′
n {t�x}∆ is safe in (Inst);

• ({t�x}Γ,P ′n) is safe in (Instf).

Proof: By induction on the derivation of the premiss.
• (∧−),(∨−),(∀),(⊥−),(>−),(∧+),(∨+),(∃),(>+)

These rules are straightforward as the polarisation set is not involved.
• (Store) We assume

Γ, A⊥ `Pn;A⊥ ∆
Γ `Pn A,∆

where A is a literal or is Pn-positive.
Using the induction hypothesis on the premiss we can build{

t�x
}

Γ,
{
t�x
}
A⊥ `P

′
n;{t�x}A⊥ {t�x}∆{

t�x
}

Γ `P
′
n
{
t�x
}
A,
{
t�x
}

∆

since {t�x}A is a literal or is P ′n-positive.
• (Select) We assume

Γ, P⊥ `Pn [P]
Γ, P⊥ `Pn

where P is not Pn-negative.
If {t�x}P is not P ′n-negative, then we can apply the induction hypothesis and build{

t�x
}

Γ,
{
t�x
}
P⊥ `P

′
n [
{
t�x
}
P]{

t�x
}

Γ,
{
t�x
}
P⊥ `P

′
n

Otherwise, {t�x}P is a P ′n-negative literal and we can do the same as above with the (Select−)
rule instead of (Select).

• (Init2) We assume
litPn

(Γ) |=T
Γ `Pn

We use Lemma 17 with A := ∅, since we know litPn
(Γ) |=T .

If we get litP′n({t�x}Γ) |=T , we build a proof with the same rule (Init2):
litP′n(

{
t�x
}

Γ) |=T{
t�x
}

Γ `P
′
n

If not, we directly get a proof of {t�x}Γ `P
′
n .

• (Init1) We assume
litPn(Γ), p⊥ |=T

Γ `Pn [p]
where p is Pn-positive.
We use Lemma 17 with A := {p}, since we know litPn

(Γ), p⊥ |=T .
If we get litP′n({t�x}Γ), {t�x}p⊥ |=T , we build a proof with the same rule (Init1):

litP′n(
{
t�x
}

Γ),
{
t�x
}
p⊥ |=T{

t�x
}

Γ `P
′
n [
{
t�x
}
p]

52 Chapter 3. A sequent calculus modulo theories

If not, we directly get a proof of {t�x}Γ `P
′
n .

• (Release) We assume
Γ `Pn N

Γ `Pn [N]
where N is not Pn-positive.
If {t�x}N is not P ′n-positive, then we can apply the induction hypothesis and build{

t�x
}

Γ `P
′
n
{
t�x
}
N{

t�x
}

Γ `P
′
n [
{
t�x
}
N]

Otherwise, N is a literal l that is not Pn-positive, but such that {t�x}l is P ′n-positive.
– If litP′n({t�x}Γ), {t�x}l |=T , then we build

litP′n(
{
t�x
}

Γ),
{
t�x
}
l |=T

{
t�x
}

Γ,
{
t�x
}
l⊥ `P

′
n

cut1 {
t�x
}

Γ `P
′
n

where the right premiss is proved as follows:
Notice that the assumed derivation of Γ `Pn l necessarily contains a sub-derivation con-
cluding Γ, l⊥ `Pn;l⊥ , and applying the induction hypothesis on this yields a derivation
of {t�x}Γ, {t�x}l⊥ `P

′
n .

– Assume now that R := litP′n({t�x}Γ), {t�x}l is semantically consistent. We build
Init1{t�x}Γ `P

′
n [
{
t�x
}
l]

and we have to prove the side-condition litP′n({t�x}Γ), {t�x}l⊥ |=T .
This is trivial if {t�x}l ∈ {t�x}Γ (as {t�x}l is P ′n-positive).
If on the contrary {t�x}l /∈ {t�x}Γ, then we get it from the assumed safety of ({t�x}Γ,P ′n),
applied to Γ′ := Γ, to the semantically consistent set R, and to the P ′n-positive literal
{t�x}l. To apply the safety property, we note that R, {t�x}l⊥ |=T and that

litP′n({t�x}Γ) ⊆ R ⊆ litP′n({t�x}Γ) ∪ U↓P′n
provided we have {t�x}l ∈ U↓P′n .
We prove that l ∈ UP′n as follows:
First notice that l ∈ UP , otherwise l would be P-negative and so would be {t�x}l (since
x /∈ FV(P)). Then notice that {t�x}l must be P-positive, since it is P ′n-positive but
{t�x}l /∈ {t�x}Γ. Therefore l 6= {t�x}l, so x ∈ FV(l), and finally we get l ∈ UP′n , since
none of the literals ({t�x}lk)1≤k≤n have x as a free variable.

�

3.5.3 More general cuts
Theorem 19 (cut3, cut4 and cut5) The following rules are admissible in LKp(T):4

Γ `P [A] Γ `P A⊥,∆
(cut3)

Γ `P ∆

Γ `P N Γ, N `P;N ∆
(cut4)

Γ `P ∆

Γ `P N Γ, N `P;N [B]
(cut5)

Γ `P [B] or Γ `P
where

• N is assumed to not be P-positive in cut4 and cut5;
4The admissibility of cut5 means that if Γ `P N and Γ, N `P;N [B] are derivable in LKp(T) then either Γ `P [B]

or Γ `P is derivable in LKp(T).

3.5. Cut-elimination 53

• the sequent Γ `P ∆ in cut3 and cut4, and the pair (Γ,P) in cut5, are all assumed to be safe.

Proof: By simultaneous induction on the following lexicographical measure:
• the size of the cut-formula (A or N)
• the fact that the cut-formula (A or N) is positive or negative

(if of equal size, a positive formula is considered smaller than a negative formula)
• the height of the derivation of the right premiss
Weakenings and contractions (as they are admissible in the system) are implicitly used through-

out this proof.
In order to eliminate cut3, we analyse which rule is used to prove the left premiss. We then use

invertibility of the negative phase so that the last rule used in the right premiss is its dual one.
• (∧+)

Γ `P [A] Γ `P [B]
Γ `P [A∧+B]

Γ `P A⊥, B⊥,∆
Γ `P A∨−B,∆

cut3
Γ `P ∆

reduces to

Γ `P [B]
Γ `P [A] Γ `P A⊥, B⊥,∆

cut3
Γ `P B⊥,∆

cut3
Γ `P ∆

• (∨+)

Γ `P [Ai]
Γ `P [A1∨+A2]

Γ `P A⊥1 ,∆ Γ `P A⊥2 ,∆
Γ `P A1∧−A2,∆ cut3

Γ `P ∆
reduces to

Γ `P [Ai] Γ `P A⊥i ,∆ cut3
Γ `P ∆

• (∃)
Γ `P [

{
t�x
}
A]

Γ `P [∃xA]
Γ `P A⊥,∆

x /∈ FV(Γ,∆,P)
Γ `P (∀xA⊥),∆

cut3
Γ `P ∆

reduces to

Γ `P [
{
t�x
}
A]

Γ `P A⊥,∆
Γ `P (

{
t�x
}
A⊥),∆

cut3
Γ `P ∆

using Lemma 18 (admissibility of instantiation) with n = 0, noticing that x /∈ FV(P) and
that Γ `P ({t�x}A⊥),∆ is safe (since Γ `P ∆ is safe).5

• (>+)

Γ `P [>+]
Γ `P ∆

Γ `P ⊥−,∆
cut3

Γ `P ∆

reduces to Γ `P ∆

5Using α-conversion, we can also pick x such that x /∈ FV(t).

54 Chapter 3. A sequent calculus modulo theories

• (Init1)
litP(Γ), p⊥ |=T

Γ `P [p]
Γ, p `P ∆

Γ `P (p⊥),∆
cut3

Γ `P ∆

reduces to
litP(Γ), p⊥ |=T Γ, p `P ∆

cut1
Γ `P ∆

with p ∈ P.
• (Release)

Γ `P N
Γ `P [N]

Γ, N `P;N ∆
Γ `P (N⊥),∆

cut3
Γ `P ∆

reduces to
Γ `P N Γ, N `P;N ∆

cut4
Γ `P ∆

where N is not P-positive. We will describe below how cut4 is reduced.
In order to reduce cut4, we analyse which rule is used to prove the right premiss.
• (∧−)

Γ `P N
Γ, N `P;N B,∆ Γ, N `P;N C,∆

Γ, N `P;N B∧−C,∆
cut4

Γ `P B∧−C,∆
reduces to

Γ `P N Γ, N `P;N B,∆
cut4

Γ `P B,∆
Γ `P N Γ, N `P;N C,∆

cut4
Γ `P C,∆

Γ `P B∧−C,∆
• (∨−)

Γ `P N
Γ, N `P;N B,C,∆

Γ, N `P;N B∨−C,∆
cut4

Γ `P B∨−C,∆

reduces to
Γ `P N Γ, N `P;N B,C,∆

cut4
Γ `P B,C,∆

Γ `P B∨−C,∆
• (∀)

Γ `P N
Γ, N `P;N B,∆

Γ, N `P;N ∀xB,∆
cut4

Γ `P ∀xB,∆

reduces to
Γ `P N Γ, N `P;N B,∆

cut4
Γ `P B,∆

Γ `P ∀xB,∆
• (⊥−)

Γ `P N
Γ, N `P;N ∆

Γ, N `P;N ⊥−,∆
cut4

Γ `P ⊥−,∆

reduces to
Γ `P N Γ, N `P;N ∆

cut4
Γ `P ∆

Γ `P ⊥−,∆
• (Store)

Γ `P N
Γ, N,B⊥ `P;N ;B⊥ ∆

Γ, N `P;N B,∆
cut4

Γ `P B,∆

reduces to
Γ, B⊥ `P;B⊥ N Γ, N,B⊥ `P;B⊥;N ∆

cut4
Γ, B⊥ `P;B⊥ ∆

Γ `P B,∆
whose left branch is closed by using
– possibly the admissibility of (Pol) (if B ∈ UP), so as to get Γ, B⊥ `P N ,
– then the admissibility of (Wl) (on B⊥), to get to the provable premiss Γ `P N ;

3.5. Cut-elimination 55

whose right branch is the same as the provable Γ, N,B⊥ `P;N ;B⊥ ∆ unless B = N ∈ UP , in
which case the commutation P;B⊥;N = P;N ;B⊥ does not hold. In this last case, we build

Γ `P B
(Wr)

Γ `P B,∆
• (Init2) when N 6∈ UP , in which case P;N = P and litP(Γ, N) = litP(Γ) (since N 6∈ P either):

Γ `P N
litP(Γ) |=T
Γ, N `P;N

cut4
Γ `P

reduces to
litP(Γ) |=T

Γ `P

• (Init2) when N ∈ UP , in which case litP;N (Γ, N) = litP(Γ), N :

Γ, N⊥ `P,N
⊥

Γ `P N
litP(Γ), N |=T

Γ, N `P;N

cut4
Γ `P

reduces to litP,N⊥(Γ), N |=T Γ, N⊥ `P,N
⊥

cut1
Γ `P

since litP(Γ), N |=T implies litP,N⊥(Γ), N |=T .
• (Select) on formula N⊥

Γ `P N
Γ, N `P;N [N⊥]

Γ, N `P;N

cut4
Γ `P

reduces to
Γ `P N Γ, N `P;N [N⊥]

cut5
Γ `P [N⊥] Γ `P N

cut3
Γ `P

or to
Γ `P N Γ, N `P;N [N⊥]

cut5
Γ `P

depending on the outcome of cut5
• (Select) on a formula P that is not P;N -negative

Γ, P⊥ `P N
Γ, P⊥, N `P;N [P]

Γ, P⊥, N `P;N

cut4
Γ, P⊥ `P

reduces to
Γ, P⊥ `P N Γ, P⊥, N `P;N [P]

cut5
Γ, P⊥ `P [P]

Γ, P⊥ `P

or to
Γ, P⊥ `P N Γ, P⊥, N `P;N [N⊥]

cut5
Γ, P⊥ `P

depending on the outcome of cut5
We have reduced all cases of cut4; we now reduce the cases for cut5 (again, by case analysis on

the last rule used to prove the right premiss).
• (∧+) We are given

Γ `P N and
Γ, N `P;N [B1] Γ, N `P;N [B2]

Γ, N `P;N [B1∧+B2]

and by cut5 we want to derive either Γ `P [B1∧+B2] or Γ `P .
If we can, we build

Γ `P N Γ, N `P;N [B1]
cut5

Γ `P [B1]
Γ `P N Γ, N `P;N [B2]

cut5
Γ `P [B2]

Γ `P [B1∧+B2]

56 Chapter 3. A sequent calculus modulo theories

Otherwise we build
Γ `P N Γ, N `P;N [Bi] cut5

Γ `P

where i is (one of) the premiss(es) for which cut5 produces a proof of Γ `P .
• (∨+) We are given

Γ `P N and
Γ, N `P;N [Bi]

Γ, N `P;N [B1∨+B2]

and by cut5 we want to derive either Γ `P [B1∨+B2] or Γ `P .
If we can, we build

Γ `P N Γ, N `P;N [Bi] cut5
Γ `P [Bi]

Γ `P [B1∨+B2]
Otherwise we build

Γ `P N Γ, N `P;N [Bi]
Γ `P

• (∃) We are given

Γ `P N and
Γ, N `P;N [

{
t�x
}
B]

Γ, N `P;N [∃xB]

and by cut5 we want to derive either Γ `P [∃xB] or Γ `P .
If we can, we build

Γ `P N Γ, N `P;N [
{
t�x
}
B]

cut5
Γ `P [

{
t�x
}
B]

Γ `P [∃xB]
Otherwise we build

Γ `P N Γ, N `P;N [
{
t�x
}
B]

Γ `P

• (>+) We are given

Γ `P N and Γ, N `P;N [>+]

and by cut5 we want to derive either Γ `P [>+] or Γ `P .
We build

Γ `P [>+]
• (Release) We are given:

Γ `P N and
Γ, N `P;N N ′

Γ, N `P;N [N ′]
where N ′ is not P;N -positive;
and by cut5 we want to derive either Γ `P [N ′] or Γ `P .
We build

Γ `P N Γ, N `P;N N ′

cut4
Γ `P N ′

Γ `P [N ′]

3.5. Cut-elimination 57

since N ′ is not P-positive.
• (Init1) We are given:

Γ `P N and
litP;N (Γ, N), p⊥ |=T

Γ, N `P;N [p]
with p ∈ P;N ,
and by cut5 we want to derive either Γ `P [p] or Γ `P .
If N is P-negative
then P;N = P and p is P-positive. So litP;N (Γ, N), p⊥ = litP(Γ), p⊥ and we build

(Init1)
Γ `P [p]

If N ∈ UP (litP;N (Γ, N), p⊥ = litP(Γ), N, p⊥)
– if p = N then we build

Γ `P N
Γ `P [N]

as N is not P-positive;
– if p 6= N then p is P-positive

1. if litP(Γ), N |=T
then applying invertibility of (Store=) on Γ `P N gives Γ, N⊥ `P and we build:

litP(Γ), N |=T Γ, N⊥ `P
cut1

Γ `P

2. if litP(Γ), N 6|=T
then R := litP(Γ), N is a set of literals satisfying litP(Γ) ⊆ R ⊆ litP(Γ)∪UP (since
N ∈ UP) and R, p⊥ |=T .
Hence we get litP(Γ), p⊥ |=T as well, since (Γ,P) is assumed to be safe.
We can finally build

litP(Γ), p⊥ |=T
(Init1)

Γ `P [p]
�

Theorem 20 (cut6, cut7, and cut8) The following rules are admissible in LK(T).
Γ `P N,∆ Γ, N `P;N ∆

cut6
Γ `P ∆

Γ `P A,∆ Γ `P A⊥,∆
cut7

Γ `P ∆
Γ, l `P;l ∆ Γ, l⊥ `P;l⊥ ∆

cut8
Γ `P ∆

Proof: cut6 is proved admissible by induction on the multiset ∆: the base case is the admissibility
of cut4, and the other cases just require the inversion of the connectives in ∆ (using (Store=) instead
of (Store), to avoid modifying the polarisation set).

For cut7, we can assume without loss of generality (swapping A and A⊥) that A is not P-
positive. Applying inversion on Γ `P A⊥,∆ gives a proof of Γ, A `P;A ∆, and cut7 is then obtained
by cut6:

Γ `P A,∆ Γ, A `P;A ∆
cut6

Γ `P ∆
cut8 is obtained as follows:

Γ, l⊥ `P;l⊥ ∆
Γ `P l,∆

Γ, l `P;l ∆
Γ `P l⊥,∆

cut7
Γ `P ∆

�

58 Chapter 3. A sequent calculus modulo theories

3.6 Changing the polarity of connectives
In this section, we show that changing the polarity of connectives does not change provability in
LKp(T). To prove this property of the LKp(T) system, we genealise it into a new system LK+(T).

Definition 18 (LK+(T)) The sequent calculus LK+(T) manipulates one kind of sequent:
Γ `P [X]∆ where X ::= • | A

Here, P is a polarisation set, Γ is a multiset of literals and P-negative formulae, ∆ is a multiset of
formulae, and X is said to be in the focus of the sequent.

The rules of LK+(T), given in Figure 3.2, are again of three kinds: synchronous rules, asynchronous
rules, and structural rules. ※

Synchronous rules
Γ `P [A]∆ Γ `P [B]∆

(∧+)
Γ `P [A∧+B]∆

Γ `P [Ai]∆
(∨+)

Γ `P [A1∨+A2]∆
Γ `P [

{
t�x
}
A]∆

(∃)
Γ `P [∃xA]∆

(>+)
Γ `P [>+]∆

litP(Γ), l⊥, litL(∆⊥) |=T
(Init1) l is P-positive

Γ `P [l]∆
Γ `P [•]N

(Release) N not P-positive
Γ `P [N]

Asynchronous rules
Γ `P [X]A,∆ Γ `P [X]B,∆

(∧−)
Γ `P [X]A∧−B,∆

Γ `P [X]A1, A2,∆
(∨−)

Γ `P [X]A1∨−A2,∆
Γ `P [X]A,∆

(∀) x /∈ FV(Γ,X ,∆,P)
Γ `P [X](∀xA),∆

Γ `P [X]∆
(⊥−)

Γ `P [X]⊥−,∆
(>−)

Γ `P [X]>−
Γ, A⊥ `P;A⊥ [X]∆

(Store) A literal or P-positive
Γ `P [X]A,∆

Structural rules
Γ, P⊥ `P [P]∆

(Select) P not P-negative
Γ, P⊥ `P [•]∆

litP(Γ), litL(∆⊥) |=T
(Init2)

Γ `P [•]∆

Figure 3.2: System LK+(T)

Remark 21 The LK+(T) system is an extension system of LKp(T): the LKp(T) system is the
fragment of LK+(T) where every sequent Γ, P⊥ `P [•]∆ is requested to have either X = • or ∆
is empty. In terms of bottom-up proof-search, this only restricts the structural rules to the case
where ∆ is empty.

As in LKp(T), (left-)weakening and (left-)contraction are height-preserving admissible in LK+(T).

We can now prove a new version of identity:

Lemma 22 (Identities) For all P, A, ∆, the sequent `P [A⊥]A,∆ is provable in LK+(T).

Proof: By induction on A using an extended but well-founded order on formulae:
a formula is smaller than another one when

• either it contains fewer connectives
• or the number of connectives is equal, neither formulae are literals, and the former formula

is negative and the latter is positive.

3.6. Changing the polarity of connectives 59

We now treat all possible shapes for the formula A:

• A = A1∧−A2

`P [A1
⊥]A1,∆

`P [A1
⊥∨+A2

⊥]A1,∆
`P [A2

⊥]A2,∆
`P [A1

⊥∨+A2
⊥]A2,∆

`P [A1
⊥∨+A2

⊥]A1∧−A2,∆

We can complete the proof on the left-hand side by applying the induction hypothesis on
A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = A1∨−A2

`P [A1
⊥]A1, A2,∆ `P [A2

⊥]A1, A2,∆
`P [A1

⊥∧+A2
⊥]A1, A2,∆

`P [A1
⊥∧+A2

⊥]A1∨−A2,∆

We can complete the proof on the left-hand side by applying the induction hypothesis on
A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = ∀xA
`P [A⊥]A,∆

−−−−−−−− − choosing t=x
`P [{t/x}A⊥]A,∆
`P [∃xA⊥]A,∆

x /∈ FV(∃xA⊥,∆)
`P [∃xA⊥]∀xA,∆

We can complete the proof by applying the induction hypothesis on A.

• A = ⊥−
>+

`P [>+]⊥−,∆

• A = p⊥, with p not being P-negative:

p `P;p [p]∆
`P [p]p⊥,∆

as p is then P; p-positive.

• A = P where P is P-positive:
`P [P]P⊥

P⊥ `P
′

[P]P⊥

P⊥ `P
′

[•]P⊥

P⊥ `P
′

[P⊥]
P⊥,∆⊥ `P

′
[P⊥]

P⊥ `P [P⊥]∆
`P [P⊥]P,∆

If P is a literal, we complete the proof with the case just above. If it is not a literal, then P
is smaller than P⊥ and we complete the proof by applying the induction hypothesis on P .

�

60 Chapter 3. A sequent calculus modulo theories

We now want to show that all asynchronous rules are invertible in LK+(T). We first start with
the following lemma:

Lemma 23 (Generalised (Init) and negative Select)
The following rules are height-preserving admissible in LK+(T):

litP(Γ), litL(∆⊥) |=T
(Init)

Γ `P [X]∆
Γ `P;l⊥ [l]∆

(Select−)
Γ `P;l⊥ [•]∆

where l⊥ ∈ Γ and it is not P-negative in (Select−).

Proof: For each rule, by induction on the proof of the premiss.
For (Init):

• if it is obtained by (∧−), (∨−), (∀), (⊥−), we can straightforwardly use the induction hypo-
thesis on the premiss(es), and if it is (>−) it is trivial;

• if it is obtained by
Γ, A⊥ `P;A⊥ [X]∆′

Γ `P [X]A,∆′

then we can use the induction hypothesis on the premiss as litP;A⊥(Γ, A⊥), litL(∆′⊥) =
litP(Γ), litL(A⊥,∆′⊥);

• the last possible way to obtain it is with ∆ = ∅ and
Γ `P [•]N
Γ `P [N]

for some N that is not P-positive, and we conclude with (Init2).
For (Select−), first notice that l is P; l⊥-negative, and then:

• if again it is obtained by (∧−), (∨−), (∀), (⊥−), we can straightforwardly use the induction
hypothesis on the premiss(es), and if it is (>−) it is trivial;

• if it is obtained by
Γ, A⊥ `P;l⊥;A⊥ [l]∆′

Γ `P;l⊥ [l]A,∆′

then we can use the induction hypothesis on the premiss, if A is not l⊥ (so that P; l⊥;A⊥ =
P;A⊥; l⊥ and l⊥ is not P;A⊥-negative); if A = l⊥, then we build

litP;l⊥(Γ), litL(A⊥,∆′⊥) |=T
(Init2)

Γ `P;l⊥ [•]A,∆′

as A ∈ litP;l⊥(Γ).

• the last possible way to obtain it is with ∆ = ∅ and
Γ, l⊥ `P;l⊥ [•]

Γ `P;l⊥ [•]l
Γ `P;l⊥ [l]

and we conclude with the height-preserving admissibility of contraction.
�

3.6. Changing the polarity of connectives 61

We can now state and prove the invertibility of asynchronous rules:

Lemma 24 (Invertibility of asynchronous rules)
All asynchronous rules are height-preserving invertible in LK+(T).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule con-
sidered.

• Inversion of A∧−B: by case analysis on the last rule actually used

–
Γ `P [X]A∧−B,C,∆ Γ `P [X]A∧−B,D,∆

Γ `P [X]A∧−B,C∧−D,∆
By induction hypothesis we get

Γ `P [X]A,C,∆ Γ `P [X]A,D,∆
Γ `P [X]A,C∧−D,∆

and
Γ `P [X]B,C,∆ Γ `P [X]B,D,∆

Γ `P [X]B,C∧−D,∆

–
Γ `P [X]A∧−B,C,D,∆

Γ `P [X]A∧−B,C∨−D,∆
By induction hypothesis we get

Γ `P [X]A,C,D,∆
Γ `P [X]A,C∨−D,∆

and
Γ `P [X]B,C,D,∆

Γ `P [X]B,C∨−D,∆

–
Γ `P [X]A∧−B,C,∆

x /∈ FV(Γ,X ,∆, A∧−B)
Γ `P [X]A∧−B, (∀xC),∆
By induction hypothesis we get

Γ `P [X]A,C,∆
x /∈ FV(Γ,X ,∆, A)

Γ `P [X]A, (∀xC),∆
and

Γ `P [X]B,C,∆
x /∈ FV(Γ,X ,∆, B)

Γ `P [X]B, (∀xC),∆

– Γ, C⊥ `P;C⊥ [X]A∧−B,∆ C literal or
P-positiveΓ `P [X]A∧−B,C,∆

By induction hypothesis we get
Γ, C⊥ `P [X]A,∆ C literal or

P-positiveΓ `P;C⊥ [X]A,C,∆
and Γ, C⊥ `P;C⊥ [X]B,∆ C literal or

P-positiveΓ `P [X]B,C,∆

–
Γ `P [X]A∧−B,∆

Γ `P [X]A∧−B,⊥−,∆
By induction hypothesis we get

Γ `P [X]A,∆
Γ `P [X]A,⊥−,∆

and
Γ `P [X]B,∆

Γ `P [X]B,⊥−,∆

–
Γ `P [X]A∧−B,>−,∆
We get

Γ `P [X]A,>−,∆ and Γ `P [X]B,>−,∆

–
Γ `P [C]A∧−B,∆ Γ `P [D]A∧−B,∆

Γ `P [C∧+D,]A∧−B,∆
By induction hypothesis we get

Γ `P [C]A,∆ Γ `P [D]A,∆
Γ `P [C∧+D]A,∆

and
Γ `P [C]B,∆ Γ `P [D]B,∆

Γ `P [C∧+D]B,∆

62 Chapter 3. A sequent calculus modulo theories

–
Γ `P [Ci]A∧−B,∆

Γ `P [C1∨+C2]A∧−B,∆
By induction hypothesis we get

Γ `P [Ci]A,∆
Γ `P [C1∨+C2]A,∆

and
Γ `P [Ci]B,∆

Γ `P [C1∨+C2]B,∆

–
Γ `P [

{
t�x
}
C]A∧−B,∆

Γ `P [∃xC]A∧−B,∆
By induction hypothesis we get

Γ `P [
{
t�x
}
C]A,∆

Γ `P [∃xC]A,∆
and

Γ `P [
{
t�x
}
C]B,∆

Γ `P [∃xC]B,∆

–
Γ `P [>+]A∧−B,∆

We get

Γ `P [>+]A,∆ and Γ `P [>+]B,∆

– litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]A∧−B,∆

with p being P-positive

We get

litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]A,∆

and litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]B,∆

– litP(Γ), litL(∆⊥) |=T
Γ `P [•]A∧−B,∆

We get

litP(Γ), litL(∆⊥) |=T
Γ `P [•]A,∆

and litP(Γ), litL(∆⊥) |=T
Γ `P [•]B,∆

–
Γ `P [P]A∧−B,∆
Γ `P [•]A∧−B,∆

where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ `P [P]A,∆
Γ `P [•]A,∆

and
Γ `P [P]B,∆
Γ `P [•]B,∆

• Inversion of A∨−B

–
Γ `P [X]A∨−B,C,∆ Γ `P [X]A∨−B,D,∆

Γ `P [X]A∨−B,C∧−D,∆

By induction hypothesis we get
Γ `P [X]A,B,C,∆ Γ `P [X]A,B,D,∆

Γ `P [X]A,B,C∧−D,∆

–
Γ `P [X]A∨−B,C,D,∆

Γ `P [X]A∨−B,C∨−D,∆

By induction hypothesis we get
Γ `P [X]A,B,C,D,∆

Γ `P [X]A,B,C∨−D,∆

–
Γ `P [X]A∨−B,C,∆

x /∈ FV(Γ,X , A∨−B,∆)
Γ `P [X]A∨−B, (∀xC),∆

3.6. Changing the polarity of connectives 63

By induction hypothesis we get
Γ `P [X]A,B,C,∆

x /∈ FV(Γ,X , A,B,∆)
Γ `P [X], A,B, (∀xC),∆

– Γ, C⊥ `P;C⊥ [X]A∨−B,∆ C literal or
P-positiveΓ `P [X]A∨−B,C,∆

By induction hypothesis we get Γ, C⊥ `P;C⊥ [X]A,B,∆ C literal or
P-positiveΓ `P [X]A,B,C,∆

–
Γ `P [X]A,B,∆

Γ `P [X]A∨−B,⊥−,∆

By induction hypothesis we get
Γ `P [X]A,B,∆

Γ `P [X]A,B,⊥−,∆

– Γ `P [X]A∨−B,>−,∆

We get Γ `P [X]A,B,>−,∆

–
Γ `P [C]A∨−B,∆ Γ `P [D]A∨−B,∆

Γ `P [C∧+D]A∨−B,∆

By induction hypothesis we get
Γ `P [C]A,B,∆ Γ `P [D]A,B,∆

Γ `P [C∧+D]A,B,C∧−D,∆

–
Γ `P [Ci]A∨−B,∆

Γ `P [C1∨+C2]A∨−B,∆

By induction hypothesis we get
Γ `P [Ci]A,B,∆

Γ `P [C1∨+C2]A,B,∆

–
Γ `P [

{
t�x
}
C]A∨−B,∆

Γ `P [∃xC]A∨−B,∆

By induction hypothesis we get
Γ `P [

{
t�x
}
C]A,B,∆

Γ `P [∃xC]A,B,∆

– Γ `P [>+]A∨−B,∆

We get Γ `P [>+]A,B,∆

– litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]A∨−B,∆

with p being P-positive

We get litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]A,B,∆

– litP(Γ), litL(∆⊥) |=T
Γ `P [•]A∨−B,∆

We get litP(Γ), litL(∆⊥) |=T
Γ `P [•]A,B,∆

–
Γ `P [P]A∨−B,∆
Γ `P [•]A∨−B,∆

where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ `P [P]A,B,∆
Γ `P [•]A,B,∆

64 Chapter 3. A sequent calculus modulo theories

• Inversion of ∀xA

–
Γ `P [X](∀xA), C,∆ Γ `P [X](∀xA), D,∆

Γ `P [X](∀xA), C∧−D,∆

By induction hypothesis we get
Γ `P [X]A,C,∆ Γ `P [X]A,D,∆

x /∈ FV(Γ,X ,∆)
Γ `P [X]A,C∧−D,∆

–
Γ `P [X](∀xA), C,D,∆

Γ `P [X](∀xA), C∨−D,∆

By induction hypothesis we get
Γ `P [X]A,C,D,∆

Γ `P [X]A,C∨−D,∆

–
Γ `P [X](∀xA), D,∆

y /∈ FV(Γ,X , (∀xA),∆)
Γ `P [X](∀xA), (∀yD),∆

By induction hypothesis we get
Γ `P [X]A,D,∆

y /∈ FV(Γ,X , A,∆)
Γ `P [X]A, (∀yD),∆

– Γ, C⊥ `P;C⊥ [X](∀xA),∆ C literal or
P-positiveΓ `P [X](∀xA), C,∆

By induction hypothesis we get Γ, C⊥ `P;C⊥ [X]A,∆ C literal or
P-positiveΓ `P [X]A,C,∆

–
Γ `P [X](∀xA),∆

Γ `P [X](∀xA),⊥−,∆

By induction hypothesis we get
Γ `P [X]A,∆

Γ `P [X]A,⊥−,∆

– Γ `P [X](∀xA),>−,∆
We get Γ `P [X]A,>−,∆

–
Γ `P [C](∀xA),∆ Γ `P [D](∀xA),∆

Γ `P [C∧+D](∀xA),∆

By induction hypothesis we get
Γ `P [C]A,∆ Γ `P [D]A,∆

Γ `P [C∧+D]A,∆

–
Γ `P [Ci](∀xA),∆

Γ `P [C1∨+C2](∀xA),∆

By induction hypothesis we get
Γ `P [Ci]A,∆

Γ `P [C1∨+C2]A,∆

–
Γ `P [

{
t�x
}
D](∀xA),∆

Γ `P [∃xD](∀xA),∆

By induction hypothesis we get
Γ `P [

{
t�x
}
D]A,∆

Γ `P [∃xD]A,∆

– Γ `P [>+](∀xA), C,∆

We get Γ `P [>+]A,∆

– litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p](∀xA),∆

with p being P-positive

3.6. Changing the polarity of connectives 65

We get litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]A,∆

– litP(Γ), litL(∆⊥) |=T
Γ `P [•](∀xA),∆

We get litP(Γ), litL(∆⊥) |=T
Γ `P [•]A,∆

–
Γ `P [P](∀xA),∆
Γ `P [•](∀xA),∆

where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ `P [P]A,∆
Γ `P [•]A,∆

• Inversion of storing a literal or P-positive formulae A

–
Γ `P [X]A,C,∆ Γ `P [X]A,D,∆

Γ `P [X]A,C∧−D,∆

By induction hypothesis we get Γ, A⊥ `P;A⊥ [X]C,∆ Γ, A⊥ `P;A⊥ [X]D,∆
Γ, A⊥ `P;A⊥ [X]C∧−D,∆

–
Γ `P [X]A,C,D,∆

Γ `P [X]A,C∨−D,∆

By induction hypothesis we get Γ, A⊥ `P;A⊥ [X]C,D,∆
Γ, A⊥ `P;A⊥ [X]C∨−D,∆

–
Γ `P [X]A,D,∆

x /∈ FV(Γ,X , A,∆)
Γ `P [X]A, (∀xD),∆

By induction hypothesis we get Γ, A⊥ `P;A⊥ [X]D,∆
x /∈ FV(Γ, A⊥,X ,∆)

Γ, A⊥ `P;A⊥ [X](∀xD),∆

– Γ, B⊥ `P;B⊥ [X]A,∆ B literal or
P-positiveΓ `P [X]A,B,∆

We build Γ, A⊥, B⊥ `P;A⊥;B⊥ [X]∆ B literal or
P-positiveΓ, A⊥ `P;A⊥ [X]B,∆

proving the premiss using the induction hypothesis in case P;B⊥;A⊥ = P;A⊥;B⊥,
which holds unless A = B⊥ and A ∈ UP .
In that case we have P;A⊥ = P, A⊥, and we prove Γ, A⊥ `P;A⊥ [X]B,∆ with (Init)
(Lemma 23), as litP;A⊥(Γ, A⊥), litL(B⊥,∆⊥) |=T .

–
Γ `P [X]A,∆

Γ `P [X]A,⊥−,∆

By induction hypothesis we get Γ, A⊥ `P;A⊥ [X]∆
Γ, A⊥ `P;A⊥ [X]⊥−,∆

– Γ `P [X]A,>−,∆

We get Γ, A⊥ `P;A⊥ [X]>−,∆

–
Γ `P [C]A,∆ Γ `P [D]A,∆

Γ `P [C∧+D]A,∆

66 Chapter 3. A sequent calculus modulo theories

By induction hypothesis we get Γ, A⊥ `P [C]∆ Γ, A⊥ `P;A⊥ [D]∆
Γ, A⊥ `P;A⊥ [C∧+D]∆

–
Γ `P [Ci]A,∆

Γ `P [C1∨+C2]A,∆

By induction hypothesis we get Γ, A⊥ `P;A⊥ [Ci]∆
Γ, A⊥ `P;A⊥ [C1∨+C2]∆

–
Γ `P [

{
t�x
}
D]A,∆

Γ `P [∃xD]A,∆

By induction hypothesis we get Γ, A⊥ `P;A⊥ [
{
t�x
}
D]∆

Γ, A⊥ `P;A⊥ [∃xD]∆

– Γ `P [>+]A,∆

We get Γ, A⊥ `P;A⊥ [>+]∆

– litP(Γ), p⊥, litL(A⊥,∆⊥) |=T
Γ `P [p]A,∆

with p being P-negative

We get litP;A⊥(Γ, A⊥), p⊥, litL(∆⊥) |=T
Γ, A⊥ `P;A⊥ [p]∆

as p is also P;A⊥-positive.

– litP(Γ), litL(A⊥,∆⊥) |=T
Γ `P [•]A,∆

We get litP;A⊥(Γ, A⊥), litL(∆⊥) |=T
Γ, A⊥ `P;A⊥ [•]∆

–
Γ `P [P]A,∆
Γ `P [•]A,∆

where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get Γ, A⊥ `P;A⊥ [P]∆
Γ, A⊥ `P;A⊥ [•]∆

using either (Select) or (Select−) depending on whether P is P;A⊥-negative.

• Inversion of (⊥−)

–
Γ `P [X]⊥−, C,∆ Γ `P [X]⊥−, D,∆

Γ `P [X]⊥−, C∧−D,∆

By induction hypothesis we get
Γ `P [X]C,∆ Γ `P [X]D,∆

Γ `P [X]C∧−D,∆

–
Γ `P [X]⊥−, C,D,∆

Γ `P [X]⊥−, C∨−D,∆

By induction hypothesis we get
Γ `P [X]C,D,∆

Γ `P [X]C∨−D,∆

–
Γ `P [X]⊥−, D,∆

x /∈ FV(Γ,X ,∆)
Γ `P [X]⊥−, (∀xD),∆

By induction hypothesis we get
Γ `P [X]D,∆

x /∈ FV(Γ,X ,∆)
Γ `P [X](∀xD),∆

3.6. Changing the polarity of connectives 67

– Γ, B⊥ `P;B⊥ [X]⊥−,∆ B literal or
P-positiveΓ `P [X]⊥−, B,∆

By induction hypothesis we get Γ, B⊥ `P;B⊥ [X]∆ B literal or
P-positiveΓ `P [X]B,∆

–
Γ `P [X]⊥−,∆

Γ `P [X]⊥−,⊥−,∆

By induction hypothesis we get
Γ `P [X]∆

Γ `P [X]⊥−,∆

– Γ `P [X]⊥−,>−,∆

We get Γ `P [X]>−,∆

–
Γ `P [C]⊥−,∆ Γ `P [D]⊥−,∆

Γ `P [C∧+D]⊥−,∆

By induction hypothesis we get
Γ `P [C]∆ Γ `P [D]∆

Γ `P [C∧+D]∆

–
Γ `P [Ci]∆

Γ `P [C1∨+C2]⊥−,∆

By induction hypothesis we get
Γ `P [Ci]∆

Γ `P [C1∨+C2]∆

–
Γ `P [

{
t�x
}
D]⊥−,∆

Γ `P [∃xD]⊥−,∆

By induction hypothesis we get
Γ `P [

{
t�x
}
D]∆

Γ `P [∃xD]∆

– Γ `P [>+]⊥−,∆

We get Γ `P [>+]∆

– litP(Γ), p⊥, litL(∆⊥) |=T
Γ `P [p]⊥−,∆

with p being P-positive

By induction hypothesis we get litP(Γ), p⊥, litL(∆⊥) |=T
Γ, A⊥ `P [p]∆

– litP(Γ), litL(∆⊥) |=T
Γ `P [•]⊥−,∆

By induction hypothesis we get litP(Γ), litL(∆⊥) |=T
Γ, A⊥ `P [•]∆

–
Γ `P [P]⊥−,∆
Γ `P [•]⊥−,∆

where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ `P [P]∆
Γ `P [•]∆

• Inversion of >−: nothing to do.
�

68 Chapter 3. A sequent calculus modulo theories

Now that we have proved the invertibility of asynchronous rules, we can use it to transform
any proof of LK+(T) into a proof of LKp(T).

Lemma 25 (Encoding LK+(T) in LKp(T))

1. If Γ `P [A] is provable in LK+(T), then Γ `P [A] is provable in LKp(T).
2. If Γ `P [•]∆ is provable in LK+(T), then Γ `P ∆ is provable in LKp(T).

Proof: By simultaneous induction on the assumed derivation.
1. For the first item we get, by case analysis on the last rule of the derivation:

•
Γ `P [A1] Γ `P [A2]

Γ `P [A1∧+A2]
with A = A1∧+A2.

The induction hypothesis on Γ `PLK+(T) [A1] gives Γ `PLKp(T) [A1] and the induction
hypothesis on Γ `PLK+(T) [A2] gives Γ `PLKp(T) [A2]. We get:

Γ `P [A1] Γ `P [A2]
Γ `P [A1∧+A2]

•
Γ `P [Ai]

Γ `P [A1∨+A2]
with A = A1∨+A2.

The induction hypothesis on Γ `PLK+(T) [Ai] gives Γ `PLKp(T) [Ai]. We get:

Γ `P [Ai]
Γ `P [A1∨+A2]

•
Γ `P [{t/x}A]

Γ `P [∃xA]
with A = ∃xA.

The induction hypothesis on Γ `PLK+(T) [{t/x}A] gives Γ `PLKp(T) [{t/x}A]. We get:

Γ `P [{t/x}A]
Γ `P [∃xA]

• litP(Γ), p⊥ |=T
Γ `P [p]

with A = p where p is a P-positive literal.

We can perform the same step in LKp(T):

litP(Γ), p⊥ |=T
Γ `P [p]

•
Γ `P [•]N
Γ `P [N]

with A = N and N is not P-positive.

The induction hypothesis on Γ `PLK+(T) [•]N gives Γ `PLKp(T) N . We get:

Γ `P N
Γ `P [N]

2. For the second item, we use the height-preserving invertibility of the asynchronous rules, so
that we can assume without loss of generality that if ∆ is not empty then the last rule of
the derivation decomposes one of its formulae.

3.6. Changing the polarity of connectives 69

•
Γ `P [•]A1,∆1 Γ `P [•]A2,∆1

Γ `P [•]A1∧−A2,∆1
with ∆ = A1∧−A2,∆1.

The induction hypothesis on Γ `PLK+(T) [•]A1,∆1 gives Γ `PLKp(T) A1,∆1 and the in-
duction hypothesis on Γ `PLK+(T) [•]A2,∆2 gives Γ `PLKp(T) A2,∆2. We get:

Γ `P A1,∆1 Γ `P A2,∆1

Γ `P A1∧−A2,∆1

•
Γ `P [•]A1, A2,∆1

Γ `P [•]A1∨−A2,∆1
with ∆ = A1∨−A2,∆1.

The induction hypothesis on Γ `PLK+(T) [•]A1, A2,∆1 gives Γ `PLKp(T) A1, A2,∆1 and
we get:

Γ `P A1, A2,∆1

Γ `P A1∨−A2,∆1

•
Γ `P [•]A,∆1

x 6∈ FV(Γ,∆1)
Γ `P [•]∀xA,∆1

with ∆ = ∀xA,∆1.

The induction hypothesis on Γ `PLK+(T) [•]A,∆1 gives Γ `PLKp(T) A,∆1. We get:

Γ `P A,∆1
x 6∈ FV(Γ,∆1)

Γ `P ∀xA,∆1

• Γ, A⊥ `P;A⊥ [•]∆1

Γ `P [•]A,∆1
with ∆ = A,∆1 and A is a literal or is P-positive.

The induction hypothesis on Γ, A⊥ `P;A⊥

LK+(T) [•]∆1 gives Γ, A⊥ `P;A⊥
LKp(T) ∆1. We get:

Γ, A⊥ `P;A⊥ ∆1

Γ `P A,∆1

•
Γ `P [•]∆1

Γ `P [•]⊥−,∆1
with ∆ = ⊥−,∆1.

The induction hypothesis on Γ `PLK+(T) [•]∆1 gives Γ `PLKp(T) ∆1. We get:

Γ `P ∆1

Γ `P ⊥−,∆1

• Γ `P [•]>−,∆1
with ∆ = >−,∆1.

We get:

Γ `P >−,∆1

•
Γ, P⊥ `P [P]∆
Γ, P⊥ `P [•]∆

where P is not P-negative.

As already mentioned, we can assume without loss of generality that ∆ is empty. The
induction hypothesis on Γ, P⊥ `PLK+(T) [P] gives Γ, P⊥ `PLKp(T) [P]. We get:

Γ, P⊥ `P [P]
Γ, P⊥ `P

• litP(Γ), litL(∆⊥) |=T
Γ `P [•]∆

70 Chapter 3. A sequent calculus modulo theories

As already mentioned, we can assume without loss of generality that ∆ is empty. We
get:

litP(Γ) |=T
Γ `P

�

Lemma 26 We have:

1. `PLKp(T) >+⊥,>−, and

2. `PLKp(T) >−
⊥
,>+, and

3. `PLKp(T) (A∧+B)⊥, (A∧−B), and

4. `PLKp(T) (A∧−B)⊥, (A∧+B), provided that sequent is safe.

Proof:

1. For the first item we get:

`P >+⊥,>−

2. For the second item we get:

>−,>+⊥ `P [>+]
>−,>+⊥ `P

>− `P >+

`P >−⊥,>+

3. For the third item we get:
`P;A [A⊥]B⊥, A
−−−−−−−−−
A `P;A [A⊥]B⊥, A
A `P;A [•]B⊥, A
`P [•]A⊥, B⊥, A

`P;B [B⊥]A⊥, B
−−−−−−−− −
B `P;B [B⊥]A⊥, B
B `P;B [•]A⊥, B
`P [•]A⊥, B⊥, B

=================================
`P [•](A⊥∨−B⊥), (A∧−B)
`P [•](A∧+B)⊥, (A∧−B)

Lemma 25(2)
`P (A∧+B)⊥, (A∧−B)

Both left hand side and right hand side can be closed by Lemma 22.

4. For the fourth item, we get:

3.6. Changing the polarity of connectives 71

`P [A⊥]A

`P [A⊥∨+B⊥]A
−−−−−−−−−− −
A∧−B `P [A⊥∨+B⊥]A

A∧−B `P [•]A
Lemma 25(2)

A∧−B `P A
−−−−−−−−−−−−−
(A∧−B), (A⊥∨−B⊥) `P A

`P [B⊥]B

`P [A⊥∨+B⊥]B
−−−−−−−−−− −
A∧−B `P [A⊥∨+B⊥]B

A∧−B `P [•]B
Lemma 25(2)

A∧−B `P B
−−−−−−− −
A∧−B `P A⊥, B

−−−−−−−−−−−−−−−
(A∧−B), (A⊥∨−B⊥) `P A⊥, B

`P [A]A⊥, B⊥ `P [B]A⊥, B⊥

`P [A∧+B]A⊥, B⊥

−−−−−−−−−−−−− −
A⊥∨−B⊥ `P [A∧+B]A⊥, B⊥

A⊥∨−B⊥ `P [•]A⊥, B⊥

Lemma 25(2)
A⊥∨−B⊥ `P A⊥, B⊥

−−−−−−−−−−−−−− −
(A∧−B), (A⊥∨−B⊥) `P A⊥, B⊥

cut7
(A∧−B), (A⊥∨−B⊥) `P A⊥

cut7
(A∧−B), (A∧+B)⊥ `P
===================
`P (A∧−B)⊥, (A∧+B)

All branches are closed by Lemma 22. �

Lemma 27
If Γ `PLKp(T) ∆, C and Γ `PLKp(T) D,C

⊥ then Γ `PLKp(T) ∆, D, provided that sequent is safe.

Proof:
Γ `P ∆, C
−−−−− −
Γ `P D,∆, C

Γ `P D,C⊥
−−−−−− −
Γ `P ∆, D,C⊥

cut7
Γ `P ∆, D

�

Corollary 28 (Changing the polarity of connectives) Provided those sequents are safe,
1. If Γ `P >+,∆ then Γ `P >−,∆;
2. If Γ `P >−,∆ then Γ `P >+,∆;
3. If Γ `P ⊥+,∆ then Γ `P ⊥−,∆;
4. If Γ `P ⊥−,∆ then Γ `P ⊥+,∆;
5. If Γ `P A∧+B,∆ then Γ `P A∧−B,∆;
6. If Γ `P A∧−B,∆ then Γ `P A∧+B,∆;
7. If Γ `P A∨+B,∆ then Γ `P A∨−B,∆;
8. If Γ `P A∨−B,∆ then Γ `P A∨+B,∆.

Furthermore, notice that in each implication, the safety of one sequent implies the safety of the other.

Proof:
1. By Lemma 27 and Lemma 26(1).
2. By Lemma 27 and Lemma 26(2).
3. By Lemma 27 and Lemma 26(1).
4. By Lemma 27 and Lemma 26(2).
5. By Lemma 27 and Lemma 26(3).
6. By Lemma 27 and Lemma 26(4).
7. By Lemma 27 and Lemma 26(3).
8. By Lemma 27 and Lemma 26(4).

�

72 Chapter 3. A sequent calculus modulo theories

We have proven that changing the polarities of the connectives that are present in a sequent, does
not change the provability of that sequent in LKp(T).

3.7 Completeness
LKp(T) is a complete system for first-order logic modulo a theory. To show this, we review the
grammar of first-order formulae and map those formulae to polarised formulae.

Definition 19 (Plain formulae) Let P aΣ be a sub-signature of the first-order predicate signature
PΣ such that for every predicate symbol P/n of PΣ, P/n is in P aΣ if and only if P⊥/n is not in P aΣ.

Let A be the subset of L consisting of those literals whose predicate symbols are in P aΣ. Literals in
A, denoted a, a′, etc, are called atoms.

The formulae of first-order logic, here called plain formulae, are given by the following grammar:
Plain formulae A,B, . . . ::= a | A ∨B | A ∧B | ∀xA | ∃xA | ¬A

where a ranges over atoms. ※

Definition 20 (ψ) Let ψ be the function that maps every plain formula to a set of formulae (in the
sense of Definition 13) defined as follows:

ψ(a) := {a}
ψ(A ∧B) := {A′∧−B′, A′∧+B′ | A′ ∈ ψ(A), B′ ∈ ψ(B)}
ψ(A ∨B) := {A′∨−B′, A′∨+B′ | A′ ∈ ψ(A), B′ ∈ ψ(B)}
ψ(∃xA) := {∃xA′ | A′ ∈ ψ(A)}
ψ(∀xA) := {∀xA′ | A′ ∈ ψ(A)}
ψ(¬A) := {A′⊥ | A′ ∈ ψ(A)}
ψ(∆, A) := {∆′, A′ | ∆′ ∈ ψ(∆), A′ ∈ ψ(A)}
ψ(∅) := ∅

※

Remark 29 1. ψ(A) 6= ∅
2. If A′ ∈ ψ(A), then {t�x}A′ ∈ ψ({t�x}A′).
3. If C ′ ∈ ψ({t�x}A), then C ′ = {t�x}A′ for some A′ ∈ ψ(A).

Notation 21 When F is a plain formula and Ψ is a set of plain formulae, Ψ |= F means that Ψ
entails F in first-order classical logic.

Given a theory T (given by a semantical inconsistency predicate), we define the set of all theory
lemmas as

ΨT := {l1 ∨ · · · ∨ ln | ψ(l1)⊥, · · · , ψ(ln)⊥ |=T }
We generalise the notation |=T to write Ψ |=T F when ΨT ,Ψ |= F , in which case we say that F

is a semantical consequence of Ψ.

Notation 22 In the rest of this section we will use the notation A∧?B (resp. A∨?B) to ambiguously
represent either A∧+B or A∧−B (resp. A∨+B or A∨−B). This will make the proofs more compact,
noticing that Corollary 28(2) and 28(4) respectively imply the admissibility in LKp(T) of

Γ `P ∆, A∧−B
Γ `P ∆, A ∧? B

Γ `P ∆, A∨−B
Γ `P ∆, A ∨? B

provided the sequents are safe (and note that safety of the conclusion entails safety of the premiss).

Lemma 30 (Equivalence between different polarisations)
For all A′, A′′ ∈ ψ(A), we have Γ `PLKp(T) A

′, A′′
⊥
,∆, provided the sequent is safe.

3.7. Completeness 73

Proof: In the proof below, for any formula A, the notations A′ and A′′ will systematically
designate elements of ψ(A).

The proof is by induction on A:

1. A = a

Let A′, A′′ ∈ ψ(a) = {a}. Therefore A′ = A′′ = A = a.
(Id2)

Γ, ψ⊥(a), ψ(a),Γ′ `P
′

=====================
Γ `P ψ(a), ψ⊥(a),∆

2. A = A1 ∧A2

Let A′1, A′′1 ∈ ψ(A1) , A′2, A′′2 ∈ ψ(A2) and A′ = A′1 ∧? A′2, A′′ = A′′1 ∧? A′′2 .
Γ `P A′1, A′′1

⊥
,∆

Γ `P A′1, A′′1
⊥
, A′′2

⊥
,∆

Γ `P A′2, A′′2
⊥
,∆

Γ `P A′2, A′′1
⊥
, A′′2

⊥
,∆

==
Γ `P A′1∧−A′2, A′′1

⊥∨−A′′2
⊥
,∆

Γ `P A′, A′′1
⊥∨−A′′2

⊥
,∆

Γ `P A′, A′′⊥,∆

We can complete the proof on the left-hand side by applying the induction hypothesis on
A1 and on the right-hand side by applying the induction hypothesis on A2.

3. A = A1 ∨A2

By symmetry, using the previous case.

4. A = ∀xA1

Let A′ = ∀xA′1 and A′′ = ∀xA′′1 .
`P
′

[A′′1
⊥]A′′1

`P
′

[∃xA′′1]A′′1−−−−−−−−−−
Γ,∀xA′′1 `

P [•]A′′1 ,∆ Lemma 25(2)
Γ `P A′′1 ,∃xA′′1

⊥
,∆ Γ `P A′1, A′′1

⊥
,∆

Lemma 27
Γ `P A′1,∃xA′′1

⊥
,∆

Γ `P ∀xA′1,∃xA′′1
⊥
,∆

We can complete the proof on the left-hand side by Lemma 22 and the right-hand side by
applying the induction hypothesis on A1.

5. A = ∃xA1

By symmetry, using the previous case.

6. A = ¬A1

Let A′, A′′ ∈ ψ(¬A1).
Let A′ = A′1

⊥ with A′1 ∈ ψ(A1) and A′′ = A′′1
⊥ with A′′1 ∈ ψ(A1).

The induction hypothesis on A1 we get: Γ `PLKp(T) A
′, A′′

⊥
,∆ and we are done.

�

Definition 23 (Theory restricting) A polarisation set P does not restrict the theory T if for all
sets B of literals that are semantically inconsistent (i.e. B |=T), there is a subset B′ ⊆ B that is already
semantically inconsistent and such that at most one literal of B′ is P-negative. ※

74 Chapter 3. A sequent calculus modulo theories

Remark 31 The empty polarisation set restricts no theories. The empty theory is restricted by
no polarisation sets (if B is syntactically inconsistent, then is contains both l and l⊥, so taking
the inconsistent B′ := {l, l⊥}, at most one of its two elements is P-negative).

Theorem 32 (Completeness of LKp(T)) Assume P does not restrict T and ∆ |=T A.
Then for all A′ ∈ ψ(A) and ∆′ ∈ ψ(∆), we have `PLKp(T) A

′,∆′⊥, provided that sequent is safe.

Proof: We prove a slightly more general statement:
for all A′ ∈ ψ(A) and all multiset ∆′ of formulae that contain an element of ψ(∆) as a sub-multiset,
we have `PLKp(T) A

′,∆′⊥, provided that sequent is safe.
We caracterise ∆ |=T A by the derivability of the sequent ΨT ,∆ ` A in a standard nat-

ural deduction system for first-order classical logic. We write ΨT ,∆ `FOL A for this derivability
property.

For any formula A, the notation A′ will systematically designate an element of ψ(A).
The proof is by induction of ΨT ,∆ `FOL A, and case analysis on the last rule:

• Axiom:
A ∈ ΨT ,∆

ΨT ,∆ ` A
By case analysis:
– If A ∈ ∆ then we prove `P A′,∆′⊥ with A′, A′′ ∈ ψ(A) and A′′ ∈ ∆′, using Lemma 30.
– If A ∈ ΨT then A is of the form l1 ∨ · · · ∨ ln with ψ(l1)⊥, . . . , ψ(ln)⊥ |=T .

Let {ψ(l′1)⊥, . . . , ψ(l′m)⊥} be a subset of {ψ(l1)⊥, . . . , ψ(ln)⊥} that is already semantic-
ally inconsistent and such that at most one literal is P-negative, say possibly ψ(l′m)⊥.
Let C ′ ∈ ψ(A). C ′ is of the form ψ(l1) ∨? · · · ∨? ψ(ln).
We build

ψ(l′1)⊥, . . . , ψ(l′m)⊥ `P
′

`P ψ(l′1), . . . , ψ(l′m)
====================
`P ∆′⊥, ψ(l1), . . . , ψ(ln)

=======================
`P ∆′⊥, ψ(l1)∨− · · · ∨−ψ(ln)

`P ∆′⊥, C ′

where P ′ := P;ψ(l′1)⊥; . . . ;ψ(l′m)⊥.
If ψ(l′1)⊥, . . . , ψ(l′m)⊥ is syntactically inconsistent, we close with Id2.
Otherwise

P;ψ(l′1)⊥; . . . ;ψ(l′m−1)⊥ = P, ψ(l′1)⊥, . . . , ψ(l′m−1)⊥

as none of the ψ(l′i)
⊥, for 1 ≤ i ≤ m − 1, is P-negative. And for all i such that

1 ≤ i ≤ m− 1, the literal ψ(l′i)
⊥ is P ′-positive.

Now if ψ(l′m)⊥ is P ′-positive as well, we have
litP′(ψ(l′1)⊥, . . . , ψ(l′m)⊥) = ψ(l′1)⊥, . . . , ψ(l′m)⊥

and we can close with (Init2).
If ψ(l′m)⊥ is not P ′-positive, we simply have

litP′(ψ(l′1)⊥, . . . , ψ(l′m)⊥) = ψ(l′1)⊥, . . . , ψ(l′m−1)⊥

but we can still build
ψ(l′1)⊥, . . . , ψ(l′m)⊥ |=T

(Init1)
ψ(l′1)⊥, . . . , ψ(l′m)⊥ `P

′
[ψ(l′m)]

ψ(l′1)⊥, . . . , ψ(l′m)⊥ `P
′

3.7. Completeness 75

• And Intro:
ΨT ,∆ ` A1 ΨT ,∆ ` A2

ΨT ,∆ ` A1 ∧A2

A′ ∈ ψ(A1 ∧A2) is of the form A′1 ∧? A′2 with A′1 ∈ ψ(A1) and A′2 ∈ ψ(A2).

Since `P A′1 ∧? A′2,∆′
⊥ is assumed to be safe, `P A′1,∆′

⊥ and `P A′2,∆′
⊥ are also safe,

and we can apply the induction hypothesis
– on ΨT ,∆ `FOL A1 to get `PLKp(T) A

′
1,∆′

⊥

– and on ΨT ,∆ `FOL A2 to get `PLKp(T) A
′
2,∆′

⊥.
We build:

`P A′1,∆′
⊥ `P A′2,∆′

⊥

`P A′1∧−A′2,∆′
⊥

`P A′1 ∧? A′2,∆′
⊥

• And Elim
ΨT ,∆ ` A1 ∧A−1

ΨT ,∆ ` Ai
with i ∈ {1,−1}.
Since ψ(A−i) 6= ∅, let A′−i ∈ ψ(A−i) and C ′ = A′1∧−A′−1 (C ′ ∈ ψ(A1 ∧A−1)).

Since `P A′i,∆′
⊥ is assumed to be safe, `P C ′, A′i,∆′

⊥ is also safe, and we can apply the
induction hypothesis on ΨT ,∆ ` A1∧A−1 (with A′i

⊥
,∆′ and C ′) to get `PLKp(T) C

′, A′i,∆′
⊥.

We finally get:
`P C ′, A′i,∆′

⊥

−−−−−− − Lemma 9
`P A′i, A′i,∆′

⊥

Cr
`P A′i,∆′

⊥

• Or Intro
ΨT ,∆ ` Ai

ΨT ,∆ ` A1 ∨A−1

A′ ∈ ψ(A1 ∨A−1) is of the form A′1 ∨? A′−1 with A′1 ∈ ψ(A1) and A′−1 ∈ ψ(A−1).

Since `P A′1 ∨? A′−1,∆′
⊥ is assumed to be safe, `P A′1, A′−1,∆′

⊥ is also safe, and we can ap-
ply the induction hypothesis on ΨT ,∆ `FOL Ai (withA′−i

⊥
,∆′ andA′i) to get `

P
LKp(T) A

′
1, A

′
−1,∆′

⊥

and we build:
`P A′1, A′−1,∆′

⊥

`P A′1∨−A′−1,∆′
⊥

`P A′1 ∨? A′−1,∆′
⊥

• Or Elim
ΨT ,∆ ` A1 ∨A2 ΨT ,∆, A1 ` C ΨT ,∆, A2 ` C

ΨT ,∆ ` C

Let D′ = A′1∨−A′2 with A′1 ∈ ψ(A1) and A′2 ∈ ψ(A2).

Since `P C ′,∆′⊥ is assumed to be safe, `P C ′, A′1
⊥
,∆′⊥ and `P C ′, A′2

⊥
,∆′⊥ and `P C ′, D′,∆′⊥

are also safe, and we can apply the induction hypothesis
– on ΨT ,∆, A1 `FOL C to get `PLKp(T) C

′, A′1
⊥
,∆′⊥

– on ΨT ,∆, A2 `FOL C to get `PLKp(T) C
′, A′2

⊥
,∆′⊥.

76 Chapter 3. A sequent calculus modulo theories

– and on ΨT ,∆ `FOL A1 ∨A2 to get `PLKp(T) C
′, D′,∆′⊥.

We build:

`P D′, C ′,∆′⊥

`P A′1
⊥
, C ′,∆′⊥ `P A′2

⊥
, C ′,∆′⊥

`P A′1
⊥∧−A′2

⊥
, C ′,∆′⊥

`P A′1
⊥∧+A′2

⊥
, C ′,∆′⊥

−−−−−−−−−−−−
`P (A′1∨−A′2)⊥, C ′,∆′⊥

cut7
`P C ′,∆′⊥

• Universal quantifier Intro
ΨT ,∆ ` A

x 6∈ Γ
ΨT ,∆ ` ∀xA

C ′ ∈ ψ(∀xA) is of the form ∀xA′ with A′ ∈ ψ(A).

Since `P C ′,∆′⊥ is assumed to be safe, `P A′,∆′⊥ is also safe, and we can apply the
induction hypothesis on ΨT ,∆ `FOL A to get `PLKp(T) A

′,∆′⊥ to get:

`P A′,∆′⊥

`P ∀xA′,∆′⊥

• Universal quantifier Elim
ΨT ,∆ ` ∀xA

ΨT ,∆ `
{
t�x
}
A

C ′ ∈ ψ({t�x}A) is of the form {t�x}A′ with A′ ∈ ψ(A) (by Remark 29).

Since `P C ′,∆′⊥ is assumed to be safe, `P (∀xA′), C ′,∆′⊥ is also safe, and we can apply
the induction hypothesis on ΨT ,∆ `FOL ∀xA (with C ′⊥,∆′ and (∀xA′)) to get `PLKp(T) (∀xA′), C ′,∆′⊥.
We build

`P (∀xA′),
{
t�x
}
A′,∆′⊥

−−−−−−−−−−−− Lemma 9
`P A′,

{
t�x
}
A′,∆′⊥

Lemma 18
`P

{
t�x
}
A′,
{
t�x
}
A′,∆′⊥

Cr
`P

{
t�x
}
A′,∆′⊥

• Existential quantifier Intro
ΨT ,∆ `

{
t�x
}
A

ΨT ,∆ ` ∃xA

C ′ ∈ ψ(∃xA) is of the form ∃xA′ with A′ ∈ ψ(A).
Let A′t = {t�x}A′ (A′t ∈ ψ({t�x}A) by Remark 29).

Since `P C ′,∆′⊥ is assumed to be safe, `P A′t,∆′
⊥ is also safe, and we can apply the

induction hypothesis on ΨT ,∆ `FOL {t�x}A to get `PLKp(T) A
′
t,∆′

⊥.

By Lemma 27 it suffices to prove `PLKp(T) ∃xA′, A′t
⊥ in order to get `PLKp(T) C

′,∆′⊥:

`P [A′t]A′t
⊥

`P [∃xA′]A′t
⊥

∀xA′⊥ `P [•]A′t
⊥

Lemma 25(2)
`P ∃xA′, A′t

⊥

We can complete the proof by applying Lemma 22.

3.7. Completeness 77

• Existential quantifier Elim
ΨT ,∆ ` ∃xA Γ,∆, A ` B

x 6∈ Γ, B
ΨT ,∆ ` B

Let C ′ = ∃xA′ with A′ ∈ ψ(A).

Since `P B′,∆′⊥ is assumed to be safe, `P B′, C ′,∆′⊥ and `P B′, A′⊥,∆′⊥ are also safe,
and we can apply the induction hypothesis
– on ΨT ,∆ `FOL ∃xA to get `PLKp(T) B

′, C ′,∆′⊥;
– on Γ,∆, A `FOL B to get `PLKp(T) B

′, A′
⊥
,∆′⊥.

We build

`P C ′, B′,∆′⊥

`P A′⊥, B′,∆′⊥

`P ∀x(A′⊥), B′,∆′⊥
−−−−−−−−− −
`P C ′⊥, B′,∆′⊥

cut7
`P B′,∆′⊥

• Negation Intro
ΨT ,∆, A ` B ∧ ¬B

ΨT ,∆ ` ¬A

If C ′ ∈ ψ(¬A) then C ′
⊥ ∈ ψ(A). Let D′ = D′1∧−D′2 with D′1 ∈ ψ(B) and D′2 ∈ ψ(¬B).

Therefore D′2
⊥ ∈ ψ(B), D′ ∈ ψ(B ∧ ¬B) and ∆′, C ′⊥ ∈ ψ(∆, A).

Since `P ∆′⊥, C ′ is assumed to be safe, `P ∆′⊥, C ′, D′ is also safe, and we can apply the
induction hypothesis on ΨT ,∆, A `FOL B ∧ ¬B to get `PLKp(T) ∆′⊥, C ′, D′. We build

`P ∆′⊥, C ′, D′

Lemma 30
`P ∆′⊥, C ′, D′1

⊥
, D′2

⊥

`P ∆′⊥, C ′, D′1
⊥∨−D′2

⊥

Corollary 28(4)
`P ∆′⊥, C ′, D′⊥

cut7
`P ∆′⊥, C ′

• Negation Elimination
ΨT ,∆ ` ¬¬A

ΨT ,∆ ` A

A′ ∈ ψ(A) is such that A′ ∈ ψ(¬¬A).

The induction hypothesis on ΨT ,∆ ` ¬¬A gives `P ∆′⊥, A′ and we are done.
�

Chapter 4

Simulating SMT-solving in the
sequent calculus

An important area of automated reasoning is about satisfiability problems and how to solve them.
The most basic satisfiability problem is propositional/Boolean satisfiability (SAT), where the

goal is to decide whether a condition about Boolean variables (e.g. a formula over Boolean variables
formed with logical connectives), can be made true by choosing true/false values for its variables.
The main techniques for solving propositional SAT-problems are based on the DPLL procedure (for
Davis-Putnam-Logemann-Loveland) [DP60, DLL62], cutting the exploration of the exponential
number of possible truth assignments in a complete way.

Satisfiability Modulo Theories (SMT) generalises Boolean SAT, replacing Boolean variables
by the (ground) literals of a given theory for which we have a procedure deciding whether a
conjunction of literals is consistent. Examples of such theories are Linear Rational Arithmetic,
Linear Integer Arithmetic, the theory of arrays, etc.

Solving SMT problems can be done by combining a SAT-solver, or the techniques that it
implements, with the decision procedure. Correspondingly, the DPLL procedure can be generalised
into a procedure called DPLL(T) that integrates the decision procedure for such a theory T and
solves SMT problems for T . SMT is a very active area of research, and a particularly interesting
aspect is the combination of many theories, so as to treat hybrid SMT-problems.

In this chapter we describe how DPLL(T) can be seen as a proof-search procedure in the sequent
calculus LKp(T). This chapter is organised as follows: Section 4.1 presents variants of the DPLL
and DPLL(T) procedures. Section 4.2 gives the preliminaries for the simulation of DPLL(T) into
sequent calculus, including the exact version of LKp(T) that we use for the simulation. Section 4.3
shows an indirect simulation of DPLL(T) in LKp(T) and Section 4.4 presents a direct simulation
of DPLL(T) in LKp(T).

4.1 Variations on Davis-Putnam-Logemann-Loveland

In this chapter, we consider SMT-problems expressed as sets of clauses, as it is traditionally the
case in most presentations of SMT-solving techniques. In particular, we do not consider a more
general framework where problems are not in clausal form, or that features definition mechanisms
for literals.

Definition 24 (Literals) Let L be a set of elements called literals, equipped with an involutive
function called negation from L to L. In the rest of this section, a possibly primed or indexed lowercase
l always denotes a literal, and l⊥ denotes its negation. ※

79

80 Chapter 4. Simulating SMT-solving in the sequent calculus

Definition 25 (Clause) A clause is a finite set of literals, which can be seen as their disjunction.
In the rest of the paper, a possibly indexed upper cased C always denotes a clause. The empty

clause is denoted by ⊥ empty clause. The number of literals in a clause C is denoted](C). The
possibly indexed symbol φ always denotes a finite sets of clauses {C1, . . . , Cn}. We use](φ) to denote
the maximum of the sizes of the clauses in φ. Finally lit(φ) denotes the set of literals that appear in
φ or whose negations appear in φ. ※

Notation 26 Viewing clauses as disjunctions of literals and φ as sets of such disjunctions, we use the
notations φ |= C and φ |= ¬C, using the standard notion of entailment of propositional logic.

Definition 27 (Decision literals and model sequences)
We consider a copy Ld of the set L of literals, whose elements are called decision literals, i.e. a

tagged version of the literals in L. Decision literals are denoted by ld.
We use the possibly indexed symbol ∆ to denote model sequences, i.e. finite sequences of possibly

tagged literals, as formally defined by the following grammar:
∆ ::= ∅ | ∆, ld | ∆, l

where l ranges over literals, and ld ranges over decision literals.
For such a sequence ∆, we write ∆ for the subset of L containing all the literals in ∆ with their

potential tags removed.
The sequences that DPLL(T) will construct will always be duplicate-free, so the difference between

∆ and ∆ is just a matter of tags and ordering. When the context is unambiguous, we will sometimes
use ∆ when we mean ∆.

The sequences that DPLL(T) will construct will never contain a literal l and its negation l⊥, so
the set ∆ can also be seen as a (partial) truth assignment that maps literals to truth values (a literal
is mapped to true if it belong to ∆, or to false if its negation does). ※

4.1.1 DPLL
The DPLL procedure can be presented in different ways. A popular way is to present it in terms
of a state transition system, as is done for instance in [NOT05]. We follow this style.

Definition 28 (DPLL states) A DPLL state is either the state UNSAT or a pair of the form ∆‖φ,
where φ is a set of clauses and ∆ is model sequence. ※

Now, we present and discuss the Classical DPLL procedure.

Definition 29 (Classical DPLL)
Classical DPLL is the following transition system between DPLL states, where a transition from state
S to state S′ is denoted by S ⇒ S′:

• Pure literal:
∆‖φ⇒ ∆, l‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ φ and l⊥ 6∈ φ.

• Unit propagate:
∆‖φ,C ∨ l⇒ ∆, l‖φ,C ∨ l where ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

• Decide:
∆‖φ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, and l ∈ lit(φ).

• Fail:
∆‖φ,C ⇒ UNSAT, with ∆ |= ¬C and there is no decision literal in ∆.

• Backtrack:
∆1, l

d,∆2‖φ,C ⇒ ∆1, l
⊥‖φ,C if ∆1, l,∆2 |= ¬C and no decision literal is in ∆2.

※

4.1. Variations on Davis-Putnam-Logemann-Loveland 81

Each rule of the Classical DPLL procedure is described below:

Pure literal : If a literal l is pure in φ, i.e. there is no occurrence of l⊥ in φ, and if l is undefined
in ∆ then we extend ∆ with l. .

Unit propagate: If a clause of φ contains a literal l, whose truth value is not defined by the
model sequence ∆ and all the remaining literals of the clause are false, then we extend ∆
with l. Indeed, l being true is the only way to make the clause true.

Decide: This rule represents a case analysis on literal l. An undefined literal l is chosen from
φ, and added to ∆. If later we realise that ∆, l cannot extend to a model sequence of φ then
the alternative extension ∆, l⊥ should be considered. Therefore the literal is annotated as a
decision literal, denoted by ld.

Fail: This rule detects a conflicting clause C. A clause is conflicting in a state ∆‖φ,C if
∆ |= ¬C. If there is a conflicting clause C and ∆ contains no decision literals, then we know
that there is no model of φ,C and we produce the UNSAT state.

Backtrack: If a conflicting clause C is detected and Fail does not apply, then there remains at
least one possibility to be explored: backtracking by one decision level to the latest decision
literal ld, which we replace by l⊥, removing any subsequent literals in the current model
sequence.

Using the transition system of the DPLL procedure, one can decide the satisfiability of an input
set of clauses φ by generating a derivation:

∅‖φ⇒ . . .⇒ Fn

Fn is a final state when no more transition rule applies to it. If Fn is the form of UNSAT, φ is
unsatisfiable; if Fn is the form of ∆‖φ then φ is satisfiable and ∆ is a model for it.

The following examples illustrate Classical DPLL procedure:

Example 1

C1 C2 C3
∅ 1⊥ ∨ 2⊥ 1⊥ ∨ 2 1 ∨ 2⊥ Decide (C2)

1d 1⊥ ∨ 2⊥ 1⊥ ∨ 2 1 ∨ 2⊥ Unit propagate (C2)
1d 2 1⊥ ∨ 2⊥ 1⊥ ∨ 2 1 ∨ 2⊥ Backtrack

1⊥ 1⊥ ∨ 2⊥ 1⊥ ∨ 2 1 ∨ 2⊥ Unit propagate (C3)
1⊥ 2⊥ 1⊥ ∨ 2⊥ 1⊥ ∨ 2 1 ∨ 2⊥

In Example 1, φ is a set of clauses C1, C2 and C3. When Classical DPLL runs on φ, the Decide
rule applies on clause C2, selecting an undefined literal 1d to place in ∆. The Unit propagate rule
applies on clause C2. Since literal 1⊥ in C2 is false in the model sequence ∆, ∆ is extended with
literal 2 to make the clause (C2) true. Now, clause C1 is in conflict with ∆. Since ∆ contains a
decision literal and there is also a conflict clause, the Backtrack rule is applied, changing 1d to 1⊥
and removing all the consequences of 1d from ∆. The Unit propagate rule is applied on C3 and ∆
is extended with literal 2⊥. Since no more transition rules apply and the final state is the form of
∆‖φ, ∆ is a model of φ.

Example 2 gives a slightly more sophisticated illustration of the transition rules of DPLL:

Example 2

82 Chapter 4. Simulating SMT-solving in the sequent calculus

C1 C2 C3 C4 C5
∅ 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Decide (C2)

9d 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Unit propagate (C2)
9d 7⊥ 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Unit propagate (C3)

9d 7⊥ 3 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Unit propagate (C1)
9d 7⊥ 3 5 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Backtrack

9⊥ 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Unit propagate (C4)
9⊥ 5 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Decide (C3)

9⊥ 5 3d⊥ 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥ Unit propagate (C4)
9⊥ 5 3d⊥ 7 9⊥ ∨ 3⊥ ∨ 5 9⊥ ∨ 7⊥ 7 ∨ 3 9 ∨ 5 7 ∨ 3⊥ ∨ 5⊥

Classical DPLL can be extended with extra rules to improve efficiency: Backjump, Forget, Learn
and Restart.

Definition 30 (Extra rules for DPLL)
• Backjump:

∆1, l
d,∆2‖φ,C ⇒ ∆1, lbj‖φ,C if, for some clause C0 such that C0 ⊆ lit(φ,C),

1. ∆1, l
d,∆2 |= ¬C

2. ∆1 |= ¬C0
3. φ,C |= C0 ∨ lbj
4. lbj 6∈ ∆1, l⊥bj 6∈ ∆1 and lbj ∈ lit(φ,∆1, l

d,∆2).

• Learn:
∆‖φ⇒ ∆‖φ,C if C ⊆ lit(φ) and φ |= C.

• Forget:
∆‖φ,C ⇒ ∆‖φ if φ |= C.

• Restart:
∆‖φ⇒ ∅‖φ

※

The Backjump rule allows to backtrack by “more than one level”, i.e. to an earlier decision
literal that the latest. In this rule, C0 ∨ lbj is called the backjump clause. Backjump clauses can
be added to the clause set as learned clauses (a.k.a lemmas), using rule Learn.

The Forget rule is used to remove any redundant clause from φ, if we realise that the size of the
clause set starts incurring a computational cost that outweighs the benefits of explicitly having
redundant clauses in the set.

The Restart rule can be used for instance if we think that the number of decision literals in
∆ is so high that we would reach a quicker conclusion by restarting from the empty model but
drawing benefits from the clauses we have learned so far. It is mentioned in [NOT06] that the
combination of Learn and Restart improves efficiency, both in theory and in practise, of the DPLL
procedure.

Finally, the way backjump clauses are computed and then learned from a detected conflict gives
rise to an area of SAT-solving called conflict-driven clause learning (CDCL) [SS99, JS97]. This
traditional presentation of DPLL keeps the production of backjump clauses and learned clauses
implicit, i.e. given by an oracle, and we will stick to this style so that any specific oracle can fit
seamlessly in our simulations.

4.1.2 DPLL-modulo-theories
DPLL-modulo-theories DPLL(T) extends DPLL procedure with a background theory T to solve
SMT-problems: DPLL(T) aims at proving the satisfiability or inconsistency of a set of clauses with
respect to the theory T . For this we instantiate the abstract notion of literal from Definition 24
with the concrete notion from first-order logic, i.e. that of Definition 10:

4.1. Variations on Davis-Putnam-Logemann-Loveland 83

Definition 31 (Literals) The definition of literals is as in Definition 10 in Chapter 3. ※

Notation 32 Viewing clauses as disjunctions of literals and φ as sets of such disjunctions, we use the
notations φ |=T C and φ |=T ¬C as a generalisation/variant of Notation 21 in Chapter 3.

Definition 33 (Closure) We define Clo(∆) := {l | ∆, l⊥ |=T }, the closure of a model sequence
∆ by “semantical entailment”. For any set of clauses φ, the set of literals occurring in φ that are
semantically entailed by ∆ is denoted by Cloφ(∆) := Clo(∆) ∩ lit(φ). ※

Remark 33 Obviously, if l ∈ ∆, then l ∈ Clo(∆).
If φ1 ⊆ φ2, then for any ∆, Cloφ1(∆) ⊆ Cloφ2(∆).

Definition 34 (Abstract DPLL modulo theories: DPLL(T))
The Abstract DPLL(T) system is given by the following transitions rules:
• Unit propagate:

∆‖φ,C ∨ l⇒ ∆, l‖φ,C ∨ l where ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.
• Decide:

∆‖φ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, and l ∈ lit(φ).
• Fail:

∆‖φ,C ⇒ UNSAT, with ∆ |= ¬C and there is no decision literal in ∆.
• Theory propagate:

∆‖φ⇒ ∆, l‖φ where l ∈ Cloφ(∆) and l 6∈ ∆, l⊥ 6∈ ∆.
• T -Backjump: ∆1, l

d,∆2‖φ,C ⇒ ∆1, lbj‖φ,C if, for some clause C0 such that C0 ⊆ lit(φ,C),
1. ∆1, l

d,∆2 |= ¬C
2. ∆1 |= ¬C0
3. φ,C |=T C0 ∨ lbj
4. lbj 6∈ ∆1, l⊥bj 6∈ ∆1 and lbj ∈ lit(φ,∆1, l

d,∆2).

• T -Learn:
∆‖φ⇒ ∆‖φ,C if C ⊆ lit(φ) and φ |=T C.

• T -Forget:
∆‖φ,C ⇒ ∆‖φ if φ |=T C.

• Restart:
∆‖φ⇒ ∅‖φ

Sometimes, to distinguish this Abstract DPLL(T) system from other versions of DPLL(T) (e.g. that
of the next section), we will denote it DPLLbj(T). ※

The Theory propagate rule assigns a truth value to literal which is undefined in ∆ but entailed by
the theory T . Compared to DPLL, Backjump, Learn and Forget rules are modified to accommodate
the background theory T , and are now called T -Backjump, T -Learn and T -Forget.

4.1.3 The Elementary DPLL(T) system
In this section we introduce a system called Elementary DPLL(T), which is both a (logically
complete) restriction of Abstract DPLL(T) as well as being a straightforward generalisation of
Classical DPLL to the presence of a background theory T .

We will use this Elementary DPLL(T) system for the simulation of DPLL(T) in sequent calculus
in the rest of this chapter. We will also simulate the whole Abstract DPLL(T) system, but the
simulation of Elementary DPLL will be tighter, with nicer properties (e.g. a bisimulation result)
than the simulation of the most general system.

We now describe the Elementary DPLL(T) procedure as a transition system between states.

Definition 35 (Elementary DPLL(T)) The transition rules of the Elementary DPLL(T) proced-
ure are defined in Figure 4.1. ※

84 Chapter 4. Simulating SMT-solving in the sequent calculus

• Decide:
∆‖φ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ lit(φ).

• Propagate:
∆‖φ,C ∨ l⇒ ∆, l‖φ,C ∨ l where ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

• Fail:
∆‖φ,C ⇒ UNSAT, with ∆ |= ¬C and there is no decision literal in ∆.

• Backtrack:
∆1, l

d,∆2‖φ,C ⇒ ∆1, l
⊥‖φ,C if ∆1, l,∆2 |= ¬C and there is no decision literal in ∆2.

• PropagateT :
∆‖φ⇒ ∆, l‖φ where l ∈ Cloφ(∆) and l 6∈ ∆, l⊥ 6∈ ∆.

• FailT :
∆‖φ⇒ UNSAT, with ∆ |=T and there is no decision literal in ∆.

• BacktrackT :
∆1, l

d,∆2‖φ⇒ ∆1, l
⊥‖φ if ∆1, l,∆2 |=T and there is no decision literal in ∆2.

Figure 4.1: Elementary DPLL(T)

This transition system is an extension of the Classical DPLL procedure, as presented in [NOT06],
to the background theory T . We removed the Pure literal rule, in general unsound in presence of a
theory T . The first four rules are explicitly taken from the abstract DPLL(T) system of [NOT06].
Unit propagate and Theory propagate are renamed as Propagate and PropagateT for consistency
with the other rule names. The other rules of that system (namely T -Backjump, T -Learn, T -Forget,
etc), are not considered here in their full generality, but specific cases and combinations are covered
by the rest of our elementary DPLL(T) system, so that it is logically complete. Backtrack is a
restricted version of T -Backjump (this holds on the basis that the full system satisfies some basic in-
variant -Lemma 3.6 of [NOT06]). The last two new rules FailT and BacktrackT are newly added in
this system; checking the semantical consistency of the model sequence ∆. FailT (resp. BacktrackT)
is a combination of T -Learn, Fail (resp. Backtrack), and T -Forget steps.

By Example 3 and Example 4, we illustrate the reason for the introduction of FailT and
BacktrackT in Elementary DPLL(T). For these examples we use the theory of Linear Rational
Arithmetic.

Example 3
C1 C2 C3

∅ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) Propagate(C1)
x > 0 x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) Propagate(C2)

x > 0, (x+ y > 0)⊥ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) PropagateT
x > 0, (x+ y > 0)⊥, (y > 0)⊥ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) PropagateT

x > 0, (x+ y > 0)⊥, (y > 0)⊥, (x = −1)⊥ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) Fail
UNSAT

In this example, while DPLL(T) run on φ, the Propagate rule first applies on clause C1 and and
on second run again this rule is applied on clause C2; ∆ is extended with x > 0 and (x+ y > 0)⊥,
respectively. PropagateT applies next two run and ∆ is extended with (y > 0)⊥ ∈ Cloφ(∆) and
(x = −1)⊥ ∈ Cloφ(∆); these two literals are theory T -entailed by ∆. Now, clause C3 is in conflict
with ∆ i.e. ∆ |= ¬C3. Since there is no decision literal in ∆ and ∆ is conflicted with C3, the Fail
rule is applied. The final state of the DPLL(T) run is UNSATand therefore φ is T -unsatisfiable.

Now, if we change our choice of selecting rules on the last PropagateT rule with Propagate; this
has created a T -inconsistency from which we could not derive UNSAT without a FailT step (or,
alternatively, a T -Learn step in [NOT06]). Therefore a reason to introduce rule FailT is to allow
the second run to finish with the same output as the first. This is illustrated in Example 4:

4.2. Preliminaries 85

Example 4
C1 C2 C3

∅ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) Propagate(C1)
x > 0 x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) Propagate(C2)

x > 0, (x+ y > 0)⊥ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) PropagateT
x > 0, (x+ y > 0)⊥, (y > 0)⊥ x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) Propagate(C3)

x > 0, (x+ y > 0)⊥, (y > 0)⊥, (x = −1) x > 0 (x+ y > 0)⊥ (y > 0 ∨ x = −1) FailT

The two above runs should illustrate the fact that none of the variations on DPLL that we
presented are deterministic transition systems: for instance the Decide rule can be applied from
any state if there is still a literal eligible for picking, and it furthermore does not enforce a strategy
for picking that literal. At the level of implementation, this (non deterministic) transition system
is turned into a deterministic algorithm, whose efficiency crucially relies on the strategies adopted
to perform the choices left unspecified by DPLL(T).

4.2 Preliminaries
In this section, we give the preliminaries of our simulation of the DPLL(T) procedure into focused
sequent calculus. In Chapter 3, we presented a new system, LKp(T), and the motivation for it is
to perform proof-search modulo theories and in particular simulate the DPLL(T) techniques.

Definition 36 (System used to simulate DPLL(T))
The system that we use for our simulations is presented in Fig. 4.2, and we assume additionally

that its sequents are all safe. ※

This system is the propositional fragment of the LKp(T) system from Chapter 3, extended with
the rules (Pol) and (cut7) (or more precisely restricted versions of them) that we have shown to be
admissible (and invertible) in LKp(T). It is therefore strictly equivalent to propositional LKp(T)
as far as complete proofs are concerned. But as we will formalise our simulation results in terms
of incomplete proofs, having those admissible rules explicitly in the system yields tighter results.

We now give a general idea of the simulation of DPLL(T) into sequent calculus.
As we know, a complete and successful run of the DPLL(T) procedure is a sequence of trans-

itions ∅‖φ ⇒∗ UNSAT, which ensure that the set of clauses φ is inconsistent modulo the theory.
Hence, we are devising a proof-search process aiming at building a proof-tree for sequents of the
form φ′ `, where φ′ represents the set of clauses φ as a sequent calculus structure.

The assumption, in the sequent calculus that we use for the simulation, that sequents are safe
will not be restrictive for our purpose, as we will always start our simulations of DPLL(T) with
the empty polarisation set, making the initial sequent φ′ ` safe (Lemma 16.3), and then safety is
preserved by the bottom-up application of every rule (Lemma 16.4), i.e. by the process by which
we simulate DPLL(T).

Now, in order to construct a proof of φ′ ` in sequent calculus from a run ∅‖φ ⇒∗ UNSAT of
DPLL(T), we proceed incrementally by considering the intermediate steps of the DPLL(T) run:

∅‖φ⇒∗ ∆‖φ⇒∗ UNSAT
In the intermediate DPLL(T) state ∆‖φ, the model sequence ∆ is a log of both the search

space explored so far (in ∅‖φ ⇒∗ ∆‖φ) and the search space that remains to be explored (in
∆‖φ ⇒∗ UNSAT). In this log, a tagged decision literal ld indicates a point where the procedure
has made an exploratory choice (the case where l is true has been/is being explored, the case where
l⊥ is true remains to be explored), while untagged literals in ∆ are predictable consequences of
the decisions made so far and of the set of clauses φ to be falsified.

If we are to express the DPLL(T) procedure as the incremental construction of a proof-tree, we
should get from ∅‖φ⇒∗ ∆‖φ a proof-tree that is not yet complete and get from ∆‖φ⇒∗ UNSAT
some (complete) proof-tree(s) that can be “plugged into the holes” of the incomplete tree. We

86 Chapter 4. Simulating SMT-solving in the sequent calculus

Synchronous rules
Γ `P [A] Γ `P [B]

(∧+)
Γ `P [A∧+B]

Γ `P [Ai]
(∨+)

Γ `P [A1∨+A2]

(>+)
Γ `P [>+]

litP(Γ), l⊥ |=T
(Init1) l is P-positive

Γ `P [l]
Γ `P N

(Release) N is not P-positive
Γ `P [N]

Asynchronous rules
Γ `P A,∆ Γ `P B,∆

(∧−)
Γ `P A∧−B,∆

Γ `P A1, A2,∆
(∨−)

Γ `P A1∨−A2,∆

Γ `P ∆
(⊥−)

Γ `P ∆,⊥−
(>−)

Γ `P ∆,>−
Γ, A⊥ `P;A⊥ ∆

(Store) A is a literal
or is P-positiveΓ `P A,∆

Structural rules
Γ, P⊥ `P [P]

(Select) P is not P-negative
Γ, P⊥ `P

litP(Γ) |=T
(Init2)

Γ `P

Admissible/Invertible rules
Γ `P,l

(Pol) l ε Γ and litP(Γ), l⊥ |=T
Γ `P

Γ `P l Γ `P l⊥
(cut7) l ε Γ

Γ `P

where P;A := P, A if A ∈ UP
P;A := P if not

Figure 4.2: System for the simulation of DPLL(T)

should read in ∆ the "interface" between the incomplete tree that has been constructed and the
complete sub-trees to be constructed.

We use the plural here since there can be more than one sub-tree left to construct: ∆‖φ ⇒∗
UNSAT contains the information to build not only a proof of ∆, φ′ `, but also proofs of the
sequents corresponding to the other parts of the search space to be explored, characterised by
the tagged literals in ∆. Since the decision tags play such a crucial role in the narrowing of the
search space, we need to extract from a DPLL(T) state ∆‖φ all the information that a proof search
strategy for sequents has to know about. Intuitively, we need to be more precise on the status of
the pending proofs required at the open leaves of a partial proof tree. For instance, a run from
l1, l

d
2 , l3, l

d
4‖φ⇒∗ UNSAT contains the information to build a proof of l1, l2, l3, l4, φ′ ` but also the

proofs of l1, l2, l3, l⊥4 , φ′ ` and l1, l⊥2 , φ′ ` . Those extra sequents are obtained by collecting from
a model sequence ∆ its "backtrack points" as follows :

Definition 37 (Backtrack points) The backtrack points J∆K of a model sequence ∆ of possibly
tagged literals is the list of sets of untagged literals recursively defined by the rules of Fig 4.3, where
[] and :: are the standard list constructors.

We will sometimes use J∆K as a set, forgetting the order, and will also use the notation [∆] for the
set {∆} ∪ J∆K. ※

4.3. An indirect simulation of DPLL(T) 87

J()K := []
J∆, lK := J∆K
J∆, ldK := ∆, l⊥ :: J∆K

Figure 4.3: Collecting backtrack points

Remark 34 The length of J∆K is the number of decision literals in ∆.

Remark 35 We have ∆ ∈ [∆] and J∆K ⊆ [∆].

In the rest of this chapter, we will consider two ways of simulating DPLL(T) in sequent calculus.
There are two main gaps between DPLL(T) and sequent calculus:

• Firstly, a (successful) DPLL(T) run is a rewrite sequence finishing with the state UNSAT,
while a (successful) proof-search run is (/ produces) a proof-tree; the former uses decision
literals and backtracking, the latter uses branching.

• Secondly, the structures handled by automated reasoning techniques such as DPLL(T) are
very flexible (e.g. clauses are sets or multisets of literals), while sequent calculus implements
a root-first decomposition of formulae trees.

Therefore, the first kind of simulation we consider is an indirect one, based on an intermediary
inference system introduced in [Tin02] which we will call here LKDPLL(T). This system is interme-
diate, since it manipulates proof-trees as in the sequent calculus but with the flexible structures
of DPLL(T). It would be difficult to claim that LKDPLL(T) is a sequent calculus because it does
not implement the root-first decomposition of formulae trees, and is quite ad hoc: it is clearly
designed to express the concepts of DPLL(T) and not much else.

The simulation is thus split into two simulations: one from DPLL(T) in LKDPLL(T) and one
from LKDPLL(T) to LKp(T).

• The former simulation relates two presentations of the DPLL(T) concepts taken from the
literature, where we found however no formalization of how these two presentations relate
(an informal description is given in [Tin02] in English).

• The latter simulation is build on previous work by Ivan Gazeau [Gaz10] for Classical DPLL
(no theories involved), which was encoded in LKF; we therefore lifted his results to the
presence of a theory (hence the introduction of LKp(T)) and to the extra rules of T -Backjump,
T -Learn, T -Forget and Restart.

The second kind of simulation is direct from DPLL(T) to LKp(T), and is in fact simpler than
composing the two parts of the indirect simulation. Moreover, we get some interesting results
using this direct simulation: we identify in LKp(T) the image, by the simulation, of the Elementary
DPLL(T) runs, using a simple criterion on polarities and a bisimulation theorem.

Therefore, the rest of the chapter is structured in the following way:
• in Section 4.3, we discuss the indirect simulation of both Elementary and Abstract DPLL(T).
• in Section 4.4, we discuss the direct simulation of both Elementary and Abstract DPLL(T)

into LKp(T) system. Moreover, we also present a reverse simulation of LKp(T) system into
Elementary DPLL(T) procedure by an appropriate management of polarities.

4.3 An indirect simulation of DPLL(T)
In this section, we present the indirect simulation of DPLL(T) into the sequent calculus LKp(T).

First, we simulate the DPLL(T) procedure in the intermediate system LKDPLL(T). This form-
alises what is informally described in [Tin02]. We first simulate Elementary DPLL(T), and then
the full Abstract DPLL(T).

Before discussing the simulation of DPLL(T), we briefly present the LKDPLL(T) system.

88 Chapter 4. Simulating SMT-solving in the sequent calculus

4.3.1 The LKDPLL(T) system
In this section, we present all preliminaries and properties of LKDPLL(T).

Definition 38 (The system LKDPLL(T)) Given a theory T , the system LKDPLL(T), given in Fig-
ure 4.4, is an inference system on sequents of the form ∆;φ ` , where ∆ is a set of literals and φ is a
set of clauses. ※

∆, l⊥;φ ` ∆, l;φ `
Split where l ∈ lit(φ), ∆, l⊥ 2T and ∆, l 2T

∆;φ `

Empty
∆;φ,⊥ `

∆, l;φ, l `
Assert where ∆, l⊥ 2T and ∆, l 2T

∆;φ, l `

∆;φ `
Subsume where ∆, l⊥ |=T

∆;φ, l ∨ C `
∆;φ,C `

Resolve where ∆, l |=T
∆;φ, l ∨ C `

Figure 4.4: System LKDPLL(T)

The Assert rule models the fact that every literal occurring as a unit clause in the current
clause set must be satisfied for the whole clause set to be satisfied. The Split rule is mainly used
to branch the proof tree from the DPLL(T) rewrite sequence system. This rule corresponds to the
decomposition in smaller subproblems of the DPLL(T) method. This rule is the only don’t know
non-deterministic rule of the calculus. The Resolve rule removes from a clause all literals whose
complement has been asserted (which corresponds to generating the simplified clause by unit
resolution and the discarding the clause by backward subsumption). The Subsume rule removes
from the clauses that contain an asserted literal (because all of these clause will be satisfied in any
model in which the asserted literal is true); it is part of the system for convenience as it could be
removed with no loss of completeness. To close the branch of a proof tree we use the Empty rule.
It models the fact that a derivation can be terminated as soon as the empty clause is derived.

Now, we discuss some meta-theories of the LKDPLL(T) system, and present some rules that are
size-preserving admissible:

Lemma 36 (Weakening1) The following rule is size-preserving admissible in LKDPLL(T).
∆;φ `
−−−−−
∆;φ,C `

Proof: By induction on ∆;φ ` . �

Lemma 37 (Weakening2) The following rule is size-preserving admissible in LKDPLL(T)
∆;φ `
−−−− Cloφ(∆) ⊆ Cloφ(∆′)
∆′;φ `

Proof: By induction on the derivation of ∆;φ ` :
• Resolve:

∆;φ,C `
∆, l |=T

∆;φ, l ∨ C `

We assume Cloφ,l∨C(∆) ⊆ Cloφ,l∨C(∆′)
from which we get Cloφ,C(∆) ⊆ Cloφ,C(∆′), so we can apply the induction hypothesis to
construct

4.3. An indirect simulation of DPLL(T) 89

∆′;φ,C `
∆′, l |=T

∆′;φ, l ∨ C `

The side-condition is a consequence of the assumption Cloφ,l∨C(∆) ⊆ Cloφ,l∨C(∆′).
• Subsume:

∆;φ `
∆, l⊥ |=T

∆;φ, l ∨ C `

We assume Cloφ,l∨C(∆) ⊆ Cloφ,l∨C(∆′)
from which we get Cloφ(∆) ⊆ Cloφ(∆′), so we can apply the induction hypothesis to construct

∆′;φ `
∆′, l⊥ |=T

∆′;φ, l ∨ C `

The side-condition is a consequence of the assumption Cloφ,l∨C(∆) ⊆ Cloφ,l∨C(∆′).
• Assert:

∆, l;φ, l `
∆, l⊥ 2T and ∆, l 2T

∆;φ, l `

We assume Cloφ,l(∆) ⊆ Cloφ,l(∆′)
from which we get Cloφ,l(∆, l) ⊆ Cloφ,l(∆′, l).
– If ∆′ |=T l, then Clo(∆′, l) = Clo(∆′), so we have Cloφ,l(∆, l) ⊆ Cloφ,l(∆′). The

induction hypothesis then gives ∆′;φ, l ` .
– If ∆′ |=T l⊥, then we construct

Empty
∆′;φ,⊥ `

Resolve
∆′;φ, l `

– If ∆′ 6|=T l and ∆′ 6|=T l⊥: we first apply the induction hypothesis to get ∆′, l;φ, l `
and we conclude by constructing

∆′, l;φ, l `
∆′, l⊥ 2T and ∆′, l 2T

∆′;φ, l `

• Split:
∆, l⊥;φ, l ∨ C ` ∆, l;φ, l ∨ C `

∆, l⊥ 2T and ∆, l 2T
∆;φ, l ∨ C `

We assume Cloφ,l∨C(∆) ⊆ Cloφ,l∨C(∆′) from which we get both
Cloφ,l∨C(∆, l) ⊆ Cloφ,l∨C(∆′, l) and Cloφ,l∨C(∆, l⊥) ⊆ Cloφ,l∨C(∆′, l⊥).
– If ∆′ |=T l, then Clo(∆′) = Clo(∆′, l), so we have Cloφ,l∨C(∆, l) ⊆ Cloφ,l∨C(∆′). The

induction hypothesis then gives ∆′;φ, l ∨ C ` .
– If ∆′ |=T l⊥, then Clo(∆′) = Clo(∆′, l⊥), so we have Cloφ,l∨C(∆, l⊥) ⊆ Cloφ,l∨C(∆′).

The induction hypothesis then gives ∆′;φ, l ∨ C ` .
– If ∆′ 6|=T l and ∆′ 6|=T l⊥: the induction hypothesis on both premises gives ∆′, l;φ, l ∨ C `

and ∆′, l⊥;φ, l ∨ C ` , and we can conclude

∆′, l⊥;φ, l ∨ C ` ∆′, l;φ, l ∨ C `
∆′ 6|=T l and ∆′ 6|=T l⊥

∆′;φ, l ∨ C `

• Empty: Straightforward.
�

90 Chapter 4. Simulating SMT-solving in the sequent calculus

Lemma 38 (Invertibility of Resolve) Resolve is size-preserving invertible in LKDPLL(T).

Proof: By induction on the derivation of ∆;φ,C ∨ l ` we prove ∆;φ,C ` (with the assumption
∆, l |=T):

• Resolve:
easily permutes with other instances of Resolve and with instances of Subsume.

• Assert:
The side-condition of the rule guarantees that the literal added to the model, say l′, is
different from l:

∆, l′;φ′, l′, C ∨ l `
∆, l′⊥ 2T and ∆, l′ 2T

∆;φ′, l′, C ∨ l `

We can construct:
∆, l′;φ′, l′, C `

∆, l′⊥ 2T and ∆, l′ 2T
∆;φ′, l′, C `

whose premiss is proved by the induction hypothesis.

• Split:
∆, l′⊥;φ,C ∨ l ` ∆, l′;φ,C ∨ l `

l′ ∈ lit(φ,C ∨ l) and ∆, l′⊥ 2T and ∆, l′ 2T
∆;φ,C ∨ l `

We can construct:
∆, l′;φ,C ` ∆, l′⊥;φ,C `

l′ ∈ lit(φ,C) and ∆, l′⊥ 2T and ∆, l′ 2T
∆;φ,C `

whose branches are closed by using the induction hypothesis. The side-condition l′ ∈ lit(φ,C)
is satisfied because l 6= l′.

• Empty: Straightforward.
�

Definition 39 (Extension of LKDPLL(T): LKDPLL+(T)) We introduce a new system LKDPLL+(T)
which is the extention of LKDPLL(T) with Weakening, Weakening2 and the Inverted Resolve, as shown
in Fig. 4.5. ※

∆;φ `
−−−−−
∆;φ,C `

∆;φ `
−−−− Cloφ(∆) ⊆ Cloφ(∆′)
∆′;φ `

∆;φ, l ∨ C `
−−−−− − ∆, l |=T

∆;φ,C `

Figure 4.5: Extension of system LKDPLL(T)

By the previous lemmas, system LKDPLL+(T) is strictly equivalent to LKDPLL(T) as far as
complete proofs are concerned. But again (like we extended LKp(T)), as we will formalise our
simulation results in terms of incomplete proofs, having those admissible rules explicitly in the
system yields tighter results.

Definition 40 (Size of proof-trees in LKDPLL+(T)) The size of proof-trees in LKDPLL+(T) is
defined as the size of trees in the usual sense, but not counting the occurrences of Weakening or the
Inverted Resolve rules. For that reason, dashed lines will be used for the occurrences of those inference
rules. ※

4.3. An indirect simulation of DPLL(T) 91

Remark 39 The size-preserving admissibility results of those three rules in LKDPLL(T) entails
that a proof-tree in LKDPLL+(T) of size n, can be transformed into a proof-tree in LKDPLL(T) of
size at most n.

Lemma 40 If ∆ |=T ¬C then there is a proof-tree concluding ∆;C, φ ` of size at most](φ) + 1.

Proof: Here ∆ |=T ¬C means C = l1 ∨ . . . ∨ ln and for all li, ∀li ∆ |=T l⊥i where i=1,. . . ,n.
We can therefore construct

Empty
∆;⊥, φ `
======== Resolve
∆;C, φ `

�

We have discussed the preliminaries of the indirect simulation of DPLL(T). Now we present
and show the simulation of Elementary and Abstract DPLL(T). This simulation is decomposed
into two simulations: (i) Section 4.3.2 shows the simulation of DPLL(T) into LKDPLL(T) (or more
precisely, LKDPLL+(T)) and (ii) Section 4.3.3 shows the simulation of LKDPLL(T) into LKp(T).

Therefore, starting from a full run of DPLL(T) finishing on UNSAT, the first simulation in-
crementally builds a complete proof-tree in LKDPLL+(T), which we can then transform (using
our size-preserving admissibility results) into a complete tree in LKDPLL(T) of smaller or equal
size. The second simulation will then describe the incremental construction of that (complete)
proof-tree as the incremental construction of a (complete) proof-tree of LKp(T).

4.3.2 Simulation of DPLL(T) in LKDPLL(T)

We proceed with the encoding of the Elementary DPLL(T) procedure as the construction of a
derivation tree in system LKDPLL+(T). We have already given the basic idea of the simulation
of DPLL(T) into seqeunt calculus in Section 4.2: if ∆‖φ ⇒∗ UNSAT then there is a LKDPLL+(T)
proof of ∆;φ ` (i.e. there is no T -model of φ extending ∆).

Now, coming back to the DPLL(T) transition sequence ∅ ⇒∗ ∆‖φ and its intuitive counterpart
in an inference system, we have to formalise the notion of incomplete proof-tree together with the
notion of "filing holes".

Definition 41 (Incomplete proof tree, extension of incomplete proof-tree) An incomplete
proof-tree in LKDPLL+(T) is a tree labelled with sequents, whose leaves are tagged as either open or
closed, and such that every node that is not an open leaf is an instance of the LKDPLL+(T) rules.

An incomplete proof-tree that has no open leaf is isomorphic to a derivation in LKDPLL+(T).
A complete proof-tree is (isomorphic to) an incomplete proof-tree whose leaves are all closed.
An incomplete proof-tree π′ is an n-extension of π if π′ is π or if π′ is obtained from π by replacing

one of its open leaves by an incomplete proof-tree of size at most n and whose conclusion has the
same label as that leaf. ※

Definition 42 (Correspondence between DPLL(T) states and incomplete proof-trees)
An incomplete proof-tree π corresponds to a DPLL(T) state ∆‖φ if the sequents labelling its open
leaves are all distinct and form a sub-set of {∆′;φ ` | ∆′ ∈ [∆] ∧∆′ 6|=T }.

An incomplete proof-tree π corresponds to UNSAT if it has no open leaf. ※

92 Chapter 4. Simulating SMT-solving in the sequent calculus

The DPLL(T) procedure starts from an initial state i.e. ∅‖φ, to which corresponds the in-
complete proof-tree consisting of one node (both a root and a leaf) labelled with the sequent
;φ ` .

Note that, different incomplete proof-trees might correspond to the same DPLL(T) state, as
different DPLL(T) runs can lead to that state from various initial DPLL(T) states. The simulation
theorem below expresses the fact that, when DPLL(T) rewrites one state to another state, any
incomplete proof-tree corresponding to the formal state can be extended into a incomplete proof-
tree corresponding to the latter state.

Theorem 41 (Simulation of DPLL(T) in LKDPLL(T)) If ∆‖φ⇒ S2 is a rewrite step of DPLL(T)
and if π1 corresponds to ∆‖φ then there is, in LKDPLL+(T), a](φ)+1-extension π2 of π1 corresponding
to S2.

Proof: By case analysis on the DPLL(T) rule. Notice that the bottom-up application of the
LKDPLL+(T) rules preserves the invariant that, in a sequent ∆;φ ` , ∆ is semantically consist-
ent (∆ 6|=T), and therefore in our case analysis, we do not have to worry about the semantical
consistency condition of the correspondence between DPLL(T) states and incomplete proof-trees.

• Decide: ∆‖φ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ lit(φ).

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. We 1-extend it into π2 by replacing
the open leaf labelled with ∆;φ ` (if there is such a leaf) by one of three proof-trees:
– If ∆, l |=T , we have Clo(∆) = Clo(∆, l⊥) and we take:

∆, l⊥;φ `
−−−−−Weakening2

∆;φ `
The new open leaves form a sub-set of {∆, l⊥;φ ` }∪{∆′;φ ` | ∆′ ∈ J∆K} ⊆ {∆′;φ ` |
∆′ ∈ [∆, ld]} (since ∆, l⊥ = ∆, l⊥ ∈ [∆, l⊥] = J∆, ldK ⊆ [∆, ld]) and therefore π2
corresponds to ∆, ld‖φ.

– If ∆, l⊥ |=T , we have Clo(∆) = Clo(∆, l) and we take
∆, l;φ `
−−− −Weakening2
∆;φ `

The new open leaves form a sub-set of {∆, l;φ ` } ∪ {∆′;φ ` | ∆′ ∈ J∆K} ⊆ {∆′;φ ` |
∆′ ∈ [∆, ld]} (since ∆, l = ∆, l ∈ [∆, ld]) and therefore π2 corresponds to ∆, ld‖φ.

– If ∆, l 6|=T and ∆, l⊥ 6|=T , we take
∆, l;φ ` ∆, l⊥;φ `

Split
∆;φ `

The new open leaves form a sub-set of {∆, l;φ ` } ∪ {∆, l⊥;φ ` } ∪ {∆′;φ ` | ∆′ ∈
J∆K} ⊆ {∆′;φ ` | ∆′ ∈ [∆, ld]} and therefore π2 corresponds to ∆, ld‖φ. (since ∆, l⊥ =
∆, l⊥ ∈ [∆, l⊥] = J∆, ldK ⊆ [∆, ld])

• Propagate: ∆‖φ,C ∨ l⇒ ∆, l‖φ,C ∨ l where ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.
Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C ∨ l. We](φ,C ∨ l)+1-extend it
into π2 by replacing the open leaf labelled with ∆;φ,C ∨ l ` (if there is such a leaf) by one
of three proof-trees:
– If ∆, l⊥ |=T , we have Clo(∆) = Clo(∆, l) and we take:

∆, l;φ `
−−− −Weakening2
∆;φ `

The new open leaves form a sub-set of {∆, l;φ,C ∨ l ` }∪{∆′;φ,C ∨ l ` | ∆′ ∈ J∆K} ⊆
{∆′;φ,C ∨ l ` | ∆′ ∈ [∆, l]} (since ∆, l = ∆, l ∈ [∆, l]) and therefore π2 corresponds to
∆, l‖φ,C ∨ l.

4.3. An indirect simulation of DPLL(T) 93

– If ∆, l |=T then Lemma 40 directly provides an incomplete proof-tree of ∆;φ,C ∨ l ` .
– If ∆, l 6|=T and ∆, l⊥ 6|=T , we can construct the following tree:

∆, l;φ,C ∨ l `
= = = = = = = Inverted Resolve

∆, l;φ, l `
Assert

∆;φ, l `
========== Resolve
∆;φ,C ∨ l `

where the side-conditions of Resolve are provided by the hypothesis ∆′′ |= ¬C.
The new open leaves form a sub-set of {∆, l;φ,C ∨ l ` } ∪ {∆′;φ ` | ∆′ ∈ J∆K} ⊆
{∆′;φ ` | ∆′ ∈ [∆, l]} and therefore π2 corresponds to ∆, l‖φ,C ∨ l. (since ∆, l =
∆, l ∈ [∆, l])

• Fail: ∆‖φ,C ⇒∗ UNSAT with ∆ |= ¬C and there is no decision literal in ∆.
Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C. Since there are no decision
literals in ∆, π1 can have at most one open leaf, labelled by ∆;φ,C ` .
We](φ,C)+1-extend π1 into π2 by replacing that leaf by a complete tree deriving ∆;φ,C ` .
We obtain that tree by applying Lemma 40 on the hypothesis ∆ |= ¬C. The new tree π2 is
complete and therefore corresponds to the UNSAT state of the DPLL(T) run.

• PropagateT : ∆‖φ⇒ ∆, l‖φ where ∆ |=T l, l ∈ lit(φ) and l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. We 1-extend it into π2 by replacing
the open leaf labelled with ∆;φ ` (if it exists) by the following proof-tree:

∆, l;φ `
−−− −Weakening2
∆;φ `

as we have Clo(∆) = Clo(∆, l).
The new open leaves form a sub-set of {∆, l;φ ` }∪ {∆′;φ ` | ∆′ ∈ J∆K} ⊆ {∆′;φ ` | ∆′ ∈
[∆, l]} (since ∆, l = ∆, l ∈ [∆, l]) and therefore π2 corresponds to ∆, l‖φ.

• FailT : ∆‖φ⇒ UNSAT with ∆ |=T and there is no decision literal in ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. Since there are no decision literals
in ∆, and ∆ is semantically inconsistent, π1 has no open leaf, so it is a complete proof-tree
that corresponds to the state UNSAT.

• Backtrack: ∆1, l
d,∆2‖φ,C ⇒ ∆1, l

⊥‖φ,C
if ∆1, l,∆2 |= ¬C and no decision literal is in ∆2.

Let π1 be an incomplete proof-tree corresponding to ∆1, l
d,∆2‖φ,C. We](φ,C)+1-extend

π1 into π2 by replacing the leaf labelled with ∆1, ld,∆2;φ,C ` (if it exists) by a complete
tree deriving ∆1, ld,∆2;φ,C ` . We obtain that incomplete proof-tree by applying Lemma 40
on the assumption ∆1, ld,∆2 |= ¬C.
The new open leaves form a sub-set of {∆′;φ,C ` | ∆′ ∈ J∆1, l

d,∆2K}, which is equal to
{∆′;φ,C ` | ∆′ ∈ J∆1, l

dK} as there are no decision literal in ∆2, and that set is a sub-set
of {∆′;φ,C ` | ∆′ ∈ [∆1, l

⊥]} since ∆1, l
⊥ = ∆1, l⊥ ∈ [∆1, l

⊥]. Therefore π2 corresponds
to ∆1, l

⊥‖φ,C state of the DPLL(T) run.
• BacktrackT : ∆1, l

d,∆2‖φ⇒ ∆1, l
⊥‖φ if ∆1, l,∆2 |=T and no decision literal is in ∆2.

Let π1 be an incomplete proof-tree corresponding to ∆1, l
d,∆2‖φ. Since ∆1, l

d,∆2 is se-
mantically inconsistent, the open leaves of π1 form a subset of {∆′;φ ` | ∆′ ∈ J∆1, l

d,∆2K},
and we conclude as in the previous case.

94 Chapter 4. Simulating SMT-solving in the sequent calculus

�

We now simulate the full system called Abstract DPLL(T) (Definition 34), which involves
T -Backjump and T -Learn etc. features.

In order to simulate those extra rules in LKDPLL(T), we need to extend LKDPLL(T) with a cut
rule as follows:

Definition 43 (LKDPLL(T) with cut) System LKcDPLL(T) is obtained by extending system LKDPLL+(T)
with the following cut-rule:

∆;φ, l1, . . . , ln ` ∆;φ,C `
Cut where C = l⊥1 ∨ . . . ∨ l⊥n∆;φ `

We define the size of proof-trees in LKcDPLL(T) as we did for LKDPLL+(T) (still ignoringWeakening1,
Weakening2 or the Inverted Resolve), but also ignoring the left-branch of the cut-rules. As we shall
see in the simulation theorem, this definition mimics the fact that the length of DPLL(T) sequences
is a complexity measure that ignores the cost of checking the side-conditions. ※

Furthermore, the simulation will be such that several open branches of the incomplete proof-
trees can be labelled by the same sequent. Therefore we have to slightly relax the notion of
corespondance as follows:

Definition 44 (Correspondence between DPLL(T) states and incomplete proof-trees)
An incomplete proof-tree π corresponds to a DPLL(T) state ∆‖φ if the sequents labelling its open
leaves form a sub-set of {∆′;φ ` | ∆′ ∈ [∆] ∧∆′ 6|=T }. ※

And we now have to consider the simultaneous extension of several branches of incomplete
proof-trees, which we formalise by the following concepts:

Definition 45 (n, φ,S-sync action, parallel n-extension of incomplete proof-trees)
• πφ is a n, φ,S-sync action if it is a function that maps every model sequences ∆ ∈ S to an

incomplete proof-tree of size at most n and concluding ∆;φ ` .
• π2 is a parallel n-extension of π1 according to πφ if πφ is a n, φ,S-sync action and if π2 is

obtained from π1 by replacing all the open leaves of π1 labelled by sequents of the form ∆;φ `
(where ∆ ∈ S) by πφ(∆).

※

Theorem 42 (Simulation of Abstract DPLL(T) into LKDPLL(T))
If ∆‖φ⇒DPLLbj(T) S2 and π1 corresponds to ∆‖φ, there is parallel](φ) + 3-extension π2 of π1

(according to some πφ) such that π2 corresponds to S2.

Proof: Since LKDPLL(T) is a sub-system of LKcDPLL(T), we only need to simulate (in LKcDPLL(T))
the new rules.

• T -Backjump: ∆1, l
d,∆2‖φ,C ⇒ ∆1, lbj‖φ,C if, for some clause C0 such that C0 ⊆ lit(φ,C),

1. ∆1, l
d,∆2 |= ¬C

2. ∆1 |= ¬C0
3. φ,C |=T C0 ∨ lbj
4. lbj 6∈ ∆1, l⊥bj 6∈ ∆1 and lbj ∈ lit(φ,∆1, l

d,∆2).

Let π1 be an incomplete proof-tree corresponding to ∆1, l
d,∆2‖φ,C. We have to build a π2

that corresponds to ∆1, lbj‖φ,C in the DPLLbj(T) run. This means that the open leaves of
π2 should be labelled with sequents of the form ∆′;φ,C ` where ∆′ ∈ [∆1, lbj].
Let S = [∆1, l

d,∆2]\J∆1K and πφ be the](φ,C)+3, φ,C,S-sync action that maps every
∆ ∈ S to

4.3. An indirect simulation of DPLL(T) 95

;φ,C,¬C ′, l⊥bj `−−−−−−−− − Weakening2
∆1;φ,C,¬C ′, l⊥bj `

∆1, lbj ;φ,C `
Subsume

∆1, lbj ;φ,C, lbj `
Assert

∆1;φ,C, lbj `
=============== Resolve
∆1;φ,C,C ′ ∨ lbj `

cut
∆1;φ,C `

Weakening2
∆;φ,C `

It is a valid incomplete proof-tree because ∆ ∈ S entails ∆1 ⊆ ∆ and therefore Cloφ(∆1) ⊆
Cloφ(∆). The left branch is closed by assumption (3) and the completeness of LKDPLL(T) [Tin02]
on φ,C,¬C ′, l⊥bj |=T . We cannot anticipate the size of the proof-tree closing that branch,
and we therefore ignore that proof-tree to compute the size of the whole tree, just as the
length of the DPLL(T) run ignores the cost of checking φ,C |=T C ′ ∨ lbj .

Let π2 be the parallel](φ,C) + 3-extension of π1 according to πφ. The new open leaves
form a sub-set of {∆1, lbj ;φ,C ` } ∪ {∆′;φ ` | ∆′ ∈ J∆1K} ⊆ {∆′;φ ` | ∆′ ∈ [∆1, lbj]}
(since ∆1, lbj = ∆1, lbj ∈ [∆1, lbj] and J∆1, lbjK = J∆1K) and therefore π2 corresponds to
∆1, lbj‖φ,C.

• T -Learn: ∆‖φ⇒ ∆‖φ,C if each atom of C occurs in φ or in ∆ and φ |=T C.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. We have to build a π2 that
corresponds to ∆‖φ,C in the DPLLbj(T) run. This means that the open leaves of π2 should
be labelled with sequents of the form ∆′;φ,C ` where ∆′ ∈ [∆].

Let S = [∆] and πφ be the](φ),φ,S-sync action that maps every ∆ ∈ S to:
;φ,¬C `
−−−− − Weakening2
∆;φ,¬C ` ∆;φ,C `

cut
∆;φ `

The left branch of the cut is closed by assumption and completeness of LKDPLL(T) [Tin02]
on φ,¬C |=T . We cannot anticipate the size of the proof-tree closing that branch, and we
therefore ignore that proof-tree to compute the size of the whole tree, just as the length of
the DPLL(T) run ignores the cost of checking φ |=T C.

Let π2 be the parallel](φ)-extension of π1 according to πφ. The new open leaves form a
sub-set of {∆′;φ,C ` | ∆′ ∈ [∆]} and therefore π2 corresponds to ∆‖φ,C.

• T -Forget: ∆‖φ,C ⇒ ∆‖φ if φ |=T C.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C. We have to build a π2 that
corresponds to ∆‖φ in the DPLLbj(T) run. This means that the open leaves of π2 should be
labelled with sequents of the form ∆′;φ ` where ∆′ ∈ [∆].

Let S = [∆] and πφ be the 1, φ, C,S-sync action that maps every ∆′ ∈ S to
∆′;φ `
−−−− − Weakening1
∆′;φ,C `

Let π2 be the parallel 1-extension of π1 according to πφ. The new open leaves form a sub-set
of {∆′;φ ` | ∆′ ∈ [∆]} and therefore π2 corresponds to ∆‖φ.

• Restart: ∆‖φ⇒ ∅‖φ.

96 Chapter 4. Simulating SMT-solving in the sequent calculus

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. We have to build a π2 that
corresponds to ∅‖φ in the DPLLbj(T) run. This means that the open leaves of π2 should be
labelled with sequents of the form ;φ ` .

Let S = [∆] and πφ be the 1, φ,S-sync action that maps every ∆′ ∈ S to:
;φ `
−−−− Weakening2
∆′;φ `

Let π2 be the parallel 1-extension of π1 according to πφ. The new open leaves form a sub-set
of {;φ ` } and therefore π2 corresponds to ∅‖φ.

�

4.3.3 Simulation of LKDPLL(T) in LKp(T)

In this section, we present the simulation of the intermediate system LKDPLL(T) in the focused
sequent calculus LKp(T). The main gap between LKDPLL(T) (or even DPLL(T)) and a sequent
calculus such as LKp(T) is the fact that the structures handled by the former are very flexible
(e.g. clauses are sets of literals), while sequent calculus implements a root-first decomposition of
formulae trees.

The way we encode clauses as formulae of sequent calculus is as follows: a clause C will be
represented by a formula C ′ which is a disjunctive tree whose leaves contain at least all the literals
of C but also other literals that we can consider as garbage. Of course, one could fear that
the presence of garbage parts within C ′ degrades the efficiency of proof-search when simulating
DPLL(T). This garbage comes from the original clauses at the start of the DPLL(T) rewriting
sequence, which might have been simplified in later steps of DPLL(T) but which remain unchanged
in sequent calculus. The size of the garbage is therefore smaller than the size of the original
problem. We ensure that the inspection, by the proof-search process, of the garbage in C ′⊥, takes
no more inference steps than the size of the garbage itself (the waste of time is linear in the size
of the garbage). In order to ensure this, we use polarities and the focusing properties of LKp(T):
the garbage literals in C ′ must be negative atoms that are negated in the model/context.

The representation of clauses as formulae, informally described above, and the representation
of sequents, lead to the formal notion of correspondence below:

Definition 46 (P-correspondence) Let P be a multiset of literals.

• A formula C ′ P-corresponds to a clause C (in system LKDPLL(T)), where C = l1 ∨ . . . ∨ lp,
if C ′ = l′1∨− . . .∨−l′p′ with {lj}j=1...p ⊆ {l′j}j=1...p′ and for any l ∈ {l′j}j=1...p′\{lj}j=1...p,
l⊥ ∈ P .

• An LKp(T) sequent ∆, C ′1, . . . , C ′m′ `P corresponds to an LKDPLL(T) sequent ∆;C1, . . . , Cm ` ,
if
– m′ ≥ m
– C ′i P-corresponds to Ci for 1 ≤ i ≤ m
– ∆ `P C ′i for m < i ≤ m′

– for all l ∈ ∆, l ∈ P
– for all l ∈ P, ∆ |=T l.

※

4.3. An indirect simulation of DPLL(T) 97

Lemma 43 If C ′ P-corresponds to C, then C ′ also (P, l)-corresponds to C.

Proof: Straightforward. �

We can now prove the simulation theorem:

Theorem 44 Assume
(Si)i
S

is a rule of LKDPLL(T). For every LKp(T) sequent S ′ that corresponds

to S, there exists an incomplete proof-tree in LKp(T) whose open leaves (S ′i) are such that ∀i, S ′i
corresponds to Si.

Proof: By case analysis:
• Split:

∆, l⊥;φ ` ∆, l;φ `
where l ∈ lit(φ),∆, l⊥ 2T and ∆, l 2T

∆;φ `

Assume that ∆, φ′ `P corresponds to ∆;φ ` .
In particular, φ′ = C ′1, . . . , C

′
m and φ = C1, . . . , Cn with C ′i P-corresponding to Ci for

i = 1 . . . n.
We build in LKp(T) the following derivation that uses an analytic cut:

∆, l⊥, φ′ `P,l
⊥

∆, φ′ `P l
∆, l, φ′ `P,l

∆, φ′ `P l⊥

∆, φ′ `P

as neither l nor l⊥ can be in P.
∆, l⊥, φ′ `P,l

⊥
(resp. ∆, l, φ′ `P,l) P-corresponds to ∆, l⊥;φ ` (resp. ∆, l;φ `).

• Assert:
∆, l;φ, l `

∆, l⊥ 2T and ∆, l 2T
∆;φ, l `

Assume that ∆, φ′, C ′ `P corresponds to ∆;φ, l ` .
In particular, φ′ = C ′1, . . . , C

′
m and φ = C1, . . . , Cn with C ′i P-corresponding to Ci for

i = 1 . . . n, and C ′ P-corresponds to l, that is to say C ′ = ∨pi=1li where l = li0 for some
i0 ∈ 1 . . . n.
We build in LKp(T) the following derivation:

litP(∆, φ′, C ′), li |=T
(i 6= i0)

∆, φ′, C ′ `P [l⊥i]

li0 ,∆, φ′, C ′ `
P,li0

∆, φ′, C ′ `P li0
⊥

∆, φ′, C ′ `P [li0
⊥]

····
∧+

∆, φ′, C ′ `P [C ′⊥]
∆, φ′, C ′ `P

For i 6= i0, l⊥i ∈ P, so it is positive and we can use an axiom (remember that ∆ |= l⊥i).
Because of the side-condition of the Assert rule, neither l nor l⊥ can be in P. Therefore, we
release focus and store li0 , so that li0 ,∆, φ′, C ′ `

P,li0 P-corresponds to ∆, l;φ, l ` .
• Empty:

∆;φ,⊥ `

98 Chapter 4. Simulating SMT-solving in the sequent calculus

Assume that ∆, φ′, C ′ `P corresponds to ∆;φ,⊥ ` . In particular, φ′ = C ′1, . . . , C
′
m and

φ = C1, . . . , Cn with C ′i P-corresponding to Ci for i = 1 . . . n, and finally C ′ P-corresponds
to ⊥.
We build in LKp(T) the following derivation:

litP(∆, φ′, C ′), li |=T
∆, φ′, C ′ `P [l⊥i]

····
∧+.

∆, φ′, C ′ `P [C ′⊥]
∆, φ′, C ′ `P

Again, l⊥i ∈ P, so it is positive and we can use an axiom (remember that ∆ |= l⊥i).
• Resolve:

∆;φ,C `
∆, l |=T

∆;φ, l ∨ C `

Assume that ∆, φ′, C ′ `P corresponds to ∆;φ, l ∨ C ` .
In particular, φ′ = C ′1, . . . , C

′
m and φ = C1, . . . , Cn with C ′i P-corresponding to Ci for

i = 1 . . . n, and finally C ′ P-corresponds to l ∨ C.
We build in LKp(T) the following derivation:

∆, φ′, C ′ `P,l
⊥

(Pol)
∆, φ′, C ′ `P

The side-condition of the rule, namely litP,l⊥(∆, φ′, C ′), l |=T is a consequence of the side-
condition ∆, l |=T , since litP(∆) = ∆ by definition of the correspondence.

Finally, it suffices to notice that ∆, φ′, C ′ `P,l
⊥

corresponds to ∆;φ,C ` .
• Subsume:

∆;φ `
∆, l⊥ |=T

∆;φ, l ∨ C `

Assume that ∆, φ′, C ′ `P corresponds to ∆;φ, l ∨ C ` .
In particular, φ′ = C ′1, . . . , C

′
m and φ = C1, . . . , Cn with C ′i P-corresponding to Ci for

i = 1 . . . n, and finally C ′ P-corresponds to l ∨ C, that is to say C ′ = ∨pi=1li where l = li0
for some i0 ∈ 1 . . . n.
We show that ∆, φ′, C ′ `P also corresponds to ∆;φ ` . The only thing we need to prove is
that ∆ `P C ′ is derivable in LKp(T).
We build in LKp(T) the following derivation:

∆, l⊥1 , . . . , l⊥p `
P′

==============
∆ `P l1, . . . , lp

===============
∆ `P l1∨− · · · ∨−lp
−−−−−−−− −

∆ `P C ′

To close the branch, there are two cases:
– if l /∈ P, then l⊥ ∈ P ′ and we can conclude with Init2, since litP′(∆, l1⊥, . . . , ln⊥)

contains ∆, l⊥.
– if l ∈ P, then we conclude with the following proof-tree:

4.4. Direct simulation of DPLL(T) 99

litP′(∆, l1⊥, . . . , ln⊥), l⊥ |=T
∆, l⊥1 , . . . , l⊥p `

P′ [l]
∆, l⊥1 , . . . , l⊥p `

P′

as again litP′(∆, l1⊥, . . . , ln⊥) contains ∆.
�

Finally, if we want to simulate DPLLbj(T) (i.e. DPLL(T) with backjump), then we would need
to simulate system LKcDPLL(T) rather than LKDPLL(T). This can be done if, one the sequent
calculus side, we do not only consider the analytic cut shown in Fig. 4.2, but also the more general
form of cut7, as well as the (Store=) rule:

Γ `P A,∆ Γ `P A⊥,∆
cut7

Γ `P ∆
Γ, A⊥ `P ∆

(Store=)
Γ `P A,∆

With these rules, which in Chapter 3 we have proved admissible and invertible in LKp(T), the
cut-rule of LKcDPLL(T) can be simulated as follows:

Lemma 45 (Simulation of cut) Consider the cut rule of LKcDPLL(T):
∆;φ, l1, . . . , ln ` ∆;φ,C `

C = l⊥1 ∨ . . . ∨ l⊥n∆;φ `
For every LKp(T) sequent S that corresponds to ∆;φ ` , there exists an incomplete proof-tree in

LKp(T) (with (Store=) and the general version of cut7) whose open leaves S1 and S2 respectively
correspond to ∆;φ, l1, . . . , ln ` and ∆;φ,C ` .

Proof: Assume that ∆, φ′ `P corresponds to ∆;φ ` .
In particular, φ′ = C ′1, . . . , C

′
m and φ = C1, . . . , Cn with C ′i P-corresponding to Ci for i =

1 . . . n.
We build in LKp(T) the following derivation that uses the general form of cut7:

∆, φ′, l1, . . . , ln `P
===============
∆, φ′ `P l⊥1 , . . . , l⊥n====================

∆, φ′ `P l1⊥∨− · · · ∨−ln⊥
∆, φ′, l1⊥∨− · · · ∨−ln⊥ `P

∆, φ′ `P l1∧+ · · · ∧+ln

∆, φ′ `P

Clearly, ∆, φ′, l1, . . . , ln `P corresponds to ∆;φ, l1, . . . , ln ` and ∆, φ′, (l1⊥∨− . . .∨−ln⊥) `P cor-
responds to ∆;φ,C ` . �

4.4 Direct simulation of DPLL(T)
In Section 4.3, we have discussed an indirect simulation of Elementary and Abstract DPLL(T)
procedure into LKp(T), via an intermediate inference system LKDPLL(T).

This was the occasion of clarifying and formalising the relation between the DPLL(T) present-
ation of [NOT06] and the LKDPLL(T) system of [Tin02].

The latter could then be related to our sequent calculus LKp(T), which was also the occasion
to strengthen the preliminary work done by Gazeau [Gaz10].

However, the composition of the two simulations has a few shortcomings:
• It does work perfectly well on complete proofs:

The target of the incremental simulation of (Elementary) DPLL(T) is LKDPLL+(T), an ex-
tension of LKDPLL(T) with rules that we have shown admissible. Therefore, any complete
proof-tree obtained by the simulation can then be transformed into a complete proof-tree
in LKDPLL(T) itself, which is the source calculus of our second incremental simulation from
LKDPLL(T) to LKp(T).
But composing in this way the two simulations, only provides an encoding of complete and

100 Chapter 4. Simulating SMT-solving in the sequent calculus

successful DPLL(T) runs as complete LKp(T) proof-trees; it does not provide an incremental
simulation from DPLL(T) to LKp(T). For this we would need to incrementally simulate
LKDPLL+(T) in LKp(T), which would probably require the extension of LKp(T) with new
admissible rules (such as Weakenings, etc) or perhaps the relaxation of the notion of corres-
pondence.

• And it turns out that the notion of correspondence that we currently have, is already quite
relaxed: for instance the LKp(T) sequents that we use contain some “garbage” parts.

• All of this together makes it difficult to strengthen our simulations in the view of, for instance,
identifying the target fragment of LKp(T) reached by the simulations, characterising it with
a simple criterion, and possibly define backward simulations. It also makes it difficult to
understand the complexity aspects of the simulations.

Therefore, we now switch to another approach, making a direct simulation of Elementary and
Abstract DPLL(T) into LKp(T) system. The polarities of the LKp(T) system will play a great role
to understand the target fragment of LKp(T) reached by the simulation.

4.4.1 Simulating Elementary DPLL(T)

The aim of this section is to describe how the Elementary DPLL(T) procedure can be transposed
into a proof-search process for sequents of the LKp(T) calculus.

Again, a complete and successful run of DPLL(T) is a sequence of transitions ∅‖φ⇒∗ UNSAT,
which ensures that the set of clauses φ is inconsistent modulo the theory. Hence, we are devising a
proof-search process aiming at building an LKp(T) proof-tree for sequents of the form φ′ `, where
φ′ represents the set of clauses φ as a sequent calculus structure, in the following sense:

Definition 47 (Representation of clauses as formulae) An LKp(T) formula C ′ represents a
DPLL(T) clause {lj}j=1...p if C ′ = l1∨− . . .∨−lp.

A set of formulae φ′ represents a set of clauses φ if there is a bijection f from φ to φ′ such that
for all clauses C in φ, f(φ) represents C. ※

Remark 46 If C ′ represents C, then](C ′) ≤ 2](C) (there are fewer symbols ∨− than there are
literals in C).

Note, here that we carefully use the negative disjunction connective to translate DPLL(T)
clauses. This is crucial not only to mimic DPLL(T) without duplicating formulae but more
generally to control the search space. Again coming back to the DPLL(T) transition sequence
∅‖φ⇒∗ ∆‖φ and its intuitive counterpart in sequent calculus, we have to formalise the notion of
incomplete proof-tree together with the notion of “filling its holes”:

Definition 48 (Incomplete proof-tree, extension of an incomplete proof-tree)
An incomplete proof-tree in LKp(T) is a tree labelled with sequents,

• whose leaves are tagged as either open or closed ;

• whose open leaves are labelled with sequents without focus or right-hand side;

• and such that every node that is not an open leaf, together with its children, forms an instance
of the LKp(T) rules.

The size of a incomplete proof-tree is its number of nodes.
An incomplete proof-tree π′ is an extension of π, if there is a tree (edge and nodes preserving)

homomorphism from π to π′. It is an n-extension of π, if moreover the difference of size between π′
and π is less than or equal to n. ※

4.4. Direct simulation of DPLL(T) 101

Remark 47 A incomplete proof-tree that has no open leaf is (isomorphic to) a well-formed com-
plete LKp(T) proof of the sequent labelling its root. In that case, we say the proof-tree is complete.

The intuition that an intermediate DPLL(T) state describes an “interface” between a incom-
plete proof-tree and the complete proof-trees that should be plugged into its holes, is formalised
as follows:

Definition 49 (Correspondence)
An incomplete proof-tree π corresponds to a DPLL(T) state ∆‖φ if:

• the length of ∆:: J∆K is the number of open leaves of π;
• if ∆i is the ith element of ∆:: J∆K, then the sequent labelling the ith open leaf of π (taken

left-to-right) is of the form ∆′, φ′ `∆i , where:
– φ′ represents φ (in the sense of Definition 47);
– for all l ∈ ∆′, l ∈ ∆i

– for all l ∈ ∆i, ∆′ |=T l.1
A incomplete proof-tree π corresponds to the state UNSAT if it has no open leaf. ※

Remark 48 In the general case, different incomplete proof-trees might correspond to a same
DPLL(T) state (just like different DPLL(T) runs may reach that state from the initial one).

Note that we do not require anything from the conclusion of a incomplete proof-tree corres-
ponding to ∆‖φ: just as our correspondence says nothing about the DPLL(T) transitions taking
place after ∆‖φ (nor about the trees to be plugged into the open leaves), it says nothing about
the transitions taking place before ∆‖φ (nor about the incomplete proof-tree, except for its open
leaves).

If an incomplete proof-tree π corresponds to a DPLL(T) state ∆‖φ where there is no decision
literals in ∆, then there is exactly one open leaf in π, and it is labelled by a sequent of the form
∆′, φ′ `∆ , where φ′ represents φ and Cloφ(∆) = Cloφ(∆′).

To the initial state ∅‖φ of a run of the DPLL(T) procedure corresponds the incomplete proof-
tree consisting of one node (both root and open leaf) labelled with the sequent φ′ ` , where φ′
represents φ.

The simulation theorem below provides a systematic way of interpreting any DPLL(T) trans-
ition as a completion of incomplete proof-trees that preserves the correspondence given in Defini-
tion 49 and controls the growth of the proof trees.

Theorem 49 (Simulation of DPLL(T) in LKp(T)) If ∆‖φ⇒ S2 is a valid DPLL(T) transition,
and π1 is an incomplete proof tree in LKp(T) corresponding to ∆‖φ, then there exists a (2](φ) + 3)-
extension π2 of π1 that corresponds to S2.

Proof: By case analysis on the nature of the transition, completing the leftmost open leaf of π1:
• Decide: ∆‖φ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ lit(φ).

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. The leftmost leaf (corresponding
to ∆) is of the form ∆′, φ′ `∆ where φ′ represents φ and Cloφ(∆) = Cloφ(∆′).
We extend π1 into π2 by replacing the leftmost leaf by the following (incomplete) proof-tree:

∆′, l, φ′ `∆;l

∆′, φ′ `∆ l⊥

∆′, l⊥, φ′ `∆;l⊥

∆′, φ′ `∆ l

∆′, φ′ `∆

1The last two conditions entail in particular that Cloφ(∆′) = Cloφ(∆i).

102 Chapter 4. Simulating SMT-solving in the sequent calculus

Note that we use here the analytic cut rule of LKp(T). π2 is a 3-extension of π1 that cor-
responds to ∆, ld‖φ. Indeed, we have ∆, ld :: J∆, ldK = (∆, l) :: (∆, l⊥) :: J∆K and Cloφ(∆, l) =
Cloφ(∆′, l) and Cloφ(∆, l⊥) = Cloφ(∆′, l⊥). The two new leaves are tagged as open.

• Propagate: ∆‖φ,C ∨ l⇒ ∆, l‖φ,C ∨ l where ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C∨ l. The open leaf corresponding
to ∆ is of the form ∆′, φ′, C ′ `∆ where φ′ represents φ, C ′ represents C∨l and Cloφ,C∨l(∆) =
Cloφ,C∨l(∆′). Let C = l1 ∨ . . . ∨ ln. From ∆ |= ¬C we get ∀i, l⊥i ∈ ∆ ⊆ Cloφ,C∨l(∆) =
Cloφ,C∨l(∆′).
We extend π1 into π2 by replacing this leaf by the following (incomplete) proof-tree:

∆′, l, φ′, C ′ `∆;l

∆′, φ′, C ′ `∆ l⊥

∆′, φ′, C ′ `∆ [l⊥]

 ∆′, φ′, C ′ `∆ [l⊥i]


li∈C

····
(∧+).

∆′, φ′, C ′ `∆ [C ′⊥]

∆′, φ′, C ′ `∆

The top-right rules can be applied since l⊥i ∈ ∆ and ∆′, li |=T and the new leaves are closed.
The top-left leaf is tagged as open.

Noticing that ∆, l :: J∆, lK = (∆, l) :: J∆K, we get that π2 is a](C ′) + 3-extension of π1 that
corresponds to ∆, l‖φ,C ∨ l (and note that](C ′) ≤ 2](φ)).

• Fail: ∆‖φ,C ⇒ UNSAT with ∆ |= ¬C and there is no decision literal in ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C. Since there are no decision
literals in ∆, π1 has exactly one open leaf, and it is labelled by ∆′, φ′, C ′ `∆ where φ′
represents φ, C ′ represents C and Cloφ,C(∆) = Cloφ,C(∆′). Let C = l1 ∨ . . . ∨ ln.

From ∆ |= ¬C we get ∀i, l⊥i ∈ ∆ ⊆ Cloφ,C(∆) = Cloφ,C(∆′).

We extend π1 into π2 by replacing the open leaf by the following (complete) proof-tree: ∆′, φ′, C ′ `∆ [l⊥i]


li∈C

····
∧+.

∆′, φ′, C ′ `∆ [C ′⊥]

∆′, φ′, C ′ `∆

The top rules can be applied since l⊥i ∈ ∆ and ∆′, li |=T . All the leaves are closed. π2 is a
](C ′) + 1-extension of π1 that is complete, and therefore corresponds to the UNSAT state of
the DPLL(T) run (and note that](C ′) ≤ 2](φ)).

• Backtrack: ∆1, l
d,∆2‖φ,C ⇒ ∆1, l

⊥‖φ,C if ∆1, l,∆2 |= ¬C and no decision literal is in ∆2.

4.4. Direct simulation of DPLL(T) 103

Let π1 be an incomplete proof-tree corresponding to ∆1, l
d,∆2‖φ,C. The open leaf corres-

ponding to ∆1, ld,∆2 is of the form ∆′, φ′, C ′ `∆1,l,∆2 where φ′ represents φ, C ′ represents
C and Cloφ(∆1, l,∆2) = Cloφ(∆′). Let C = l1 ∨ . . . ∨ ln.
From ∆1, l,∆2 |= ¬C we get ∀i, l⊥i ∈ ∆1, l,∆2 ⊆ Cloφ,C(∆1, l,∆2) = Cloφ,C(∆′).
We extend π1 into π2 by replacing this leaf by the following (complete) proof-tree: ∆′, φ′, C ′ `∆1,l,∆2 [l⊥i]


li∈C

····
∧+.

∆′, φ′, C ′ `∆1,l,∆2 [C ′⊥]

∆′, φ′, C ′ `∆1,l,∆2

The top rules can be applied since l⊥i ∈ ∆1, l,∆2 and ∆′, li |=T .
Noticing that J∆1, l

d,∆2K = (∆1, l
⊥) :: J∆1K, we get that π2 is a](C ′) + 1-extension of π1

that corresponds to ∆1, l
⊥‖φ,C (and note that](C ′) ≤ 2](φ)).

• PropagateT : ∆‖φ⇒ ∆, l‖φ where l ∈ Cloφ(∆) and l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. The open leaf corresponding to
∆ is of the form ∆′, φ′ `∆ where φ′ represents φ and Cloφ(∆) = Cloφ(∆′). We extend π1
into π2 by replacing this leaf by the following (incomplete) proof-tree:

∆′, φ′ `∆,l

∆′, φ′ `∆

Noticing that Cloφ(∆) = Cloφ(∆, l), π2 is a 1-extension of π1 that corresponds to ∆, l‖φ.
• FailT : ∆‖φ⇒ UNSAT with ∆ |=T and there is no decision literal in ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ. Since there are no decision literals
in ∆, π1 has exactly one open leaf, and it is labelled by ∆′, φ′ `∆ where φ′ represents φ and
Cloφ(∆) = Cloφ(∆′).
We extend π1 into π2 by replacing the open leaf by the following (complete) proof-tree:

∆′, φ′ |=T
∆′, φ′ `∆

Here, π2 is a 1-extension of π1 that is complete and corresponds to UNSAT state of the
DPLL(T) run.

• BacktrackT : ∆1, l
d,∆2‖φ⇒ ∆1, l

⊥‖φ if ∆1, l,∆2 |=T and no decision literal is in ∆2.

Let π1 be an incomplete proof-tree corresponding to ∆1, l
d,∆2‖φ. The open leaf correspond-

ing to ∆1, ld,∆2 is of the form ∆′, φ′ `∆1,l,∆2 where φ′ represents φ and Cloφ(∆1, l,∆2) =
Cloφ(∆′).
We extend π1 into π2 by replacing this leaf by the following (complete) proof-tree:

∆′, φ′ |=T
∆′, φ′ `∆1,l,∆2

Noticing that J∆1, l
d,∆2K = (∆1, l

⊥) :: J∆1K, we get that π2 is a 1-extension of π1 that
corresponds to ∆1, l

⊥‖φ state of the DPLL(T) run.
�

104 Chapter 4. Simulating SMT-solving in the sequent calculus

Corollary 50 If ∅‖φ⇒n UNSAT and φ′ represents φ then there is an complete proof in LKp(T) of
φ′ ` , of size smaller than (2](φ) + 3)n.

4.4.2 Turning the simulation into a bisimulation
Now the point of having mentioned quantitative information in Theorem 49, via the notion of
n-extension, is to motivate the idea that performing proof-search directly in LKp(T) is in essence
not less efficient than running DPLL(T): we have a linear bound in the length of the DPLL(T)
run (and the proportionality ratio is itself an affine function of the size of the original problem).

We also need to make sure that this final proof-tree is indeed found as efficiently as run-
ning DPLL(T), which can be done by identifying, in LKp(T), a (complete) search space that is
isomorphic to (and hence no wider than) that of DPLL(T). We analyse for this a proof-search
strategy, in LKp(T), that captures all the proof-extensions that we have used in the simulation of
DPLL(T), i.e. the proof of Theorem 49:

Definition 50 (DPLL(T)-extensions)
An incomplete proof tree π2 is a DPLL(T)-extension of an incomplete proof tree π1 if
1. it extends π1 by replacing its leftmost open leaf with an incomplete proof-tree whose only occur-

rences of (Select) are such that P is a (positive) conjunction of literals that are all in P except
maybe one that is P-unpolarised;

2. and any incomplete proof-tree satisfying point 1. and extended by π2 is π2 itself.
※

Not only are all the extensions that we have used in the simulation DPLL(T)-extensions, but
all DPLL(T)-extensions correspond to one of the extensions used in the simulation, yielding a
simulation back into DPLL(T):

Theorem 51 (Simulation of the strategy back into DPLL(T))
If π2 is a DPLL(T)-extension of π1, and π1 corresponds to ∆‖φ, then there is a valid DPLL(T)

transition ∆‖φ⇒ S2 such that π2 corresponds to S2.

Proof: By case analysis on the shape of the incomplete proof-tree replacing the leftmost open
leaf of π1. Definition 50 leads to five cases:

•
. . .

Γ, P⊥ `P [P]
Γ, P⊥ `P

where P is a (positive) conjunction of literals that are all in P;
this is simulated by a Fail or Backtrack (depending on whether π2 is complete) on the clause
represented by P⊥;

•
. . .

Γ, P⊥ `P [P]
Γ, P⊥ `P

where P is a (positive) conjunction of literals that are all in P except one that is P-
unpolarised;
this is simulated by Propagate on the clause represented by P⊥;

•
Γ `P l Γ `P l⊥

Γ `P

4.4. Direct simulation of DPLL(T) 105

is simulated by Decide on l;
•

Γ `P,l

Γ `P

is simulated by PropagateT on l;
•

litP(Γ) |=T
Γ `P

is simulated by FailT or BacktrackT (depending on whether π2 is complete).
The details are the same as in the proof of Theorem 41. �

If an complete proof-tree of LKp(T), whose conclusion is an SMT-problem i.e. it corresponds
to an initial state of DPLL(T), systematically uses the rules in the way described by the above
shapes, then it is the image of a DPLL(T) run.

Corollary 52 (Bisimulation)
The Elementary DPLL(T) procedure is bisimilar to the gradual completion of (incomplete) proof-

trees of LKp(T) as defined by the strategy of DPLL(T)-extensions.

4.4.3 Extending the simulation with backjump and lemma learning
We have already mentioned the Abstract DPLL(T) system in Definition 34, an advanced version
of our Elementary DPLL(T) that involves backjumping and lemma learning features.

In this section, we extend our simulation result from Section 4.4 in order to simulate DPLLbj(T)
in our sequent calculus. In the rules T -Backjump and T -Learn (see Section 4.1), we see that a
new clause is used (e.g. in the side-conditions) that we had not seen before (respectively: C0 ∨ lbj
and C). In order to simulate those extra rules in LKp(T), we need to extend the calculus with
the general form of cut7, as we did at the end of Section 4.3.3, so that the production of the new
clause corresponds to the choice of the cut-formula.

Definition 51 (LKp(T) with cut) System LKpc (T) is obtained by extending system LKp(T) with
the following cut-rule, which is admissible in the cut-free system (Section 3.5)

Γ `P A⊥ Γ `P A
cut

Γ `P
※

As opposed to what happens in an elementary DPLL(T) run, the extra rules of DPLLbj(T)
can add or remove objects from a state (clauses to falsify, literals). On the contrary, once such
an object is introduced in a LKp(T) sequent by the proof-search process, this data persists in the
entire subtree proving the sequent. This phenomenon is described in [NOT05], which concludes
that an abstract presentation of DPLL(T) based on sequent calculus is necessarily too rigid to
model the rules that practical implementations of DPLL(T) rely on. The simulation theorem we
propose in this section shows that a combination of tags and polarisation can actually overcome
this discrepancy. Such a simulation theorem for DPLLbj(T) however requires to slightly relax
the notion of correspondence between states and incomplete proof-trees in LKp(T): we should
allow the sequent label of an open leaf to contain some objects that have disappeared from the
corresponding state.

Definition 52 (LKp
c(T) incomplete proof-trees corresponding to DPLL(T) states) An in-

complete proof-tree π corresponds a DPLL(T) state ∆‖φ if:
• there is a mapping from the open leaves of π to the elements of the sequence ∆:: J∆K

106 Chapter 4. Simulating SMT-solving in the sequent calculus

• the sequent labelling an open leaf mapped to a set ∆0 in the sequence ∆:: J∆K is of the form
∆′, φ′,Γ `P , where:
– ∆0 ⊆ P ⊆ Cloφ(∆′);
– φ′ represents φ;
– for each A ∈ Γ, φ |=T A.

An incomplete proof-tree π corresponds to the state UNSAT if it has no open leaf. ※

The difference with the previous notion of correspondence is that the open leaves are no longer
in 1-to-1 correspondence with the elements of ∆:: J∆K: for any ∆0 ∈ ∆:: J∆K, 0, 1, or several
open leaves may be mapped to it. Furthermore, the sequent ∆′, φ′,Γ `P labelling such a leaf
corresponding to ∆0 may

• declare more positive literals than ∆0

• have ∆′ entail more literals than ∆0

• contain extra formulae Γ on its left-hand side, that are not representing clauses in the
DPLL(T) state ∆‖φ, but that are consequences of them.

We can now formulate and prove the equivalent of Theorem 41 for DPLLbj(T).

Theorem 53 (Simulation of DPLLbj(T) in LKp
c(T)) If ∆‖φ⇒ S2 is a valid DPLLbj(T) trans-

ition and π1 corresponds to ∆‖φ, then there exists an extension π2 of π1 that corresponds to S2.

Proof: The proof goes by case analysis on the nature of the transition, extending the open leaves
of π1 that are mapped to ∆ in the correspondence between π1 and ∆‖φ.

Since DPLLbj(T) extends DPLL(T), we still have to simulate Decide, Propagate, PropagateT ,
Fail, FailT , Fail and BacktrackT . Rules PropagateT , FailT , and BacktrackT can be decomposed
into a T -Learn step, a Propagate / Fail / Backtrack step, and a T -Forget step, so they will be
covered by the simulation of the other rules. For Decide, Propagate, Fail and Backtrack, we could
argue that we have already treated them in the proof of Theorem 41. Yet that theorem involves a
different kind of correspondence between states and incomplete proof-trees and, while this notion
is stronger, Theorem 41 does not strictly speaking entail what we need here. However, the way
the leaves are extended is exactly the same as in the proof of Theorem 41;

• Decide: ∆‖φ⇒ ∆, ld‖φ if l ∈ lit(φ), l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ.
We extend π1 into π2 as follows: consider an open leaf mapped to ∆ (necessarily labelled by
a sequent of the form ∆′, φ′,Γ `P); then
– If neither l ∈ P nor l⊥ ∈ P, the leaf is replaced by the following proof-tree:

∆′, l, φ′,Γ `P;l

∆′, φ′,Γ `P l⊥
∆′, l⊥, φ′,Γ `P;l⊥

∆′, φ′,Γ `P l
∆′, φ′,Γ `P

The new left (resp. right) leaf is mapped to the element ∆, l (resp. the element ∆, l⊥)
of ∆, ld :: J∆, ldK = (∆, l) :: (∆, l⊥) :: J∆K.

– If l ∈ P (resp. l⊥ ∈ P) is untouched, by is now mapped (in the new correspondence) to
the element ∆, l (resp. the element ∆, l⊥) of ∆, ld :: J∆, ldK = (∆, l) :: (∆, l⊥) :: J∆K.

π2 is an extension of π1 that corresponds to ∆, ld‖φ.
• Propagate: ∆‖φ,C ∨ l⇒ ∆, l‖φ,C ∨ l if ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C ∨ l.

4.4. Direct simulation of DPLL(T) 107

We extend π1 into π2 as follows: consider an open leaf mapped to ∆ (necessarily labelled by
a sequent of the form ∆′, φ′, C ′,Γ `P , with C ′ now representing C ∨ l); then
– If neither l ∈ P nor l⊥ ∈ P, the leaf is replaced by the following proof-tree:

∆′, l, φ′, C ′,Γ `P;l

∆′, φ′, C ′,Γ `P l⊥

∆′, φ′, C ′,Γ `P [l⊥]
(

∆′, φ′, C ′,Γ `P [l⊥i]
)
li∈C

····
(∧+).

∆′, φ′, C ′,Γ `P [C ′⊥]
∆′, φ′, C ′,Γ `P

For the top-right rules, hypothesis ∆ |= ¬C entails that for all li ∈ C, l⊥i ∈ ∆ ⊆ P ⊆
Cloφ,C(∆′), so l⊥i is P-positive and ∆′, li |=T . The top-left leaf is tagged as open, and
mapped to ∆, l.

– If l ∈ P then the leaf is untouched, but is now mapped to ∆, l.
– If l⊥ ∈ P then we close the branch altogether by replacing the leaf with:

∆′, φ′, C ′,Γ `P [l⊥]
(

∆′, φ′, C ′,Γ `P [l⊥i]
)
li∈C

····
(∧+).

∆′, φ′, C ′,Γ `P [C ′⊥]
∆′, φ′, C ′,Γ `P

π2 is an extension of π1 that corresponds to ∆, l‖φ,C ∨ l.
• Fail: ∆‖φ,C ⇒ UNSAT if ∆ |= ¬C and there is no decision literal in ∆.
• Backtrack: ∆1, l

d,∆2‖φ,C ⇒ ∆1, l
⊥‖φ,C if ∆1, l,∆2 |= ¬C and there is no decision literal

in ∆2.

We treat Fail and Backtrack at the same time, taking ∆ := ∆1, l,∆2 in the case of Backtrack.
Let π1 be an incomplete proof-tree corresponding to ∆‖φ,C.
We extend π1 into π2 by replacing every open leaf mapped to ∆ (necessarily labelled by a
sequent of the form ∆′, φ′, C ′,Γ `P) by the following (complete) proof-tree:(

∆′, φ′, C ′,Γ `P [l⊥i]
)
li∈C

····
(∧+).

∆′, φ′, C ′,Γ `P [C ′⊥]
∆′, φ′, C ′,Γ `P

For the top rules, hypothesis ∆ |= ¬C entails that for all li ∈ C, l⊥i ∈ ∆ ⊆ P ⊆ Cloφ,C(∆′),
so l⊥i is P-positive and ∆′, li |=T .
Moreover in the case of Fail, since there are no decision literals in ∆ (J∆K = ∅), the open
leaves of π1 are all mapped to ∆ and therefore π2 is complete and corresponds to the UNSAT
state of the DPLL(T) run.

108 Chapter 4. Simulating SMT-solving in the sequent calculus

In the case of Backtrack, the open leaves remaining in π2 are those open leaves of π1 mapped
to J∆1, l

d,∆2K = ∆1, l⊥ :: J∆1K, and therefore π2 corresponds to the state ∆1, l
⊥‖φ,C.

• T -Backjump: ∆1, l
d,∆2‖φ,C ⇒ ∆1, lbj‖φ,C if, for some clause C0 = {l1, . . . , ln} ⊆ lit(φ,C),

1. ∆1, l
d,∆2 |= ¬C.

2. ∆1 |= ¬C0

3. φ,C |=T C0 ∨ lbj
4. lbj 6∈ ∆1, l⊥bj 6∈ ∆1 and lbj ∈ lit(φ,∆1, l

d,∆2).

Let π1 be an incomplete proof-tree corresponding to ∆1, l
d,∆2‖φ,C. We have to build a π2

that corresponds to ∆1, lbj‖φ,C.

Notice that if ∆0 is in ∆1, ld,∆2 :: J∆1, l
d,∆2K, then either it is in J∆1K or ∆1 ⊆ ∆0.

We extend π1 into π2 as follows: consider an open leaf mapped to some ∆0 in ∆1, ld,∆2 :: J∆1, l
d,∆2K,

such that ∆1 ⊆ ∆0 (that leaf is necessarily labelled by a sequent of the form ∆′, φ′, C ′,Γ `P);
then
– If neither lbj 6∈ P and l⊥bj 6∈ P, the leaf is replaced by the following proof-tree:

π3

∆′, φ′, l⊥bj , C ′,Γ `
P;l⊥bj

∆′, φ′, C ′,Γ `P lbj

∆′, φ′, lbj , C ′,Γ `P;lbj

∆′, φ′, C ′,Γ `P l⊥bj
∆′, φ′, C ′,Γ `P

with a complete proof π3 that we construct as follows:
First, notice that hypothesis ∆1 |= ¬C0 entails that for all li ∈ C0, l⊥i ∈ ∆1 ⊆ ∆0 ⊆
P ⊆ Cloφ(∆′) and therefore ∆′ |=T l⊥i . Together with hypothesis φ,C |=T C0 ∨ lbj , we
then have φ,C,∆′, l⊥bj |=T . Applying Theorem 32 on this provides a complete proof-tree
of ∆′, φ′, l⊥bj , C ′,Γ `

P .
– If lbj ∈ P, the leaf is untouched, but is now mapped to ∆1, lbj .
– If l⊥bj ∈ P, we close the whole branch altogether as follows: again, we have φ,C,∆′, l⊥bj |=T

but we now also have l⊥bj ∈ P ⊆ Cloφ(∆′) and therefore ∆′ |=T l⊥bj . Combining this
together we have φ,C,∆′ |=T . Applying Theorem 32 on this provides a complete
proof-tree of ∆′, φ′, C ′,Γ `P .

• T -Learn: ∆‖φ⇒ ∆‖φ,C if C = {l1, . . . , ln} ⊆ lit(φ,∆) and φ |=T C.
Let π1 be a incomplete proof-tree corresponding to ∆‖φ. We have to build π2 that corres-
ponds to ∆‖φ,C.
We extend π1 into π2 as follows: consider every open leaf; it is labelled by a sequent of the
form ∆′, φ′,Γ `P ; let C ′ represent C; then replace the leaf by

π3

∆′, l⊥1 , . . . , l⊥n , φ′,Γ `
P;l⊥1 ,...,l

⊥
n

========================
∆′, φ′,Γ `P C ′

∆′, φ′, C ′,Γ `P;C′

∆′, φ′,Γ `P C ′⊥
cut on C ′

∆′, φ′,Γ `P

Again, π3 is provided by applying Theorem 32 on the hypothesis φ |=T C, i.e. φ,C⊥ |=T :
we get a complete proof-tree of ∆′, φ′, C ′⊥,Γ `P,l

⊥
1 ,...,l

⊥
n .

• T -Forget: ∆‖φ,C ⇒ ∆‖φ if φ |=T C.
Let π1 be an incomplete proof-tree corresponding to ∆‖φ. We take π2 := π1. It corresponds
to ∆‖φ since, in a sequent ∆′, φ′, C ′,Γ `P labelling an open leaf, we can consider C ′,Γ as
the new Γ (knowing that φ |=T C).

4.4. Direct simulation of DPLL(T) 109

• Restart: ∆‖φ⇒ ∅‖φ
Similarly, take π2 := π1.

�

At this point, we should look into defining a proof-search strategy identifying those complete
proof-trees that are the images of DPLLbj(T) runs, just as we did with Elementary DPLL(T).
This is left for future work. This seems however quite tricky since we have relaxed our notion of
correspondence.

Also notice that, in Theorem 53, we have not mentioned quantitative information about the
simulation. This is because, while simulating just one step of DPLLbj(T), we now need to extend
(possibly) several open branches. To be fair, the steps are identical for every open leaf that we
extend. So this simultaneous extension prevents us from refining the theorem with quantitative
information (unless we found a sophisticated way of counting the size of proof-trees, using sharing),
but it is clear that an implementation of the simulation would clearly not perform those steps
several times.

In other words, we introduced the Elementary DPLL(T) system in order to get the tight
results from Sections 4.4 and 4.4.2, which we do not easily get for the full Abstract DPLL(T)
system of [NOT06].

As mentioned in the introduction, the sequent calculus can be seen as a system that both
defines a logic and specifies a proof-search procedure for it. That view, however, is somewhat
weakened when cuts are allowed in the proof-search (and in the simulation of DPLL(T), they are),
since they arguably do not participate to the definition of the logic.

Nevertheless, it would be impossible to have a polynomial simulation of DPLL(T) without
using cuts: some tautologies classes have polynomially-sized proofs when cuts are allowed but only
exponentially-sized proofs when they are not (e.g. the "Statman tautologies" [?]); as DPLL(T) uses
the Decide rule, it has access to those short proofs with cuts, and it would be hopeless to try and
simulate it in a cut-free calculus without risking an exponential growth of the proof-search run
compared to the DPLL(T) run.

Now the use of cuts in proof-search does not entirely defeat the point of using sequent calculus
to specify a goal-directed proof-search procedure.

Firstly, allowing cuts in proof-search can be controlled by a single flag to be toggled on and off
without jeopardising completeness; and the bottom-up application of the other rules (especially
with focusing) is more syntax-directed than in other systems (e.g. natural deduction) with which
soundness of automated reasoning techniques could also be proved.

In the case of DPLL(T), even the use of cut can be tightly controlled, as the only instances
that are needed are analytic: the only cut-formulae are the literals present in the original sequent,
in finite numbers. This actually means that, as an alternative to using cuts, we could equivalently
add, to the sequent to prove, as many instances of the Law of Excluded Middle l∨ l⊥ as there are
literals l in the problem, and run the proof-search process specified by the cut-free calculus.

Finally, sequent calculus is also appealing for the shape of its incomplete proof-trees, which
offers promising ways of making different techniques collaborate: after running DPLL(T) for a
certain number of steps, the open leaves of the partial proof-tree that has been built can be
exploited and taken over by other proof-search techniques that may or may not use cuts. Given
an inference system where the soundness of different techniques can be proved, it is not necessarily
the case that the incomplete proof-trees of that system offer such an interface for collaboration.

Chapter 5

Simulating clause and connection
tableaux in the sequent calculus

Another area of automated reasoning is that of tableaux calculi (see e.g. [RV01]). Different
styles of tableaux calculi exist; one of the most fundamental ones is that of analytic tableaux.
These can be seen as a reformulation of the sequent calculus for the specific purpose of proof-
searching (rather than defining the proofs for a logic); in that respect, analytic tableaux and
sequent calculus proofs mostly differ in the way trees are written and in whether or not existential
variables (a.k.a meta-variables) are explicitly handled.

This chapter therefore tackles another kind of tableaux method, whose connection to the
sequent calculus and its proof-search methods is less obvious: clause tableaux, and some interesting
restrictions of it known as weak connection tableaux and strong connection tableaux. Connection
tableaux impose a connectivity condition on clause tableaux, ensuring a real goal-directed nature
of the proof-search mechanisms.

In this chapter, we show that these tableaux can be seen as proof-constructs in our focused
sequent calculus LKp(T), making again an interesting use of polarities. As the name “clause
tableaux” suggests, the tableaux calculi tackled in this chapter use the data-structures of clauses
and literals, just like the SMT-techniques tackled in Chapter 4 did. This allows us to re-use some
of the material from Chapter 4 and draw interesting parallels between the two kinds of automated
reasoning techniques treated in this thesis (similar connections are developed in [Tin07]).

Therefore, this chapter is organised as follows: Section 5.1 recalls the standard presentation
of clause tableaux and connection tableaux for propositional logic, as well as an interesting gen-
eralisation [Tin07]: clause tableaux modulo theories; Section 5.2 shows the simulation of clause
tableaux (modulo theories) in our sequent calculus, Section 5.3 presents the simulation of weak
connection tableaux; Section 5.4 presents the simulation of strong connection tableaux; and finally
in Section 5.5, we lift the simulation of the weak and strong connection tableaux to pure first-order
logic.

5.1 Clause and connection tableaux
In this section, we recall the definitions for clause tableaux and connection tableaux.

Definition 53 (Literals, Clauses) Literals and Clauses are respectively defined as in Definitions 24
and 25 in Chapter 4. ※

Definition 54 (Clause tableaux) A clause tableau for a given set S of clauses is a finitely branch-
ing tree:

• whose root is labelled by S.

111

112 Chapter 5. Simulating tableaux in the sequent calculus

• whose other nodes are labelled by literals and
• that is obtained by an inductive construction defined by the following two rules:

Initial rule: a single root node (labelled by S) is a clause tableau for (S).
Expansion rule: let T be a tableau for S and S‖Γ denote one of its branches where Γ is the sequence of

literals on the branch. Let C = l1 ∨ · · · ∨ ln be a clause of S. The tree consisting of
expanding that branch by adding new leaves labelled with l1 · · · ln as shown in Figure 5.1a,
is a clause tableau for (S). That expansion can be represented by the rule below:

S‖Γ
l1 . . . ln

The clause C used for the expansion is called the expansion clause.
※

Definition 55 (Closed branch, closed tableau) A literal occurs in a tableau if it labels any of
its non-root nodes. A branch is closed if l and l⊥ occur in the branch. The fact that a branch is closed
can be represented by a tag ? below the leaf of that branch. The tagging operation can be represented
by the following closing rule:

S‖Γ, l,Γ′, l⊥,Γ′′

?

and by the tree presented in Figure 5.1b.
A tableau is closed , whenever every branch in it is closed. ※

S

...

Γ

...

l1 · · · ln

(a) Expansion Branch

S

Γ
...
l

Γ′
...
l⊥

Γ′′
...
?

(b) Closed Branch

Figure 5.1: Clause Tableau

Theorem 54 (Soundness and Completeness) [RV01]
A set of clauses is unsatisfiable if and only if there exists a closed clause tableau for it.

Connection Tableau
Selecting a clause for the expansion rule can be tricky in a tableau construction, since there is a
lot of freedom in the choice, making the search space broad. The search space can be narrowed in
a complete way by restricting the choice of clause for an expansion rule.

The first way to enforce such a restriction is a weak connection:

Definition 56 (Weak Connection Tableau)

5.1. Clause and connection tableaux 113

Initial rule: For any clause l1 ∨ · · · ∨ ln = C ∈ S, the tree constructed by expanding the root node with n
new subtrees with nodes li, as shown in Fig. 5.2a, is a weak connection tableau for S.

Expansion rule: Let T be a weak connection tableau, Γ be one of the branch of T ending with l not necessarily
as leaf, and C ∈ S where C = l⊥ ∨ l1 ∨ · · · ∨ ln. The tableau T ′ obtained from T by expanding
the branch S‖Γ using an expansion clause C such that l⊥ ∈ C, is a weak connection tableau.
This weakly connected expansion can be represented by the following rule:

S,C‖Γ, l,Γ′

l⊥, l1, · · · , ln

S

l1 · · · ln

(a) Initial expansion

S

...

l

...
•

l⊥

?

l1 · · · ln

(b) Expansion rule for weak
connected tableaux

Figure 5.2: Weak connection tableau
※

Theorem 55 (Soundness and Completeness) [RV01]
A set of clauses is unsatisfiable if and only if there exists a closed weak connection tableau for it.1

The weak connection restriction can even be strengthened to define a complete notion of
tableaux: strong connection tableaux.

Definition 57 (Strong Connection Tableau)
Initial rule: This rule is the same as that for strong connection tableau (Definition 56).

Expansion rule: Let T be a strong connection tableau, Γ be one of the branches of T ending with l and C ∈ S
where C = l⊥ ∨ l1 ∨ · · · ∨ ln. The tableau T ′ obtained from T by expanding the branch S‖Γ
using an expansion clause C such that l⊥ ∈ C, as shown in Fig. 5.3b, is a strong connection
tableau. This strongly connected expansion can be represented by the following rule:

S,C‖Γ, l
l⊥, l1, · · · , ln ※

Theorem 56 (Soundness and Completeness) [RV01]
A set of clauses is unsatisfiable if and only if there exists a closed strong connection tableau for it.2

In both strong and weak connection tableaux, the literal of the expansion clause that is used
for immediate closure is called the active literal.

In Example 5, we illustrate the notions of weak and strong connection tableaux:
1Being closed is the notion defined for clause tableaux in general (Definition 55).
2Again, being closed is the notion defined for clause tableaux in general (Definition 55).

114 Chapter 5. Simulating tableaux in the sequent calculus

S

l1 · · · ln

(a) Initial expansion

S

...

Γ

...

l

l⊥

?

l1 · · · ln

(b) Expansion rule for strongly
connected tableaux

Figure 5.3: Strong connection tableau

Example 5 Let S = 1⊥ ∨ 2, 2⊥ ∨ 1, 4⊥ ∨ 1, 4⊥ ∨ 3, 3⊥, 4 and S′ = 1 ∨ 2⊥, 3⊥ ∨ 2⊥, 1⊥ ∨ 3, 2.
Connection tableaux for S and S′ are presented in Figure 5.4, where the closing tags for weak
connections are denoted ?, those for strong connections are denoted ? and every other closing tag
is denoted ?.

Notice in Fig. 5.4a that, after having made the expansion with clause 4⊥∨1, we would never be
able to complete the tableau as a strong connection tableau: strong connections would impose the
right-most branch to enter a loop of 1 and 2. So we would need to detect the loop and backtrack,
so as to produce Fig. 5.4b. Instead, we could just try to build a weak connection tableau, and
then as we show in Fig. 5.4a we can exit the loop by expanding on clause 4⊥ ∨ 3, with a weak
connection on 4 (denoted by the blue star), and finish. With weak connections we never have to
backtrack (except maybe on the initial clause).

Fig. 5.4c shows how a strong connection tableau can still be build with one of the branches
being closed by a regular closing tag (the black star).

Clause tableaux modulo theories
In [Tin07], Tinelli presented a notion of Clause tableaux modulo theories as an extension of Clause
tableaux that can call a decision procedure as in SMT-solving. The construction of Clause
tableaux, Definition 54 is the same as for Clause tableaux modulo theories, but the definition
of a closed branch (and therefore that of a closed tableaux) is changed, so as to call the decision
procedure:

Definition 58 (Closed branch, closed tableau) A branch S‖Γ is closed if Γ is T -inconsistent
(Γ |=T), which can be represented by the following closing rule:

S‖Γ
Γ is T -inconsistent

?
A tableau is closed, whenever every branch in it is T -inconsistent. ※

Clause tableaux modulo theories are sound and complete for propositional logic modulo the-
ories [Tin07].

It is tempting to try and restrict clause tableaux modulo theories using the concepts of weak and
strong connections. Obvious candidates for such restrictions would be a notion of weak connection
tableaux modulo theories, obtained by combining Definition 56 (for the construction of tableaux)
and Definition 58 (for the closedness condition), and a notion of strong connection tableaux modulo
theories, obtained by combining Definition 57 (for the construction of tableaux) and Definition 58.
Since we do not know of any completeness properties for these candidates, we keep these as an

5.2. Simulation of clause tableaux (modulo theories) 115

S

4

4⊥

?

1

1⊥

?

2

2⊥

?

1

4⊥

?

3

3⊥

?

(a) Weak Connection Tableau for S

S

4

4⊥

?

3

3⊥

?

(b) Strong Connection Tableau
for S

S′

2

2⊥

?

1

1⊥

?

3

3⊥

?

2⊥

?

(c) Strong Connection Tableau
for S′

Figure 5.4: Connection Tableaux

open research topics, and now turn to the simulation of the above tableaux calculi in our focused
sequent calculus.

5.2 Simulation of clause tableaux (modulo theories)
In this section we simulate clause tableaux modulo theories in our sequent calculus. This simulation
will hold in particular for the empty theory, therefore providing a simulation of clause tableaux in
sequent calculus.

The exact system that we use for our simulations is the propositional fragment of the LKp(T)
system from Chapter 3, extended with the rule (DPol) that we have shown to be admissible
(and invertible) in LKp(T) ((DPol) is a restricted case of inverted (Pol)). The resulting system,
which is explicitly given in Fig 5.5, is therefore strictly equivalent to (propositional) LKp(T) as

116 Chapter 5. Simulating tableaux in the sequent calculus

far as complete proofs are concerned. But as we will formalise our simulation results in terms of
incomplete proofs, having those admissible rules explicitly in the system yields tighter results.

Definition 59 (System LKpd(T))
The sequent calculus LKpd(T) is an extension of propositional LKp(T), given by the rules of Figure 5.5.
The admissible/invertible rule allows the removal of polarity on literals. ※

Synchronous rules
Γ `P [A] Γ `P [B]

(∧+)
Γ `P [A∧+B]

Γ `P [Ai]
(∨+)

Γ `P [A1∨+A2]

litP(Γ), l⊥ |=T
(Init1) l is P-positive

Γ `P [l]
(>+)

Γ `P [>+]

Γ `P N
(Release) N is not P-positive

Γ `P [N]

Asynchronous rules
Γ `P A,∆ Γ `P B,∆

(∧−)
Γ ` A∧−B,∆

Γ `P A1, A2,∆
(∨−)

Γ `P A1∨−A2,∆
(>−)

Γ `P ∆,>−

Γ, A⊥ `P;A⊥ ∆
(Store) A is P-positive or literal

Γ `P A,∆

Γ `P ∆
(⊥−)

Γ `P ∆,⊥−

Structural rules
Γ, P⊥ `P [P]

(Select) P is not P-negative
Γ, P⊥ `P

litP(Γ) |=T
(Init2)

Γ `P

Admissible/Invertible rule
Γ `P

(DPol) l ∈ Γ
Γ `P,l

Figure 5.5: System LKpd(T)
We also prove this small lemma that will be useful for our simulations.

Lemma 57 (Init3) The following rule is admissible and invertible in LKp(T):
(Init3) litL(Γ) |=T

Γ `∅

Proof: Invertibility is trivial as there is no premise.
Admissibility can be proved trivially (by Id2) if there are both l and l⊥ in Γ for some literal l.
Otherwise, let litL(Γ) = {l1, . . . , ln}, and for every i in 0 . . . n− 1, we construct :

Γ, l1, . . . , li+1 `P,l1,...,li+1

(Store)
Γ, l1, . . . , li `P,l1,...,li li+1

⊥

(Release)
Γ, l1, . . . , li `P,l1,...,li [li+1

⊥]
(Select)

Γ, l1, . . . , li `P,l1,...,li

Finally, we close Γ, litL(Γ) `litL(Γ) with Init2. �

5.2. Simulation of clause tableaux (modulo theories) 117

We now turn to the simulation itself. In that simulation, a closed clause tableaux modulo
theories, for a set of clauses S, corresponds to a complete proof-tree of S′ ` (where S′ represents
S in the sense of Definition 47 of Chapter 4). If it is not closed, it corresponds to an incomplete
proof-tree.

Definition 60 (Encoding clause tableaux modulo theories in LKpd(T))
For every set S of clauses, and for every set S′ of formulae representing S (in the sense of Definition 47),
we define a mapping Φ from the set of clause tableaux modulo theories for S to the set of the incomplete
proof-trees concluding S′ ` such that the following property holds:

There is a bijection f from the (open) branches of a tableau T to the (open) leaves of Φ(T) such
that, for all open branches S‖Γ of T , f(S‖Γ) is labelled with the sequent S′,Γ `∅ .

Initial rule: If T is just the root node labelled by S, then we define Φ(T) as the one-node proof-tree S′ `∅ .
Expansion rule: If T ′ is a clause tableau modulo theories obtained by expanding the branch S‖Γ of a tableau T ,

using an expansion clause C ∈ S , we define Φ(T ′) as follows:
S′,Γ, l1 `∅

(DPol)
S′,Γ, l1 `l1

S′,Γ `∅ l1⊥

S′,Γ `∅ [l1⊥] · · ·

S′, ln `∅
(DPol)

S′, ln `ln

S′ `∅ ln⊥

S′ `∅ [ln⊥]
S′,Γ `∅ [C ′⊥]
S′,Γ `∅

Closing rule: If a branch S‖Γ is T -inconsistent, then we define Φ(T) as follows :
(Init3) Γ |=T

S′,Γ `∅
※

Definition 61 (Tableau-like incomplete proof-tree)
An incomplete proof-tree is S′-tableau-like if
• its conclusion is S′ `∅ ,
• its leaves are all labelled with empty polarisation sets,
• every occurrence of rule (Store) is below an occurrence of rule (DPol), and
• every occurrence of rule (Select) is placing the focus on the negation of an element of S′.

※

Theorem 58 (Characterisation of clause tableaux modulo theories)
Given a set S of clauses and a set S′ of formulae representing S,
1. an incomplete proof-tree is S′-tableau-like if and only if it is the image by Φ of a clause tableaux

modulo theories for S;
2. if this is the case, then the clause tableaux is closed if and only if the proof-tree can be completed

by closing every leaf with (Init3).

Proof:
• Notice that the incomplete proof-tree constructed in Definition 60 are all tableau-like.
• Given a tableau-like incomplete proof-tree, every occurrence of rule (Select) corresponds to

an expansion on the clause represented by the negation of the formula placed in focus.
�

118 Chapter 5. Simulating tableaux in the sequent calculus

5.3 Simulation of weak connection tableaux
In this section we refine our simulation of clause tableaux modulo theories specifically for the case

• of the empty theory
• and of weak connection tableaux.
In particular, we show how weak connectivity can be expressed in terms of polarities, provided

we equip the sequent calculus with the polarisation rule (Pol).
We now explicitly give the system used for the simulation of weak connection tableaux (with

no theories).

Definition 62 (System LKpdp) The sequent calculus LKpdp is given by the rules of Figure 5.6. The
admissible/invertible rules allow both the addition and removal of polarities on literals. ※

Synchronous rules
Γ `P [A] Γ `P [B]

(∧+)
Γ `P [A∧+B]

Γ `P [Ai]
(∨+)

Γ `P [A1∨+A2]

l ∈ Γ
(Init1) l is P-positive

Γ `P [l]
(>+)

Γ `P [>+]

Γ `P N
(Release) N is not P-positive

Γ `P [N]

Asynchronous rules
Γ `P A,∆ Γ `P B,∆

(∧−)
Γ ` A∧−B,∆

Γ `P A1, A2,∆
(∨−)

Γ `P A1∨−A2,∆
(>−)

Γ `P ∆,>−

Γ, A⊥ `P;A⊥ ∆
(Store) A is P-positive or literal

Γ `P A,∆

Γ `P ∆
(⊥−)

Γ `P ∆,⊥−

Structural rules
Γ, P⊥ `P [P]

(Select) P is not P-negative
Γ, P⊥ `P

Admissible/Invertible rules
Γ `P,l

(Pol) l ∈ Γ
Γ `P

Γ `P
(DPol) l ∈ Γ

Γ `P,l

Figure 5.6: System LKpdp

The (Pol) rule is the inverse of the (DPol) rule, both admissible and invertible in LKp(∅). Notice
that the rules of the system are simplified for the empty theory: in particular, the condition for
(Init1) is simplified and rule (Init2) never applies (so we removed it from the system).

We now turn to the simulation itself.

Definition 63 (Encoding weak connection tableaux in LKpdp)
For every set S of clauses, and for every set S′ of formulae representing S, we define a mapping φ from
the set of weak connection tableaux for S to the set of the incomplete proof-trees concluding S′ `
such that the following property holds:

There is a bijection f from the (open) branches of a tableau T to the (open) leaves of φ(T) such
that, for all open branches S‖Γ of T , f(S‖Γ) is labelled with the sequent S′,Γ `∅ .

5.3. Simulation of weak connection tableaux 119

We define φ(T) by induction on the inductive construction of T , checking that the above property
is indeed an invariant of the induction.

Initial rule: If l1 ∨ . . . ∨ ln = C ∈ S and T is the form of Fig. 5.2a, then we define φ(T) as :

S′, l1 `
=======
S′ ` l1⊥

S′ ` [l1⊥] · · ·

S′, ln `
=======
S′ ` ln⊥

S′ ` [ln⊥]
S′ ` [C ′⊥]
S′ `

Expansion rule: If T ′ is a weak connection tableau obtained by expanding the branch S‖Γ of a tableau T using
an expansion clause C ∈ S (as illustrated in Figure 5.2b), we define φ(T ′) as follows:
we replace in φ(T) the open leaf corresponding to S‖Γ by the following incomplete proof tree:

S′,Γ `l
⊥

[l⊥]

S′,Γ, l1 `
(DPol)============

S′,Γ, l1 `l
⊥,l⊥1

S′,Γ `l
⊥
l1
⊥

S′,Γ `l
⊥

[l1⊥] · · ·

S′,Γ, ln `
(DPol)============

S′,Γ, ln `l
⊥,l⊥n

S′,Γ `l
⊥
ln
⊥

S′,Γ `l
⊥

[ln⊥]
S′,Γ `l

⊥
[C ′⊥]

S′,Γ `l
⊥

(Pol)
S′,Γ `

Closing rule: To simulate the closing of a branch (as illustrated in Fig. 5.1b), we can complete the branch of
the proof-tree with the following rule:3

(Id2)
S′,Γ, l,Γ′, l⊥,Γ′′ `

※

Definition 64 (Weak-tableau-like incomplete proof-tree)
An incomplete proof-tree is S′-weak-tableau-like if

• its conclusion is S′ `∅ ,

• its leaves are all labelled with empty polarisation sets,

• every occurrence of rule (Pol) has P = ∅ and is below an occurrence of rule (Select), and

• in every occurrence of rule (Select), the focus is the negation of an element of S′ and it is a
conjunction of literals such that, unless the rule is the last rule of the tree (deriving its conclusion),
one of these literals is positive.

※

3As the notion of closed branch for weak connection tableaux is the same as that for clause tableaux (for the
empty theory), this completion of the proof-tree to simulate the closing operation is exactly the same as that which
we used for clause tableaux: the proof-tree abbreviated by (Init3) is that abbreviated by (Id2) in the particular case
of the empty theory.

120 Chapter 5. Simulating tableaux in the sequent calculus

Theorem 59 (Characterisation of weak connection tableaux)
Given a set S of clauses and a set S′ of formulae representing S,
1. an incomplete proof-tree is S′-weak-tableau-like if and only if it is the image by φ of a weak

connection tableaux for S;
2. if this is the case, then the weak connection tableaux is closed if and only if the proof-tree can

be completed by closing every leaf with (Id2).

Proof:

• Notice that the incomplete proof-tree constructed in Definition 63 are all weak-tableau-like.

• Given a weak-tableau-like incomplete proof-tree, every occurrence of rule (Select) occurs
in the compound proof-tree that simulates an expansion on the clause represented by the
negation of the formula placed in focus.

�

5.4 Simulation of strong connection tableaux
We now investigate whether and how strong connections can be expressed in terms of polarities.
Again, in the empty theory.

The fundamental remark is that the definition of strong connection tableaux relies on the fact
that a branch of a tableau is an ordered data-structure: the latest literal of the branch is easily
identified. In our sequent calculus, however, the antecedent of a sequent is a multiset, and therefore
the order in which elements have been added in it, is not an information that the data-structure
provides.

Coincidently, the identification of the latest introduced literal is exactly what is provided by
the sequent structure of the LK+(T) calculus from Section 3.6 of Chapter 3.

In this section we therefore simulate strong connection tableaux in (the propositional fragment
of) LK+(∅) (the theory being still empty in our case), or more precisely an small extension of it,
just like we extended (propositional) LKp(T) into LKpdp (with the admissible/invertible rules (Pol)
and (DPol)) to simulate weak connection tableaux.

We therefore need to adapt rules (Pol) and (DPol) to the framework of LK+(T) (Definition 18),
proving their admissibility and invertibility.

Lemma 60 (Adding and removing polarities)
The following rules are admissible and invertible in LK+(T):

Γ `P,l [•]∆
(Pol) l ∈ Γ,∆⊥

Γ `P [•]∆

Γ `P [•]∆
(DPol) l ∈ Γ,∆⊥

Γ `P,l [•]∆

Proof:
Lemma 25.2 on Γ `P,l [•]∆ gives Γ `P,l ∆ in LKp(T) and by admissibility of (Pol) in LKp(T) we
get Γ `P ∆ and finally Γ `P [•]∆.

Lemma 25.2 on Γ `P [•]∆ gives Γ `P ∆ in LKp(T) and by invertibility of (Pol) in LKp(T) we get
Γ `P,l ∆ and finally Γ `P,l [•]∆. �

Definition 65 (System LKpdp+) The rules of LKpdp+, given explicitly in Figure 5.7, extends LK+(∅)
with the admissible/invertible rules (Pol) and (DPol) that allow both the addition and removal of po-
larities on literals. ※

5.4. Simulation of strong connection tableaux 121

Synchronous rules
Γ `P [A]∆ Γ `P [B]∆

(∧+)
Γ `P [A∧+B]∆

Γ `P [Ai]∆
(∨+)

Γ `P [A1∨+A2]∆

l ∈ Γ or l⊥ ∈ ∆
(Init1) l is P-positive

Γ `P,l [l]∆
(>+)

Γ `P [>+]

Γ `P [•]N
(Release) N is not P-positive

Γ `P [N]

Asynchronous rules
Γ `P [X]A,∆ Γ `P [X]B,∆

(∧−)
Γ `P [X]A∧−B,∆

Γ `P [X]A1, A2,∆
(∨−)

Γ `P [X]A1∨−A2,∆

Γ `P [X]∆
(⊥−)

Γ `P [X]⊥−,∆
(>−)

Γ `P [X]⊥−,∆
Γ, A⊥ `P;A⊥ [X]∆

(Store) A is P-positive or literal
Γ `P [X]A,∆

Structural rules
Γ, P⊥ `P [P]∆

(Select) P is not P-negative
Γ, P⊥ `P [•]∆

Admissible/Invertible rules
Γ `P,l [•]∆

(Pol) l ∈ Γ,∆⊥
Γ `P [•]∆

Γ `P [•]∆
(DPol) l ∈ Γ,∆⊥

Γ `P,l [•]∆

Figure 5.7: System LKpdp+

We now turn to the simulation itself.

Definition 66 (Encoding strong connection tableaux in LKpdp+)
For every set S of clauses, and for every set S′ of formulae representing S, we define a mapping ψ
from the set of strong connection tableaux for S to the set of the incomplete proof-trees concluding
S′ ` [•] such that the following property holds:

There is a bijection f from the (open) branches of a tableau T to the (open) leaves of ψ(T) such
that, for all open branches S‖Γ of T , f(S‖Γ) is labelled with the sequent S′,Γ `∅ [•]l.

We define ψ(T) by induction on the inductive construction of T , checking that the above property
is indeed an invariant of the induction.

Initial rule: If l1 ∨ . . . ∨ ln = C ∈ S and T is the form of Figure 5.3a then we define ψ(T) as :

S′ `∅ [•]l1⊥

S′ `∅ [l1⊥] · · ·

S′ `∅ [•]ln⊥

S′ `∅ [ln⊥]
S′ `∅ [C ′⊥]
S′ `∅ [•]

Expansion rule: If T ′ is a strong connection tableau obtained by expanding the branch S‖Γ, l of a tableau T
using an expansion clause C ∈ S (as illustrated in Figure 5.3b), we define ψ(T ′) as follows:
we replace in ψ(T) the open leaf corresponding to S‖Γ, l by the following incomplete proof tree:

122 Chapter 5. Simulating tableaux in the sequent calculus

S′,Γ `l [l]l⊥

S′,Γ, l ` [•]l1⊥

S′,Γ, l `l [•]l1⊥

S′,Γ, l `l [l1⊥]
S′,Γ `l [l1⊥]l⊥ · · ·

S′,Γ, l ` [•]ln⊥

S′,Γ, l `l [•]ln⊥

S′,Γ, l `l [l1⊥]
S′,Γ `l [ln⊥]l⊥

==
S′,Γ `l [C ′⊥]l⊥

S′,Γ `l [•]l⊥

S′,Γ ` [•]l⊥

Closing rule: To simulate the closing of a branch (as illustrated in Fig. 5.1b), we can complete the branch of
the proof-tree as follows:

(Id2)
S′,Γ, l,Γ0, l0 `l0 [•]

(Store)
S′,Γ, l,Γ0 ` [•]l⊥0

where Γ0, l0 = Γ′, l⊥,Γ′′.
※

Definition 67 (Strong-tableau-like incomplete proof-tree)
An incomplete proof-tree is S′-strong-tableau-like if
• its conclusion is S′ `∅ ,
• its leaves are all labelled with empty polarisation sets and with non-empty right-hand sides,
• every occurrence of rule (Init1) is of the form

Γ `P,l [l]l⊥

• every occurrence of rule (Pol) is of the form
Γ `l [•]l⊥

Γ ` [•]l⊥

• in every occurrence of rule (Select), the focus is the negation of an element of S′ and it is a
conjunction of literals such that, unless the rule is the last rule of the tree (deriving its conclusion),
one of these literals is positive.

※

Theorem 61 (Characterisation of strong connection tableaux)
Given a set S of clauses and a set S′ of formulae representing S,
1. an incomplete proof-tree is S′-strong-tableau-like if and only if it is the image by ψ of a strong

connection tableaux for S;
2. if this is the case, then the strong connection tableaux is closed if and only if the proof-tree can

be completed by closing every leaf with the combination of (Store) and (Id2).

Proof:
• Notice that the incomplete proof-tree constructed in Definition 66 are all strong-tableau-like.
• Given a strong-tableau-like incomplete proof-tree, every occurrence of rule (Select) occurs

in the compound proof-tree that simulates an expansion on the clause represented by the
negation of the formula placed in focus.

�

5.5. Extending the simulations to pure first-order logic 123

5.5 Extending the simulations to pure first-order logic
So far we have simulated in our sequent calculus two general methodologies of automated reasoning:
SMT-solving (DPLL(T)) and clause/connection tableaux. However, as long as quantifiers are not
considered, it is likely that DPLL(T)-based techniques are more efficient than clause/connection
tableaux, which become interesting mostly when quantifiers and unification are involved.

Our next step is therefore to lift our simulations of clause and connection tableaux to the
framework of pure first-order logic, in the hope that the combination of this with our simulation of
DPLL(T) provides new interesting ways to deal with a background theory in presence of quantifiers
(or, equivalently, to deal with first-order logic in presence of a background theory).

For this, our sequent calculus LKp(T) for first-order logic modulo theories, as presented in
Chapter 3, is not exactly fit for our current purpose: We hit the main difference between tableaux
and sequent calculus: whether or not existential variables (a.k.a meta-variables) are explicitly
handled.

The meta-theory of LKp(T) has been done in Chapter 3 without explicit meta-variables, and
now for the purpose of proof-search, we need them. Therefore in this section we will propose a
version of LKp(T) with explicit meta-variables, but with an empty theory!, to lift our previous
simulations of clause and connection tableaux to the framework of pure first-order logic.

The nature of this last section of the present dissertation is therefore more prospective and
less formal than the previous sections and chapters, as the formal meta-theory of LKp(T) with
explicit meta-variables is still in its infancy.

Still, we start with some formal preliminaries that will allow us to present clause and connection
tableaux for pure first-order logic and our version of LKp(T) with explicit meta-variables.

5.5.1 Preliminaries
Definition 68 (Meta-terms) Consider a set of elements called variables and a set MV of elements
called meta-variables. Let FΣ be a first-order term signature. The set of meta-terms over signature
FΣ is defined by:

t, t1, t2, . . . := x | X | f(t1, . . . , tn)
with f ranging over FΣ, X ranging over meta-variables and x ranging over variables. ※

Definition 69 (Literals) Let PΣ be a first-order predicate signature equipped with an involutive
and arity-preserving function called negation.

The set L of literals is given by the following grammar:
l, l1, l2 := P (t1, . . . , tn)

with P ranging over PΣ.
Negation on predicate symbol is extended to an involutive function of negation on literals:

(P (t1, . . . , tn))⊥ := P⊥(t1, . . . , tn)
※

Definition 70 (Substitution) A substitution is a partial function from meta-variables to terms (we
can write (σ(X) = t)) satisfying the following condition:

Dom(σ) ∩MV(σ) = ∅
where we define MV(σ) as

⋃
X∈Dom(σ) MV(σ(X)).

The empty substitution (i.e. the substitution σ such that Dom(σ) = ∅) is denoted ∅.
Substitutions are extended to all terms (we can write (σ(u) = t)) as follows:

σ(f(t1, . . . , tn)) = f(σ(t1, . . . , tn))
σ(x) = x
σ(X) = X where X 6∈ Dom(σ)

Substitutions are then extended to literals (we can write (σ(l) = l′)) as follows:
σ(P (t1, . . . , tn)) = P (σ(t1, . . . , tn))

124 Chapter 5. Simulating tableaux in the sequent calculus

A ground term (resp. literal) is a term (resp. literal) that contains no meta-variables.
Let V be a set of meta-variables. A substitution σ such that, for all X ∈ V , σ(X) is a ground

term is called a grounding substitution for V .
A substitution σ that happens to be a (finite) permutation of MV is called a renaming substitution.
If σ is a substitution and Ω is a set or a list of meta-variables, σ|Ω is the restriction of σ to Ω. ※

Definition 71 (First-order unification) A substitution σ is called an unifier of the unification
problem t1 = u1, . . . , tn = un if σ(t1) = σ(u1), . . . , σ(tn) = σ(un).

When a unification problem has a unifier, then it has a most general unifier σ: for any other unifier
σ′, there exists a substitution σ′′ such that σ′ = σ′′ ◦ σ and MV(σ) only contains meta-variables from
the unification problem.

We write σ = mgu(l1, . . . , ln) when σ is a most general unifier of the unification problem l1 = l2 =
. . . = ln.

Two literals l and l′ are renamings of one another if mgu(l, l′) exists and is a renaming substitution.
We write σ′′ = mgu(σ, σ′) if σ′′ is the most general unifier of t1 = u1, . . . , tn = un, where

(ti, ui)i = (σ(X), σ′(X))X∈Dom(σ)∪Dom(σ′). ※

5.5.2 Clause and connection tableaux in first-order logic
We now present the clause tableaux, and strong and weak connection tableaux for first-order logic.

Definition 72 (Clause) A clause is a finite set of literals with no free meta-variables. We can see it
as a disjunction of literals with every variable that is free in one of the literals as universally quantified
(outside the clause). In that view, we will represent the clause {l1, . . . , ln} as ∀x1 . . . ∀xp(l1 ∨ . . .∨ ln)
where {x1, . . . , xp} =

⋃i=n
i=1 FV(li). ※

Given the definition and notation above, we will avoid using the phrase “free variables” for a
clause, which would be an ambiguous notion; nor will we discuss, for the same reason, any notion
of α-equivalence between clauses (and therefore, any notion of equality between clauses).

Definition 73 (New instance) Let C = ∀x1 . . . ∀xp(l1 ∨ . . . ∨ ln) be a clause. LetM be a set of
meta-variables. C ′ is a new instance of C, fresh forM, if C ′ is the set of literals {{X1/x1 . . . Xp/xp}li |
li ∈ C}, for some pairwise distinct meta variables X1 . . . Xp such that {X1, . . . , Xp} ∩M = ∅. ※

Remark 62 A clause has no meta-variables and a clause instance has no variables.

Definition 74 (Clause tableau for first-order logic) A clause tableau for a given set S of
clauses is a substitution and a finitely branching tree:

• whose root is labelled by S.
• whose other nodes are labelled by literals and whose branches are tagged as open or closed,
• such that the pair is obtained by an inductive construction defined by the following rules:

Initial Rule: the empty substitution and a single open root node labelled by S is a clause tableau for S.
Expansion Rule: Let

∗ (σ, T) be a tableau for S.
∗ S‖Γ be an open branch of T .
∗ {l1, . . . , ln} be a new instance of a clause of S that is fresh for FMV(T).
∗ Let T ′ be the tree obtained by expanding S‖Γ with n new open leaves l1, . . . , ln.

Then (σ, T ′) is a tableau for S.
Closing Rule: Let (σ, T) be a tableau for S and S‖Γ be an open branch of T and σ′ = mgu(l, l′) for

some literals l and l′⊥ in Γ. If σ′′ = mgu(σ, σ′), then the pair (σ′′, T ′) is a tableau for S
where T ′ is T whose branch S‖Γ is tagged as closed.

※

5.5. Extending the simulations to pure first-order logic 125

Notice that none of the literals labelled the (non-root) nodes of a clause tableau have any free
variables.

Clearly, the third construction rule can be postponed, and we could have defined clause
tableaux with only 1. and 2., not involving substitutions, and then said that a tableau is closed
(or can be closed) if there is a substitution σ such that, on every branch S‖Γ of the tableau, there
are two literals l and l′ such that σ is a unifier of l = l′

⊥.

Definition 75 (Weak Connection Tableau)
Initial Rule: For any new instance {l1 . . . ln} of some clause in S, the tree constructed by expanding the root

node with n new leaves, together with the empty substitution, is a weak connection tableau for
S.

Expansion Rule: Let (σ, T) be a weak connection tableau for S, let S‖Γ be one of the open branches of T and
let {l0, l1 . . . ln} be a new instance of some clause in S.
If there is a substitution σ′ = mgu(l, l⊥i) for some i ∈ 1 . . . n and some l in Γ, and if σ′′ =
mgu(σ, σ′), then the pair (σ′′, T ′) is a weak connection tableau for S, where T ′ is obtained from
T by expanding its branch S‖Γ with {l0, l1 . . . ln}, tagging the branch S‖Γ, li as closed.

Closing Rule: As for clause tableaux (in Definition 74).
※

Definition 76 (Strong Connection Tableau)
Initial Rule: For any new instance {l1, . . . , ln} of some clause in S, the tree constructed by expanding the root

node with n new leaves, together with the empty substitution, is a strong connection tableau for
S.

Expansion Rule: Let (σ, T) be a strong connection tableau for S, let S‖Γ be one of the open branches of T ending
with l and let {l0, l1 . . . ln} be a new instance of some clause in S.
If there is a substitution σ′ = mgu(l, l⊥i) for some i ∈ 1 . . . n and if σ′′ = mgu(σ, σ′), then the
pair (σ′′, T ′) is a strong connection tableau for S, where T ′ is obtained from T by expanding its
branch S‖Γ with {l0, l1 . . . ln}, tagging the branch S‖Γ, li as closed.

Closing Rule: As for clause tableaux (in Definition 74).
※

Clause tableaux, weak connection tableaux, and strong connection tableaux, are all sound and
complete for first-order logic [RV01].

5.5.3 The LKpd
F system and the simulation of clause tableaux

We now introduce a variant of the first-order LKp(T) system, for the empty theory, that is called
LKpdF , and that is designed for the simulation of clause tableaux for first-order logic.

Definition 77 (Formulae, polarities)
The formulae of LKpdF are given by the same grammar as in Definition 13, keeping in mind that

there can now be meta-variables in terms, literals and formulae:
Formulae A,B, . . . ::= l | A∧+B | A∨+B | A∧−B | A∨−B | >+ | >− | ⊥+ | ⊥− | ∀xA | ∃xA
where l ranges over literals. The construct of ∀xA and ∃xA bind x in A. The set of free variables
of a formula A is denoted by FV(A). The set of (free) meta-variables that appear in a formula A is
denoted by MV(A), although notice that there is no binder for meta-variables.

A formula A is closed if both FV(A) = ∅ and MV(A) = ∅.
The negation of a formula and the capture-avoiding substitution of variables in a formula are defined

as usual. Polarisation sets, P-positive and P-negative formulae, and the set UP of P-unpolarised
literals, are all defined as in Definition 15. ※

126 Chapter 5. Simulating tableaux in the sequent calculus

Definition 78 (System LKpd
F) The sequent calculus LKp(T) manipulates two kinds of sequents:
Focused sequents Γ `PΣ,Ω [A]⇒ σ

Unfocused sequents Γ `PΣ,Ω ∆⇒ σ

where P is a polarisation set, Γ is a (finite) multiset of literals and P-negative formulae, ∆ is a
(finite) multiset of formulae, Σ is the signature for function symbols4, Ω is a list of distinct meta-
variables, and σ is a substitution.

All the meta-variables used in a sequent should be declared in Ω (this will be an invariant of our
proof-search system), and](Ω) denotes the length of list Ω (i.e. the number of declared meta-variables).

We should see Σ, Ω, Γ, A or ∆, and P as the inputs of proof-search, and σ as the output: if in the
sequent we instantiate all the meta-variables of Ω according to the output substitution σ, we should
get a sequent that is provable in LKp(∅).

The sequent calculus LKpdF is given by the rules of Figure 5.8. ※

Synchronous rules
Γ `PΣ,Ω [A]⇒ σ1 Γ `PΣ,Ω [B]⇒ σ2

(∧+)
Γ `PΣ,Ω [A∧+B]⇒ mgu(σ1, σ2)

Γ `PΣ,Ω [Ai]⇒ σ
(∨+)

Γ `PΣ,Ω [A1∨+A2]⇒ σ

Γ `PΣ,X :: Ω [
{
X�x
}
A]⇒ σ

(∃)
Γ `PΣ,Ω [∃xA]⇒ σ

(Init1)
Γ, l `P,l

′′

Σ,Ω [l′]⇒ mgu(l, l′, l′′)
(>+)

Γ `PΣ,Ω [>+]⇒ ∅

Γ `PΣ,Ω N ⇒ σ
(Release) N is not P-positive

Γ `PΣ,Ω [N]⇒ σ

Asynchronous rules
Γ `PΣ,Ω A,∆⇒ σ1 Γ `PΣ,Ω B,∆⇒ σ2

(∧−)
Γ `PΣ,Ω A∧−B,∆⇒ mgu(σ1, σ2)

Γ `PΣ,Ω A1, A2,∆⇒ σ
(∨−)

Γ `PΣ,Ω A1∨−A2,∆⇒ σ

Γ `P(x/](Ω)) :: Σ,Ω

{
x(Ω)�x

}
A,∆⇒ σ

(∀)
Γ `PΣ,Ω (∀xA),∆⇒ σ

(>−)
Γ `PΣ,Ω >−,∆⇒ ∅

Γ `PΣ,Ω ∆⇒ σ
(⊥−)

Γ `PΣ,Ω ⊥−,∆⇒ σ

Γ, A⊥ `P;A⊥
Σ,Ω ∆⇒ σ

(Store) A is P-positive or literal
Γ `PΣ,Ω A,∆⇒ σ

Structural rules
Γ, P⊥ `PΣ,Ω [P]⇒ σ

(Select) P is not P-negative
Γ, P⊥ `PΣ,Ω ⇒ σ

Extra rule
Γ `PΣ,Ω ⇒ σ

(DPol) l ∈ Γ
Γ `P,lΣ,Ω ⇒ σ

where P;A := P, A if σ(A) ∈ Uσ(P)
P;A := P if not

Figure 5.8: System LKpdF

Let us give an intuition about those rules. Their names should relate them to the rules in
systems LKp(∅) and LKpd(∅).

4Skolemisation will extend it on-the-fly during proof-search.

5.5. Extending the simulations to pure first-order logic 127

• In rules (>+) and (>−), we output the empty substitution.
• In every rule that has two premisses ((∧+) and (∧−)), we collect the output substitutions

from both branches and produce their most general unifier, assuming that this exists.
• In rule (∃), we delay the instantiation of the existentially quantified variable, by picking a

new meta-variable X, which we declare by adding it to Ω; the value to which X is mapped
by the output substitution σ is the witness that we would need to reconstitute a proof-tree
in LKp(∅).

• In rule (∀), we perform on-the-fly skolemisation: instead of just keeping the freed variable x
as in LKp(∅), we enrich x by “applying it” to the list Ω of meta-variables that have previously
been introduced. We do this by turning x into a new function symbol added to the signature
Σ, with arity](Ω). Doing this will record the fact that the meta-variables in Ω cannot depend
on x, as any instantiation of these meta-variables with terms mentioning x would now be
ruled out by the occurs-check of every unification call.
However, this will never be used in the simulation of clause or connection tableaux, since
these techniques are designed for clausal forms, so all the necessary skolemisation steps have
been done in pre-processing. Correspondingly, we will never encounter, in the simulation, a
∀ quantifier on the right-hand side of a sequent.

• The (Init1) rule is where the computation of unifiers start.
• Rule (Store) is basically the same as in LKp(∅), but for the fact that the criterion used for

adding or not adding a stored literal to the polarisation set involves the resulting substitution.
This is contradicting the view that the resulting substitution is an output of the proof-search,
but this criterion seems necessary to then be able to encode our system back into LKp(∅).
Understanding how to deal with this in an actual proof-search procedure is left for further
work; however, for the particular proof-search process that simulates clause or connection
tableaux, the issue never comes up, as the next step after (Store) is to empty the polarisation
set anyway with rule (DPol).

Definition 79 (Representation of clauses as formulae)
An formula C ′ represents a clause C = {lj}j=1...n with {x1 . . . xp} = FV(l1, . . . , ln) if C ′ =

∀x1 . . . ∀xp(l1∨− . . .∨−ln).
A set of formulae S′ represents a set of clauses S if there is a bijection f from S to S′ such that

for all clauses C in S, f(S) represents C. ※

Definition 80 (Encoding clause tableaux in LKpd
F)

For any set S of clauses, and for every set S′ of formulae representing S, we define a mapping ΦF
that maps:

• a clause tableaux (σ, T) for S with m open branches
• m substitutions σ1, . . . , σm such that σ0 = mgu(σ,mgu(σ1,mgu(. . . , σm))) exists

to an incomplete proof-tree concluding S′ `∅Σ,Ω ⇒ σ0 with m open leaves,
with a bijection f from the open branches of (σ, T) to 1 . . .m such that, for all open branches S‖Γ of
(σ, T), the f(S‖Γ)th open leaf of the incomplete proof-tree is labelled with the sequent

S′,Γ `∅Σ,Ω ⇒ σf(S‖Γ)

We define ΦF ((σ, T), (σi)i) by induction on the inductive construction of (σ, T), checking that the
above property is indeed an invariant of the induction.

Initial rule: We define ΦF ((∅, T), σ0) as

S′ `∅Σ,[] ⇒ σ0

128 Chapter 5. Simulating tableaux in the sequent calculus

Expansion rule: If (σ′, T ′) is a weak connection tableau that is obtained, from a tableau (σ, T) with m open
branches, by expanding the branch S‖Γ of (σ, T) using a new instance {l1 . . . ln} of a clause in
S,
we define ΦF ((σ′, T ′), (σ′i)i∈1...m+n−1) as follows:
Let (σi)i∈1...m be defined by

σi := σ′i for i ∈ 1 . . . (m− 1)
σm := mgu(σ′m,mgu(. . . , σ′m+n−1))

Consider the incomplete proof-tree ΦF ((σ, T), (σi)i∈1...m).
We replace its open leaf corresponding to S‖Γ by the following incomplete proof tree:

S′,Γ, l1 `∅Σ,Ω′ ⇒ σ′m=================
S′,Γ `∅Σ,Ω′ l1

⊥ ⇒ σ′m

S′,Γ `∅Σ,Ω′ [l1⊥]⇒ σ′m · · ·

S′,Γ, ln `∅Σ,Ω′ ⇒ σ′m+n−1=====================
S′,Γ `∅Σ,Ω′ ln

⊥ ⇒ σ′m+n−1

S′,Γ `∅Σ,Ω′ [ln⊥]⇒ σ′m+n−1==
S′,Γ `∅Σ,Ω′ [

{
X1,...,Xp�x1,...,xp

}
A⊥]⇒ σ0

S′,Γ `∅Σ,Ω [C ′⊥]⇒ σm

S′,Γ `∅Σ,Ω ⇒ σm

where C ′ = ∀x1 . . . xpA is the formula of S′ representing C and Ω′ = X1 :: . . . Xp :: Ω.
Closing rule: If (σ′, T ′) is a weak connection tableau that is obtained, from a tableau (σ, T) with m open

branches, by closing its branch S‖Γ, detecting l and l′⊥ in Γ, with σ′′ = mgu(l, l′) and σ′ =
mgu(σ, σ′′), then we define ΦF ((σ′, T ′), (σ′i)i∈1...m−1) as follows:
Let (σi)i∈1...m be defined by

σi := σ′i for i ∈ 1 . . . (m− 1)
σm := σ′′

Consider the incomplete proof-tree ΦF ((σ, T), (σi)i∈1...m).
We replace its open leaf corresponding to S‖Γ by the following complete proof-tree:

S′,Γ, l `lΣ,Ω [l′]⇒ σ′′

S′,Γ, l `lΣ,Ω ⇒ σ′′

S′,Γ `∅Σ,Ω l⊥ ⇒ σ′′

S′,Γ `∅Σ,Ω [l⊥]⇒ σ′′

S′,Γ `∅Σ,Ω ⇒ σ′′

※

5.5.4 The LKpdp
F system and the simulation of weak connection tableaux

As for the propositional case, we now extend LKpdF with the (Pol) rule to simulate weak connection
tableaux for first-order logic.

Definition 81 (System LKpdp
F) We extend the sequent calculus LKpdF with the following polarisa-

tion rule:
Γ, l `P,l

′

Σ,X1 :: ...Xn :: Ω ⇒ σ
(Pol)

l′ renames l
MV(l′) = {X1, . . . , Xn}
MV(l′) ⊆ Dom(σ)Γ, l `PΣ,Ω ⇒ σ|Ω

The resulting system is denoted LKpdpF . ※

5.5. Extending the simulations to pure first-order logic 129

In rule (Pol), we allow ourselves to polarise positively not a literal of the left-hand side, but the
renaming of one of them using fresh meta-variables X1, . . . , Xn (which we then have to declare
and add to Ω); these meta-variables should not be mapped to themselves by the output substitution
σ (i.e. the literal that we declared positive must have been involved in some unification) and the
values they are mapped to are then forgotten. We will see in the simulation of weak connection
tableaux why this form of (Pol) is important.

Definition 82 (Encoding from weak connection tableau to LKpdp
F)

The encoding of weak connection tableaux in LKpdpF is given by a function φF satisfying exactly
the same invariants as the function ΦF for first-order clause tableaux (Definition 80), but we slightly
tweak the definition to enforce weak connections:

Initial rule: If {l1 . . . ln} is a new instance of C ∈ S, using fresh meta-variables X1, . . . , Xp, then we define
φF ((∅, T), (σi)i∈1...n) as

S′, l1 `∅Σ,Ω ⇒ σ1
==============
S′ `∅Σ,Ω l1

⊥ ⇒ σ1

S′ `∅Σ,Ω [l1⊥]⇒ σ1 · · ·

S′, ln `∅Σ,Ω ⇒ σn
==============
S′ `∅Σ,Ω ln

⊥ ⇒ σn

S′ `∅Σ,Ω [ln⊥]⇒ σn
======================================

S′ `∅Σ,Ω [
{
X1,...,Xp�x1,...,xp

}
A⊥]⇒ σ0

S′ `∅Σ,[] [C ′⊥]⇒ σ0

S′ `∅Σ,[] ⇒ σ0

where C ′ = ∀x1 . . . xpA is the formula of S′ representing C and Ω = X1 :: . . . Xp :: [] and
σ0 = mgu(σ1,mgu(. . . , σn)).

Expansion rule: If (σ′, T ′) is a weak connection tableau that is obtained, from a tableau (σ, T) with m open
branches, by expanding the branch S‖Γ of (σ, T) using a new instance {l1 . . . ln} of a clause in
S,
we define φF ((σ′, T ′), (σ′i)i∈1...m+n−2) as follows:
Let l be the literal of Γ weakly connecting to some literal li0 of the new clause instance, and let
σ′′ := mgu(l, l⊥i0). We can assume without loss of generality that i0 = n.
Let (σi)i∈1...m be defined by

σi := σ′i for i ∈ 1 . . . (m− 1)
σm := mgu(σ′′,mgu(σ′m,mgu(. . . , σ′m+n−2)))

Consider the incomplete proof-tree φF ((σ, T), (σi)i∈1...m).
We replace its open leaf corresponding to S‖Γ by the following incomplete proof tree:

S′,Γ, l1 `∅Σ,Ω′ ⇒ σ′m=================
S′,Γ `l

′

Σ,Ω′ l1
⊥ ⇒ σ′m

S′,Γ `l
′

Σ,Ω′ [l1⊥]⇒ σ′m · · ·

S′,Γ, ln−1 `∅Σ,Ω′ ⇒ σ′m+n−2=======================
S′,Γ `l

′

Σ,Ω′ ln−1
⊥ ⇒ σ′m+n−2

S′,Γ `l
′

Σ,Ω′ [ln−1
⊥]⇒ σ′m+n−2 S′,Γ `l

′

Σ,Ω′ [ln⊥]⇒ mgu(l, l′, l⊥n)
===

S′,Γ `l
′

Σ,Ω′ [
{
X1,...,Xp�x1,...,xp

}
A⊥]⇒ σ0

S′,Γ `l
′

Σ,Ω′′ [C ′⊥]⇒ σ0

S′,Γ `l
′

Σ,Ω′′ ⇒ σ0

S′,Γ `∅Σ,Ω ⇒ σm

where C ′ = ∀x1 . . . xpA is the formula of S′ representing C,
l′ is a fresh renaming of l using the meta-variables Y1, . . . , Yq,
Ω′′ := Y1 :: . . . Yq :: Ω and Ω′ := X1 :: . . . Xp :: Ω′′,
σ0 := mgu((mgu(l, l′, l⊥n)),mgu(σ′m,mgu(. . . , σ′m+n−2))) (so that σ0|Ω = σ′m).

Closing Rule: As for clause tableaux (in Definition 80).
※

130 Chapter 5. Simulating tableaux in the sequent calculus

Now, the point of having introduced the complex rule (Pol) instead of the natural one:
Γ `P,lΣ,Ω ⇒ σ

l ∈ Γ
Γ `PΣ,Ω ⇒ σ

is to be able to add a fresh l′ in the polarisation set instead of the literal l in Γ. Having done
this, we have introduced some new meta-variables Y1, . . . , Yq that need to be instantiated by
the output substitution σ0. In order to instantiate them, the only way5 is to have one of the
branches immediately close with (Init1) (in our case, the branch on l⊥n), thus implementing the
weak connection.

Had we used the above rule instead of our complex (Pol) rule, we would have added l itself to
the polarisation set, and nothing would have prevented the branch on l⊥n from applying (Release)
and having continued as in the other branches.

The above mechanism that forces the weak connection is part of an attempt to start identifying
those incomplete LKpdpF -proof-trees that are the images of weak connection tableaux by φF , but this
as a general aim is left for further work, owing to the complexity of the system. Even identifying
those incomplete LKpdF -proof-trees that are the images of clause tableaux by ΦF is left for further
work.

Finally, we will not try to build a first-order version of the propositional calculus LKpdp+ in
order to simulate first-order strong connection tableaux (mixing LKpdpF with LKpdp+ would become
very heavy). But we believe that the difficulties of strong connections and the difficulties of meta-
variables are orthogonal problems, so in theory it could be done, to the same level of satisfaction
as for weak connections (i.e. lacking so far a neat characterisation of those incomplete proof-trees
representing connection tableaux).

5Imagine that instead of (Init1) we used (Release) and continued as in the other branches; then going back to an
empty polarisation set with (DPol) would erase all traces of l′ and therefore all traces of Y1, . . . , Yq , which would
never be instantiated. Contradiction.

Chapter 6

Conclusion

The principal aim of this thesis is to build a general framework based on sequent calculus where
automated reasoning techniques can be performed as proof-search.

Therefore at the beginning of the thesis, we reviewed the relevant literature, from Gentzen’s
sequent calculus LK to Liang-Miller’s system LKF, a focused sequent calculus that is equipped
with polarities (for literals and connectives). On the way, we reviewed linear logic, the LC sequent
calculus that introduced the concept of polarities, and Andreoli’s introduction of focusing.

Then we presented a new system LKp(T) for classical logic, which extends the LKF system with
on-the-fly polarisation and calls to decision procedures. We proved the meta-theory of the system,
including the cut-elimination procedure, the property that changing the polarity of connectives
does not change the provability of formulae, and finally the completeness of the LKp(T) system.
Moreover, we found an important feature of the LKp(T) system, namely that in the presence of
a non-trivial background theory, changing the polarity of literals does affect the provability of
formulae.

Since our main motivation was to simulate automated techniques as proof-search in our focused
sequent calculus, we reviewed the main techniques of SAT and SMT-solving, namely Classical
DPLL, Abstract DPLL(T), etc. We also introduced a new system, Elementary DPLL(T), which is
a restricted version of Abstract DPLL(T) but which provides strong simulation properties.

We presented two kinds of simulations for both Elementary and Abstract DPLL(T): (i) an
indirect simulation via Tinelli’s inference system, and (ii) a direct simulation from DPLL(T) to
LKp(T). This direct simulation provides the characterisation of an isomorphic image of the (Ele-
mentary) DPLL(T) system into LKp(T), by a criterion that only involves the management of
polarities.

A by-product of these chapters is the implementation of a proof-search tool for LKp(T)1 called
Psyche, and implemented in OCaml. The construction of a proof-tree for a given formula results
from the interaction between a small kernel and plugins. The former is parameterised by a decision
procedure for T , and implements the rules in LKp(T) (bottom-up), offering an API to apply
synchronous rules (mainly, the choice of focus) while automatically applying asynchronous rules
(which are invertible and therefore represent no backtrack points). Plugins can be used to import
efficient automated reasoning techniques in this goal-directed framework by specifying in which
order (and to which depth) the branches of the search-space should be explored. The direct
simulation of Chapter 4 was implemented as a plugin for Psyche, i.e. a module implementing a
strategy that drives the kernel, by calling its API functions, towards either a proof or the guarantee
that no proof exists. An expanded description of Psyche can be found in [GL13].

We finally chose, among other automated reasoning techniques, clause and connection tableaux
to be simulated in our LKp(T) system. We presented simulations for both propositional and first-
order logic of these tableaux. We also got an isomorphic image of these tableaux (in propositional
logic) in the LKp(T) system. Moreover, we presented a simulation of clause tableaux modulo

1in its version from Chapter 4

131

132 Chapter 6. Conclusion

theories [Tin07] into LKp(T). The simulation shows a parallel (characterisation) between DPLL(T)
and clause tableaux modulo theories, via our target calculus LKp(T). That will allow for instance
the switch from one technique to another technique in the same run.

This thesis leaves interesting topics for future research. Since we did not obtain an isomorphic
image of Abstract DPLL(T) in LKp(T), in the future we would like to investigate whether the
simulation can be improved, so that the target image of the simulation can be characterised by
a simple criterion, just as it the case for the Elementary DPLL(T). This would also enable us to
obtain a reverse simulation of that image back into Abstract DPLL(T).

Another direction for future work is to use our simulations to get new completeness proofs for
automated reasoning techniques, by i) identifying the target image of these simulated techniques,
and then ii) show that any proof of LKp(T) can be transformed into a proof in this image.

We would also like to better understand, and improve, the simulation of first-order connection
tableaux in system LKp(T). That requires a better understanding of how to manage meta-variables
in LKp(T), especially regarding polarities. But this would open the door to (new) approaches to
mix pure first-order reasoning with ground reasoning modulo theories, perhaps providing proof-
theoretical grounds to the use of triggers.

As future work, it would be interesting to extend our simulations, in LKp(T), to first-order
versions of DPLL(T) [Bau00, BT08] and other extensions, for instance with equality [BT11]:
Extending LKp(T) with an in-built treatment of equality could perhaps allow the simulation of
superposition or paramodulation techniques, and make them interact with the other techniques
previously simulated.

Bibliography

[AFG+11] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In Proc. of the 1st
Int. Conf. on Certified Programs and Proofs (CPP’11), volume 7086 of LNCS, pages
135–150. Springer, 2011. 11

[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic. J. Logic
Comput., 2(3):297–347, 1992. 9, 10, 23, 24, 25, 27

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabby, and
T. S. E. Maibaum, editors, Hand. Log. Comput. Sci., volume 2, chapter 2, pages 117–
309. Oxford University Press, 1992. 9

[Bau00] P. Baumgartner. FDPLL - a first order Davis-Putnam-Longeman-Loveland procedure.
In Proc. of the 17th Int. Conf. on Automated Deduction (CADE’00), volume 1831 of
LNCS, pages 200–219. Springer-Verlag, 2000. 132

[BBP11] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT
solvers. In Automated Deduction, volume 6803 of LNCS, pages 116–130. Springer-
Verlag, 2011. 11

[BCP11] F. Besson, P.-E. Cornilleau, and D. Pichardie. Modular SMT proofs for fast reflexive
checking inside Coq. In J.-P. Jouannaud and Z. Shao, editors, Certified Programs and
Proofs, volume 7086 of LNCS, pages 151–166. Springer-Verlag, 2011. 11

[Bou97] S. Boutin. Using reflection to build efficient and certified decision procedure s. In
M. Abadi and T. Ito, editors, TACS’97, volume 1281 of LNCS. Springer-Verlag, 1997.
11

[BT08] P. Baumgartner and C. Tinelli. The model evolution calculus as a first-order DPLL
method. Artificial Intelligence, 172(4-5):591–632, 2008. 132

[BT11] P. Baumgartner and C. Tinelli. Model evolution with equality modulo built-in theor-
ies. In N. Bjørner and V. Sofronie-Stokkermans, editors, Proc. of the 23rd Int. Conf.
on Automated Deduction (CADE’11), volume 6803 of LNCS, pages 85–100. Springer-
Verlag, 2011. 132

[CH00] P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the 5th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP’00), pages 233–243. ACM
Press, 2000. 27

[Coq] The Coq Proof Assistant. Available at http://coq.inria.fr/ 9

[Dan90] V. Danos. La logique linéaire appliquée à l’étude de divers processus de normalisation
(et principalement du λ-calcul). PhD thesis, Université de Paris VII, 1990. Thèse de
doctorat en mathématiques. 20

133

http://coq.inria.fr/

134 BIBLIOGRAPHY

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: sequent calculi for second
order logic based upon dual linear decompositions of classical implication. In J.-Y.
Girard, Y. Lafont, and L. Regnier, editors, Proc. of the Work. on Advances in Linear
Logic, volume 222 of London Math. Soc. Lecture Note Ser., pages 211–224. Cambridge
University Press, 1995. 27

[DJS97] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic. J.
of Symbolic Logic, 62(3):755–807, 1997. 27

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962. 10, 79

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. J. of the
ACM Press, 7(3):201–215, 1960. 10, 79

[Gaz10] I. Gazeau. Private communication. 2010. 87, 99

[Gen35] G. Gentzen. Investigations into logical deduction. In Gentzen collected works, pages
68–131. Ed M. E. Szabo, North Holland, (1969), 1935. 13, 16

[Gir87] J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–101, 1987.10, 13, 17, 19, 20

[Gir91] J.-Y. Girard. A new constructive logic: Classical logic. Math. Structures in Comput.
Sci., 1(3):255–296, 1991. 10, 20, 23

[Gir95] J.-Y. Girard. Linear logic: its syntax and semantics. In Advances in Linear Logic,
pages 1–42. Cambridge University Press, 1995. 17

[GL13] S. Graham-Lengrand. Psyche: a proof-search engine based on sequent calculus with an
LCF-style architecture. In D. Galmiche and D. Larchey-Wendling, editors, Proc. of the
22nd Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(Tableaux’13), volume 8123 of LNCS, pages 149–156. Springer-Verlag, 2013. 131

[JS97] R. J. B. Jr. and R. Schrag. Using csp look-back techniques to solve real-world sat
instances. In AAAI/IAAI, pages 203–208, 1997. 82

[Lau02] O. Laurent. Etude de la polarisation en logique. Thèse de doctorat, Université Aix-
Marseille II, 2002. 27

[LC09] S. Lescuyer and S. Conchon. Improving Coq propositional reasoning using a lazy CNF
conversion scheme. In Proc. of the 7th Int. Conf. on Frontiers of combining systems
(FroCoS’09), pages 287–303. Springer-Verlag, 2009. 11

[LDM11] S. Lengrand, R. Dyckhoff, and J. McKinna. A focused sequent calculus framework for
proof search in Pure Type Systems. Logic. Methods Comput. Science, 7(1), 2011. 9

[LM09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theoret. Comput. Sci., 410(46):4747–4768, 2009. 9, 10, 11, 13, 27, 29

[LQdF05] O. Laurent, M. Quatrini, and L. T. de Falco. Polarized and focalized linear and classical
proofs. Ann. Pure Appl. Logic, 134(2-3):217–264, 2005. 27

[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic, 51:125–157, 1991. 9, 23, 27

[NOT05] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract DPLL Mod-
ulo Theories. In F. Baader and A. Voronkov, editors, Proc. of the the 11th Int. Conf.
on Logic for Programming Artificial Intelligence and Reasoning (LPAR’04), volume
3452 of LNCS, pages 36–50. Springer-Verlag, 2005. 80, 105

BIBLIOGRAPHY 135

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. of
the ACM Press, 53(6):937–977, 2006. 10, 11, 82, 84, 99, 109

[RV01] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2
volumes). Elsevier and The MIT Press, 2001. 10, 111, 112, 113, 125

[SS99] J. P. M. Silva and K. A. Sakallah. Grasp: A search algorithm for propositional satis-
fiability. IEEE Trans. Computers, 48(5):506–521, 1999. 82

[Tin02] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In Proc.
of the 8th European Conf. on Logics in Artificial Intelligence, volume 2424 of LNAI,
pages 308–319. Springer-Verlag, 2002. 11, 87, 95, 99

[Tin07] C. Tinelli. An abstract framework for satisfiability modulo theories. In N. Olivetti,
editor, TABLEAUX, volume 4548 of LNCS. Springer-Verlag, 2007. Invited talk, avail-
able at http://ftp.cs.uiowa.edu/pub/tinelli/talks/TABLEAUX-07.pdf. 10, 12, 111,
114, 132

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 2000. 14, 16

[Web11] T. Weber. SMT solvers: New oracles for the HOL theorem prover. International
Journal on Software Tools for Technology Transfer (STTT), 13(5):419–429, 2011. 11

http://ftp.cs.uiowa.edu/pub/tinelli/talks/TABLEAUX-07.pdf

Index

Backtrack rule, 81
BacktrackT rule, 84
Fail rule, 81
FailT rule, 84
Id1, 34
Id2, 34
Init3 rule, 116
Select rule, 29
Store rule, 33
P-negative formula, 32
P-positive formula, 32
P-unpolarised literal, 33
DPol rule, 115
Release rule, 34
Init1 rule, 34
Init2 rule, 33
T -Backjump rule, 83
T -Forget rule, 83
LKDPLL(T) system, 88
LKcDPLL(T) system, 94
LKp(T) system, 31
LKpd(T) system, 116
T -Learn rule, 83
Backjump rule, 82
DPLL(T)-extension, 104
DPLL(T) procedure, 79
DPLL final state, 81
DPLL procedure, 79
DPLL state, 80
Decide rule, 81
Forget rule, 82
LC system, 17
LKF system, 27
LKpdp+ system, 120
LKpdp system, 118
LLF system, 25
LL system, 18
Learn rule, 82
Pure literal rule, 81
Restart rule, 82
Theory propagate rule, 84
Unit propagate rule, 81

DPLLbj(T) system, 105

Abstract DPLL(T) procedure, 83
active formula, 15
additive connective, 19
admissible, 16
analytic tableau, 111
antecedent, 15
Assert rule, 88
asynchronous rule, 24, 33
atom, 72

backjump clause, 82
backtrack point, 86
basic inconsistency, 32
body, 22

Classical DPLL procedure, 80
clause, 80
clause tableau, 111
clause tableau modulo theories, 114
closed branch, 112
closed tableau, 112
closing rule, 112
closure, 83
complete proof-tree, 101
conflict-driven clause learning, 82
conflicting clause, 81
constructive, 20
context, 15
contraction, 32
correspondance between states and incomplete

proof-trees, 101, 105
cut-admissibility, 32
cut-formula, 15
cut-rule, 15

De Morgan laws, 17
decision literal, 80
Decision rule, 25
disjunction property, 23
don’t care non-determinism, 25
don’t know non-determinism, 25
duality, 17

Elementary DPLL(T) procedure, 83
empty clause, 80
Empty rule, 88

136

INDEX 137

existential property, 23
exponential, 17, 19

focus, 33
focused sequent, 25
focusing mechanism, 24
formula, 32
free variable, 32

Hauptsatz, 16
head, 22

identity rule, 26
inconsistency predicate, 31
incremental construction, 85
invertible rule, 24

learned clause, 82
linear logic, 17
linear modality, 19
linear negation, 17
literal, 17, 28, 31, 79, 123

main formula, 15
meta-term, 123
meta-variable, 123
model sequence, 80
mono-sided sequent, 18
most general unifier, 124
multiplicative connective, 18

negation, 17, 21, 31, 32, 79
negative connective, 24

P-equivalence, 24
partial proof-tree extension, 100
plain formula, 72
polarisation set, 32
polarity, 21
positive connective, 24
principal formula, 15
proof net, 19
proof-structure, 19
propositional satisfiability (SAT), 79

Reaction rule, 25
renaming literal, 124
representing a clause (first-order), 127
representing a set of clauses (first-order), 127
Resolve rule, 88

safety, 48
Satisfiability Modulo Theories (SMT), 79
semantical inconsistent, 32
set of literals, 80

side formula, 15
Split rule, 88
stability under instantiation, 32
stoup, 22
strong-tableau-like, 122
structural rule, 33
substitution, 32, 124
Subsume rule, 88
succedent, 15
synchronous rule, 24, 33
syntactical inconsistency, 32

tableau-like incomplete proof-tree, 117
term, 31
theory lemma, 72
theory restricting, 73

unfocused sequent, 25
unification, 124

variable, 31

weak-tableau-like, 119
weakening, 32

List of Figures

2.1 The LK system for classical logic . 14
2.2 The G3c system for classical logic . 15
2.3 The LL system for linear logic . 18
2.4 The LC system for classical logic . 22
2.5 The LLF system for linear logic . 26
2.6 The LKF system for classical logic . 28

3.1 System LKp(T) . 33
3.2 System LK+(T) . 58

4.1 Elementary DPLL(T) . 84
4.2 System for the simulation of DPLL(T) . 86
4.3 Collecting backtrack points . 87
4.4 System LKDPLL(T) . 88
4.5 Extension of system LKDPLL(T) . 90

5.1 Clause Tableau . 112
5.2 Weak connection tableau . 113
5.3 Strong connection tableau . 114
5.4 Connection Tableaux . 115
5.5 System LKpd(T) . 116
5.6 System LKpdp . 118
5.7 System LKpdp+ . 121
5.8 System LKpdF . 126

139

	Introduction
	Focusing Gentzen's sequent calculus for classical logic: a survey
	Gentzen's sequent calculus
	Linear logic and the sequent calculus LC for classical logic
	Linear logic and its sequent calculus
	The sequent calculus LC

	Introducing focusing in linear logic
	Preliminaries
	The triadic system LLF

	The focused sequent calculus LKF for classical logic

	A sequent calculus for classical logic modulo theories
	: Definitions
	Admissibility of basic rules
	Invertibility of the asynchronous phase
	On-the-fly polarisation
	Cut-elimination
	Cuts with the theory
	Safety and instantiation
	More general cuts

	Changing the polarity of connectives
	Completeness

	Simulating SMT-solving in the sequent calculus
	Variations on Davis-Putnam-Logemann-Loveland
	DPLL
	DPLL-modulo-theories
	The Elementary DPLL(T) system

	Preliminaries
	An indirect simulation of DPLL(T)
	The system
	Simulation of DPLL(T) in
	Simulation of in

	Direct simulation of DPLL(T)
	Simulating Elementary DPLL(T)
	Turning the simulation into a bisimulation
	Extending the simulation with backjump and lemma learning

	Simulating clause and connection tableaux in the sequent calculus
	Clause and connection tableaux
	Simulation of clause tableaux (modulo theories)
	Simulation of weak connection tableaux
	Simulation of strong connection tableaux
	Extending the simulations to pure first-order logic
	Preliminaries
	Clause and connection tableaux in first-order logic
	The LKpdF system and the simulation of clause tableaux
	The LKpdpF system and the simulation of weak connection tableaux

	Conclusion
	Index
	List of figures

