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Abstract. This paper presents an X-ray tomographic reconstruction
method based on an adaptive mesh in order to directly obtain the typical
gray level reconstructed image simultaneously with its segmentation. It
also leads to reduce the number of unknows throughout the iterations of
reconstruction and accelerates the process of algebraic algorithms.

The process of reconstruction is no more based on a regular grid of voxels
but on a mesh composed of non regular tetraedra that are progressively
adapted to the content of the image. Each iteration is composed by two
main steps that successively estimate the values of the mesh elements
and segment the sample in order to make the grid adapted to the content
of the image. The method was applied on numerical and experimental
data. The results show that the method provides reliable reconstructions
and leads to drastically reduce the memory storage compared to usual
reconstructions based on pixel representation.
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1 Introduction

Tomography reconstruction from projections data is an inverse problem widely
used in the medical imaging field. With sufficiently large number of projections
over the required angle, the FBP (Filtered Back-Projection) algorithms allow
fast and accurate reconstructions. However in the cases of limited views (low
dose imaging) and/or limited angle (specific constrains of the setup), the data
available for inversion are not complete, then the problem becomes more ill-
conditioned and the results show significant artifacts. In these situations, an
alternative approach of reconstruction, based on a discrete model of the prob-
lem, consists in using an iterative algorithm or a statistical modelisation of the
problem to compute an estimate of the unknown object. These methods are clas-
sicaly based on a volume discretization into a set of voxels and provide 3D maps
of densities. High computation time and memory storage are their main disad-
vantages. Moreover, whatever the application is, the volumes are segmented for
a quantitative analysis. Numerous methods of segmentation with different inter-
pretations of the contours and various minimized energy functions are offered
with results that can depend on their use by the application.



2 Buyens et al. Adaptive mesh reconstruction in X-Ray tomography

During the last decade, several studies focused on new approaches simulta-
neously performing reconstruction and segmentation. These methods are based
on a modelling of the sample and solve an optimization problem for which the
unknown variables are the location of the boundaries and the intensity distribu-
tion. Some authors proposed the reconstruction of 3D binary images composed
of uniform compact objects totally included in uniform backgrounds [1]. The
scene is reconstructed using parametric surface models (splines). The parame-
ters are estimated from the data but the final results strongly depend on the
initialization. Senasli et al. [2] also proposed to use active contours based on a
stochastic process to reconstruct binary images in the context of few data. Us-
ing these object-based methods for tomographic reconstruction, Charbonnier [3]
proposed to introduce a priori on the shape, to constrain the length of the curve
to be appropriated to the estimated object. Yoon et al [4] proposed a simulta-
neous segmentation and reconstruction method in the case of limited angle of
view in CT. The segmentation and reconstruction are achieved by alternating
a segmentation step using the a two-phase level set function and reconstruction
step using a conjugate gradient to estimate the intensity value. An initial image
obtained after few iterations of the reconstructed algorithm is used to initialize
the level set function. The method is performed using usual pixelised grids.

In the framework of SPECT tomography, Brankov et al. proposed a method
for 2D tomographic image reconstruction based on an irregular image represen-
tation [5]. The mesh is generated from a FDK reconstruction using a feature
map extraction performed on a regular pixelized grid. The classical algebraic
ML-EM algorithm is then used to proceed the reconstruction on the irregular
mesh. Sitek and al. also proposed a method of reconstruction based on a dif-
ferent representation of the volume: the domain is here defined by a cloud of
points and represented by non overlapping tetraedra defined by these points [6,
7]. From a coarse regular grid, nodes are added to the the point cloud at the
locations of large intensity variations during the reconstruction. The method is
more complex but strives for a more efficient image representation.

In this context, we propose a method of reconstruction in X-ray tomography
that uses a classical iterative algorithm modified to run on an adaptive triangu-
lar mesh jointly with a level set method to achieve simultaneous reconstruction
and segmentation. This approach provides both the density map of the sample
and the segmentation of all the materials that compose the object. The refine-
ment of the mesh, relying on the segmentation, significantly reduces the number
of unknowns since the homogeneous regions, containing poor information, are
represented by a coarse mesh. No additional post processing steps are required
leading to a reliable reproducibility of the process. Besides, the representation
of the image by a mesh adapted to its content allows to reduce considerably the
memory size of the reconstructed image (reduction of the problem of memory
storage) and to deal with highly pixelated detectors.



Buyens et al. Adaptive mesh reconstruction in X-Ray tomographys 3

2 Materials and method

After a step of initialization, the proposed method is composed of three main
stages : reconstruction, segmentation and adaptation of the mesh to the object
that successively alternate until convergence.

2.1 Initialization

This step consists in generating a first mesh according to the Delaunay’s criteria
i.e. a triangulation whose circumscribing circle of any facet of the triangulation
contains no vertex in its interior (Delaunay triangulation). All the elements
of this initial mesh are initialized with the same non-zero constant value. The
number of elements N; of this first mesh is chosen as 1—10N dim N, < N&m
where dim = {2,3} is the dimension of reconstruction and N = max{N,, N,}
with N, and IV, the number of pixels through the dimensions of the detector.

2.2 Reconstruction

The physics of the radiation determines the nature of the information collected
by the detectors of the acquisition system. We consider here the case of X-ray
transmission tomography for which every crossed material attenuates the flux
of photons according to its nature and its thickness. A difference of intensity is
measured in the log scale between the incoming and the outcoming photon flux
in the materials which is expressed by the Beer-Lambert law. Discretized, the
model is written as following:

p=Hf+e¢ (1)

where f is the vector containing the IV discretized values of the object, p is the
vector containing the M measurements, € is a vector representing modeling and
measurements errors, and H is the M x N projection matrix. M is equal to npyo; x
Ndet Where npro; is the number of projections and nge: the number of detectors.
The elements of matrix H represent the contribution of each element of the mesh
to the projection rays. As shown in figure 1, the element h; ; corresponds to the
length of the projection ray i intercepted by the element of the mesh j.

Here we investigate a Conjuguate Gradient (CG) optimization algorithm to
solve the problem as a least-square estimation. We denote the unknown param-
eter as f and the estimation is done by minimizing the cost function J(f):

f:arg;nin{J(f)} (2)

with
J(f) = llp— H|” ®3)
For quadratic cost functions, the iterative CG algorihtm with an optimal de-
scent step is given bellow, with n the indice of the iterations, N,,.; the maximum
number of iterations, d the CG descent direction and ¢ the gradient norm toler-

ance. g,, denotes the gradient of the cost function at the n'" iteration g,, = a‘gi(ff).
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Fig.1: The contribution of the element j of matrix H to the projection ray i
corresponds to the intercepted length [.

n = 07 dO = —4gg
while 1 < Npep and norm(g,,) <9

do
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p = g,
dn+1 = —9n+1 + Bdn

n++

In the above algorithm, the descent step «,, is calculated with the goal of
minimizing the cost function for the next iteration in the direction of the descent.
This means :

oy = argofnin{J(fn +ad,)} (4)

The expression given in the CG algorithm above is the exact solution for eq. 4
while the cost function is quadratic. Even with nonquadratic cost functions, the
same strategy can be used to estimate the descent step.

The gradient-based iterative methods of reconstruction require two main
steps (a projection and a backprojection) over one iteration [8]. These two main
operators are very time consuming. To speed up computation, they were thus
implemented on Graphic Process Units (GPU) using a ray-tracing method.

2.3 Segmentation

The step of segmentation is performed after the step of reconstruction. It consists
in delineating the boundaries of the object(s) which are used for the mesh refine-
ment. The segmentation is performed using the multiple phase level set method.
The level set function is defined by an implicit function ¢(x, t) that moves in R
in relation to time ¢. The curve described by the interface I'(t) = {x| ¢(x,t) = 0}
between two regions of the image domain, is determined at time ¢ by zero-level
curve of the function ¢(x,1).
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The movement of the curve is defined by the Euler-Lagrange equation :
¢t +Vx-Vo=0 (5)

where ¢; = % and V, = %‘f is the velocity field.

We investigate here the work of [9] and [10] whose segmentation approach is
based on convex energies. This Globally Convex Segmentation or GCS formu-
lation is based on the observation that the steady state solution of the gradient

flow coincides with the steady state of the simplified flow:

L
02— (v w02 = (2= 1) )

that represents the gradient descent for minimizing the energy:

E(¢) = [Vl +p < o,r> (7)

with 7 = (¢1 — f)? — (c2 — f)?. The global minima is defined by constraining the
solution in the interval [0,1] resulting in the optimization problem :

ming<g<1 |V¢| +pu<p,r> (8)

After optimization, the segmented region is found by thresholding the level set
function to get :
I' =z:¢(x) >« 9)

In the case of an image composed by only one material, 0 < ¢(z) < 1 and «
is set to 0.5. More generally, if 0 < ¢(z) < ¢, with ¢ < 1 and ¢ = max(¢(z)),
« is set to 5. In the case of an image composed of several materials, the regions
are then segmented by setting a to the values corresponding to the valleys of
the histogram of the image.

2.4 Refinement

Given the set of points .S defining the above segmented boundaries :

S = {mi,j7"'7xNj,j;-";xi,M7"'7mN1u,M}7x GRz (10)

where IV; is the number of points of the contour j, and M the number of seg-
mented contours. Since the lengths of the contours are different, the optimal
number of points describing each boundary is given by:

l

lmin

K=k

(11)

where, I; is the length of contour j, and l,,;, the length of the smallest contour.
k is empirically set to 100. The mesh is then generated using the functions of
CGAL library [11] according to the constrained Delaunay’s criteria.
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3 Results

The method was implemented and applied in 2D for the reconstruction of a slice
of a statistical model of a human knee which is composed of a single material
(bone). Secondly, the method was applied on the common Shepp-Logan phantom
which is composed of several materials.

3.1 2D Reconstruction of the knee

The first studied phantom is a statistical model of the knee only composed
by one material (bone). The projections have been computed using the RT-CT
module of the CIVA software [12] with a typical configuration of a common radio-
graphic exam of the knee: the distance knee - detector is 80 mm and the distance
knee - X-ray source 1080 mm. The dimensions of the 2D imaging detector are
151.5mmx151.5mm (with 1024x1024 pixels). Fig 2 shows a 3D representation
of the phantom and a snapshot of the simulation scene in CIVA.

In the follow, let’s denote ATM the proposed method for Adaptive Triangular
Mesh reconstruction.

m
AW o N W = o5 O MR el W - NN &)

B e
P

ceeecececessssararessessss

Fig. 2: Snapshot of the scene in CIVA software for the simulation of the projections of
the phantom showing the 3D phantom of the knee, the detector in green and a part of
the trajectory of the X-ray source.

Figure 3 shows the results of 2D reconstructions of a slice of the 3D model
of the knee using 36 projections with the FDK algorithm (Fig. 3a) and with
the ATM method (Fig. 3b) using o = w (one material to be segmented).
Figure 3c shows the final mesh

Figures 3b and 3c correspond respectively The final image and its correspond-
ing final mesh. This latter is composed of 1751 triangles which can be compared
to the 1024x1024 pixels (=1048576 pixels) of the FDK reconstruction 3a (about
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(d)

Fig. 3: Reconstructions of a 2D slice of the phantom of the knee using 36 projections
with (a) the analytical FDK algorithm, (b) the ATM method - (c) the corresponding
irregular mesh of the final ATM image showed in (b) and (d) Comparison of the real
contour of the knee (black contour) with the contours obtained from FDK reconstruc-
tion followed by a level set segmentation (green contour) and directly with the ATM
method (red contour).

x600 more elements). As Table 1 sums up, if coded on 64 bits (binary), the
pixelized image sizes in memory 8MB while the final irregular meshed image
sizes 84KB (ASCII) that is more than hundred times less with in addition the
information of segmentation (the mesh images are stored in OFF file format).
Figure 3d compares the real shape of the knee (black line) and the level of the
central slice with those obtained with FDK reconstruction coupled with an ad-
ditional step of level set segmentation (green line), and directly with the ATM
method (red line)

3.2 2D Reconstruction of the Shepp-Logan

The second phantom is a 2D slice of the Shepp-Logan phantom which is shown
in figure 6¢. It is composed of several structures whose values range from 0
to 2.0. 256 projections were computed with an analytical projector in the case
of a fan-beam configuration. The detector is composed by 256 pixels. Figure 4
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shows the reconstructions obtained with 4b FDK algorithm and 4c-4d with ATM
method (respectively the finale image and its corresponding triangular mesh)
using a set of 360 projections. The mesh was initialized with 65536 triangles and
reached 9522 triangles at the end on the process. In this case of several materials,
parameter a was set to 0.05, 0.18 and 0.4 in order to segment all the sturctures.

Numerical phantom
12z FBP

Proposed method

Gray levels

-0.2

() ()

Fig. 4: (a) 2D Shepp-Logan (256x256 pixels) (b) FDK reconstruction, (¢) ATM recon-
struction and (d) its corresponding final mesh (9522 triangles). (¢) ATM reconstruction
superimposed with the real contour of the numerical phantom and (f) the centered hor-
izontal profiles obtained from FDK and ATM compared with the real one
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Figure 4e shows Fig. 4¢ superimposed with the real contours of the phantom
(in red) and Figure 4f shows the profiles obtained from the FDK (red) and ATM
(blue) reconstructed images compared with the real one (pink). The ATM profile
is quite noiser but

Table 1: Memory storage size of the reconstructed images: pixel representation vs ATM
representation

Phantom Image representation  Data type  File size

Shepp-Logan ~ 256x256 pixels  binary (64 bits) 524 MB

9522 triangles ASCII 472 KB
Knee 1024x 1024 pixels binary (64 bits) 8MB
1751 triangles ASCIT 84 KB

Parameters study

Figure 5 shows the results of 2D reconstructions of the Shepp-Logan phantom
when varying the value of parameter k. It shows that this parameter has influence
on the definition of small regions. Indeed, when zooming on the top zone of
the phantom (images on the right column), we can observe the mesh density
increasing with the value of k and therefore a better definition of these three
regions. However, the other regions of the phantom (bigger) are not impacted
by the variation of k. The value of parameter k has thus to be high when the
studied object is composed by small structures.

Figure 6 shows the influence of the number of iterations of the first step
of reconstruction before segmentation. It shows that a good segmentation of
the object is obtained rather fast, between five and ten iterations. The drastic
simplication of the mesh generated after segmentation makes the computation
faster during the next iterations what speed up the global proposed method.

4 Conclusions and Perspective

The method described in this paper proposes an alternative image representation
in the field of image reconstruction in X-ray tomography. The useful pixel image
representation (regular grid) can mismatch with the content of the images and
is here replaced by an irregular and adaptive mesh. This kind of representation
decreases the number of unknowns since the mesh is fine to well describe the
contours of the object and its details, and becomes progressively coarse in the
homogeneous regions where there is no information.

The method alternatively runs a current algebraic or statistical algorithm
adapted to triangular mesh (in particular the main operators of projection and
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) k=50 (b) Corresponding mesh ) Zoom in
Gray level image (4296 triangles)

) k=100 (e) Corresponding mesh ) Zoom in
Gray level image (9522 triangles)

) k=200 (h) Corresponding mesh ) Zoom in
Gray level image (22199 triangles)

Fig. 5: Influence of parameter k on the mesh definition and the representation of the
image. On the left column (a), (d) and (g) represent the gray level images corresponding
to the meshed images (b), (e) and (h) respectively obtained with k=50, k=100 and
k=200. On the right column, (c), (f) and (i) images show a zoom of the three little
regions at the top of the phantom.

back-projection), a level set method of segmentation and a step of refinement.
In this study, the method has been evaluated on 2D numerical data using an
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(a) (b) (c)

Fig. 6: Influence of the number of iterations of reconstruction on segmentation and
mesh generation : results (a) after 5 iterations, (b) 10 iterations and (c) 15 iterations.

algorithm of conjugate gradient for the reconstruction and a level set approach
for the segmentation. The results show that the method provides the common
gray level images in addition of a mesh adapted to the content of the images.
The mesh is a means to obtain additional information without further image
processing tools application. Each segmented region can be easily extracted and
studied regardless of the other ones if necessary.

This kind of algorithm could be used for example in the follow up of patholo-

gies such as the osteoarthritis of the knee. The mesh could thus be initialized
with a previous exam to drastically speed up the reconstruction, and the results
could be stored in the informatic file of the patient generating less problems of
memory size. Indeed Table 1 shows how this representation is efficient for large
reconstruction : it decreases the space memory by a factor 1000 for the storage
of a 1024x1024 pixels image.
Since this representation decreases the number of unknowns, the data sets are
light and the parallelization of the two main operators does not significantly
accelerate the computation time in 2D. The reconstruction of 3D volumes and
the use of 2D detector whose number of pixels increases could thus be efficiently
treated with this approach.

At present a 3D projector has been implemented on GPU using a 3D ren-
dering method used in computer graphics adapted to our iterative process and
a quad tree hierarchical structure on each face of the volume of reconstruction
to speed up the stage of initilization of the rays.
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